o Text-based Setup of Electrostatic
“ [J [J (] ([
Simulations in VSim

TECH-X

SIMULATIONS EMPOWERING
YOUR INNOVATIONS

Tom Jenkins
Tech-X Corporation

®CooT~o (O
\\/
+|+

+
'+
]
+
1 4+
! I

Tech-X Worldwide Simulation Summit

Boulder, Colorado
September 17, 2019

X A brief introduction to me...
TECH-)

 Senior Research Scientist

9.5 years at Tech-X
« Ph.D. @ Princeton/PPPL (2007), in gyrokinetic PIC simulation

» Postdoc @ UW-Madison, working on RF/MHD coupling for electron
cyclotron current drive in fusion plasmas

» Current research interests:
* methods for speeding up particle-in-cell simulations (SLPIC)
* modeling RF sheaths/impurity sputtering in fusion devices
» Kkinetic theory — wave/particle interactions, etc.
« PIC modeling of low-temperature plasmas

» Website, where this talk and other talks/papers/presentations are posted:

http://nucleus.txcorp.com/~tgjenkins

X Standard electrostatics problem: Poisson

TECH-X
dqujc(Zx) - —”iff) =0 = ¢t plx=1)=¢"9" x € [0,L]

Numerical approach: discretize.

L
Define a grid: Ax = N o Xn= nAx vn=201,..,N

Use finite-difference approximation to second derivative, at interior gridpoints:

bjr1— 2¢; + ¢j—1]

Ax?2

—€, =p; V j=12,.,N-1

Apply boundary conditions, at edge gridpoints:
$o = ¢left

¢N — (pright

Solve the ensuing system of linear equations.

X Solution error scales as 1/N?
TECH-){

¢ posin(T)
__ L7 p(x=0)=¢®, ¢Gx=1L)=¢"9" on[0,L]

dx? €0

has exact solution

2
B0 = ¢+ (9797 — 317%) T+ 20 in ()

On the discrete grid we have
Jexact — ¢left + (d)right ¢left) J - nz S in (7;;) : p]exact = Do sin (717\,_])

Putting these functions into the discretized Poisson equation yields
—@sin (ﬂj) 2N l — COS (ﬂ)] ~ —'0—051n (nj)
€o N N €o N

2N® 1—(1 ™ + U + 1
T2 2N2 24N*4 -

X What does this look like in VSIim?

TECH-X
Let’s set up a basic simulation and run it for one step:
Parameters Basic Settings SpaceTimeFunctions
VLEFT =0 number of steps = 1 RHOxt=RHOZERO*sin(PI*x/LX)
VRIGHT = 1 steps between dumps = 1
LX =1 dimensionality = 1 Grids
NX =10 field solver = electrostatic xMin=0
RHOZERO = 20 xMax = LX

xCells = NX

Field Dynamics: Fields
Background Charge Density RHO=RHOxt

Field Dynamics: FieldBoundaryConditions
Dirichlet on lower x: VLEFT
Dirichlet on upper x: VRIGHT

Field Dynamics: PoissonSolver —HR- g
preconditioner = no preconditioner S
SO|Ver=SuperLU) R R A

CLJ
3’

Looking at vsim.in — input blocks

TECH-X
[\
FRONTMATTER :
| _ Key VSim concept O:
<Grid globalGrid>
block structures
</Grid>

<Decomp decomp>
</Decomp>
<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD> Or very genera”y,
</Field> <OBJECT objectName>

iject features

<InitialUpdateStep NAME_OF INITIALUPDATESTEP> </OBJECT>
<“/.InitiaIUpdateStep>

<UpdateStep NAME_OF _UPDATESTEP>

<“/.Update8tep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]
</MultiField>

CLJ
oo’

Looking at vsim.in — overall structure

TECH-X
FRONTMATTER
<Grid globalGrid> Key VSim concept 1:
</Grid> the MultiField block

<Decomp decomp>

</Decomp>

<MultiField NAME_OF_MULTIFIELD>
<Field NAME_OF_FIELD>
ol]—functions: electric field, electrostatic potential, charge density, ...

define mathematical operations on existing fields,
e.g. taking a gradient of a scalar field

<InitialUpdateStep NAME_OF _INITIALUPDATESTEP> Set |n|t|a| Conditions — done only once
<“/.InitiaIUpdateStep> at simulation outset

