
Tom Jenkins
Tech-X Corporation

Text-based Setup of Electrostatic
Simulations in VSim

Tech-X Worldwide Simulation Summit
Boulder, Colorado

September 17, 2019

-V0

E

C
a
t
h
o
d
e

+
+ +

+

+
+

+ +
-
-
--

-
-

o

o

o

o

o

substrate

A brief introduction to me…

• Senior Research Scientist

• 9.5 years at Tech-X

• Ph.D. @ Princeton/PPPL (2007), in gyrokinetic PIC simulation

• Postdoc @ UW-Madison, working on RF/MHD coupling for electron
cyclotron current drive in fusion plasmas

• Current research interests:
• methods for speeding up particle-in-cell simulations (SLPIC)
• modeling RF sheaths/impurity sputtering in fusion devices
• kinetic theory – wave/particle interactions, etc.
• PIC modeling of low-temperature plasmas

• Website, where this talk and other talks/papers/presentations are posted:

http://nucleus.txcorp.com/~tgjenkins

Standard electrostatics problem: Poisson

𝑑!𝜙(𝑥)
𝑑𝑥!

= −
𝜌 𝑥
𝜖"

; 𝜙 𝑥 = 0 = 𝜙#$%&, 𝜙 𝑥 = 𝐿 = 𝜙'()*& ; 𝑥 ∈ [0, 𝐿]

Numerical approach: discretize.

Δ𝑥 =
𝐿
𝑁

; 𝑥+ = 𝑛Δ𝑥 ∀ 𝑛 = 0,1, … , 𝑁Define a grid:

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

Use finite-difference approximation to second derivative, at interior gridpoints:

Apply boundary conditions, at edge gridpoints:

𝜙" = 𝜙#$%&
𝜙0 = 𝜙'()*&

Solve the ensuing system of linear equations.

Solution error scales as 1/N 2

𝑑!𝜙(𝑥)
𝑑𝑥!

= −
𝜌" sin

𝜋𝑥
𝐿

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%&, 𝜙 𝑥 = 𝐿 = 𝜙'()*& 𝑜𝑛 [0, 𝐿]

has exact solution

𝜙 𝑥 = 𝜙#$%& + 𝜙'()*& − 𝜙#$%&
𝑥
𝐿
+
𝜌"𝐿!

𝜖"𝜋!
sin

𝜋𝑥
𝐿

On the discrete grid, we have

𝜙,$123& = 𝜙#$%& + 𝜙'()*& − 𝜙#$%& ,
0
+ 4!5"

6!7"
sin 7,

0
; 𝜌,$123& = 𝜌" sin

7,
0

Putting these functions into the discretized Poisson equation yields

−
𝜌"
𝜖"
sin

𝜋𝑗
𝑁

2𝑁!

𝜋!
1 − cos

𝜋
𝑁

≈ −
𝜌"
𝜖"
sin

𝜋𝑗
𝑁

2𝑁!

𝜋!
1 − 1 −

𝜋!

2𝑁! +
𝜋8

24𝑁8 +⋯ ≈ 1

What does this look like in VSim?

Parameters
VLEFT = 0
VRIGHT = 1
LX = 1
NX = 10
RHOZERO = 20

Let’s set up a basic simulation and run it for one step:
Basic Settings
number of steps = 1
steps between dumps = 1
dimensionality = 1
field solver = electrostatic

SpaceTimeFunctions
RHOxt=RHOZERO*sin(PI*x/LX)

Grids
xMin = 0
xMax = LX
xCells = NX

Field Dynamics: Fields
Background Charge Density RHO=RHOxt

Field Dynamics: FieldBoundaryConditions
Dirichlet on lower x: VLEFT
Dirichlet on upper x: VRIGHT

Field Dynamics: PoissonSolver
preconditioner = no preconditioner
solver = SuperLU

ChargeDensity

Phi

Looking at vsim.in – input blocks

FRONTMATTER

<Grid globalGrid>
...

</Grid>

<Decomp decomp>
...

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>
...

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>
...

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
...

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>
...

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]
</MultiField>

Key VSim concept 0:
block structures

Or very generally,
<OBJECT objectName>

…
object features

…
</OBJECT>

Looking at vsim.in – overall structure

FRONTMATTER

<Grid globalGrid>
...

</Grid>

<Decomp decomp>
...

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>
...

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>
...

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
...

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>
...

