

Tech-X Worldwide Simulation Summit Boulder, Colorado September 17, 2019

A brief introduction to me...

- Senior Research Scientist
- 9.5 years at Tech-X
- Ph.D. @ Princeton/PPPL (2007), in gyrokinetic PIC simulation
- Postdoc @ UW-Madison, working on RF/MHD coupling for electron cyclotron current drive in fusion plasmas
- Current research interests:
 - methods for speeding up particle-in-cell simulations (SLPIC)
 - modeling RF sheaths/impurity sputtering in fusion devices
 - kinetic theory wave/particle interactions, etc.
 - PIC modeling of low-temperature plasmas
- Website, where this talk and other talks/papers/presentations are posted:

http://nucleus.txcorp.com/~tgjenkins

Standard electrostatics problem: Poisson

 $\frac{d^2\phi(x)}{dx^2} = -\frac{\rho(x)}{\epsilon_0} \quad ; \quad \phi(x=0) = \phi^{left}, \qquad \phi(x=L) = \phi^{right} \; ; x \in [0,L]$

Numerical approach: discretize.

Define a grid:
$$\Delta x = \frac{L}{N}$$
; $x_n = n\Delta x \forall n = 0, 1, ..., N$

Use finite-difference approximation to second derivative, at interior gridpoints:

$$-\epsilon_0 \left[\frac{\phi_{j+1} - 2\phi_j + \phi_{j-1}}{\Delta x^2} \right] = \rho_j \qquad \forall \quad j = 1, 2, \dots, N-1$$

Apply boundary conditions, at edge gridpoints:

$$\phi_0 = \phi^{left}$$

$$\phi_N = \phi^{right}$$

Solve the ensuing system of linear equations.

Solution error scales as $1/N^2$

$$\frac{d^2\phi(x)}{dx^2} = -\frac{\rho_0 \sin\left(\frac{\pi x}{L}\right)}{\epsilon_0} \quad ; \quad \phi(x=0) = \phi^{left}, \qquad \phi(x=L) = \phi^{right} \quad on \ [0,L]$$

has exact solution

TECH-X

$$\phi(x) = \phi^{left} + \left(\phi^{right} - \phi^{left}\right)\frac{x}{L} + \frac{\rho_0 L^2}{\epsilon_0 \pi^2} \sin\left(\frac{\pi x}{L}\right)$$

On the discrete grid, we have $\phi_{j}^{exact} = \phi^{left} + \left(\phi^{right} - \phi^{left}\right) \frac{j}{N} + \frac{\rho_{0}L^{2}}{\epsilon_{0}\pi^{2}} \sin\left(\frac{\pi j}{N}\right) \quad ; \quad \rho_{j}^{exact} = \rho_{0} \sin\left(\frac{\pi j}{N}\right)$

Putting these functions into the discretized Poisson equation yields

$$-\frac{\rho_0}{\epsilon_0} \sin\left(\frac{\pi j}{N}\right) \left\{ \frac{2N^2}{\pi^2} \left[1 - \cos\left(\frac{\pi}{N}\right) \right] \right\} \approx -\frac{\rho_0}{\epsilon_0} \sin\left(\frac{\pi j}{N}\right)$$
$$\left\{ \frac{2N^2}{\pi^2} \left[1 - \left(1 - \frac{\pi^2}{2N^2} + \frac{\pi^4}{24N^4} + \cdots \right) \right] \right\} \approx 1$$

What does this look like in VSim?

