

Outline

- Simulation Requirements
- Useful Simulation Concepts
- Introduction to VSim
- Walkthrough of VSimComposer
- Basic Implementation of
- Conclusions

Approaching Simulations

- Can the simulation be done?
 - What are the smallest and largest length scales involved?
 - What about time scales? Are you looking to resolve both ion and electron movement?
 - What is the plasma frequency? That affects the size of your time step
 - What do those requirements mean for the number of cells, number of time steps and time step length,

needed to simulate and accurately capture?

• In our case of a Hall Thruster:

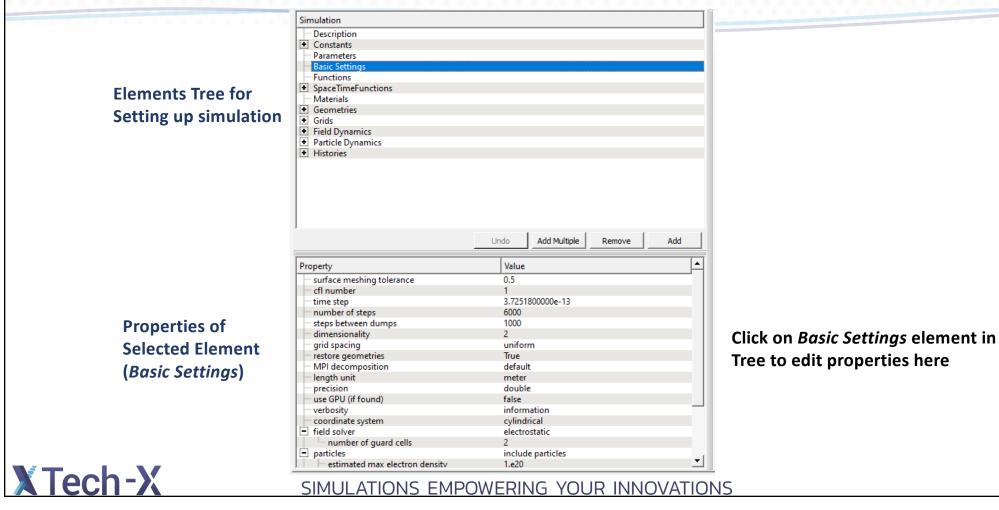
Tech-X

- Smallest characteristic length scale is typically a Debye length (L_D) ~ (KT/nq**2) <- TODO:LATEX
 - In the high electron density locations, this can be of order a few tenths of microns (10**-7 m)
- Longest characteristic length is typically the size of the device say a few centimeters (10**-2 m)
- Plasma frequency is of a few GHz (10**9 Hz),
- Time step is a few picoseconds (10**-12 s)

- What is the core physics looking to be explored?
 - Is it field related, particle-particle collisions, Temperature, Thermal velocity?
 - If collisions are important:
 - Compute the collision frequency using the background magnetic field.
 - If the collision frequency is "fc", then make sure time step (DT) is such that DT < 1/fc
- What is the bare minimum required to obtain a physical result?
 - Increase complexity from there

ech-X

Welcome Screen


/elcome Tab		- 0
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	
Simulation Setup		Open Recent Copy Recent Clear
Running		
Analysis		
/isualization		
leip 🛛 🖉 Welcome:	NO SIMULATION Open a new simulation by choosing New	From Example in the File menu or double-clicking item in Recent list.
Tech-X	SIM	ULATIONS EMPOWERING YOUR INNOVATIONS

Default Setup View

CylHalThruster.sdf cylHalThruster.pre cylHalThruster.in	Simulation Setup is Ready Save and Setup
Wetcome Simulation Setup Setup Setup Simulation Parameters Basic Settings Parameters Basic Setting up simulation Property Value Property Value	Properties View Solds Cop Show Scale Perspective +2 Cop Reset View

Materials Setup View

VSim - Cylindrical Hall Thruster		Button	to cwit	ch view				-	
File Edit Tools View Help Window Editor		Dutton	LU SWIL						
cylHalThruster.sdf cylHalThruster.pre cylHalThruster.in							🥑 Simulat	ion Setup is Ready	Save and Setup
Welcome Simulation		Matroals Database Fi	e: DEFAULTS 🔻	Selected Material:	Add To Simulation				_
Description	R N	Name 🗸	kind	conductivity		elaxation function	armittivity functio	ntz oscillator strer	lorentz freguer
Setup Parameters Basic Settings		Alumina	dielectric	0.00135184	9	Claxation rancelo	china truy functio	The openiotor site	Iorente rrequer
Functions	abase	Custom	dielectric	0	1				
Pue Materials	IS Dat			v					
Geometries	ateria	DebyeLorentzM				1.0	1.0	[alphaFunction	
Field Dynamics	×	DrudeLorentzM	Drude-Lorentz					[alphaFunction	[frequencyFun
Analyze Histories		PEC	conductor						
Elements Tree for		Sapphire	dielectric	8.7e-10	9.9				
Visualize		Silica	dielectric	0	2.03				
Setting up simulation		Silicon	dielectric	0	12.11				
Help Undo Add Multiple Remove	Add	Vacuum	dielectric	0	1				
Property Value		absorbium	particle absorber						
ribelly		bottle glass	dielectric	0.00135184	3.7				
		resistive damper	dielectric	0.1	1				
Select item in Elements Tree to view Properties in this window		4				Win mat	erials 1 dow fo erials' ductivit	or viewi kind,	ng
Setup: COMPLETED Click run to continue									Show Log
Tech-X SIMULATIONS	EMPOV	VERING	S YOU	R INN	OVATIO	DNS			

Surface Meshing Tolerance

- Determines the relative size at which small cells from a meshed geometry surface are dropped.
- Set to 1.0 for simulations not containing any geometries.