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]
</MultiField>

functions: electric field, electrostatic potential, charge density, …

define mathematical operations on existing fields,
e.g. taking a gradient of a scalar field

Set initial conditions – done only once
at simulation outset

Call the previously defined FieldUpdaters

Key VSim concept 1:
the MultiField block

Looking at vsim.in - frontmatter

nsteps = 1
dumpPeriodicity = 1
dt = 1.0
dimension = 1
floattype = double
verbosity = 127
copyHistoryAtEachDump = 0
useGridBndryRestore = False
constructUniverse = False

<Grid globalGrid>
verbosity = 127
numCells = [10 11 12]
lengths = [1.0 1.0 1.0]
startPositions = [0.0 -0.5 0.0]
maxCellXings = 1
</Grid>

1D simulation

3D grid: default y, z values
𝛥x = 1/10 ; 𝛥y = 1/11 ; 𝛥z = 1/12
(extra dimensions not used in
computation; still present in
several parts of input file though)

number of steps in simulation
write data every 1 timestep

timestep

Looking at vsim.in – Field blocks

<Field E>
numComponents = 3
offset = edge
kind = regular
overlap = [1 1]
labels = [E_x E_y E_z]

</Field>

<Field Phi>
numComponents = 1
offset = none
kind = regular
overlap = [1 2]
labels = [Phi]

</Field>

<Field ChargeDensity>
numComponents = 1
offset = none
kind = depField
overlap = [1 2]
labels = [ChargeDensity]

</Field>

vector field

lives on edges between grid points

scalar field

lives on grid points

scalar field

lives on grid points

Ex0 Ex1

𝜙0 𝜙1 𝜙2

names of field components in output file

messaging instructions (for computing in parallel):
ordinary field update

messaging instructions (for computing in parallel):
include data from guard cells

Looking at vsim.in – FieldUpdater blocks

<FieldUpdater gradPhi>
kind = gradVecUpdater
factor = -1.0
lowerBounds = [0 0 0]
upperBounds = [10 11 12]
readFields = [Phi]
writeFields = [E]

</FieldUpdater>

<FieldUpdater RHO>
kind = STFuncUpdater
operation = add
lowerBounds = [0 0 0]
upperBounds = [11 12 13]
writeFields = [ChargeDensity]
component = 0
cellsToUpdateAboveDomain = [False False False]
<STFunc f>
kind = expression
expression = (20.0*sin(3.141592653589793*x/1.0))

</STFunc>
</FieldUpdater>

𝐸 = −∇𝜙.
in other words,

Ex0 Ex1

𝜙0 𝜙1 𝜙2

names of previously defined Field blocks:
scalar input, vector output for this FieldUpdater kind.

built-in operation that computes the gradient of a scalar

(inclusive)
(exclusive)

= 𝜌" sin
𝜋𝑥
𝐿

(inclusive)
(exclusive)

scalar

adds (subtracts, multiplies, etc.) the specified STFunc
to the specified writeField

Looking at vsim.in – InitialUpdateStep blocks

<InitialUpdateStep RHOInitStep>
alsoAfterRestore = True
updaters = [RHO]
messageFields = []

</InitialUpdateStep>

<InitialUpdateStep esSolveInitStep>
alsoAfterRestore = True
updaters = [esSolve]
messageFields = [Phi]

</InitialUpdateStep>

<InitialUpdateStep gradPhiInitStep>
alsoAfterRestore = True
updaters = [gradPhi]
messageFields = [E]

</InitialUpdateStep>

Also do this step when restarting a simulation

Previously defined field updater, defines rho field

Previously defined field updater, solves Poisson
equation for phi field

Previously defined field updater, computes E from phi.

These updates are performed only once, at the simulation outset.

Looking at vsim.in – UpdateStep blocks

<UpdateStep RHOStep>
toDtFrac = 1.0
updaters = [RHO]
messageFields = []

</UpdateStep>

<UpdateStep esSolveStep>
toDtFrac = 1.0
updaters = [esSolve]
messageFields = [Phi]

</UpdateStep>

<UpdateStep gradPhiStep>
toDtFrac = 1.0
updaters = [gradPhi]
messageFields = [E]

</UpdateStep>
…

updateStepOrder = [RHOStep esSolveStep gradPhiStep]

Advance to next full timestep

Previously defined field updater, defines rho field (just
as in InitialUpdateStep call)

Previously defined field updater, solves Poisson
equation for phi field (just as in InitialUpdateStep call)

Previously defined field updater, computes E from phi
(just as in InitialUpdateStep call).

These updates are performed at every timestep in the simulation.

UpdateSteps can appear in the input file in any order
you like, the updateStepOrder determines which ones
will be called when.

