Text-based Setup of Electrostatic Simulations in VSim

TECH-X

SIMULATIONS EMPOWERING
YOUR INNOVATIONS

Tom Jenkins
Tech-X Corporation

Tech-X Worldwide Simulation Summit
Boulder, Colorado September 17, 2019

A brief introduction to me...

- Senior Research Scientist
- 9.5 years at Tech-X
- Ph.D. @ Princeton/PPPL (2007), in gyrokinetic PIC simulation
- Postdoc @ UW-Madison, working on RF/MHD coupling for electron cyclotron current drive in fusion plasmas
- Current research interests:
- methods for speeding up particle-in-cell simulations (SLPIC)
- modeling RF sheaths/impurity sputtering in fusion devices
- kinetic theory - wave/particle interactions, etc.
- PIC modeling of low-temperature plasmas
- Website, where this talk and other talks/papers/presentations are posted:
http://nucleus.txcorp.com/~tgjenkins

Standard electrostatics problem: Poisson

$$
\frac{d^{2} \phi(x)}{d x^{2}}=-\frac{\rho(x)}{\epsilon_{0}} ; \quad \phi(x=0)=\phi^{\text {left }}, \quad \phi(x=L)=\phi^{\text {right }} ; x \in[0, L]
$$

Numerical approach: discretize.

$$
\text { Define a grid: } \quad \Delta x=\frac{L}{N} \quad ; \quad x_{n}=n \Delta x \quad \forall n=0,1, \ldots, N
$$

Use finite-difference approximation to second derivative, at interior gridpoints:

$$
-\epsilon_{0}\left[\frac{\phi_{j+1}-2 \phi_{j}+\phi_{j-1}}{\Delta x^{2}}\right]=\rho_{j} \quad \forall \quad j=1,2, \ldots, N-1
$$

Apply boundary conditions, at edge gridpoints:

$$
\begin{aligned}
& \phi_{0}=\phi^{l e f t} \\
& \phi_{N}=\phi^{\text {right }}
\end{aligned}
$$

Solve the ensuing system of linear equations.

Solution error scales as $1 / N^{2}$

$$
\frac{d^{2} \phi(x)}{d x^{2}}=-\frac{\rho_{0} \sin \left(\frac{\pi x}{L}\right)}{\epsilon_{0}} ; \quad \phi(x=0)=\phi^{\text {left }}, \quad \phi(x=L)=\phi^{\text {right }} \text { on }[0, L]
$$

has exact solution

$$
\phi(x)=\phi^{l e f t}+\left(\phi^{r i g h t}-\phi^{l e f t}\right) \frac{x}{L}+\frac{\rho_{0} L^{2}}{\epsilon_{0} \pi^{2}} \sin \left(\frac{\pi x}{L}\right)
$$

On the discrete grid, we have

$$
\phi_{j}^{\text {exact }}=\phi^{\text {left }}+\left(\phi^{\text {right }}-\phi^{\text {left }}\right) \frac{j}{N}+\frac{\rho_{0} L^{2}}{\epsilon_{0} \pi^{2}} \sin \left(\frac{\pi j}{N}\right) ; \rho_{j}^{\text {exact }}=\rho_{0} \sin \left(\frac{\pi j}{N}\right)
$$

Putting these functions into the discretized Poisson equation yields

$$
\begin{aligned}
& \quad-\frac{\rho_{0}}{\epsilon_{0}} \sin \left(\frac{\pi j}{N}\right)\left\{\frac{2 N^{2}}{\pi^{2}}\left[1-\cos \left(\frac{\pi}{N}\right)\right]\right\} \approx-\frac{\rho_{0}}{\epsilon_{0}} \sin \left(\frac{\pi j}{N}\right) \\
& \left\{\frac{2 N^{2}}{\pi^{2}}\left[1-\left(1-\frac{\pi^{2}}{2 N^{2}}+\frac{\pi^{4}}{24 N^{4}}+\cdots\right)\right]\right\} \approx 1
\end{aligned}
$$

What does this look like in VSim?