Let's set up a basic simulation and run it for one step:

Parameters
VLEFT = 0
VRIGHT = 1
LX = 1
NX = 10
RHOZERO = 20

Basic Settings number of steps = 1 steps between dumps = 1 dimensionality = 1 field solver = electrostatic

SpaceTimeFunctions RHOxt=RHOZERO*sin(PI*x/LX)

Grids xMin = 0 xMax = LX xCells = NX

Field Dynamics: Fields

Background Charge Density RHO=RHOxt

Field Dynamics: FieldBoundaryConditions Dirichlet on lower x: VLEFT Dirichlet on upper x: VRIGHT

Field Dynamics: PoissonSolver preconditioner = no preconditioner solver = SuperLU

Looking at vsim.in – input blocks

FRONTMATTER

<Grid globalGrid>

</Grid>

<Decomp decomp>

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]
</MultiField>

Key VSim concept 0: block structures

> Or very generally, <OBJECT objectName> ... object features ... </OBJECT>

Looking at vsim.in – overall structure

FRONTMATTER	
<grid globalgrid=""></grid>	Key VSim concept 1:
	the MultiField block
<decomp decomp=""></decomp>	
<multifield name_of_multifield=""></multifield>	
<pre><field name_of_field="">] functioned algorithms </field></pre>	iald algotractatic potential observe density
	ieid, electrostatic potential, charge density,
<pre><fieldupdater name_of_fieldupdater=""> _ define</fieldupdater></pre>	mathematical operations on existing fields,
	king a gradient of a scalar field
<initialupdatestep name_of_initialupdatestep=""></initialupdatestep>	Set initial conditions – done only once
	at simulation outset
 <updatestep name_of_updatestep=""></updatestep> 	e eventionally defined. Field ledetere
	e previously defined FleidOpdaters
updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_O 	OF_UPDATESTEP2]

Looking at vsim.in - frontmatter

nsteps = 1
number of steps in simulation
dumpPeriodicity = 1
dt = 1.0
floattype = double
verbosity = 127
copyHistoryAtEachDump = 0
useGridBndryRestore = False
constructUniverse = False

$$<$$
Grid globalGrid>
verbosity = 127
numCells = [10 11 12]
lengths = [1.0 1.0 1.0]
startPositions = [0.0 -0.5 0.0]
maxCellXings = 1
 $$
 $3D grid: default y, z values
 $\Delta x = 1/10; \Delta y = 1/11; \Delta z = 1/12 (extra dimensions not used in computation; still present in several parts of input file though)$$

Looking at vsim.in – FieldUpdater blocks

TECH-X

built-in operation that computes the gradient of a scalar

Looking at vsim.in – InitialUpdateStep blocks

These updates are performed only once, at the simulation outset.

- <InitialUpdateStep RHOInitStep>
 alsoAfterRestore = True Also do this step when restarting a simulation
 updaters = [RHO] Previously defined field updater, defines rho field
 messageFields = []
 </InitialUpdateStep>
- <InitialUpdateStep esSolveInitStep> alsoAfterRestore = True updaters = [esSolve] messageFields = [Phi] </InitialUpdateStep = Previously defined field updater, solves Poisson equation for phi field </InitialUpdateStep gradPhiInitStep> alsoAfterRestore = True updaters = [gradPhi] messageFields = [E] Previously defined field updater, computes E from phi.

</InitialUpdateStep>

updateStepOrder = [RHOStep esSolveStep gradPhiStep]

Regroup and Review

So far, we have:

-built an .sdf file in VSim that solves the 1D Poisson equation

-found the .in file that VSim built from our initial .sdf file

-looked at the general block structure of that .in file

-looked at some typical Field, FieldUpdater, InitialUpdateStep, and UpdateStep blocks that live in the larger MultiField block

Now, we'll do a bit of a deeper dive into how VSim solves the Poisson equation, and learn a bit more about how data is organized 'under the hood' in VSim.

Electrostatic solves, without VSim

VSim solves the Poisson equation

$$\frac{d^2\phi(x)}{dx^2} = -\frac{\rho(x)}{\epsilon_0} \quad ; \quad \phi(x=0) = \phi^{left}, \qquad \phi(x=L) = \phi^{right} \; ; x \in [0,L]$$

with Fields and FieldUpdaters and UpdateSteps.