Regroup and Review

So far, we have:

-built an .sdf file in VSim that solves the 1D Poisson equation

-found the .in file that VSim built from our initial .sdf file

-looked at the general block structure of that .in file

-looked at some typical Field, FieldUpdater, InitialUpdateStep, and
UpdateStep blocks that live in the larger MultiField block

Now, we’ll do a bit of a deeper dive into how VSim solves the Poisson
equation, and learn a bit more about how data is organized ‘under the hood’ in
VSim.

Electrostatic solves, without VSim

VSim solves the Poisson equation

𝑑!𝜙(𝑥)
𝑑𝑥!

= −
𝜌 𝑥
𝜖"

; 𝜙 𝑥 = 0 = 𝜙#$%&, 𝜙 𝑥 = 𝐿 = 𝜙'()*& ; 𝑥 ∈ [0, 𝐿]

with Fields and FieldUpdaters and UpdateSteps.

Δ𝑥 =
𝐿
𝑁

; 𝑥+ = 𝑛Δ𝑥 ∀ 𝑛 = 0,1, … , 𝑁

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

𝜙" = 𝜙#$%&
𝜙0 = 𝜙'()*&

Let’s first build a discretized version of this problem “by hand”, to see what
kinds of things we might expect VSim to be doing:

Grid:

Discrete Poisson
equation:

Boundary
conditions:

Constructing the matrix – interior points

−
𝜖"
Δ𝑥!

1 −2 1
0 1 −2

0 0 0
1 0 0

0 0 0
0 0 0

⋮ ⋮ ⋮
0
0
0

0
0
0

1
0
0

⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2
1
0

1
−2
1

0
1
−2

⋮ ⋮ ⋮

⋮ ⋮ ⋮
0
0
1

0
0
0

0
0
0

⋮ ⋮ ⋮
0 0 0
0 0 0

0 0 1
0 0 0

−2 1 0
1 −2 1

𝜙"
𝜙.
𝜙!
⋮

𝜙,/.
𝜙,
𝜙,-.
⋮

𝜙0/!
𝜙0/.
𝜙0

=

𝜌"
𝜌.
𝜌!
⋮

𝜌,/.
𝜌,
𝜌,-.
⋮

𝜌0/!
𝜌0/.
𝜌0

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

becomes

Invalid for first/last rows of matrix. Instead, use boundary conditions there.

Constructing the matrix – boundary conditions

−𝜖"
Δ𝑥!

−𝛾Δ𝑥!/𝜖" 0 0
1 −2 1
0 1 −2

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

⋮ ⋮ ⋮
0
0
0

0
0
0

1
0
0

⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2
1
0

1
−2
1

0
1
−2

⋮ ⋮ ⋮

⋮ ⋮ ⋮
0
0
1

0
0
0

0
0
0

⋮ ⋮ ⋮
0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

−2 1 0
1 −2 1
0 0 −𝜇Δ𝑥!/𝜖"

𝜙"
𝜙.
𝜙!
⋮

𝜙,/.
𝜙,
𝜙,-.
⋮

𝜙0/!
𝜙0/.
𝜙0

=

𝛾𝜙#$%&
𝜌.
𝜌!
⋮

𝜌,/.
𝜌,
𝜌,-.
⋮

𝜌0/!
𝜌0/.

𝜇𝜙'()*&

becomes
𝜙" = 𝜙#$%&
𝜙0 = 𝜙'()*&

necessitating a change in the right-hand side vector.

Rescaling factors 𝛾, 𝜇 may be used to adjust matrix condition number.

Canonical form: Ax = b.

linearSolveUpdater – solving the
Poisson equation

Now let’s look at how this is done in the vsim.in file.

One of VSim’s built-in FieldUpdater blocks is the linearSolveUpdater,
which solves equations of the form Ax = b.