TECH-K

Let's set up a basic simulation and run it for one step:

Parameters
VLEFT $=0$
VRIGHT = 1
LX $=1$
$N X=10$
RHOZERO $=20$

Basic Settings
number of steps $=1$
steps between dumps $=1$
dimensionality = 1
field solver $=$ electrostatic

SpaceTimeFunctions
RHOxt=RHOZERO*sin(PI*x/LX)
Grids
$x \operatorname{Min}=0$
x Max $=L X$
x Cells $=$ NX

Field Dynamics: Fields
Background Charge Density RHO=RHOxt
Field Dynamics: FieldBoundaryConditions Dirichlet on lower x: VLEFT Dirichlet on upper x : VRIGHT

Field Dynamics: PoissonSolver preconditioner = no preconditioner solver = SuperLU

Looking at vsim.in - input blocks

Key VSim concept 0: block structures

FRONTMATTER
<Grid globalGrid>
</Grid>
<Decomp decomp>
</Decomp>
<MultiField NAME_OF_MULTIFIELD>

```
    <Field NAME_OF_FIELD>
```

</Field>
<FieldUpdater NAME_OF_FIELDUPDATER>
</FieldUpdater>
<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
</InitialUpdateStep>
<UpdateStep NAME_OF_UPDATESTEP>
</UpdateStep>
updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...] </MultiField>

Or very generally, <OBJECT objectName>
object features
</OBJECT>

Looking at vsim.in - overall structure

FRONTMATTER
<Grid globalGrid>
</Grid>
<Decomp decomp>
</Decomp>
<MultiField NAME_OF_MULTIFIELD>

Key VSim concept 1: the MultiField block
</InitialUpdateStep>
$\left.\begin{array}{l}\text { <UpdateStep NAME_OF_UPDATESTEP> } \\ \text { </UpdateStep> }\end{array}\right]$ Call the previously defined FieldUpdaters
updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]
</MultiField>

Looking at vsim.in - frontmatter

```
nsteps = 1 \longleftarrow number of steps in simulation
dumpPeriodicity = 1 \longleftarrow write data every 1 timestep
dt = 1.0 « timestep
dimension = 1
1D simulation
floattype = double
verbosity = 127
copyHistoryAtEachDump = 0
useGridBndryRestore = False
constructUniverse = False
<Grid globalGrid>
verbosity = 127
3D grid: default y, z values
numCells = [llllll
lengths = [lllll}1.0 1.0 1.0] 
startPositions = [0.0 -0.5 0.0]
maxCellXings = 1
</Grid>
```

3D grid: default y, z values $\Delta x=1 / 10 ; \Delta y=1 / 11 ; \Delta z=1 / 12$ (extra dimensions not used in computation; still present in several parts of input file though)

Looking at vsim.in - Field blocks

TECH-K

Looking at vsim.in - FieldUpdater blocks


```
<FieldUpdater RHO>
    kind = STFuncUpdater
    operation = add
    lowerBounds = \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)
                            (inclusive)
    upperBounds \(=\left[\begin{array}{lll}11 & 12 & 13\end{array}\right]\) (exclusive)
    writeFields \(=\) [ChargeDensity]
    component = 0
    cellsToUpdateAboveDomain = [False False False]
    <STFunc f>
        kind \(=\) expression
        kind \(=\) expression
expression \(=\left(20.0^{*} \sin \left(3.141592653589793^{*} \times / 1.0\right)\right)=\rho_{0} \sin \left(\frac{\pi x}{L}\right)\)
</STFunc>
        adds (subtracts, multiplies, etc.) the specified STFunc
        to the specified writeField
    </FieldUpdater>
```


Looking at vsim.in - InitialUpdateStep blocks

These updates are performed only once, at the simulation outset.

```
<InitialUpdateStep RHOInitStep>
    alsoAfterRestore \(=\) True \(\longleftarrow\) Also do this step when restarting a simulation
    updaters \(=[\mathrm{RHO}]\)
    messageFields = []
</InitialUpdateStep>
<InitialUpdateStep esSolveInitStep>
    alsoAfterRestore = True
    updaters = [esSolve]
    messageFields = [Phi]
                                    Previously defined field updater, solves Poisson
                                    equation for phi field
</InitialUpdateStep>
<InitialUpdateStep gradPhilnitStep>
    alsoAfterRestore = True
    updaters = [gradPhi]
```



```
                                    Previously defined field updater, computes E from phi.
    messageFields \(=[E]\)
</InitialUpdateStep>
```