X Tech-X

roperty	Value
surface meshing tolerance	0.5
cfl number	1
time step	3.7251800000e-13
- number of steps	6000
steps between dumps	1000
- dimensionality	2
grid spacing	uniform
restore geometries	True
 MPI decomposition 	default
length unit	meter
precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

CFL Number

- If time step is set to zero, the time step is automatically calculated.
- For EM simulations, the time step is reduced proportionately with the CFL number.
- The CFL number is the ratio of time step to Courant limit.

X Tech-X

Property	Value		
surface meshing tolerance	0.5		
cfl number	1		
time step	3.7251800000e-13		
 number of steps 	6000		
 steps between dumps 	1000		
- dimensionality	2		
 grid spacing 	uniform		
 restore geometries 	True		
 MPI decomposition 	default		
- length unit	meter		
- precision	double		
— use GPU (if found)	false		
- verbosity	information		
 coordinate system 	cylindrical		
 field solver 	electrostatic		
number of guard cells	2		
 particles 	include particles		
 estimated max electron density 	1.e20		
 estimated max electron temperature (eV) 	1.0		
ump nodal fields	True		
 collisions framework 	reduced		
 moving window 	no moving window		
periodic directions	no periodicity		

Time Step

- If set to a value that is non-zero, this will be used as the simulation time step.
- If set to zero, the time step is calculated for you based on a number of factors.

X Tech-X

roperty	Value
 surface meshing tolerance 	0.5
cfl number	1
time step	3.7251800000e-13
number of steps	6000
 steps between dumps 	1000
- dimensionality	2
— grid spacing	uniform
 restore geometries 	True
 MPI decomposition 	default
length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

Number of Steps

• The number of time steps to run the simulation.

X Tech-X

Property	Value
 surface meshing tolerance 	0.5
- cfl number	1
time step	3.7251800000e-13
number of steps	6000
steps between dumps	1000
- dimensionality	2
 grid spacing 	uniform
restore geometries	True
 MPI decomposition 	default
length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

Steps Between Dumps

• The number of time steps between sequential dumps of data to hdf5 format files.

X Tech-X

Property	Value
 surface meshing tolerance 	0.5
- cfl number	1
- time step	3.7251800000e-13
number of steps	6000
steps between dumps	1000
dimensionality	2
— grid spacing	uniform
 restore geometries 	True
 MPI decomposition 	default
length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

Dimensionality

• Set to 1, 2, or 3 to indicate how many dimensions to run the simulation in.

X Tech-X

Property	Value
- surface meshing tolerance	0.5
- cfl number	1
- time step	3.7251800000e-13
- number of steps	6000
steps between dumps	1000
dimensionality	2
grid spacing	uniform
restore geometries	True
 MPI decomposition 	default
length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

Coordinate System

- The type of coordinate system to work in.
 - cartesian

X Tech-X

- cylindrical
- For cylindrical coordinates, only 2 dimensional electrostatic simulations are currently available in visual setup.

Property	Value
surface meshing tolerance	0.5
- cfl number	1
- time step	3.7251800000e-13
- number of steps	6000
steps between dumps	1000
- dimensionality	2
grid spacing	uniform
restore geometries	True
 MPI decomposition 	default
- length unit	meter
- precision	double
use GPU (if found)	false
verbosity	information
coordinate system	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

Field Solver

- The field solver determines which equations will be used to calculate the fields:
- 1. Electrostatic

X Tech-X

- number of guard cells
- 2. Electromagnetic
 - Cerenkov Filter
 - Electromagnetic problems allow for the selection of a numerical Cerenkov noise filter.

Property	Value
- surface meshing tolerance	0.5
- cfl number	1
time step	3.7251800000e-13
- number of steps	6000
 steps between dumps 	1000
- dimensionality	2
 grid spacing 	uniform
restore geometries	True
 MPI decomposition 	default
length unit	meter
- precision	double
— use GPU (if found)	false
- verbosity	information
<u>coordinate system</u>	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
 moving window 	no moving window
periodic directions	no periodicity

Particles

- Whether or not to include particles in the simulation.
- 1. no particles

Tech-X

- 2. include particles
- If particles are included in the simulation, the following 2 properties are used to help calculate the time step.
 - estimated max electron density
 - estimated min electron temperature (eV)

Property	Value
- surface meshing tolerance	0.5
- cfl number	1
- time step	3.7251800000e-13
- number of steps	6000
 steps between dumps 	1000
- dimensionality	2
- grid spacing	uniform
 restore geometries 	True
 MPI decomposition 	default
length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
particles	include particles
estimated max electron density	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 collisions framework 	reduced
- moving window	no moving window
periodic directions	no periodicity

