Computes the “lorentz force” for a 10 moment fluid given, particle mass, charge and permittivity.
where \(q\) is the species charge, \(m\) is the species mass \(\epsilon_{0}\) is the permittivity, \(\rho\) is the fluid mass density, \(u_{x}\) is the fluid x velocity, \(u_{y}\) is the fluid y velocity, \(u_{z}\) is the fluid z velocity, \(E_{x}\) is the x electric field, \(E_{y}\) is the y electric field, \(E_{z}\) is the z electric field, \(B_{x}\) is the x magnetic field, \(B_{y}\) is the y magnetic field and \(B_{z}\) is the z magnetic field. \(\mathbf{P_{i\,j}}=P_{i\,j}+\rho\,u_{i}u_{j}\) with \(P_{i\,j}\) the pressure tensor and \(\rho\) the mass density and \(r=q/m\) the charge to mass ratio.
mass (float)charge (float)type (string, default=`unsplit`)inputVariables (string vector)
1st Variable(nodalArray)
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(\rho\,u_{x}^{2}+P_{x\,x}\) xx energy density
- \(\rho\,u_{x}\,u_{y}+P_{x\,y}\) xy energy density
- \(\rho\,u_{x}\,u_{z}+P_{x\,z}\) xz energy density
- \(\rho\,u_{y}^{2}+P_{y\,y}\) yy energy density
- \(\rho\,u_{y}\,u_{z}+P_{y\,z}\) yz energy density
- \(\rho\,u_{z}^{2}+P_{z\,z}\) zz energy density
2nd Variable(nodaArray)
- \(E_{x}\) x electric field
- \(E_{y}\) y electric field
- \(E_{z}\) z electric field
- \(B_{x}\) x magnetic field
- \(B_{y}\) y magnetic field
- \(B_{z}\) z magnetic field
in (string vector, required)The nodalArrays should match the inputVariables in the source block.
1st Variable (nodalArray)
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(\rho\,u_{x}^{2}+P_{x\,x}\) xx energy density
- \(\rho\,u_{x}\,u_{y}+P_{x\,y}\) xy energy density
- \(\rho\,u_{x}\,u_{z}+P_{x\,z}\) xz energy density
- \(\rho\,u_{y}^{2}+P_{y\,y}\) yy energy density
- \(\rho\,u_{y}\,u_{z}+P_{y\,z}\) yz energy density
- \(\rho\,u_{z}^{2}+P_{z\,z}\) zz energy density
2nd Variable (nodaArray)
- \(E_{x}\) x electric field
- \(E_{y}\) y electric field
- \(E_{z}\) z electric field
- \(B_{x}\) x magnetic field
- \(B_{y}\) y magnetic field
- \(B_{z}\) z magnetic field
out (string vector, required)<Updater hyperIons>
  kind = classicMuscl2d
  onGrid = domain
  timeIntegrationScheme = none
  numericalFlux = hlleFlux
  preservePositivity = true
  limiter = [mc,none]
  variableForm = conservative
  in = [ions, em]
  out = [ionsNew]
  cfl = CFL
  equations = [euler]
  sources = [lorentz]
  <Equation euler>
    kind = tenMomentEqn
    basementDensity = BASEMENT_DENSITY
    basementPressure = BASEMENT_PRESSURE
  </Equation>
  <Source lorentz>
    kind = tenMomentFluidSrc
    type = split
    inputVariables = [ions, em]
    mass = ION_MASS
    charge = ION_CHARGE
  </Source>
</Updater>