Looking at vsim.in - UpdateStep blocks

These updates are performed at every timestep in the simulation.
<UpdateStep RHOStep> toDtFrac $=1.0$ Advance to next full timestep
updaters $=[\mathrm{RHO}] \longleftarrow$ Previously defined field updater, defines rho field (just messageFields = [] as in InitialUpdateStep call) </UpdateStep>
<UpdateStep esSolveStep> toDtFrac = 1.0 updaters $=$ [esSolve $]$ Previously defined field updater, solves Poisson messageFields $=[$ Phi] equation for phi field (just as in InitialUpdateStep call)
</UpdateStep>
<UpdateStep gradPhiStep> toDtFrac $=1.0$ updaters = [gradPhi] messageFields = [E]
</UpdateStep>

Previously defined field updater, computes E from phi (just as in InitialUpdateStep call).

UpdateSteps can appear in the input file in any order you like, the updateStepOrder determines which ones will be called when.
updateStepOrder $=$ [RHOStep esSolveStep gradPhiStep]

Regroup and Review

So far, we have:
-built an .sdf file in VSim that solves the 1D Poisson equation
-found the .in file that VSim built from our initial .sdf file
-looked at the general block structure of that .in file
-looked at some typical Field, FieldUpdater, InitialUpdateStep, and UpdateStep blocks that live in the larger MultiField block

Now, we'll do a bit of a deeper dive into how VSim solves the Poisson equation, and learn a bit more about how data is organized 'under the hood' in VSim.

Electrostatic solves, without VSim

VSim solves the Poisson equation

$$
\frac{d^{2} \phi(x)}{d x^{2}}=-\frac{\rho(x)}{\epsilon_{0}} ; \quad \phi(x=0)=\phi^{l e f t}, \quad \phi(x=L)=\phi^{\text {right }} ; x \in[0, L]
$$

with Fields and FieldUpdaters and UpdateSteps.
Let's first build a discretized version of this problem "by hand", to see what kinds of things we might expect VSim to be doing:

Grid:

$$
\begin{aligned}
& \Delta x=\frac{L}{N} ; x_{n}=n \Delta x \quad \forall n=0,1, \ldots, N \\
& -\epsilon_{0}\left[\frac{\phi_{j+1}-2 \phi_{j}+\phi_{j-1}}{\Delta x^{2}}\right]=\rho_{j} \quad \forall \quad j=1,2, \ldots, N-1 \\
& \phi_{0}=\phi^{\text {left }} \\
& \phi_{N}=\phi^{\text {right }}
\end{aligned}
$$

Constructing the matrix - interior points

$$
\begin{gathered}
-\epsilon_{0}\left[\frac{\phi_{j+1}-2 \phi_{j}+\phi_{j-1}}{\Delta x^{2}}\right]=\rho_{j} \quad \forall \quad j=1,2, \ldots, N-1 \\
\text { becomes }
\end{gathered}
$$

$$
\left(-\frac{\epsilon_{0}}{\Delta x^{2}}\right)\left[\begin{array}{ccccccccc}
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1
\end{array}\right]\left[\begin{array}{c}
\phi_{0} \\
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{j-1} \\
\phi_{j} \\
\phi_{j+1} \\
\vdots \\
\phi_{N-2} \\
\phi_{N-1} \\
\phi_{N}
\end{array}\right]=\left[\begin{array}{c}
\rho_{0} \\
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{j-1} \\
\rho_{j} \\
\rho_{j+1} \\
\vdots \\
\rho_{N-2} \\
\rho_{N-1} \\
\rho_{N}
\end{array}\right]
$$

Invalid for first/last rows of matrix. Instead, use boundary conditions there.