Let's first build a discretized version of this problem "by hand", to see what kinds of things we might expect VSim to be doing:

Grid:
$$\Delta x = \frac{L}{N}$$
; $x_n = n\Delta x \forall n = 0, 1, ..., N$ Discrete Poisson
equation: $-\epsilon_0 \left[\frac{\phi_{j+1} - 2\phi_j + \phi_{j-1}}{\Delta x^2} \right] = \rho_j \quad \forall j = 1, 2, ..., N - 1$ Boundary
conditions: $\phi_0 = \phi^{left}$
 $\phi_N = \phi^{right}$

Constructing the matrix – interior points

$$-\epsilon_0 \left[\frac{\phi_{j+1} - 2\phi_j + \phi_{j-1}}{\Delta x^2} \right] = \rho_j \qquad \forall \quad j = 1, 2, \dots, N-1$$

becomes

Invalid for first/last rows of matrix. Instead, use boundary conditions there.

Constructing the matrix – boundary conditions

		($\phi_0 = \phi_N =$	$\phi^{left} = \phi^{righ}$	t 1t		becor	nes					
	$\left[-\gamma\Delta x^2/\epsilon\right]$	-0	0	0	0	0	0		0	0	0	$[\phi_0]$	[γφ ^{left}]
	1	U	-2	1	0	0	0		0	0	0	$ \phi_1 $	ρ_1
	0		1	-2	1	0	0		0	0	0	ϕ_2	ρ_2
		:	:		•	:	•		:	:	•		:
$(-\epsilon_{\alpha})$	0	0	1		-2	1	0		0	0	0	$ \phi_{j-1} $	ρ_{j-1}
$\left(\frac{c_0}{\Delta u^2}\right)$	0	0	0		1	-2	1		0	0	0	$ \phi_j $	$= \rho_j$
Δx^{2}	0	0	0		0	1	-2		1	0	0	$\ \phi_{i+1}\ $	ρ_{j+1}
	•	:	:		•	:	•		:	:	•		:
	0	0	0		0	0	1	-2	1		0	$\left\ \phi_{N-2}\right\ $	ρ_{N-2}
	0	0	0		0	0	0	1	-2		1	$\left\ \phi_{N-1} \right\ $	ρ_{N-1}
	0	0	0		0	0	0	0	0	_	$-\mu\Delta x^2/\epsilon_0$	$\begin{bmatrix} & n & 1 \\ \phi_N \end{bmatrix}$	[µ ϕ^{right}]

necessitating a change in the right-hand side vector.

Rescaling factors γ , μ may be used to adjust matrix condition number.

Canonical form: Ax = b.

linearSolveUpdater – solving the Poisson equation

Now let's look at how this is done in the vsim.in file.

One of VSim's built-in FieldUpdater blocks is the linearSolveUpdater, which solves equations of the form Ax = b.

Looking at vsim.in – linearSolveUpdater

MatrixFiller blocks do just what they sound like – filling rows in the matrix.

 $-1/\Lambda x^2$

linearSolveUpdater - StencilElements

Inside the MatrixFiller block, we have various StencilElements:

```
<STFuncStencilElement phi_dxp>
value = -100.0
minDim = 1
cellOffset = [0 0 0]
functionOffset = [0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>
```

```
<STFuncStencilElement phi_npx>
value = 100.0
minDim = 1 +1 cell
cellOffset = [1 0 0]
functionOffset = [0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>
```

$1/\Delta x^2$

functionOffset is irrelevant for node-centered fields

```
<STFuncStencilElement phi_dxm>
value = -100.0
minDim = 1
cellOffset = [0 0 0]
functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>
```

```
<STFuncStencilElement phi_nmx>
value = 100.0
minDim = 1          -1 Cell
cellOffset = [-1 0 0]
functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0
columnFieldIndex = 0
</STFuncStencilElement>
```

A generic interior row in the 1D Poisson matrix is

 $coeff \cdot [\cdots \ 0 \ phi_{nmx} \ (phi_{dxm} + phi_{dxp}) \ phi_{npx} \ 0 \ \cdots]$