Looking at vsim.in – linearSolveUpdater

<FieldUpdater esSolve>
kind = linearSolveUpdater
lowerBounds = [0]
upperBounds = [11]
readFields = [ChargeDensity]
readComponents = [0]
writeFields = [Phi]
writeComponents = [0]
writeEquationToFile = 0

<MatrixFiller interiorFiller>
kind = stFuncStencilFiller
verbosity = 127
minDim = 1
lowerBounds = [1 1 1]
upperBounds = [10 11 12]
component = 0

<STFunc coeff>
kind = expression
expression = -8.854187817591624e-12
</STFunc>

= −𝜖"

1D linear solve

3D matrix template (even
though we only need 1D)

Input: scalar 𝜌

Output: scalar 𝜙

Can use this to look at the matrix
(we will do this in a moment)

(inclusive)
(exclusive)

(inclusive)
(exclusive)

MatrixFiller blocks do just what they sound like – filling rows in the matrix.

linearSolveUpdater - StencilElements

<STFuncStencilElement phi_dxp>
value = -100.0
minDim = 1
cellOffset = [0 0 0]
functionOffset = [0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

<STFuncStencilElement phi_dxm>
value = -100.0
minDim = 1
cellOffset = [0 0 0]
functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

<STFuncStencilElement phi_npx>
value = 100.0
minDim = 1
cellOffset = [1 0 0]
functionOffset = [0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

<STFuncStencilElement phi_nmx>
value = 100.0
minDim = 1
cellOffset = [-1 0 0]
functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

1/𝛥x2-1/𝛥x2

+1 cell

-1 cell

No offset

No offset

𝑐𝑜𝑒𝑓𝑓 N ⋯ 0 𝑝ℎ𝑖+91 (𝑝ℎ𝑖:19+𝑝ℎ𝑖:1;) 𝑝ℎ𝑖+;1 0 ⋯

A generic interior row in the 1D Poisson matrix is

functionOffset is irrelevant for node-centered fields

Inside the MatrixFiller block, we have various StencilElements:

linearSolveUpdater – boundary conditions
<MatrixFiller RIGHTBCFiller>
kind = stencilFiller
verbosity = 127
minDim = 1
lowerBounds = [10 0 0]
upperBounds = [11 12 13]
component = 0

<StencilElement ident>
value = 1.7708375635183248e-09
minDim = 0
cellOffset = [0 0 0]
rowFieldIndex = 0
columnFieldIndex = 0
</StencilElement>
</MatrixFiller>

<VectorWriter RIGHTBCWriter>
kind = stFuncVectorWriter
verbosity = 127
minDim = 1
lowerBounds = [10 0 0]
upperBounds = [11 12 13]
component = 0

<STFunc function>
kind = expression
expression = 1.0
</STFunc>

scaling = 1.7708375635183248e-09
</VectorWriter>

Only rightmost cell

Only rightmost cell

= 2𝜖"/Δ𝑥! (this is
the 𝜇 factor from
the earlier slide,
on the LHS)

= 2𝜖"/Δ𝑥! (again,
the 𝜇 factor from
the earlier slide,
on the RHS)

VRIGHT (chosen
boundary condition)

LHS (matrix)

RHS (vector)

linearSolveUpdater – the linearSolver block

<LinearSolver linearSolver>
kind = directSolver
solverType = superLU
verbosity = 127
</LinearSolver>

Solve Ax = b by computing A-1 directly.
Simplest VSim solver option (by the
length-of-input-file metric, at least), but
not useful if your problem is too large.

All other VSim solver types are iterative:
• generalized minimum residual
• conjugate gradient
• biconjugate gradient
• etc.

Iterative solvers can be sped up by appropriate multigrid preconditioners (for
which many options are available in VSim).

Looking at the matrix

• Edit the vsim.in file so that writeEquationToFile = 1.

• If you hit the ”Save” button, VSim Composer will
• re-read the vsim.sdf file, and
• generate a new .in file from the information it finds there.

• This will overwrite the change you just made.

• Therefore: if you want to do text-based problem setup, you’ll need to do
something like the following:

• Generate the initial .in file from the sdf file with the “Save” button
• Open a terminal window
• Go to the directory where the .in file lives
• Rename the .in file to something different, e.g. vsimTextBased.in
• Edit this new .in file in the way you want to
• Run VSim from the terminal window, pointing to the new .in file:

YOUR/PATH/TO/VSim-10.0/VSimComposer.app/Contents/Resources/engine/bin/vorpalser -dt 1.0 -d 1 -n 1 -i vsimTextBased.in