Constructing the matrix - boundary conditions

TECH-ㅊ

$$
\begin{array}{ll}
\phi_{0}=\phi^{\text {left }} & \text { becomes } \\
\phi_{N}=\phi^{\text {right }} &
\end{array}
$$

$\left(\frac{-\epsilon_{0}}{\Delta x^{2}}\right)\left[\begin{array}{cccccccccc}-\gamma \Delta x^{2} / \epsilon_{0} & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 \\ 1 & & -2 & 1 & 0 & 0 & 0 & & 0 & 0 \\ 0 \\ 0 & & 1 & -2 & 1 & 0 & 0 & & 0 & 0 \\ 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\ \vdots \\ 0 & 0 & 1 & & -2 & 1 & 0 & & 0 & 0 \\ 0 \\ 0 & 0 & 0 & & 1 & -2 & 1 & & 0 & 0 \\ 0 & 0 & \\ 0 & 0 & 0 & & 0 & 1 & -2 & & 1 & 0 \\ 0 & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\ \vdots \\ 0 & 0 & 0 & & 0 & 0 & 1 & -2 & 1 & \\ 0 & 0 & 0 & & 0 & 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & -\mu \Delta x^{2} / \epsilon_{0}\end{array}\right]\left[\begin{array}{c}\phi_{0} \\ \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{j-1} \\ \phi_{j} \\ \phi_{j+1} \\ \vdots \\ \phi_{N-2} \\ \phi_{N-1} \\ \phi_{N}\end{array}\right]=\left[\begin{array}{c}\gamma \phi^{\text {left }} \\ \rho_{1} \\ \rho_{2} \\ \vdots \\ \rho_{j-1} \\ \rho_{j} \\ \rho_{j+1} \\ \vdots \\ \rho_{N-2} \\ \rho_{N-1} \\ \mu \phi^{r i g h t}\end{array}\right]$
necessitating a change in the right-hand side vector.
Rescaling factors γ, μ may be used to adjust matrix condition number.
Canonical form: $\mathrm{Ax}=\mathrm{b}$.
linearSolveUpdater - solving the Poisson equation

Now let's look at how this is done in the vsim.in file.

One of VSim's built-in FieldUpdater blocks is the linearSolveUpdater, which solves equations of the form $A x=b$.

Looking at vsim.in - linearSolveUpdater

TECH-K

```
<FieldUpdater esSolve>
kind = linearSolveUpdater
lowerBounds = [0] (inclusive)
upperBounds = [11] (exclusive)
readFields = [ChargeDensity]
readComponents = [0]
writeFields = [Phi]
writeComponents = [0]
writeEquationToFile = 0
<MatrixFiller interiorFiller>
kind = stFuncStencilFiller
verbosity = 127
minDim = 1
lowerBounds = [[\begin{array}{lll}{1}&{1}&{1}\end{array}]\quad\mathrm{ (inclusive)}
upperBounds = [llllll}10 11 12] (exclusive)
component = 0
<STFunc coeff>
kind = expression
expression = -8.854187817591624e-12 = = < < 
</STFunc>
```

MatrixFiller blocks do just what they sound like - filling rows in the matrix.

linearSolveUpdater - StencilElements

Inside the MatrixFiller block, we have various StencilElements:

<STFuncStencilElement phi_dxp> value $=-100.0$
minDim $=1$
celloffset = [0 0 0]
functionOffset $=[0.50 .0$. rowFieldIndex $=0$ columnFieldIndex $=0$
</STFuncStencilElement>
<STFuncStencilElement phi_npx>
value = 100.0
minDim $=1 \quad+1$ cell
celloffset = [1 0 0]
functionOffset $=[0.50 .0$.
rowFieldIndex $=0$
columnFieldIndex $=0$
</STFuncStencilElement>

functionOffset is irrelevant for node-centered fields

```
<STFuncStencilElement phi_dxm>
value = -100.0
minDim = 1
cellOffset = [0 0 0
functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>
```

```
<STFuncStencilElement phi_nmx>
value = 100.0
minDim = 1
-1 cell
cellOffset = [-1 0 0
functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>
```