Collisions Framework

- Whether or not to include particles in the simulation.
- 1. no particles

Tech-X

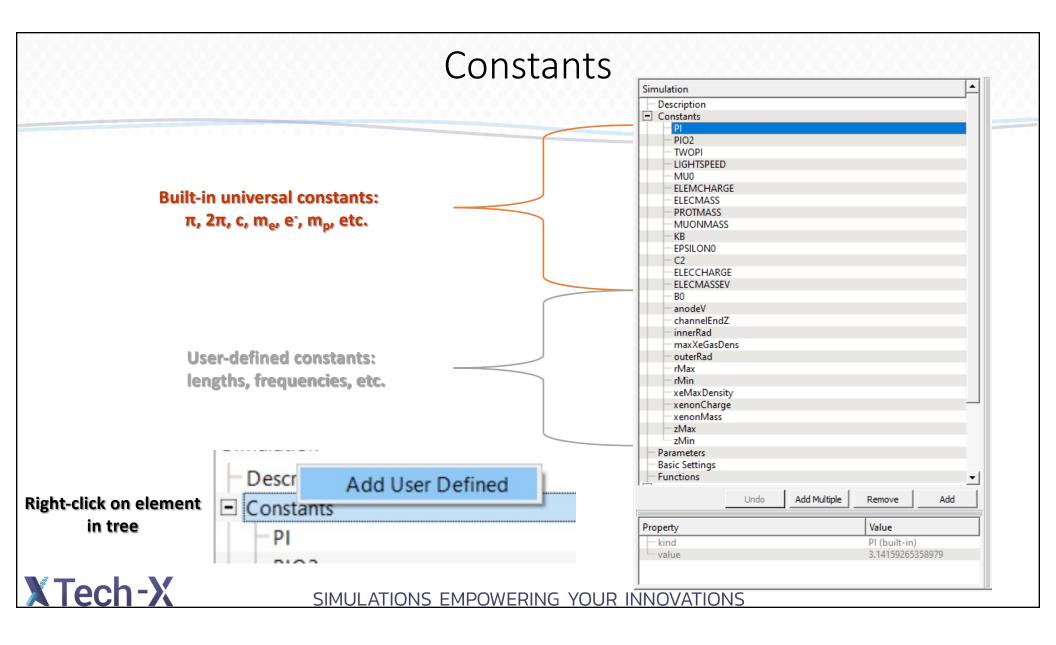
- 2. include particles
- If particles are included in the simulation, the following 2 properties are used to help calculate the time step.
 - estimated max electron density
 - estimated min electron temperature (eV)

roperty	Value
 surface meshing tolerance 	0.5
- cfl number	1
- time step	3.7251800000e-13
- number of steps	6000
 steps between dumps 	1000
- dimensionality	2
grid spacing	uniform
restore geometries	True
 MPI decomposition 	default
length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
collisions framework	reduced
- moving window	no moving window
periodic directions	no periodicity

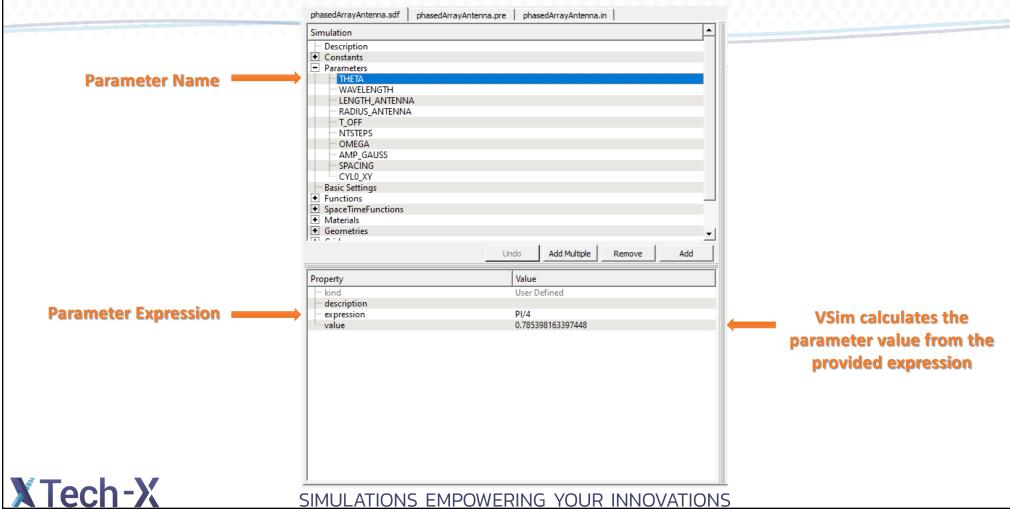
Movi	ing V	Vinc	
	III B V	VIIIC	

- Whether or not to use a moving window which allows the simulation window to move at the speed of light in the chosen direction.
- Useful for simulations such as laser pulse or particle beam moving at a velocity close to the speed of light.