Assuming Ax=b, A is in esSolveMatrix.mtx
%%MatrixMarket matrix coordinate real general
11 11 29
1 1 1.7708375635183248e-09
2 1 -8.8541900000000002e-10
2 2 1.7708380000000000e-09
2 3 -8.8541900000000002e-10
3 2 -8.8541900000000002e-10
3 3 1.7708380000000000e-09
3 4 -8.8541900000000002e-10
4 3 -8.8541900000000002e-10
4 4 1.7708380000000000e-09
4 5 -8.8541900000000002e-10
5 4 -8.8541900000000002e-10
5 5 1.7708380000000000e-09
5 6 -8.8541900000000002e-10
6 5 -8.8541900000000002e-10
6 6 1.7708380000000000e-09
6 7 -8.8541900000000002e-10
7 6 -8.8541900000000002e-10
7 7 1.7708380000000000e-09
7 8 -8.8541900000000002e-10
8 7 -8.8541900000000002e-10
8 8 1.7708380000000000e-09
8 9 -8.8541900000000002e-10
9 8 -8.8541900000000002e-10
9 9 1.7708380000000000e-09
9 10 -8.8541900000000002e-10
10 9 -8.8541900000000002e-10
10 10 1.7708380000000000e-09
10 11 -8.8541900000000002e-10
11 11 1.7708375635183248e-09

%%MatrixMarket matrix coordinate real general
11 11 29
1 1 2*eps0/dx^2
2 1 -eps0/dx^2
2 2 2*eps0/dx^2
2 3 -eps0/dx^2
3 2 -eps0/dx^2
3 3 2*eps0/dx^2
3 4 -eps0/dx^2
4 3 -eps0/dx^2
4 4 2*eps0/dx^2
4 5 -eps0/dx^2
5 4 -eps0/dx^2
5 5 2*eps0/dx^2
5 6 -eps0/dx^2
6 5 -eps0/dx^2
6 6 2*eps0/dx^2
6 7 -eps0/dx^2
7 6 -eps0/dx^2
7 7 2*eps0/dx^2
7 8 -eps0/dx^2
8 7 -eps0/dx^2
8 8 2*eps0/dx^2
8 9 -eps0/dx^2
9 8 -eps0/dx^2
9 9 2*eps0/dx^2
9 10 -eps0/dx^2
10 9 -eps0/dx^2
10 10 2*eps0/dx^2
10 11 -eps0/dx^2
11 11 2*eps0/dx^2

−𝜖!
Δ𝑥"

−2 0 0
1 −2 1
0 1 −2

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

⋮ ⋮ ⋮
0
0
0

0
0
0

1
0
0

⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2
1
0

1
−2
1

0
1
−2

⋮ ⋮ ⋮

⋮ ⋮ ⋮
0
0
1

0
0
0

0
0
0

⋮ ⋮ ⋮
0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

−2 1 0
1 −2 1
0 0 −2

Assuming Ax=b, x and b are esSolve vectors

%%MatrixMarket matrix array real general
11 1
0.0000000000000000e+00
6.1803398874989481e+00
1.1755705045849464e+01
1.6180339887498949e+01
1.9021130325903069e+01
2.0000000000000000e+01
1.9021130325903069e+01
1.6180339887498949e+01
1.1755705045849465e+01
6.1803398874989499e+00
1.7708375635183248e-09 =

2𝜖"
Δ𝑥!

N 𝜙'()*&

= 20 sin
𝜋𝑥,
𝐿

= 𝜌,

=
2𝜖"
Δ𝑥!

N 𝜙#$%&

esSolveWriteVector.mtx (b)
%%MatrixMarket matrix array real general
11 1
0.0000000000000000e+00
7.1308064483412903e+10
1.3563599878269949e+11
1.8668693648958243e+11
2.1946365612852356e+11
2.3075774401243900e+11
2.1946365612872348e+11
1.8668693648998233e+11
1.3563599878329944e+11
7.1308064484212875e+10
1.0000000000000000e+00 = 𝜙'()*&

= 𝜙,

= 𝜙#$%&

esSolveReadVector.mtx (x)

Regroup and Review

So far, we have:

-solved the discrete 1D Poisson equation ‘by hand’ and looked at the matrix
and the vectors involved in that process

-looked at how VSim builds this matrix and these vectors with a FieldUpdater
(of kind linearSolveUpdater), using MatrixFiller and StencilElement and
LinearSolver blocks

-seen how to run VSim from the command line to point at a modified .in file

-seen how to examine the matrix and vectors VSim builds.

But:
-most interesting problems are not 1D
-most interesting problems involve particles, complicated geometries, and/or

complicated boundary conditions

Let’s add some interesting features to our input file, and see how things change.