A generic interior row in the 1D Poisson matrix is

$$
\operatorname{coeff} \cdot\left[\begin{array}{lllllll}
\cdots & 0 & p h i_{n m x} & \left(p h i_{d x m}+p h i_{d x p}\right) & p h i_{n p x} & 0 & \cdots
\end{array}\right]
$$

linearSolveUpdater - boundary conditions

TECH-X

```
<MatrixFiller RIGHTBCFiller>
kind = stencilFiller
verbosity = 127
minDim = 1
lowerBounds = [lllll}10000
upperBounds = [lllll
```



```
component = 0
<StencilElement ident>
value = 1.7708375635183248e-09
minDim = 0
cellOffset = [00 0 0}
rowFieldIndex = 0
columnFieldIndex = 0
</StencilElement>
</MatrixFiller>
<VectorWriter RIGHTBCWriter>
kind = stFuncVectorWriter
verbosity = 127
minDim = 1
lowerBounds =[[\begin{array}{lll}{10}&{0}&{0}\end{array}]}\begin{array}{l}{\mathrm{ upperBounds =[11 12 13}}\end{array}]{\mathrm{ Only rightmost cell
component = 0
<STFunc function>
kind = expression
expression = 1.0
</STFunc>
scaling = 1.7708375635183248e-09
</VectorWriter>
```

kind = expression
expression $=1.0$
</STFunc>
scaling $=1.7708375635183248 \mathrm{e}-09$
</VectorWriter>

Only rightmost cell
$=2 \epsilon_{0} / \Delta x^{2}$ (this is the μ factor from the earlier slide, on the LHS)

Only rightmost cell
$=2 \epsilon_{0} / \Delta x^{2}$ (again, the μ factor from the earlier slide, on the RHS)

VRIGHT (chosen boundary condition)
RHS (vector)

LHS (matrix)

RHS (vector)

linearSolveUpdater - the linearSolver block

```
<LinearSolver linearSolver>
kind = directSolver Solve Ax = b by computing A }\mp@subsup{A}{}{-1}\mathrm{ directly.
solverType = superLU
verbosity = 127
</LinearSolver>
Simplest VSim solver option (by the
    length-of-input-file metric, at least), but
    not useful if your problem is too large.
```

All other VSim solver types are iterative:

- generalized minimum residual
- conjugate gradient
- biconjugate gradient
- etc.

Iterative solvers can be sped up by appropriate multigrid preconditioners (for which many options are available in VSim).

Looking at the matrix

- Edit the vsim.in file so that writeEquationToFile $=1$.
- If you hit the "Save" button, VSim Composer will
- re-read the vsim.sdf file, and
- generate a new in file from the information it finds there.
- This will overwrite the change you just made.
- Therefore: if you want to do text-based problem setup, you'll need to do something like the following:
- Generate the initial .in file from the sdf file with the "Save" button
- Open a terminal window
- Go to the directory where the .in file lives
- Rename the .in file to something different, e.g. vsimTextBased.in
- Edit this new .in file in the way you want to
- Run VSim from the terminal window, pointing to the new in file:
\%\%MatrixMarket matrix coordinate real general 111129
$111.7708375635183248 \mathrm{e}-09$
21 -8.8541900000000002e-10
$221.7708380000000000 \mathrm{e}-09$
23 -8.8541900000000002e-10
3 2-8.8541900000000002e-10
$331.7708380000000000 \mathrm{e}-09$
3 4-8.8541900000000002e-10
4 3-8.8541900000000002e-10
$441.7708380000000000 \mathrm{e}-09$
45 -8.8541900000000002e-10
$54-8.8541900000000002 \mathrm{e}-10$
$551.7708380000000000 \mathrm{e}-09$
$56-8.8541900000000002 \mathrm{e}-10$
$65-8.8541900000000002 \mathrm{e}-10$
$661.7708380000000000 \mathrm{e}-09$
6 7-8.8541900000000002e-10
76 -8.8541900000000002e-10
$771.7708380000000000 \mathrm{e}-09$
7-8.8541900000000002e-10
8 7 -8.8541900000000002e-10
$881.7708380000000000 \mathrm{e}-09$
8-8.8541900000000002e-10
9-8.8541900000000002e-10
$991.7708380000000000 \mathrm{e}-09$
910 -8.8541900000000002e-10
109 -8.8541900000000002e-10
$10101.7708380000000000 \mathrm{e}-09$
1011 -8.8541900000000002e-10
1111 1.7708375635183248e-09
\%\%MatrixMarket matrix coordinate real general
111129
112^{*} eps $0 / \mathrm{dx}^{\wedge} 2$
21 -eps0/dx^2
22 2*eps0/dx^2
23 -eps0/dx^2
32 -eps0/dx^2
3 3 2*eps0/dx^2
34 -eps0/dx^2
43 -eps0/dx^2
44 2*eps0/dx^2
45 -eps0/dx^2
54 -eps0/dx^2
55 2*eps0/dx^2
56 -eps0/dx^2
65 -eps0/dx^2
66 2*eps0/dx^2
67 -eps0/dx^2
76 -eps0/dx^2
77 2*eps0/dx^2
78 -eps0/dx^2
87 -eps0/dx^2
88 2*eps0/dx^2
89 -eps0/dx^2