TECH-X

linearSolveUpdater – boundary conditions

LHS (matrix)

RHS (vector) ~

VRIGHT (chosen boundary condition)

<MatrixFiller RIGHTBCFiller> kind = stencilFiller verbosity = 127 minDim = 1 lowerBounds = [10 0 0] upperBounds = [11 12 13] component = 0

<StencilElement ident> value = 1.7708375635183248e-09 minDim = 0 cellOffset = [0 0 0] rowFieldIndex = 0 columnFieldIndex = 0 </StencilElement> </MatrixFiller>

<VectorWriter RIGHTBCWriter> kind = stFuncVectorWriter verbosity = 127 minDim = 1 lowerBounds = [10 0 0] upperBounds = [11 12 13] component = 0

<STFunc function> kind = expression expression = 1.0 </STFunc>

scaling = 1.7708375635183248e-09
</VectorWriter>

Only rightmost cell

 $r = 2\epsilon_0/\Delta x^2$ (this is the μ factor from the earlier slide, on the LHS)

Only rightmost cell

= $2\epsilon_0/\Delta x^2$ (again, the μ factor from the earlier slide, on the RHS)

InearSolveUpdater – the linearSolver block

<LinearSolver linearSolver>

kind = directSolver solverType = superLU

verbosity = 127

</LinearSolver>

Solve Ax = b by computing A^{-1} directly. Simplest VSim solver option (by the length-of-input-file metric, at least), but not useful if your problem is too large.

All other VSim solver types are iterative:

- generalized minimum residual
- conjugate gradient
- biconjugate gradient
- etc.

Iterative solvers can be sped up by appropriate multigrid preconditioners (for which many options are available in VSim).

Looking at the matrix

- Edit the vsim.in file so that writeEquationToFile = 1.
- If you hit the "Save" button, VSim Composer will
 - re-read the vsim.sdf file, and
 - generate a new .in file from the information it finds there.
- This will overwrite the change you just made.
- Therefore: if you want to do text-based problem setup, you'll need to do something like the following:
 - Generate the initial .in file from the sdf file with the "Save" button
 - Open a terminal window
 - Go to the directory where the .in file lives
 - Rename the .in file to something different, e.g. vsimTextBased.in
 - Edit this new .in file in the way you want to
 - Run VSim from the terminal window, pointing to the new .in file:

YOUR/PATH/TO/VSim-10.0/VSimComposer.app/Contents/Resources/engine/bin/vorpalser -dt 1.0 -d 1 -n 1 -i vsimTextBased.in

TECH-X

Assuming Ax=b, A is in esSolveMatrix.mtx

%%MatrixMarket matrix coordinate real general

%%MatrixMarket matrix coordinate real general

11 11 29 1 1 1.7708375635183248e-09 2 1 -8.85419000000002e-10 2 2 1.770838000000000e-09