<UpdateStep NAME_OF UPDATESTEP>
</ UpdateStep>

]- Call the previously defined FieldUpdaters

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEPZ2 ...]
</MultiField>

CLJ
o’

Looking at vsim.in - frontmatter

TECH-X
nsteps = 1 < number of steps in simulation
dumpPeriodicity = 1< write data every 1 timestep
dt = 1.0 <« timestep
dimension = 1 < 1D simulation

floattype = double
verbosity = 127
copyHistoryAtEachDump = 0
useGridBndryRestore = False
constructUniverse = False

<Grid globalGrid>
verbosity = 127 3D grid: default y, z values

numCells = [10 11 12] Ax =1/10 ; Ay = 1/11 ; Az = 1/12

lengths = [1.0 1.0 1.0] (extra dimensions not used in
startPositions = [0.0 -0.5 0.0] : : :
computation; still present in

maxCellXings = 1 _ .
</Grid> several parts of input file though)

CLJ
3’

Looking at vsim.in — Field blocks
TECH-X

<Field E> vector field
numComponents = 3 «—

offset = edge €—
kind = regular

overlap =[1 1] _ . .
abels = [E x E y E_z]4+—— names of field components in output file

</Field>

lives on edges between grid points

<Field Phi> scalar field ¢O ¢1 ¢2
numComponents = 1 — o o> o o> o

offset = none ¢— _ . _ 0 y
kind = regular lives on grid points

overlap =[1 2 _ _ . _ .

|abe|sp= [FEhi]] messaging instructions (for computing in parallel):

</Field> ordinary field update

<Field ChargeDensity>/ scalar field

numComponents = 1
offset = none €—
kind = depField
overlap =[1 2] : : : : : _
labels = [ChargeDensity] messaging instructions (for computing in parallel):

</Field> include data from guard cells

lives on grid points

CLJ
3’

Looking at vsim.in — FieldUpdater blocks
TECH-X

built-in operation that computes the gradient of a scalar
<FieldUpdater gradPhi> /

kind = gradVecUpdater in other words,
factor = -1.0 F__© Po o F,
lowerBounds = [0 0 0] (inclusive) = —V¢. I D S
upperBounds =[10 11 12] (exclusive) E.o =
readFields = [Phi]
writeFields = [E] DB —_ hames of previously defined Field blocks:
</FieldUpdater> scalar input, vector output for this FieldUpdater kind.
<FieldUpdater RHO>
kind = STFuncUpdat
olpr)]eration =u2§d p{ aer adds (subtracts, multiplies, etc.) the specified STFunc
lowerBounds = [0 0 0] (inclusive) to the specified writeField

upperBounds =[11 12 13] (exclusive)
writeFields = [ChargeDensity]
component = 0 €—
cellsToUpdateAboveDomain = [False False False]

scalar

<STFunc f>
kind = expression X
expression = (20.0%sin(3.141592653589793*x/1.0)) = p,, sin (_)
</STFunc> L

</FieldUpdater>

X Looking at vsim.in — InitialUpdateStep blocks
TECH-X

These updates are performed only once, at the simulation outset.

<InitialUpdateStep RHOInitStep>
alsoAfterRestore = True <— Also do this step when restarting a simulation
updaters = [RHO] «—
messageFields =[]
</InitialUpdateStep>

Previously defined field updater, defines rho field

<InitialUpdateStep esSolvelnitStep>
alsoAfterRestore = True
updaters =_ [esSolve] _F Previously defined field updater, solves Poisson
messageFields = [Phi] equation for phi field

</InitialUpdateStep>

<InitialUpdateStep gradPhilnitStep>
alsoAfterRestore = True
updaters = [gradPhi] «—
messageFields = [E]
</InitialUpdateStep>

Previously defined field updater, computes E from phi.

x Looking at vsim.in — UpdateStep blocks

TECH-X | | | |
These updates are performed at every timestep in the simulation.
<UpdateStep RHOStep>

toDtFrac = 1.0 «— Advance to next full timestep
updaters = [RHCE] - Previously defined field updater, defines rho field (just
messageFields = [] as in InitialUpdateStep call)

</UpdateStep>

<UpdateStep esSolveStep>
toDtFrac = 1.0

updaters =_ [esSolve] « Previously defined field updater, solves Poisson
messageFields = [Phi] equation for phi field (just as in InitialUpdateStep call)