X Tech-X


roperty	Value
 surface meshing tolerance 	0.5
- cfl number	1
time step	3.7251800000e-13
- number of steps	6000
steps between dumps	1000
- dimensionality	2
grid spacing	uniform
restore geometries	True
 MPI decomposition 	default
- length unit	meter
- precision	double
use GPU (if found)	false
- verbosity	information
 coordinate system 	cylindrical
 field solver 	electrostatic
number of guard cells	2
 particles 	include particles
 estimated max electron density 	1.e20
 estimated max electron temperature (eV) 	1.0
dump nodal fields	True
 <u>collisions framework</u> 	reduced
- moving window	no moving window
periodic directions	no periodicity

Periodic Directions


 The directions of the simulation which should be modelled as periodic, if any.

X Tech-X

Property	Value		
- surface meshing tolerance	0.5		
- cfl number	1		
- time step	3.7251800000e-13		
- number of steps	6000		
 steps between dumps 	1000		
- dimensionality	2		
grid spacing	uniform		
restore geometries	True		
 MPI decomposition 	default		
length unit	meter		
- precision	double		
use GPU (if found)	false		
verbosity	information		
 coordinate system 	cylindrical		
 field solver 	electrostatic		
number of guard cells	2		
 particles 	include particles		
 estimated max electron density 	1.e20		
 estimated max electron temperature (eV) 	1.0		
dump nodal fields	True		
 collisions framework 	reduced		
- moving window	no moving window		
periodic directions	no periodicity		

Derived Parameters

Functions

- 1. Create your own function.
- 2. Built-in turn on function.
- The function can contain any number of arbitrary arguments and is not limited to the default values of x,y.
- The user-supplied expression is a function of the arguments given in the argument property.
- The expression can include any predefined Constants, Parameters, or Functions, as well as real numbers and python operator.

(Tech-X

	phasedArrayAntenna.pre	phasedArrayAntenna.in	
Simulation			
 Description 			
 Constants 			
 Parameters 			
 Basic Settings 			
 Functions 			
dphiFunc			
- ampFunc			
- PhiFunc			
- xMask			
— yMask			
currFunc			
- thetaFunc			
 SpaceTimeFunctions 			
Materials			
Geometries			
Grids			
Field Dynamics Histories			
 Histories 			
	Und	do Add Multiple	Remove Add
		Value	
Property		value	
Property kind		User Defined	
- kind		User Defined dphiFunc t	
kind description		User Defined dphiFunc	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	
 kind description arguments 		User Defined dphiFunc t	

Materials

Material Properties: heat capacity, conductivity, permittivity, thermal conductivity, permeability, and resistance.

phasedArrayAntenna.sdf phasedArrayAntenna.pre phasedArrayAntenna.in									
Simulation	×.	Materials Database Fi	le: DEFAULTS -	Selected Material:	Add To Simulation				
Description	30 1			-					
Constants Parameters	<u></u>	Name 🗸	kind	conductivity	lative permittivi	elaxation functio	rmittivity function	itz oscillator stre	orentz freque
Basic Settings		Alumina	dielectric	0.00135184	9				
Functions	gas	H			-				
SpaceTimeFunctions	ata	Custom	dielectric	0	1				
Materials	Materials Database	H							
L PEC	lai	DebyeLorentzM	Debye-Lorentz			1.0	1.0	[alphaFunction	[frequencyFun
Geometries	at a								
Grids	2	DrudeLorentzM	Drude-Lorentz					[alphaFunction	[frequencyFun
Field Dynamics		PEC	conductor						
Histories		PEC	conductor						
		Sapphire	dielectric	8.7e-10	9.9				
		Silica	dielectric	0	2.03				
		Silicon	dielectric	0	12.11				
Undo Add Multiple Remove Add		Vacuum	dielectric	0	1				
Property Value		absorbium	particle absorber						
- kind conductor		bottle glass	dielectric	0.00135184	3.7				
color									
heat capacity 100000		resistive damper	dielectric	0.1	1				
thermal conductivity 0 resistance 0		-				1			
		•							•

- See pre-defined materials: switch from *3D View* to *Database*.
- See a wider selection of materials: load the *emthermal.vmat* file by right-clicking on the **Materials** element and selecting *Import Materials*.
- You can also import your own customized material.

(Tech-X

Geometries

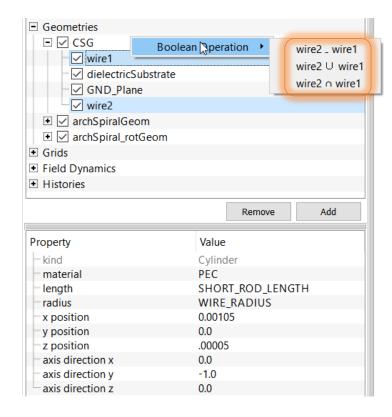
- Import Files:
 - .stl, .ply, .vtk, .stp, .step, or .p12
- Build complex devices with Constructive Solid Geometries (CSG):
 - sphere, box, cylinder, cone, torus, pipe, wedge, truncated cone

Geometries

• CSG Primitives can be combined:

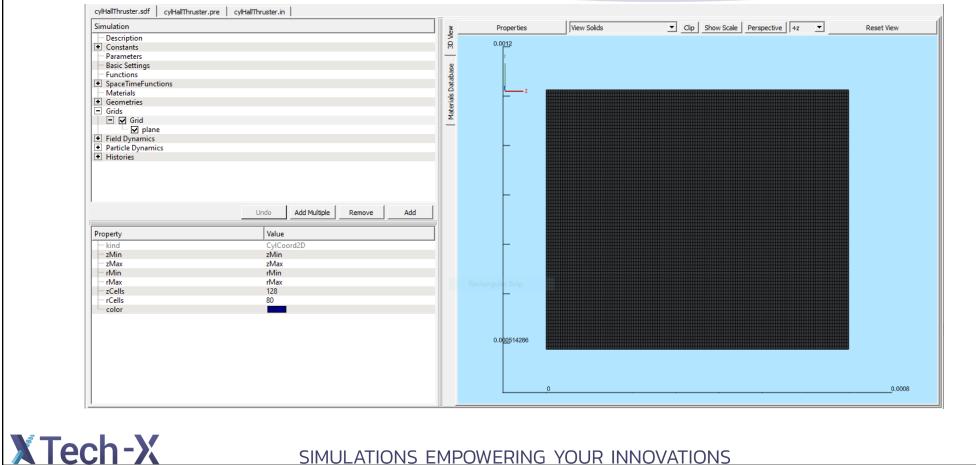
1. Subtract

• This will subtract the second selected primitive from the first selected primitive.


2. Union

• This will combine the two primitives into a single object. For use if the combined object is set to be a particle sink.

3. Intersect


Tech-X

- This will leave only the volume of the two primitives that intersect as an object.
- Boolean operations may be nested.
- For use in the simulation, a Geometries part MUST have a material assigned to it, other wise it is ignored (treated as vacuum).

Grid

Determines the simulation size and relationship of physical coordinate to cell indices

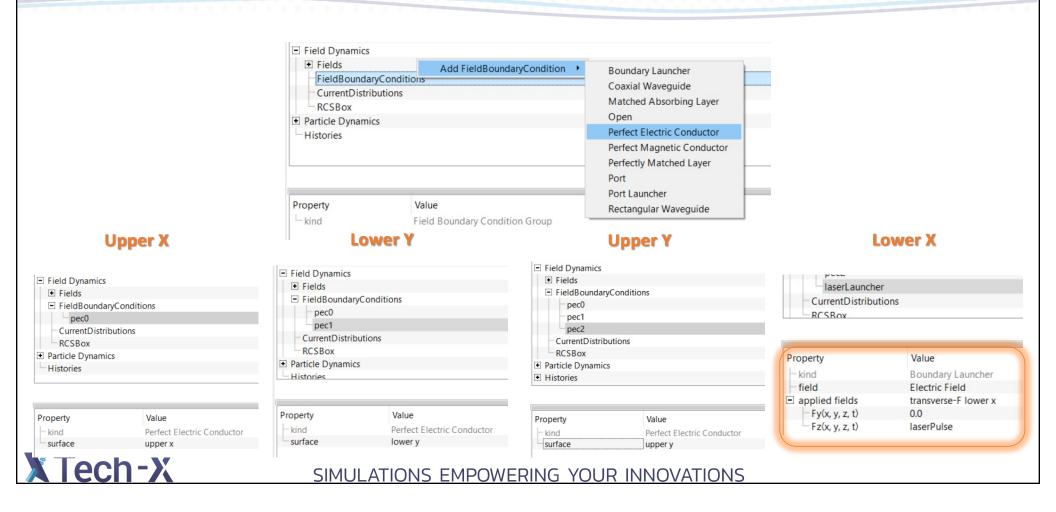
Field Dynamics

1. Fields

- Initial conditions can be set.
- External fields can be added.

2. Field Boundary Conditions

• The field solver determines which Boundary Condition are available to add to your simulation.


3. Current Distributions

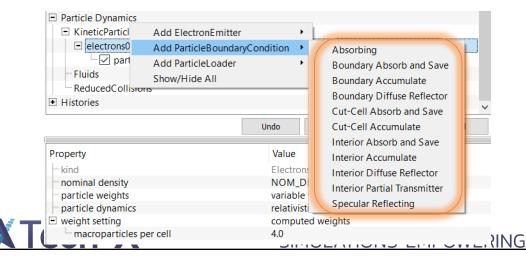
- Dipole
- Distributed

Simulation Geometries	
Grids	
Field Dynamics	
Fields	
Charge Density	
- Electric Field	
— Phi	
Applied Magnetic Field	
 FieldBoundaryConditions 	
- bottomWall	
- topWall	
- rightWall	
- leftBottomWall	
- leftWall	
leftTopWall	
PoissonSolver Particle Dynamics	
 Particle Dynamics 	
Listarian	
Histories	▼
Histories	
Histories	Undo Add Multiple Remove Add
Histories	Undo Add Multiple Remove Add
Property kind	Value
Property	Value External Field magnetic function defined
Property kind field type	Value External Field magnetic
Property kind field type field specification description component 0	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0
Property kind field type field specification description component 0 component 1	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification description component 0 component 1	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0
Property kind field type field specification component 0 component 1 component 2	Value External Field magnetic function defined Functionally defined field seperate from the norm 0.0 By 0.0