23-8.85419000000002e-10 32-8.85419000000002e-10

3 3 1.770838000000000e-09

34-8.85419000000002e-10

4 5 -8.85419000000002e-10

54-8.85419000000002e-10

551.770838000000000e-09

56-8.85419000000002e-10

6 5 -8.85419000000002e-10

6 6 1.770838000000000e-09

67-8.85419000000002e-10

76-8.85419000000002e-10

771.770838000000000e-09

78-8.85419000000002e-10

87-8.85419000000002e-10

8 8 1.770838000000000e-09

89-8.85419000000002e-10

98-8.85419000000002e-10

9 9 1.770838000000000e-09

9 10 -8.854190000000002e-10

10 9 -8.854190000000002e-10

10 10 1.770838000000000e-09

10 11 -8.854190000000002e-10

11 11 1.7708375635183248e-09

4 3 -8.85419000000002e-10 4 4 1.770838000000000e-09

3 2 -eps0/dx^2 3 3 2*eps0/dx^2 34 -eps0/dx^2 4 3 -eps0/dx^2 4 4 2*eps0/dx^2 4 5 -eps0/dx^2 54 -eps0/dx^2 5 5 2*eps0/dx^2 56-eps0/dx^2 6 5 -eps0/dx^2 6 6 2*eps0/dx^2 67-eps0/dx^2 7 6 -eps0/dx^2 7 7 2*eps0/dx^2 7 8 -eps0/dx^2 87-eps0/dx^2 8 8 2*eps0/dx^2 89-eps0/dx^2 98-eps0/dx^2 992*eps0/dx^2 9 10 -eps0/dx^2 10 9 -eps0/dx^2 10 10 2*eps0/dx^2 10 11 -eps0/dx^2 11 11 2*eps0/dx^2

11 11 29

1 1 2*eps0/dx^2

2 2 2*eps0/dx^2

2 1 -eps0/dx^2

2 3 -eps0/dx^2

X Assuming Ax=b, x and b are esSolve vectors **TECH-X**

esSolveWriteVector.mtx (b)

%%MatrixMarket matrix array real general 11 1 0.00000000000000000e+00 _ 6.1803398874989481e+00 1.1755705045849464e+01 1.6180339887498949e+01 1.9021130325903069e+01 2.0000000000000000e+01 1.9021130325903069e+01 1.6180339887498949e+01 1.1755705045849465e+01 6.1803398874989499e+00 1.7708375635183248e-09 =

$$= \frac{2\epsilon_0}{\Delta x^2} \cdot \phi^{left}$$

$$= 20\sin\left(\frac{\pi x_j}{L}\right) = \rho_j$$

$$= \frac{2\epsilon_0}{\Delta x^2} \cdot \phi^{right}$$

esSolveReadVector.mtx (x)

%%MatrixMarket matrix array real general 11 1 $= \phi^{left}$ 0.00000000000000000e+00 7.1308064483412903e+10 1.3563599878269949e+11 1.8668693648958243e+11 2.1946365612852356e+11 $= \phi_i$ 2.3075774401243900e+11 2.1946365612872348e+11 1.8668693648998233e+11 1.3563599878329944e+11 7.1308064484212875e+10 $= \phi^{right}$ 1.00000000000000000e+00

Regroup and Review

So far, we have:

-solved the discrete 1D Poisson equation 'by hand' and looked at the matrix and the vectors involved in that process

-looked at how VSim builds this matrix and these vectors with a FieldUpdater (of kind linearSolveUpdater), using MatrixFiller and StencilElement and LinearSolver blocks

-seen how to run VSim from the command line to point at a modified .in file

-seen how to examine the matrix and vectors VSim builds.

But:

-most interesting problems are not 1D

-most interesting problems involve particles, complicated geometries, and/or complicated boundary conditions

Let's add some interesting features to our input file, and see how things change.

Moving to 2D

Let's copy the simulation we had before into a new simulation, and add:

Parameters LY = 1 NY = 15 RHOZERO = 2.0e-10 SpaceTimeFunctions RHOxt=RHOZERO*sin(PI*x/LX)*sin(PI*y/LY) LINEARPHIxt=VLEFT+(VRIGHT-VLEFT)*x/LX

FieldBoundaryConditions

TOPBC, Dirichlet, LINEARPHIxt, upper y BOTTOMBC, Dirichlet, LINEARPHIxt, lower y

Basic Settings dimensionality = 2

Grid

yMin=0 yMax=LY yCells=NY

Matrix is larger, no longer tridiagonal

Now 176 x 176 [176 = 11*16 = (NX+1)*(NY+1)] and band-structured

 ρ and ϕ arrays are now representing 2D quantities in a vector, e.g.

$$\begin{bmatrix} \rho_{1,1} \\ \vdots \\ \rho_{1,N} \\ \rho_{2,1} \\ \vdots \\ \rho_{2,N} \\ \vdots \\ \rho_{M,N} \end{bmatrix}$$

The same approach generalizes to 3D also; we will have large sparse matrices. In general this 2D input file looks pretty similar to the 1D version.