</UpdateStep>

: Previously defined field updater, computes E from phi
< >
UpdateStep gradPhls‘tey (just as in InitialUpdateStep call).

toDtFrac = 1.0
updaters = [gradPhi]

messageFieIds = [E] UpdqteSteps can appear in the input file in any order
</UpdateStep> you like, the updateStepOrder determines which ones

will be called when.

updateStepOrder = [RHOStep esSolveStep gradPhiStep]

X Regroup and Review
TECH-X

So far, we have:
-built an .sdf file in VSim that solves the 1D Poisson equation
-found the .in file that VSim built from our initial .sdf file
-looked at the general block structure of that .in file
-looked at some typical Field, FieldUpdater, InitialUpdateStep, and

UpdateStep blocks that live in the larger MultiField block

Now, we’ll do a bit of a deeper dive into how VSim solves the Poisson
equation, and learn a bit more about how data is organized ‘under the hood’ in
VSim.

X Electrostatic solves, without VSIim
TECH-X{

VSim solves the Poisson equation

) p()

dx2 = 0 : d)(x — 0) — ¢left’ ¢(x — L) — (pright ‘x € [0, L]

with Fields and FieldUpdaters and UpdateSteps.

Let’s first build a discretized version of this problem “by hand”, to see what
kinds of things we might expect VSim to be doing:

. L
Grid: szﬁ ; X, =nAx Vvn=0,1,.. N
Discrete Poisson e [¢j+1 — 20+ ¢j4 =, v o j=1.2 N —1
equation: 0 Ax? J e
Boundary b = PleSt

conditions: Py = pTHInt

x Constructing the matrix — interior points
TECH-X

2+ D
_EO[¢J+1 bj + @; 1]:,0' v j=12,..,N—1

sz]
becomes

1l ¢0] - Do 1

1 -2 1 0 0 O 0 0 o0 || ¢ 01

o 1 -2 1 0 0 0 0 O P2 Do

o 0 01 -2 1 0 0o 0 0 |[®-1]| [pj-s

(- W) 000 1 -2 1 00 0 || |=]|¢s
0 0 O 0 1 -2 1 0 0 [|gj]| [Pin
0 0 0 0 0 1 -2 1 0l¢y,| [°N-2
0 0 O 0 0 0 1 =2 1 |[py_,| [PP1
gyl “PV-

Invalid for first/last rows of matrix. Instead, use boundary conditions there.

X Constructing the matrix — boundary conditions

TECH-X
¢bo = ¢left
by = PTight becomes
—yAx%/e, 0 0 0 0 0 0
1 2 1 0 0 0 0
0 1 =2 1 0 0 0
. 0 0 1 2 1 0 0
(A—g 0 0 0 1 -2 1 0
X 0 0 0 o 1 =2 1
0 0 0 00 1 -2 1
0 0 0 0 0 0 1 =2
0 0 0 0 0 0 0 0

0 0 1 Po]
0 0 ¢4
0 0 0p)
0 0 bj-1
0 0 o |=
00 Pj+1
0 Pn—2
U |
_MAx /EO— L QbN .

necessitating a change in the right-hand side vector.

Rescaling factors y, u may be used to adjust matrix condition number.

Canonical form: Ax = b.

) ¥ linearSolveUpdater — solving the
TECH-, Poisson equation

Now let’s look at how this is done in the vsim.in file.

One of VSim’s built-in FieldUpdater blocks is the linearSolveUpdater,
which solves equations of the form Ax = b.

CLJ
3’

Looking at vsim.in — linearSolveUpdater
TECH-X

<FieldUpdater esSolve>
kind = linearSolveUpdater

lowerBounds = [0] (inclusive) } 1D linear solve
upperBounds = [11] (exclusive)

readFields = [ChargeDensity] } Input: scalar p
readComponents = [0]

writeFields = [Phi] } Output: scalar ¢
writeComponents = [0]

writeEquationToFile = 0

<MatrixFiller interiorFiller> Can use this to look at the matrix

kind = stFuncStencilFiller (we will do this in a moment)
verbosity = 127

minDim = 1
lowerBounds = [1 1 1] (inclusive) } 3D matrix template (even

_ lusi
upperBounds = [10 11 12] (exclusive) though we only need 1D)
component = 0

<STFunc coeff>

kind = expression

expression = -8.854187817591624e-12 = —€p
</STFunc>

MatrixFiller blocks do just what they sound like — filling rows in the matrix.

