lorentzForce
Computes the lorentz force given from fluid variables, particle mass, charge and permittivity.  This lorentz force
would be used as a source term for fluid equations.
\[\notag
\begin{align}
s=\rho\frac{q}{m}\left(
\begin{array}{c}
0\\
E_{x}+u_{y}B_{z}-u_{z}B_{y}\\
E_{y}+u_{z}B_{x}-u_{x}B_{z}\\
E_{z}+u_{x}B_{y}-u_{y}B_{x}\\
u_{x}\,E_{x}+u_{y}\,E_{y}+u_{z}\,E_{z}\\
\end{array}
\right)
\end{align}\]
where \(q\) is the species charge, \(m\) is the species mass \(\epsilon_{0}\) is the permittivity,
\(\rho\) is the fluid mass density, \(u_{x}\) is the fluid x velocity, \(u_{y}\) is the fluid
y velocity, \(u_{z}\) is the fluid z velocity, \(E_{x}\) is the x electric field, \(E_{y}\) is
the y electric field, \(E_{z}\) is the z electric field, \(B_{x}\) is the x magnetic field, \(B_{y}\)
is the y magnetic field and \(B_{z}\) is the z magnetic field.
In the case where the user wants the Lorentz term for the two-fluid form twoFluidEqn the source is written as
\[\notag
\begin{align}
s=\left(
\begin{array}{c}
0\\
\rho_{c}E_{x}+j_{y}B_{z}-j_{z}B_{y}\\
\rho_{c}E_{y}+j_{z}B_{x}-j_{x}B_{z}\\
\rho_{c}E_{z}+j_{x}B_{y}-j_{y}B_{x}\\
0\\
(r_{i}^{2}\rho_{i}+r_{e}^{2}\rho_{e})E_{x}+(r_{i}^{2}\rho_{i}u_{y\,i}+r_{e}^{2}\rho_{e}u_{y\,e})B_{z}-(r_{i}^{2}\rho_{i}u_{z\,i}+r_{e}^{2}\rho_{e}u_{z\,e})B_{y}\\
(r_{i}^{2}\rho_{i}+r_{e}^{2}\rho_{e})E_{y}+(r_{i}^{2}\rho_{i}u_{z\,i}+r_{e}^{2}\rho_{e}u_{z\,e})B_{x}-(r_{i}^{2}\rho_{i}u_{x\,i}+r_{e}^{2}\rho_{e}u_{x\,e})B_{z}\\
(r_{i}^{2}\rho_{i}+r_{e}^{2}\rho_{e})E_{z}+(r_{i}^{2}\rho_{i}u_{x\,i}+r_{e}^{2}\rho_{e}u_{x\,e})B_{y}-(r_{i}^{2}\rho_{i}u_{y\,i}+r_{e}^{2}\rho_{e}u_{y\,e})B_{x}\\
j_{x\,i}\,E_{x}+j_{y\,i}\,E_{y}+j_{z\,i}\,E_{z}\\
j_{x\,e}\,E_{x}+j_{y\,e}\,E_{y}+j_{z\,e}\,E_{z}\\
\end{array}
\right)
\end{align}\]
and this source can be chosen by choosing type=twoFluidEqn.  The variables are defined as follows, \(r_{i}=q_{i}/m_{i}\) and \(r_{e}=q_{e}/m_{e}\) where \(q_{e}\) is the electron charge, \(q_{i}\) is the ion charge, \(m_{e}\) is the electron mass and \(m_{i}\) is the ion mass.  In addition the variables \((\rho_{\alpha},u_{x\,\alpha},u_{y\,\alpha},u_{x\,\alpha})\) are the species mass density, species x velocity, species y velocity, and species z velocity.  In this case \(\alpha\) represents the species, either \(e\) for electron or \(i\) for ion.  In addition \((j_{x},j_{y},j_{z})\) are the total current densities in the x, y and z directions.
Parameters common to all systems
- type(string)
- The type of source is split5 (the default), or twoFluidEqn
 
Parameters (type=split5)
- mass(float)
- The mass of the fluid species
- charge(float)
- The charge of the fluid species
 
Parameters (type=twoFluidEqn)
- electronMass(float)
- The electron mass
- ionMass(float)
- The ion mass
- electronCharge(float)
- The electron charge
- ionCharge(float)
- The ion charge
 
Parent Updater Data (type=split5) Default
- in(string vector, required)
- 1st Variable - 
- \(\rho\)         mass density
- \(\rho\,u_{x}\)  x momentum density
- \(\rho\,u_{y}\)  y momentum density
- \(\rho\,u_{z}\)  z momentum density
 - 2nd Variable - 
- \(e_{x}\)  x electric field
- \(e_{y}\)  y electric field
- \(e_{z}\)  z electric field
- \(b_{x}\)  x magnetic field
- \(b_{y}\)  y magnetic field
- \(b_{z}\)  z magnetic field
 
- out(string vector, required)
- The output variable is a length 5 vector, but the
first component is 0 so that it works simply as a
fluid source for the euler equations. - 1st Variable - 
- \(0.0\)    mass density.  No contribution from Lorentz force
- \(L_{x}\)  x momentum density contribution of Lorentz force
- \(L_{y}\)  y momentum density contribution of Lorentz force
- \(L_{z}\)  z momentum density contribution of Lorentz force
- \(E\cdot J\)  energy density contribution of Lorentz force
 
 
Parent Updater Data (type=twoFluidEqn)
- in(string vector, required)
- 1st Variable - 
- \(\rho\)         mass density
- \(\rho\,u_{x}\)  x momentum density
- \(\rho\,u_{y}\)  y momentum density
- \(\rho\,u_{z}\)  z momentum density
- \(\rho_{c}\)     total charge density
- \(j_{x}\)        x current density
- \(j_{y}\)        y current density
- \(j_{z}\)        z current density
- \(e_{i}\)        ion energy density
- \(e_{e}\)        electron energy density
 - 2nd Variable - 
- \(e_{x}\)  x electric field
- \(e_{y}\)  y electric field
- \(e_{z}\)  z electric field
- \(b_{x}\)  x magnetic field
- \(b_{y}\)  y magnetic field
- \(b_{z}\)  z magnetic field
 
 
Example
<Source lorentzIon>
  kind = lorentzForce
  mass = ION_MASS
  charge = ION_CHARGE
</Source>
<Source lorentz>
  kind = lorentzForce
  type = twoFluidEqn
  ionMass = ION_MASS
  electronMass = ELECTRON_MASS
  ionCharge = ION_CHARGE
  electronCharge = ELECTRON_CHARGE
</Source>