Computes the “lorentz force” for a 10 moment fluid given, particle mass, charge and permittivity.
where \(q\) is the species charge, \(m\) is the species mass \(\epsilon_{0}\) is the permittivity, \(\rho\) is the fluid mass density, \(u_{x}\) is the fluid x velocity, \(u_{y}\) is the fluid y velocity, \(u_{z}\) is the fluid z velocity, \(E_{x}\) is the x electric field, \(E_{y}\) is the y electric field, \(E_{z}\) is the z electric field, \(B_{x}\) is the x magnetic field, \(B_{y}\) is the y magnetic field and \(B_{z}\) is the z magnetic field. \(\mathbf{P_{i\,j}}=P_{i\,j}+\rho\,u_{i}u_{j}\) with \(P_{i\,j}\) the pressure tensor and \(\rho\) the mass density and \(r=q/m\) the charge to mass ratio.
mass
(float)charge
(float)type
(string, default=`unsplit`)inputVariables
(string vector)
1st Variable
(nodalArray)
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(\rho\,u_{x}^{2}+P_{x\,x}\) xx energy density
- \(\rho\,u_{x}\,u_{y}+P_{x\,y}\) xy energy density
- \(\rho\,u_{x}\,u_{z}+P_{x\,z}\) xz energy density
- \(\rho\,u_{y}^{2}+P_{y\,y}\) yy energy density
- \(\rho\,u_{y}\,u_{z}+P_{y\,z}\) yz energy density
- \(\rho\,u_{z}^{2}+P_{z\,z}\) zz energy density
2nd Variable
(nodaArray)
- \(E_{x}\) x electric field
- \(E_{y}\) y electric field
- \(E_{z}\) z electric field
- \(B_{x}\) x magnetic field
- \(B_{y}\) y magnetic field
- \(B_{z}\) z magnetic field
in
(string vector, required)The nodalArrays should match the inputVariables in the source block.
1st Variable
(nodalArray)
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(\rho\,u_{x}^{2}+P_{x\,x}\) xx energy density
- \(\rho\,u_{x}\,u_{y}+P_{x\,y}\) xy energy density
- \(\rho\,u_{x}\,u_{z}+P_{x\,z}\) xz energy density
- \(\rho\,u_{y}^{2}+P_{y\,y}\) yy energy density
- \(\rho\,u_{y}\,u_{z}+P_{y\,z}\) yz energy density
- \(\rho\,u_{z}^{2}+P_{z\,z}\) zz energy density
2nd Variable
(nodaArray)
- \(E_{x}\) x electric field
- \(E_{y}\) y electric field
- \(E_{z}\) z electric field
- \(B_{x}\) x magnetic field
- \(B_{y}\) y magnetic field
- \(B_{z}\) z magnetic field
out
(string vector, required)<Updater hyperIons>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = hlleFlux
preservePositivity = true
limiter = [mc,none]
variableForm = conservative
in = [ions, em]
out = [ionsNew]
cfl = CFL
equations = [euler]
sources = [lorentz]
<Equation euler>
kind = tenMomentEqn
basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE
</Equation>
<Source lorentz>
kind = tenMomentFluidSrc
type = split
inputVariables = [ions, em]
mass = ION_MASS
charge = ION_CHARGE
</Source>
</Updater>