CLJ
oo’

TECH-X

-1/Ax?

linearSolveUpdater - StencilElements

Inside the MatrixFiller block, we have various StencilElements:

<STFuncStencilElement phi dxp>
value = -100.0
minDim = 1
cellOffset = [0 0 0]
functionOffset = [0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

No offset

<STFuncStencilElement phi npx>
value = 100.0
minDim = 1
cellOffset = [1 0 0]
functionOffset = [0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

+1 cell

functionOffset is irrelevant for node-centered fields

<STFuncStencilElement phi dxm>
value = -100.0
minDim = 1
cellOffset = [0 0 0]
functionoffset—=|=0.50.-0:]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

No offset

<STFuncStencilElement phi nmx>
value = 100.0
minDim = 1
cellOffset = |
functionOffset
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

-1 cell

-1001

A generic interior row in the 1D Poisson matrix is

coeff [~ 0 DPhigmx

(phidxm‘l'phidxp) phinpx 0]

CLJ
oo’

linearSolveUpdater — boundary conditions

TECH.)(<MatrixFiller RIGHTBCFiller>
kind = stencilFiller
verbosity = 127
] minDim = 1
LHS (matrix) lowerBounds = [10 0 0] Only rightmost cell
upperBounds [11 12 13]
component = 0

= 2€,/Ax? (this is
the u factor from

<StencilElement ident>
value = 1.7708375635183248e-09

minDim = 0 the earlier slide,
cellOffset = [0 0 0]
rowFieldIndex = 0 on the LHS)

columnFieldIndex = 0
</StencilElement>

RHS (vector) </MatrixFiller>

<VectorWriter RIGHTBCWriter>
kind = stFuncVectorWriter
verbosity = 127

minDim = 1
(10 0 0] } Only rightmost cell
[11 12 13]

lowerBounds =
upperBounds =
component = 0
<STFunc function>

VRIGHT (chosen kind = expression — 260/sz (again,
p
iti expression = 1.0 the u factor from
boundary condition) e oTrenes pta |
the earlier slide,
scaling = 1.7708375635183248e-09 on the RHS)

</VectorWriter>

x linearSolveUpdater — the linearSolver block
TECH-X

<LinearSolver linearSolver>

kind = directSolver Solve Ax = b by computing A-! directly.
solverType = superLU } Simplest VSim solver option (by the

verbosity = 127 length-of-input-file metric, at least), but
</LinearSolver> not useful if your problem is too large.

All other VSim solver types are iterative:
* generalized minimum residual
* conjugate gradient
* biconjugate gradient
* eftc.

lterative solvers can be sped up by appropriate multigrid preconditioners (for
which many options are available in VSim).

x Looking at the matrix
TECH-X

« Edit the vsim.in file so that writeEquationToFile = 1.

* If you hit the "Save” button, VSim Composer will
* re-read the vsim.sdf file, and
« generate a new .in file from the information it finds there.

« This will overwrite the change you just made.

» Therefore: if you want to do text-based problem setup, you’ll need to do
something like the following:

« Generate the initial .in file from the sdf file with the “Save” button
* Open a terminal window

» Go to the directory where the .in file lives

« Rename the .in file to something different, e.g. vsimTextBased.in
« Edit this new .in file in the way you want to

* Run VSim from the terminal window, pointing to the new .in file:

YOUR/PATH/TO/VSim-10.0/VSimComposer.app/Contents/Resources/engine/bin/vorpalser -dt 1.0 -d 1 -n 1 -i vsimTextBased.in

X Assuming Ax=Db, A is in esSolveMatrix.mtx
TECH-X

%%MatrixMarket matrix coordinate real general %%MatrixMarket matrix coordinate real general

111129
111.7708375635183248e-09
2 1-8.8541900000000002e-10
22 1.7708380000000000e-09
2 3 -8.8541900000000002e-10
3 2 -8.8541900000000002e-10
3 3 1.7708380000000000e-09
3 4 -8.8541900000000002e-10
4 3 -8.8541900000000002¢e-10
4 4 1.7708380000000000e-09
4 5 -8.8541900000000002¢e-10
5 4 -8.8541900000000002e-10

