tenMomentEqn
Ideal compressible 10 moment fluid equations. The equations are solved
in conservative form.
\[\notag
\begin{align}
\frac{\partial}{\partial t}\left(
\begin{array}{c}
\rho \\
\rho\,u_{x} \\
\rho\,u_{y} \\
\rho\,u_{z} \\
\rho\,u_{x}^{2}+P_{x\,x} \\
\rho\,u_{x}\,u_{y}+P_{x\,y}\\
\rho\,u_{x}\,u_{z}+P_{x\,z}\\
\rho\,u_{y}^{2}+P_{y\,y}\\
\rho\,u_{y}\,u_{z}+P_{y\,z}\\
\rho\,u_{z}^{2}+P_{z\,z}\\
\end{array}
\right) +
\nabla\cdot\ P = 0
\end{align}\]
where \(P\) is defined as
\[\begin{split}\begin{pmatrix}
\rho\,u_{x} & \rho\,u_{y} & \rho\,u_{z} \\
\rho\,u_{x}^{2}+P_{x\,x} & \rho\,u_{x}\,u_{y}+P_{x\,y} & \rho\,u_{x}\,u_{z}+P_{x\,z} \\
\rho\,u_{y}\,u_{x} +P_{x\,y}& \rho\,u_{y}\,u_{y} + P_{y\,y} & \rho\,u_{y}\,u_{z}+P_{y\,z} \\
\rho\,u_{z}\,u_{x} +P_{x\,z}& \rho\,u_{z}\,u_{y} +P_{y\,z}& \rho\,u_{z}\,u_{z} + P_{z\,z} \\
\rho\,u_{x}^{3}+3u_{x}P_{x\,x} & \rho\,u_{y}u_{x}^{2}+u_{x}P_{y\,y}+2u_{x}P_{x\,y} & \rho\,u_{z}u_{x}^{2}+u_{z}P_{x\,x}+2u_{x}P_{x\,z}\\
\rho\,u_{x}^{2}u_{y}+2\,u_{x}\,P_{x\,y}+u_{y}P_{x\,x} & 0 & 0 \\
\rho\,u_{x}^{2}u_{z}+2\,u_{x}\,P_{x\,z}+u_{z}P_{x\,x} & 0 & 0\\
\rho\,u_{x}u_{y}^{2}+u_{x}P_{y\,y}+2u_{y}P_{x\,y} & \rho\,u_{y}^{3}+3u_{y}P_{y\,y} & 0\\
\rho\,u_{x}u_{y}u_{z}+u_{x}P_{y\,z}+u_{y}P_{x\,z}+u_{z}P_{x\,y} & 0 & 0 \\
\rho\,u_{x}u_{z}^{2}+u_{x}P_{z\,z}+2u_{z}P_{x\,z} & 0 & \rho\,u_{z}^{3}+3u_{z}P_{z\,z}\\
\end{pmatrix}\end{split}\]
Parameters
basementPressure
(float)
- The minimum pressure allowed. Defaults to 0.
basementDensity
(float)
- The minimum density allowed. Defaults to 0.
Parent Updater Data
in
(string vector, required)
- 1st variable
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(\rho\,u_{x}^{2}+P_{x\,x}\) xx energy density
- \(\rho\,u_{x}\,u_{y}+P_{x\,y}\) xy energy density
- \(\rho\,u_{x}\,u_{z}+P_{x\,z}\) xz energy density
- \(\rho\,u_{y}^{2}+P_{y\,y}\) yy energy density
- \(\rho\,u_{y}\,u_{z}+P_{y\,z}\) yz energy density
- \(\rho\,u_{z}^{2}+P_{z\,z}\) zz energy density
Example
An example tenMoment equation block is given below:
<Equation tenMoment>
kind = tenMomentEqn
</Equation>