Additional StencilElements relevant in 2D/3D

Typical stencil elements:

Only if ≥ 2D +1 cell in y	<pre><stfuncstencilelement phi_npy=""> value = 225.0 minDim = 2 cellOffset = [0 1 0] functionOffset = [0. 0.5 0.] rowFieldIndex = 0 columnFieldIndex = 0 </stfuncstencilelement></pre>
∆z²	•••
Only if ≥ 3D	<stfuncstencilelement phi_nmz=""> value = 144.0</stfuncstencilelement>
-1 cell in z	<pre>minDim = 3 cellOffset = [0 0 -1] functionOffset = [0. 00.5] rowFieldIndex = 0 columnFieldIndex = 0 </pre>

∆y²

In 2D, general matrix row is

 $coeff \cdot [\cdots \ 0 \ phi_{nmy} \ \cdots \ phi_{nmx} \ (phi_{dxm} + phi_{dxp} + phi_{dym} + phi_{dyp}) \ phi_{npx} \ \cdots \ phi_{npy} \ 0 \ \cdots]$

TECH-X

Adding GridBoundary geometric features

Let's modify our simulation some more, to add geometric features:

Geometries

Add Primitive: cylinder material = PEC length = 0.5radius = 0.1x position = 0.5y position = 0.5z position = -0.25axis direction x = 0.0axis direction y = 0.0axis direction z = 1.0 FieldBoundaryConditions Dirichlet, on cylinder, -2.0 V

<EmMaterial PEC> kind = conductor resistance = 0.0 </EmMaterial>

<GridBoundary cylinder0> kind = gridRgnBndry calculateVolume = 1 dmFrac = 0.5 polyfilename = cylinder0.stl flipInterior = True scale = [1.0 1.0 1.0] printGridData = False mappedPolysfile = cylinder0_mapped.stl </GridBoundary>

See documentation...

New: GridBoundary MatrixFillers

<MatrixFiller CYLINDERFiller> kind = nodeStencilFiller gridBoundary = cylinder0 rowInteriorosity = [cutByBoundary outsideBoundary] colInteriorosity = [cutByBoundary outsideBoundary] component = 0 minDim = 1 lowerBounds = [1 1 1] upperBounds = [10 15 12]

```
<StencilElement ident>
value = 5.7552220814345554e-09
minDim = 1
cellOffset = [0 0 0]
rowFieldIndex = 0
columnFieldIndex = 0
</StencilElement>
```

<VectorWriter CYLINDERWriter> kind = stFuncNodeVectorWriter gridBoundary = cylinder0 minDim = 1 lowerBounds = [1 1 1] upperBounds = [10 15 12] component = 0 interiorosity = [cutByBoundary outsideBoundary]

<STFunc function> kind = expression expression = -2.0 </STFunc>

scaling = 5.7552220814345554e-09 </VectorWriter>

See documentation...

We could presumably go and look at the matrix again, and see how these operations changed it, and get a sense for what VSim is doing behind-the-scenes.

</MatrixFiller>

Adding particles

- Instead of doing this through the visual setup, let's just open an example and test our developing .in-file-reading skills.
- File > New From Example > VSim for Plasma Discharges > Capacitively Coupled Plasma > Turner Case 2
- I'll show a quick movie of this discharge so that you have a sense for what we'll be looking at: available here: <u>http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov</u>
- Neutral gas is contained between two parallel plates; one plate is grounded and the other biased with RF. The motion of free electrons creates plasma between the plates, and the formation of plasma sheaths is observed. The long-time steady state of the discharge is a balance between collisional ionization (source) and wall losses (sink).

Looking at the Turner .in file

- Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.
- Some new things: Species, Fluid, History, collisional physics, etc.