1111 29

11 2*eps0/dx"2
2 1 -eps0/dx”2
2 2 2*eps0/dx”*2
2 3 -eps0/dx”2
3 2 -eps0/dx"2
3 3 2*eps0/dx*2
3 4 -eps0/dx"2
4 3 -eps0/dx”2
4 4 2*eps0/dx"2
4 5 -eps0/dx”2
5 4 -eps0/dx"2

5 5 1.7708380000000000e-09 5 5 2*eps0/dx"2 —2 0 0 0 0 0 0 0
5 6 -8.8541900000000002¢-10 5 6 -eps0/dx"2 :> 1 -2 1 0 0 0 0 0
6 5 -8.8541900000000002¢-10 6 5 -eps0/dx"2 0 1 -2 1 0 0 0 0
6 6 1.7708380000000000e-09 6 6 2*eps0/dx"2 SR P P
6 7 -8.8541900000000002¢-10 6 7 -eps0/dx"2 ey 001 -2 1 0 00
7 6 -8.8541900000000002¢-10 7 6 -eps0/dx"2) 000 1 -2 1 00
7 7 1.7708380000000000e-09 7 7 2*eps0/dxA2 000 0 1 -2 10
7 8 -8.8541900000000002¢-10 7 8 -eps0/dx2 P PoE P
8 7 -8.8541900000000002¢-10 8 7 -eps0/dx"2 0 00 00 1 -2 1
8 8 1.7708380000000000e-09 8 8 2*eps0/dx"2 8 8 8 8 8 8 (1) —02

8 9 -8.8541900000000002e-10
9 8 -8.8541900000000002e-10
9 91.7708380000000000e-09

9 10 -8.8541900000000002e-10
10 9 -8.8541900000000002e-10

10 10 1.7708380000000000e-09
10 11 -8.8541900000000002e-10

11 11 1.7708375635183248e-09

8 9 -eps0/dx”2

9 8 -eps0/dx"2

9 9 2*eps0/dx”*2

9 10 -eps0/dx*2
10 9 -eps0/dx"2
10 10 2*eps0/dx*2
10 11 -eps0/dx"2
11 11 2*eps0/dx"2

o o

X Assuming Ax=Db, x and b are esSolve vectors
TECH-)

esSolveWriteVector.mtx (b) esSolveReadVector.mtx (x)
%%MatrixMarket matrix array real general :/:"/:MatrixMarket matrix array real general
111
0.0000000000000000e+00 _ = 2€0 pleft 0.0000000000000000e+00 = ¢**/*
6.1803398874989481e+00 | Ax” 7.1308064483412903e+10
1.1755705045849464e+01 1.3563599878269949¢+11
1.6180339887498949¢+01 ;-?gigggggﬁgggggggem

. e
1.9021130325903069e+01 T e L =,
2.0000000000000000e+01 [~ = 20 sin (—) =p;, 2
1.9021130325903069e+01 L 2.1946365612872348e+11
1.6180339887498949¢+01 1.8668693648998233e+11
1.1755705045849465e+01 ;-?gggggizgigfgg;‘geﬂg

: e+10 _ .
6.1803398874989499e+00 _ 26, 1 0000000000000000000 " = it
1.7708375635183248e-09 _ Z°0 yright

Ax?

X Regroup and Review
TECH-X

So far, we have:

-solved the discrete 1D Poisson equation ‘by hand’ and looked at the matrix
and the vectors involved in that process

-looked at how VSim builds this matrix and these vectors with a FieldUpdater
(of kind linearSolveUpdater), using MatrixFiller and StencilElement and
LinearSolver blocks

-seen how to run VSim from the command line to point at a modified .in file

-seen how to examine the matrix and vectors VSim builds.

But:
-most interesting problems are not 1D

-most interesting problems involve particles, complicated geometries, and/or
complicated boundary conditions

Let’'s add some interesting features to our input file, and see how things change.