X Tech-X

Field Boundary Conditions

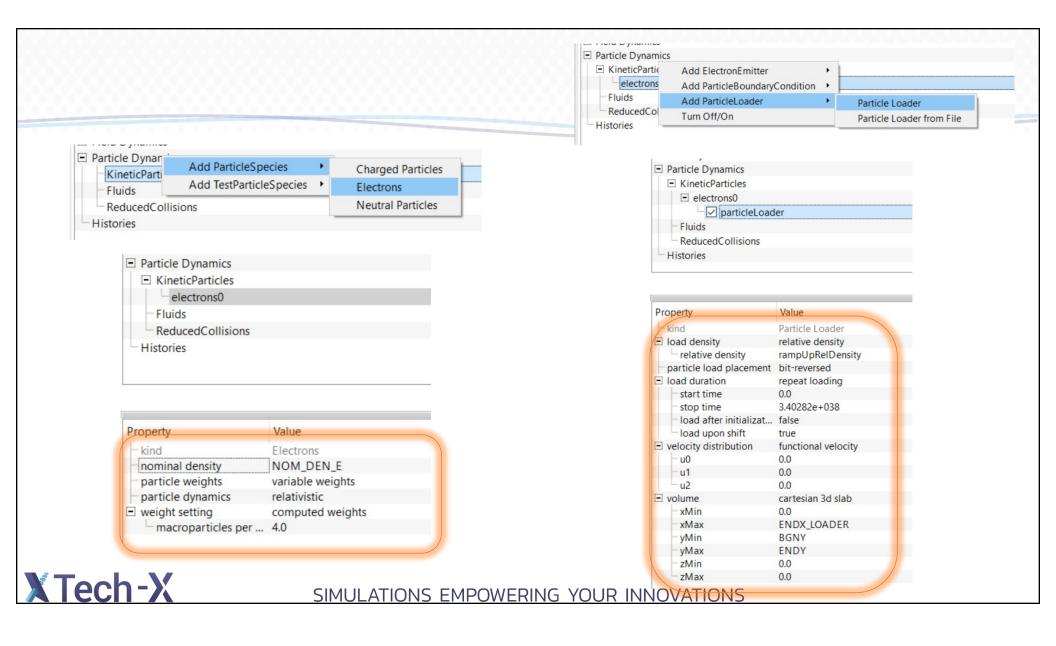
Particles


1. Types

- Regular: electrons, ions (or other charged particles), and neutral particles.
- Test: field-scaled electrons

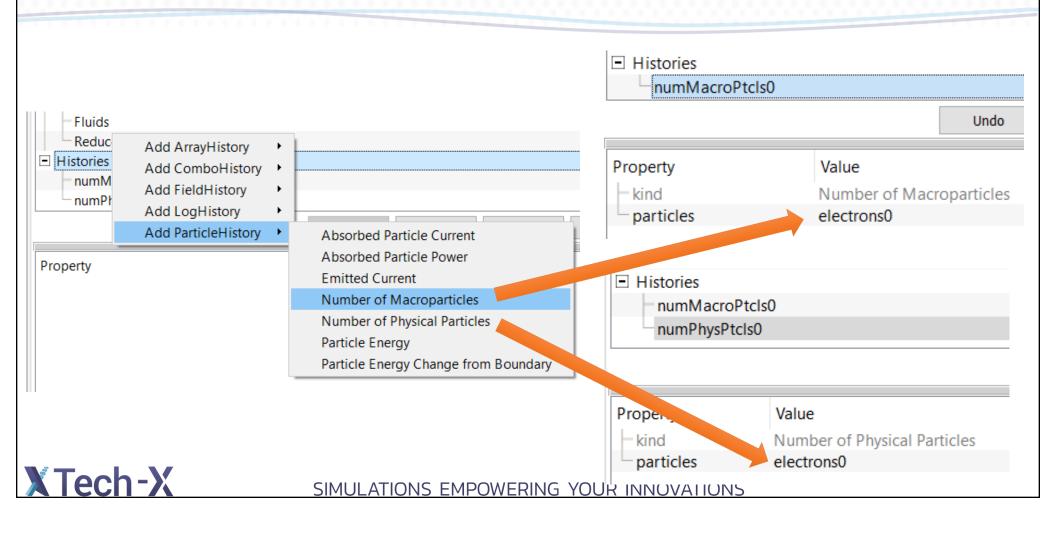
2. Loaders & Emitters

- Load within a volume
- Emit from a surface of boundary
- Emission: primary or secondary

