twoTemperatureMhdEosEqn
Two temperature MHD model with with general equation of state. The
equations are solved in conservative form.
\[\notag
\begin{align}
\frac{\partial}{\partial t}\left(
\begin{array}{c}
\rho \\
\rho\,u_{x} \\
\rho\,u_{y} \\
\rho\,u_{z} \\
e \\
B_{x} \\
B_{y} \\
B_{z} \\
e_{e} \\
\end{array}
\right) +
\nabla\cdot\left(
\begin{array}{ccc}
\rho\,u_{x} & \rho\,u_{y} & \rho\,u_{z} \\
\rho\,u_{x}^{2}+P - \frac{1}{\mu_{0}}B_{x}^{2} + \frac{1}{2\,\mu_{0}}B^{2}& \rho\,u_{x}\,u_{y}-\frac{1}{\mu_{0}}B_{x}\,B_{y} & \rho\,u_{x}\,u_{z}-\frac{1}{\mu_{0}}B_{x}\,B_{z} \\
\rho\,u_{y}\,u_{x}-\frac{1}{\mu_{0}}B_{x}\,B_{y} & \rho\,u_{y}\,u_{y} + P - \frac{1}{\mu_{0}}B_{y}^{2} + \frac{1}{2\,\mu_{0}}B^{2} & \rho\,u_{y}\,u_{z}-\frac{1}{\mu_{0}}B_{y}\,B_{z} \\
\rho\,u_{z}\,u_{x}-\frac{1}{\mu_{0}}B_{x}\,B_{z} & \rho\,u_{z}\,u_{y} -\frac{1}{\mu_{0}}B_{z}\,B_{y} & \rho\,u_{z}\,u_{z} + P - \frac{1}{\mu_{0}}B_{z}^{2} + \frac{1}{2\,\mu_{0}}B^{2} \\
u_{x}\left(e+P\right)+\frac{1}{\mu_{0}}\left(E_{y}B_{z}-E_{z}B_{y}\right) & u_{y}\left(e+P\right)+\frac{1}{\mu_{0}}\left(E_{z}B_{x}-E_{x}B_{z}\right) & u_{z}\left(e+P\right)+\frac{1}{\mu_{0}}\,\left(E_{x}B_{y}-E_{y}B_{x}\right) \\
0 & E_{z} & -E_{y} \\
-E_{z} & 0 & E_{x} \\
E_{y} & -E_{x} & 0 \\
u_{x}\left(e_{e}+P_{e}\right) & u_{y}\left(e_{e}+P_{e}\right) & u_{z}\left(e_{e}+P_{e}\right) \\
\end{array}
\right) = 0
\end{align}\]
Primary Variables (9)
- \(\rho\) mass density
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(e\) total energy density
- \(B_{x}\) x magnetic field
- \(B_{y}\) y magnetic field
- \(B_{z}\) z magnetic field
- \(e_{e}\) electron energy density
Auxiliary variables (6)
1st auxiliary variable is the total pressure (1 component)
- \(P\) total pressure
2nd auxiliary variable is the electron pressure (1 component)
- \(P_{e}\) electron pressure
3rd auxiliary variable is the sound speed (1 component)
- \(a\) estimate of the speed of sound for determining the time step
4th auxiliary variable is current density (3 components)
- \(J_{x}\) x current density
- \(J_{y}\) y current density
- \(J_{z}\) z current density
5th auxiliary variable is electric field (3 components)
- \(E_{x}\) x electric field
- \(E_{y}\) y electric field
- \(E_{z}\) z electric field
6th auxiliary variable is current density (3 components)
- \(Z\) charge state
Parameters
mu0
(float)
Is the permeability of free space
basementPressure
(float)
The minimum pressure allowed. Defaults to 0.
basementDensity
(float)
The minimum density allowed. Defaults to 0.
fundamentalCharge
(float)
elementary charge
ionMass
(float)
mass of the ion
Example
An example twoTemperatureMhdEos equation block is given below::
<Equation twoTemperatureMhdEos>
kind = twoTemperatureMhdEosEqn
mu0 = MU0
fundamentalCharge = CHARGE
ionMass = MI
</Equation>