X Moving to 2D
TECH-X

Let’s copy the simulation we had before into a new simulation, and add:

Parameters SpaceTimeFunctions
LY =1 RHOxt=RHOZERO*sin(PI*x/LX)*sin(PI*y/LY)
NY =15 LINEARPHIxt=VLEFT+(VRIGHT-VLEFT)*x/LX
RHOZERO = 2.0e-10
FieldBoundaryConditions
— TOPBC, Dirichlet, LINEARPHIxt, uppery
e I I T BOTTOMBC, Dirichlet, LINEARPHIxt, lower y
Basic Settings Grid
dimensionality = 2 yMin=0

yMax=LY
yCells=NY

X Matrix is larger, no longer tridiagonal
TECH-)

Now 176 x 176 [176 = 11*16 = (NX+1)*(NY+1)] and band-structured

p and ¢ arrays are now representing
2D quantities in a vector, e.g.

T P1,1

P1,N
P21

100

120

P2 N
140 .

160

LOM,N-

180

20 40 60 80 100 120 140 160

The same approach generalizes to 3D also; we will have large sparse matrices.

In general this 2D input file looks pretty similar to the 1D version.

CLJ
oo’

¢ Additional StencilElements relevant in 2D/3D
TECH-){

Ay? Typical stencil elements:

Only if > 2D <STFuncStencilElement phi npy>
value = 225.0
minDim = 2

+1celliny cellOffset = [0 1 0]
functionOffset = [0. 0.5 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

AZ?

Only if 2 3D <STFuncStencilElement phi nmz>
value = 144.0

-1 cellin z minDim = 3

cellOffset = [0 0 -1]
functionOffset = [0. 0. -0.5]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

In 2D, general matrix row is
coeff - [0 phinmy o phipmy (phidxm+phidxp +phidym +phidyp) phinpx phinpy 0

X Adding GridBoundary geometric features
TECH-X

Let’s modify our simulation some more, to add geometric features:

Geometries FieldBoundaryConditions
Add Primitive: cylinder Dirichlet, on cylinder, -2.0 V
material = PEC
length = 0.5

radius = 0.1

X position = 0.5

y position = 0.5

z position = -0.25
axis direction x = 0.0
axis directiony = 0.0
axis directionz = 1.0

x New: EmMaterial and GridBoundary blocks
TECH-X

<EmMaterial PEC>
kind = conductor
resistance = 0.0
</EmMaterial>

<GridBoundary cylinder0>

kind = gridRgnBndry

calculateVolume = 1 See documentation...
dmFrac = 0.5

polyfilename = cylinder0.stl

flipInterior = True

scale =1.0 1.0 1.0]

printGridData = False

mappedPolysfile = cylinder0_mapped.stl

</GridBoundary>

CLJ
o’

New: GridBoundary MatrixFillers

TECH-X

S
<MatrixFiller CYLINDERFiller> <VectorWriter CYLINDERWriter>
kind = nodeStencilFiller kind = stFuncNodeVectorWriter
gridBoundary = cylinderO gridBoundary = cylinderO

rowlnteriorosity = [cutByBoundary outsideBoundary] minDim = 1
collnteriorosity = [cutByBoundary outsideBoundary] lowerBounds =[1 1 1]

component =0 upperBounds = [10 15 12]
minDim = 1 component =0
lowerBounds =[1 1 1] interiorosity = [cutByBoundary outsideBoundary]

upperBounds =[10 15 12]
<STFunc function>

<StencilElement ident> kind = expression

value = 5.7552220814345554¢e-09 expression = -2.0

minDim = 1 </STFunc>

cellOffset = [0 0 O]

rowFieldindex = 0 scaling = 5.7552220814345554e-09
columnFieldindex = 0 </VectorWriter>

</StencilElement>

</MatrixFiller> See documentation...

We could presumably go and look at the matrix again, and see how these operations
changed it, and get a sense for what VSim is doing behind-the-scenes.

CLJ
x

TECH-X

Adding particles

Instead of doing this through the visual setup, let’'s just open an example
and test our developing .in-file-reading skills.

File > New From Example > VSim for Plasma Discharges > Capacitively
Coupled Plasma > Turner Case 2

I'll show a quick movie of this discharge so that you have a sense for what
we’ll be looking at: available here:
http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

Neutral gas is contained between two parallel plates; one plate is
grounded and the other biased with RF. The motion of free electrons
creates plasma between the plates, and the formation of plasma sheaths
is observed. The long-time steady state of the discharge is a balance
between collisional ionization (source) and wall losses (sink).

http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

x Looking at the Turner .in file
TECH-X

« Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

« Some new things: Species, Fluid, History, collisional physics, etc.