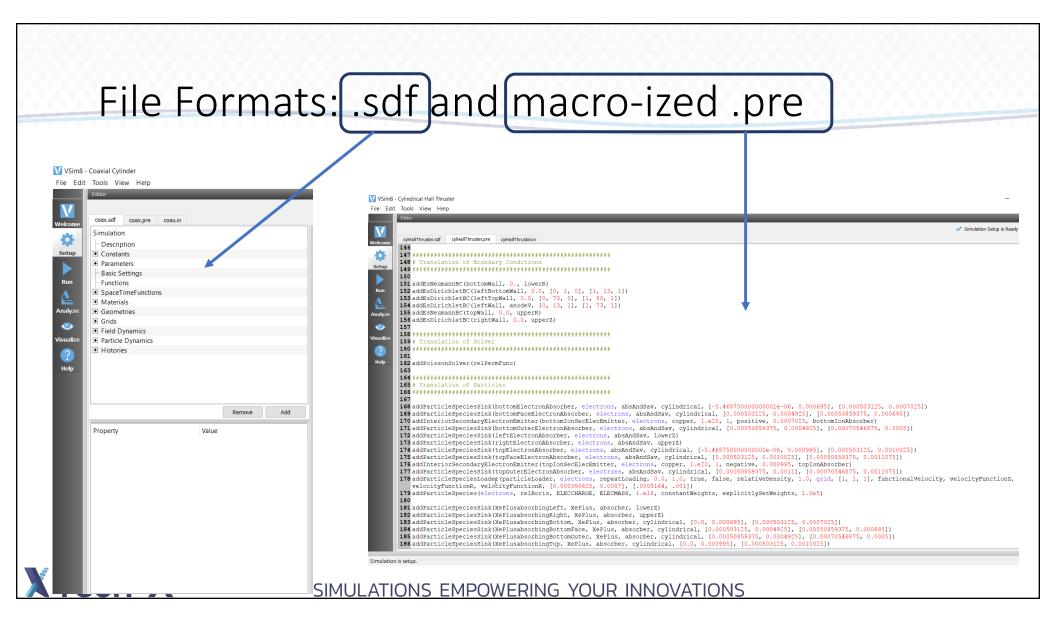

3. Boundary Conditions

materiais					
 Geometries 					
Meshes					
 Grids 					
Field Dynamics					
Particle Dynamics KineticParticle electrons0 particrem	Add ParticleSpecie Add TestParticleSp Show/Hide All		Charged Part Electrons Neutral Partic		
- Fluids					
ReducedCollision	ç] [
		Undo	Add Multiple	Remove	Add
Property └─ kind		Value Kineti	c Particles Grou	qı	
 					_
Field Dynamics Particle Dynamics					
KineticParticles			(
electrons0	Add ElectronEmit			ondary Emitter	
particle	Add ParticleBoun	-	Shap	e Settable Flux	
- Fluids	Add ParticleLoad	er	Slab	Settable Flux	
ReducedCollisio	Show/Hide All				
Histories					
					~
		Undo	Add Multiple	Remove	Add
Property		Value			
kind		Electro	20		
nominal density		NOM_[
particle weights		=	e weights		
particle dynamics		relativis	2		
weight setting			ted weights		
macroparticles per	cell	4.0	2		

