eulerThreeTemp
Three temperature fluid model. Heavy particle translational
temperature, heavy particle vibrational temperature, and electron
translational temperature. The equations are solved in conservative
form.
\[\notag
\begin{align}
\frac{\partial}{\partial t}\left(
\begin{array}{c}
\rho_{l} \\
\rho\,u_{x} \\
\rho\,u_{y} \\
\rho\,u_{z} \\
e_{t} \\
e_{e} \\
e_{v} \\
\end{array}
\right) +
\nabla\cdot\left(
\begin{array}{ccc}
\rho_{l}\,u_{x} & \rho_{l}\,u_{y} & \rho_{l}\,u_{z} \\
\rho\,u_{x}^{2}+P & \rho\,u_{x}\,u_{y} & \rho\,u_{x}\,u_{z} \\
\rho\,u_{y}\,u_{x} & \rho\,u_{y}\,u_{y} + P & \rho\,u_{y}\,u_{z} \\
\rho\,u_{z}\,u_{x} & \rho\,u_{z}\,u_{y} & \rho\,u_{z}\,u_{z} + P \\
u_{x}\left(e_{t}+P\right) & u_{y}\left(e_{t}+P\right) & u_{z}\left(e_{t}+P\right)\\
u_{x}\left(e_{e}+P_{e}\right) & u_{y}\left(e_{e}+P_{e}\right) & u_{z}\left(e_{e}+P_{e}\right)\\
u_{x}\left(e_{v}\right) & u_{y}\left(e_{v}\right) & u_{z}\left(e_{v}\right)
\end{array}
\right) = \left(
\begin{array}{c}
s_{l}\\
0\\
0\\
0\\
\mathbf{E}\cdot \mathbf{J} + Q_{v-t}\\
\mathbf{E}\cdot \mathbf{J_e}\\
-Q_{v-t}
\end{array}
\right)
\end{align}\]
\[\notag
\begin{align}
\begin{array}{l}
P = P_{l} + P_{e}\\
Q_{v-t} = \sum_{l}\rho_{l}\left(\frac{e_{v,l}^{\ast} - e_{v,l}}{\tau_{l}}\right)\\
e_{v,l} = \frac{R}{M_{l}}\left[\frac{\theta_{v,l}}{exp(\theta/T_{v})-1}\right]\\
e_{v,l}^{\ast} = \frac{R}{M_{l}}\left[\frac{\theta_{v,l}}{exp(\theta/T)-1}\right]\\
J_{e,x} = n_{e}e^{-}u_{x}\\
J_{x} = \left(n_{i}-n_{e}\right)e^{-}u_{x}\\
E_{x} = -\frac{\partial{P_{e}}}{\partial{x}}\frac{1}{n_{e}e^{-}}
\end{array}
\end{align}\]
Primary Variables (7)
- \(\rho_{l}\) mass density of a species “l”
- \(\rho\,u_{x}\) x momentum density
- \(\rho\,u_{y}\) y momentum density
- \(\rho\,u_{z}\) z momentum density
- \(e_{t}\) total energy density
- \(e_{e}\) electron energy density
- \(e_{v}\) vibrational energy density
Auxiliary Variables (7)
1st auxiliary variable is the total mass density
- \(\rho\) total mass density
2nd auxiliary variable is the electric field (3 components)
- \(E_{x}\) x electric field
- \(E_{y}\) y electric field
- \(E_{z}\) z electric field
3rd auxiliary variable is the current density (3 components)
- \(J_{x}\) x current density
- \(J_{y}\) y current density
- \(J_{z}\) z current density
4th auxiliary variable is the electron current density (3 components)
- \(J_{e,x}\) x current density
- \(J_{e,y}\) y current density
- \(J_{e,z}\) z current density
5th auxiliary variable
- \(\tau_{l}\) vibrational-translational energy relaxtion time of a species “l”
6th auxiliary variable
- \(\theta_{v,l}\) characteristic vibrational temperature of a species “l”
7th auxiliary variable
- \(D_{l}\)
Parameters
basementPressure
(float) [0.0]
The minimum pressure allowed
basementDensity
(float) [0.0]
The minimum density allowed
Note
basementPressure and basementDensity are only used if correct=true
correct
(boolean) [true]
Tells whether or not densities or pressures should be corrected when the fall below basement pressures or
basement densities. When set to true pressure=max(basementPressure, pressure) and
density = max(basementDensity, density)
Note
Setting correctNans or correct to true can lead to energy conservation errors
Example
An example eulerThreeTemp equation block is given below::
equations = [euler]
<Equation euler>
kind = eulerThreeTemp
correct = false
</Equation>