98 -eps0/dx^2
99 2*eps0/dx^2
910 -eps $0 / d^{\wedge}$ ^2
109 -eps0/dx^2
1010 2*eps0/dx^2 *
1011 -eps0/dx^2
1111 2*eps0/dx^2

Assuming $A x=b, x$ and b are esSolve vectors TECH-ㅊ

esSolveWriteVector.mtx (b)

\%\%MatrixMarket matrix array real general
$\left.\begin{array}{l}\begin{array}{l}111 \\ 0.0000000000000000 \mathrm{e}+00 \\ 6.1803398874989481 \mathrm{e}+00 \\ 1.1755705045849464 \mathrm{e}+01 \\ 1.6180339887498949 \mathrm{e}+01 \\ 1.9021130325903069 \mathrm{e}+01 \\ 2.0000000000000000 \mathrm{e}+01 \\ 1.9021130325903069 \mathrm{e}+01 \\ 1.6180339887498949 \mathrm{e}+01 \\ 1.1755705045849465 \mathrm{e}+01 \\ 6.1803398874989499 \mathrm{e}+00 \\ 1.7708375635183248 \mathrm{e}-09\end{array}\end{array}\right]=\frac{2 \epsilon_{0}}{\Delta x^{2}} \cdot \phi^{\text {left }}=20 \sin \left(\frac{\pi x_{j}}{L}\right)=\rho_{j}$

esSolveReadVector.mtx (x)

\%\%MatrixMarket matrix array real general 111
$0.0000000000000000 \mathrm{e}+00=\phi^{l e f t}$
$7.1308064483412903 e+10$
$1.3563599878269949 \mathrm{e}+11$
$1.8668693648958243 \mathrm{e}+11$
$2.1946365612852356 \mathrm{e}+11$
$2.3075774401243900 \mathrm{e}+11$
$2.1946365612872348 \mathrm{e}+11$
$1.8668693648998233 e+11$
$1.3563599878329944 \mathrm{e}+11$
$7.1308064484212875 \mathrm{e}+10$
$1.0000000000000000 \mathrm{e}+00=\phi^{\text {right }}$

TECH-K

Regroup and Review

So far, we have:
-solved the discrete 1D Poisson equation 'by hand' and looked at the matrix and the vectors involved in that process
-looked at how VSim builds this matrix and these vectors with a FieldUpdater (of kind linearSolveUpdater), using MatrixFiller and StencilElement and LinearSolver blocks
-seen how to run VSim from the command line to point at a modified .in file
-seen how to examine the matrix and vectors VSim builds.
But:
-most interesting problems are not 1D
-most interesting problems involve particles, complicated geometries, and/or complicated boundary conditions

Let's add some interesting features to our input file, and see how things change.

