mhdSym
The mhdSym source computes additional (source) terms associated with
curvilinear coordinate systems for
magnetohydrodynamics. Currently only cylindrical coordinates are supported. The
mhdSym source is combined with
classicMusclUpdater (1d, 2d, 3d) and mhdDednerEqn. Note that formulation of the
cylindrical source term assumes axisymmetry and so can be used in
1- and 2-dimensions.
Parameters
symmetryType
(string, required)
- The curvilinear cordinate system to be used. Available options are
cylindrical.
model
(string, required)
Determines the equation that the source term will be computed
for. Available options are:
mhdDednerEqn
Compute curvilinear source terms associated with
mhdDednerEqn.
gasGamma
(float, required)
- Specifies the adiabatic index (ratio of specific heats),
\(\gamma\).
basementPressure
(float, optional)
- The minimum pressure allowed. Pressures below this value will be
replaced with this value. Defaults to zero.
basementDensity
(float, optional)
- The minimum density allowed. Densities below this value will be
replaced with this value. Defaults to zero.
Parent Updater Data
in
(string vector, required)
Vector of Conserved Quantities
(nodalArray, 9-components, required)
The vector of conserved quantities, \(\mathbf{q}\) has 9
entries:
- \(\rho\): mass density
- \(\rho\,u_{\hat{\mathbf{i}}} = \rho \mathbf{u} \cdot \hat{\mathbf{i}}\): momentum density in the \(\hat{\mathbf{i}}\) direction
- \(\rho\,u_{\hat{\mathbf{j}}} = \rho \mathbf{u} \cdot \hat{\mathbf{j}}\): momentum density in the \(\hat{\mathbf{j}}\) direction
- \(\rho\,u_{\hat{\mathbf{k}}} = \rho \mathbf{u} \cdot \hat{\mathbf{k}}\): momentum density in the \(\hat{\mathbf{k}}\) direction
- \(E = \frac{P}{\gamma -1} + \tfrac{1}{2}\rho|\mathbf{u}|^2 + \tfrac{1}{2}|\mathbf{b}|^2\): total energy density
- \(b_{\hat{\mathbf{i}}} = \mathbf{b} \cdot \hat{\mathbf{i}} =
\mu^{-1/2}_{0} \mathbf{B} \cdot \hat{\mathbf{i}}\): magnetic field normalized by permeability of free-space in the \(\hat{\mathbf{i}}\) direction
- \(b_{\hat{\mathbf{j}}} = \mathbf{b} \cdot \hat{\mathbf{j}} =
\mu^{-1/2}_{0} \mathbf{B} \cdot \hat{\mathbf{j}}\): magnetic field normalized by permeability of free-space in the \(\hat{\mathbf{j}}\) direction
- \(b_{\hat{\mathbf{k}}} = \mathbf{b} \cdot \hat{\mathbf{k}} =
\mu^{-1/2}_{0} \mathbf{B} \cdot \hat{\mathbf{k}}\): magnetic field normalized by permeability of free-space in the \(\hat{\mathbf{k}}\) direction
- \(\psi\): correction potential
out
(string vector, required)
model = mhdDednerEqn
Vector of Source terms
(nodalArray, 9-components, required)
When symmetryType = cylindrical, the output source vector has components:
- \(\mathcal{S} \left(\rho \right) = -r^{-1} \rho\,u_{\hat{\mathbf{i}}}\): mass source
- \(\mathcal{S}\left( \rho\,u_{\hat{\mathbf{i}}} \right) =
-r^{-1} \left(
\rho\,u_{\hat{\mathbf{i}}}^{2} - b^2_{\hat{\mathbf{i}}}
+\rho\,u_{\hat{\mathbf{j}}}^{2} - b^2_{\hat{\mathbf{j}}} +
\left| \mathbf{b} \cdot \mathbf{b} \right| \right)\): \(\hat{\mathbf{i}}\) momentum source
- \(\mathcal{S}\left( \rho\,u_{\hat{\mathbf{j}}} \right) =
-2r^{-1}\left( \rho\,u_{\hat{\mathbf{i}}}\,u_{\hat{\mathbf{j}}}
- b_{\hat{\mathbf{i}}} b_{\hat{\mathbf{j}}} \right)\): \(\hat{\mathbf{j}}\) momentum source
- \(\mathcal{S}\left( \rho\,u_{\hat{\mathbf{k}}} \right) =
-r^{-1} \left( \rho\,u_{\hat{\mathbf{i}}}\,u_{\hat{\mathbf{k}}}
- b_{\hat{\mathbf{i}}} b_{\hat{\mathbf{k}}} \right)\): \(\hat{\mathbf{k}}\) momentum source
- \(\mathcal{S}\left( E \right) = -r^{-1} \left[
u_{\hat{\mathbf{i}}}\,\left(E+P\right) + \left( \mathbf{e}
\times \mathbf{b} \right) \cdot {\hat{\mathbf{i}}} \right]\):
total energy source
- \(\mathcal{S}\left( b_{\hat{\mathbf{i}}} \right) = 0\): \(\hat{\mathbf{i}}\) magnetic field source
- \(\mathcal{S}\left( b_{\hat{\mathbf{j}}} \right) = 0\): \(\hat{\mathbf{j}}\) magnetic field source
- \(\mathcal{S}\left( b_{\hat{\mathbf{k}}} \right) = -e_{\hat{\mathbf{j}}}\): \(\hat{\mathbf{k}}\) magnetic field source
- \(\mathcal{S}\left(\psi \right) = -c^2_{\mathrm{fast}} b_{\hat{\mathbf{i}}}\): correction potential source
Example
The following block demonstrates the mhdSym source used in combination
with classicMusclUpdater (1d, 2d, 3d) and
mhdDednerEqn to compute \(\nabla\cdot\left[ \mathcal{F} \left( \mathbf{w} \right)
\right] - \mathcal{S} \left( \mathbf{w}, x, y, z, t \right)\):
<Updater hyper>
kind = classicMuscl2d
timeIntegrationScheme = none
onGrid = domain
limiter = [muscl,none,none]
variableForm = primitive
numericalFlux = roeFlux
preservePositivity = true
correctUnphysicalCells = false
orderAccuracy = 3
numberOfInterpolationPoints = 20
formulation = spline
leastSquaresBasisOrder = 6
in = [q,divB,gradPsi]
out = [qnew]
waveSpeeds = [waveSpeed]
cfl = CFL
equations = [mhd]
sources = [axisymmetricSource]
<Equation mhd>
kind = mhdDednerEqn
mu0 = 1.0
gasGamma = ADIABATIC_INDEX
correctionSpeed = CORRECTION_SPEED
basementdensity = BASEMENTDENSITY
basementpressure = BASEMENTPRESSURE
</Equation>
<Source axisymmetricSource>
kind = mhdSym
symmetryType = cylindrical
model = mhdDednerEqn
gasGamma = ADIABATIC_INDEX
correctionSpeed = CORRECTION_SPEED
</Source>
</Updater>