convertToTwoFluid
Converts variables written as a combined two-fluid into two separate fluids. The combined two fluid use variables
\((\rho,\rho\,u_{x},\rho\,u_{y},\rho\,u_{z},\rho_{c},j_{x},j_{y},j_{z},e_{0},e_{1})\) which is then converted
to the individual fluids \((\rho_{0},\rho_{0}\,u_{x\,0},\rho_{0}\,u_{y\,0},\rho_{0}\,u_{z\,0},e_{0})\) and
\((\rho_{1},\rho_{1}\,u_{x\,1},\rho_{1}\,u_{y\,1},\rho_{1}\,u_{z\,1},e_{1})\).
The exact conversion is
\[\notag
\rho_{0}=\frac{m_{0} \left(m_{1}\rho_{c}-\rho q_{1}\right)}{m_{1} q_{0}-m_{0} q_{1}}\]
\[\notag
m_{x\,0}= \frac{m_{0} (j_{x} m_{1}-m_{x} q_{1})}{m_{1} q_{0}-m_{0} q_{1}}\]
\[\notag
m_{y\,0}= \frac{m_{0} (j_{y} m_{1}-m_{y} q_{1})}{m_{1} q_{0}-m_{0} q_{1}}\]
\[\notag
m_{z\,0}= \frac{m_{0} (j_{z} m_{1}-m_{z} q_{1})}{m_{1} q_{0}-m_{0} q_{1}}\]
\[\notag
\rho_{1}= \rho -\frac{m_{0} (m_{1} \rho_{c}-\rho q_{1})}{m_{1} q_{0}-m_{i} q_{1}}\]
\[\notag
m_{x\,1}= m_{x}-\frac{m_{0} (j_{x} m_{1}-m_{x} q_{1})}{m_{1} q_{0}-m_{0} q_{1}}\]
\[\notag
m_{y\,1}= m_{y}-\frac{m_{0} (j_{y} m_{1}-m_{y} q_{e})}{m_{1} q_{0}-m_{0} q_{1}}\]
\[\notag
m_{z\,1}= m_{z}-\frac{m_{0} (j_{z} m_{1}-m_{z} q_{1})}{m_{1} q_{0}-m_{0} q_{1}}\]
where \(m_{0}\) is the mass of the first species, \(m_{1}\) is the mass of the second species
\(m_{x\,\alpha}=u_{x\,\alpha}\rho_{\alpha}\), \(m_{y\,\alpha}=u_{y\,\alpha}\rho_{\alpha}\),
\(m_{z\,\alpha}=u_{z\,\alpha}\rho_{\alpha}\) is the momentum density in the x,y, or z directions of the
\(\alpha\) species and \(q_{\alpha}\) is the charge of the \(\alpha\) species. In particular, these
conversions show that if the mass and charge of each species are identical (and the charge of the same sign), this particular conversion is invalid.
Primary Variables (10)
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(\rho_{c}\) total charge density
- \(j_{x}\) x current density
- \(j_{y}\) y current density
- \(j_{z}\) z current density
- \(e_{i}\) ion energy density
- \(e_{e}\) electron energy density
Outputs
1st Variable
- \(\rho\) mass density of species 0
- \(\rho\,u_{x}\) x momentum density of species 0
- \(\rho\,u_{y}\) y momentum density of species 0
- \(\rho\,u_{z}\) z momentum density of species 0
- \(e\) e is the energy density of species 0
2nd Variable
- \(\rho\) mass density of species 1
- \(\rho\,u_{x}\) x momentum density of species 1
- \(\rho\,u_{y}\) y momentum density of species 1
- \(\rho\,u_{z}\) z momentum density of species 1
- \(e\) e is the energy density of species 1
Parameters
mass0
(float)
ion mass
mass1
(float)
electron mass
charge0
(float)
ion charge
charge1
(float)
electron charge
Example
<Equation convert>
kind = convertToTwoFluid
charge0 = ION_CHARGE
charge1 = ELECTRON_CHARGE
mass0 = ION_MASS
mass1 = ELECTRON_MASS
</Equation>