Moving to 2D

Parameters
LY = 1
NY = 15
RHOZERO = 2.0e-10

SpaceTimeFunctions
RHOxt=RHOZERO*sin(PI*x/LX)*sin(PI*y/LY)
LINEARPHIxt=VLEFT+(VRIGHT-VLEFT)*x/LX

Basic Settings
dimensionality = 2

Grid
yMin=0
yMax=LY
yCells=NY

FieldBoundaryConditions
TOPBC, Dirichlet, LINEARPHIxt, upper y
BOTTOMBC, Dirichlet, LINEARPHIxt, lower y

Let’s copy the simulation we had before into a new simulation, and add:

Matrix is larger, no longer tridiagonal

Now 176 x 176 [176 = 11*16 = (NX+1)*(NY+1)] and band-structured

𝜌 and 𝜙 arrays are now representing
2D quantities in a vector, e.g.

𝜌.,.
⋮

𝜌.,0
𝜌!,.
⋮

𝜌!,0
⋮

𝜌=,0

The same approach generalizes to 3D also; we will have large sparse matrices.

In general this 2D input file looks pretty similar to the 1D version.

Additional StencilElements relevant in 2D/3D

<STFuncStencilElement phi_npy>
value = 225.0
minDim = 2
cellOffset = [0 1 0]
functionOffset = [0. 0.5 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

...

<STFuncStencilElement phi_nmz>
value = 144.0
minDim = 3
cellOffset = [0 0 -1]
functionOffset = [0. 0. -0.5]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>

𝛥y2

Only if ≥ 2D

+1 cell in y

𝛥z2

Only if ≥ 3D

-1 cell in z

Typical stencil elements:

𝑐𝑜𝑒𝑓𝑓 % ⋯ 0 𝑝ℎ𝑖#$% ⋯ 𝑝ℎ𝑖#$& (𝑝ℎ𝑖'&$+𝑝ℎ𝑖'&(+ 𝑝ℎ𝑖'%$ + 𝑝ℎ𝑖'%() 𝑝ℎ𝑖#(& ⋯ 𝑝ℎ𝑖#(% 0 ⋯

In 2D, general matrix row is

Adding GridBoundary geometric features

Geometries
Add Primitive: cylinder
material = PEC
length = 0.5
radius = 0.1
x position = 0.5
y position = 0.5
z position = -0.25
axis direction x = 0.0
axis direction y = 0.0
axis direction z = 1.0

FieldBoundaryConditions
Dirichlet, on cylinder, -2.0 V

Let’s modify our simulation some more, to add geometric features:

New: EmMaterial and GridBoundary blocks

<EmMaterial PEC>
kind = conductor
resistance = 0.0
</EmMaterial>

<GridBoundary cylinder0>
kind = gridRgnBndry
calculateVolume = 1
dmFrac = 0.5
polyfilename = cylinder0.stl
flipInterior = True
scale = [1.0 1.0 1.0]
printGridData = False
mappedPolysfile = cylinder0_mapped.stl
</GridBoundary>

See documentation…

New: GridBoundary MatrixFillers

<MatrixFiller CYLINDERFiller>
kind = nodeStencilFiller
gridBoundary = cylinder0
rowInteriorosity = [cutByBoundary outsideBoundary]
colInteriorosity = [cutByBoundary outsideBoundary]
component = 0
minDim = 1
lowerBounds = [1 1 1]
upperBounds = [10 15 12]

<StencilElement ident>
value = 5.7552220814345554e-09
minDim = 1
cellOffset = [0 0 0]
rowFieldIndex = 0
columnFieldIndex = 0
</StencilElement>

</MatrixFiller>

<VectorWriter CYLINDERWriter>
kind = stFuncNodeVectorWriter
gridBoundary = cylinder0
minDim = 1
lowerBounds = [1 1 1]
upperBounds = [10 15 12]
component = 0
interiorosity = [cutByBoundary outsideBoundary]

<STFunc function>
kind = expression
expression = -2.0
</STFunc>

scaling = 5.7552220814345554e-09
</VectorWriter>

We could presumably go and look at the matrix again, and see how these operations
changed it, and get a sense for what VSim is doing behind-the-scenes.

See documentation…

Adding particles

• Instead of doing this through the visual setup, let’s just open an example
and test our developing .in-file-reading skills.

• File > New From Example > VSim for Plasma Discharges > Capacitively
Coupled Plasma > Turner Case 2

• I’ll show a quick movie of this discharge so that you have a sense for what
we’ll be looking at: available here:
http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

• Neutral gas is contained between two parallel plates; one plate is
grounded and the other biased with RF. The motion of free electrons
creates plasma between the plates, and the formation of plasma sheaths
is observed. The long-time steady state of the discharge is a balance
between collisional ionization (source) and wall losses (sink).

http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

Looking at the Turner .in file

• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: Species, Fluid, History, collisional physics, etc.