Moving to 2D

Let's copy the simulation we had before into a new simulation, and add:

```
Parameters
LY = 1
NY = 15
RHOZERO = 2.0e-10
```

Vsualization Results
2d

Save Image	Labels	Rendering	Colors	Reset View	\checkmark Full Frame

SpaceTimeFunctions
RHOxt=RHOZERO*sin(PI*x/LX)*sin(PI*y/LY) LINEARPHIxt=VLEFT+(VRIGHT-VLEFT)*x/LX

FieldBoundaryConditions
TOPBC, Dirichlet, LINEARPHIxt, upper y BOTTOMBC, Dirichlet, LINEARPHIxt, lower y

Grid y Min=0 yMax=LY yCells=NY

Matrix is larger, no longer tridiagonal

Now $176 \times 176\left[176=11^{*} 16=(N X+1)^{*}(N Y+1)\right]$ and band-structured

ρ and ϕ arrays are now representing 2D quantities in a vector, e.g.

$$
\left[\begin{array}{c}
\rho_{1,1} \\
\vdots \\
\rho_{1, N} \\
\rho_{2,1} \\
\vdots \\
\rho_{2, N} \\
\vdots \\
\rho_{M, N}
\end{array}\right]
$$

The same approach generalizes to 3D also; we will have large sparse matrices.
In general this 2D input file looks pretty similar to the 1D version.

Additional StencilElements relevant in 2D/3D
 TECH-K

Δy^{2}
Typical stencil elements:

In 2D, general matrix row is

Adding GridBoundary geometric features

Let's modify our simulation some more, to add geometric features:

Geometries
Add Primitive: cylinder material $=$ PEC
length $=0.5$
radius $=0.1$
x position $=0.5$
y position $=0.5$
z position $=-0.25$
axis direction $x=0.0$
axis direction $y=0.0$
axis direction $z=1.0$

FieldBoundaryConditions
Dirichlet, on cylinder, -2.0 V

New: EmMaterial and GridBoundary blocks

<EmMaterial PEC>
kind = conductor
resistance \(=0.0\)
</EmMaterial>
<GridBoundary cylinder0>
kind = gridRgnBndry
calculateVolume \(=1\)
dmFrac \(=0.5\)
polyfilename = cylinder0.stl
flipInterior = True
scale \(=\left[\begin{array}{lll}1.0 & 1.0 & 1.0\end{array}\right]\)
printGridData = False
mappedPolysfile = cylinder0_mapped.st|
</GridBoundary>

New: GridBoundary MatrixFillers

```
<MatrixFiller CYLINDERFiller>
kind = nodeStencilFiller
gridBoundary = cylinder0
rowInteriorosity = [cutByBoundary outsideBoundary]
collnteriorosity = [cutByBoundary outsideBoundary]
component = 0
minDim = 1
lowerBounds = [lllll
upperBounds = [10 15 12]
<StencilElement ident>
value = 5.7552220814345554e-09
minDim = 1
cellOffset = [llll
rowFieldIndex = 0
columnFieldIndex = 0
</StencilElement>
</MatrixFiller>
```

```
<VectorWriter CYLINDERWriter>
```

<VectorWriter CYLINDERWriter>
kind = stFuncNodeVectorWriter
kind = stFuncNodeVectorWriter
gridBoundary = cylinder0
gridBoundary = cylinder0
minDim = 1
minDim = 1
lowerBounds = [lllll
lowerBounds = [lllll
upperBounds = [10 15 12]
upperBounds = [10 15 12]
component = 0
component = 0
interiorosity = [cutByBoundary outsideBoundary]
interiorosity = [cutByBoundary outsideBoundary]
<STFunc function>
<STFunc function>
kind = expression
kind = expression
expression = -2.0
expression = -2.0
</STFunc>
</STFunc>
scaling = 5.7552220814345554e-09
scaling = 5.7552220814345554e-09
</VectorWriter>
</VectorWriter>
See documentation...

```

We could presumably go and look at the matrix again, and see how these operations changed it, and get a sense for what VSim is doing behind-the-scenes.

\section*{Adding particles}
- Instead of doing this through the visual setup, let's just open an example and test our developing .in-file-reading skills.
- File > New From Example > VSim for Plasma Discharges > Capacitively Coupled Plasma > Turner Case 2
- I'll show a quick movie of this discharge so that you have a sense for what we'll be looking at: available here: http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov
- Neutral gas is contained between two parallel plates; one plate is grounded and the other biased with RF. The motion of free electrons creates plasma between the plates, and the formation of plasma sheaths is observed. The long-time steady state of the discharge is a balance between collisional ionization (source) and wall losses (sink).

\section*{Looking at the Turner .in file}
- Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.
- Some new things: Species, Fluid, History, collisional physics, etc.```