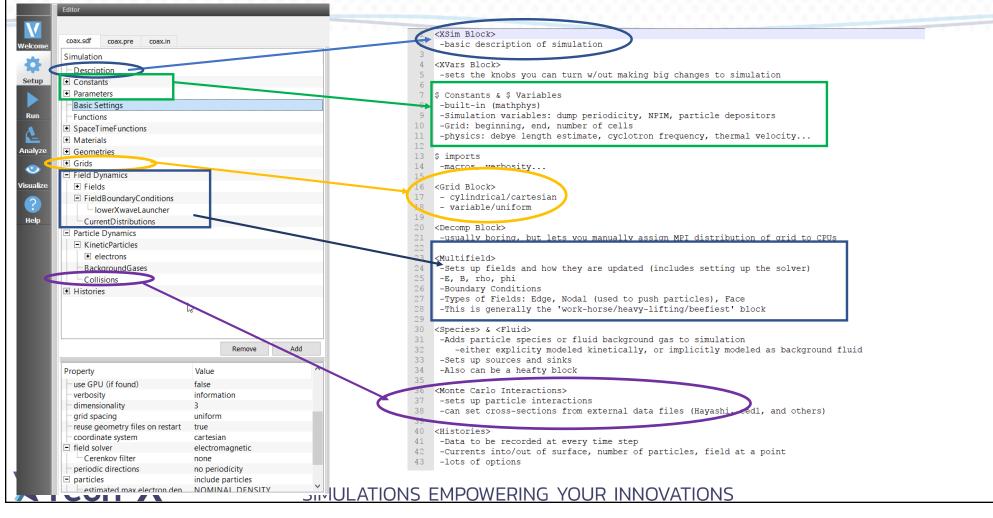
Particles

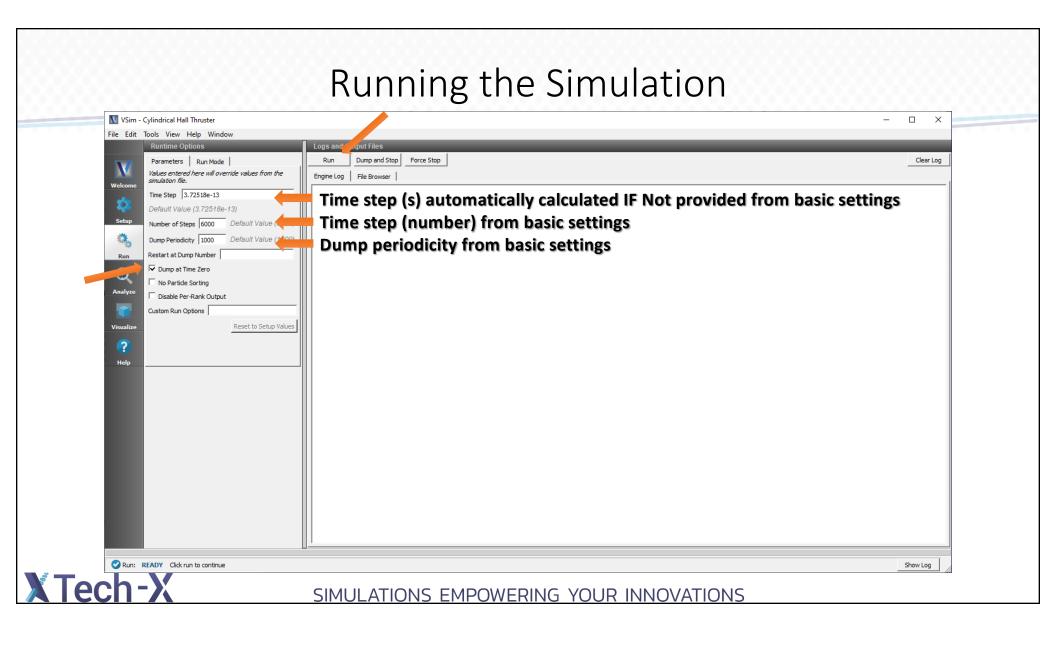

Particle Dynamics KineticParticles electrons0 settableFluxShapeElectronE granticleLoader	EmitterVW	 Particle Dynamics KineticParticles electrons0 settableFluxShapeElectronEmi particleLoader 	tterVW	
	Undo Add Multiple Remove		Undo Add Multiple	Remove
Property kind description load density particle load placement load duration start time start time load after initialization load after initialization load after initialization load after initialization uod u1 u2 velocity distribution with w	ValueParticle Loaderrelative density1.0bit-reversedrepeat loading0.03.40282e+038truetruefunctional velocity0.00.00.00.00.00.00.00.00.50.5-0.50.50.50.50.5	Property kind description start time stop time emission specification emission current density velocity coordinate system mean velocity 0 mean velocity 1 mean velocity 2 thermal velocity 1 emission surface emission surface emission offset object name macroparticle emission profile	Value Shape Settable Flux 0.0 1.0 emission current dens 1.0 global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 please select macroparticle rate 1.0 1.0	sity

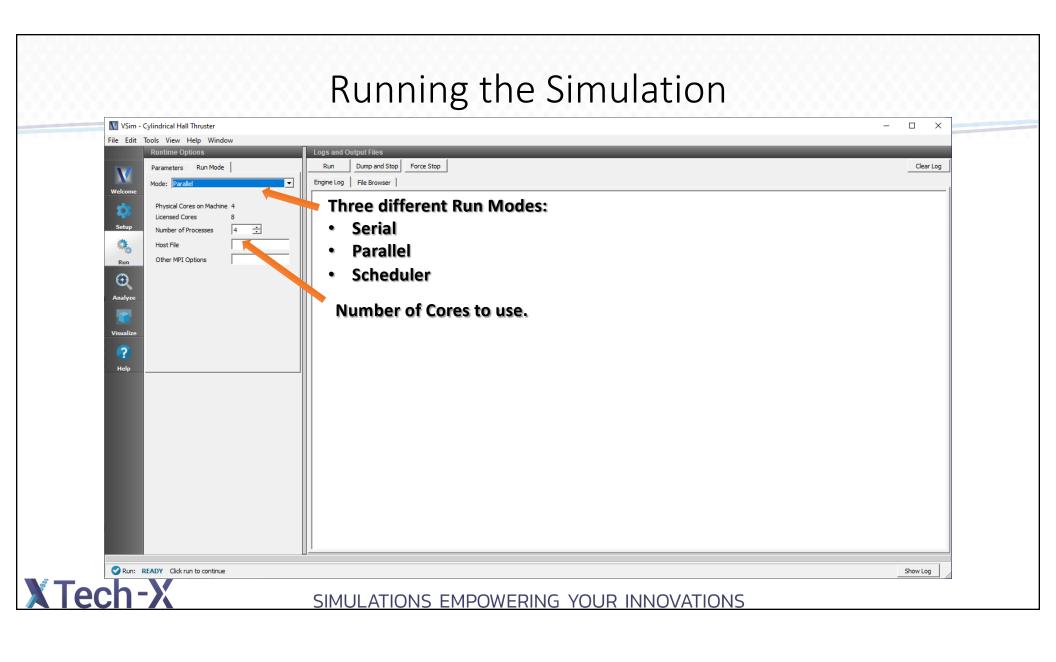
Histories



Histories



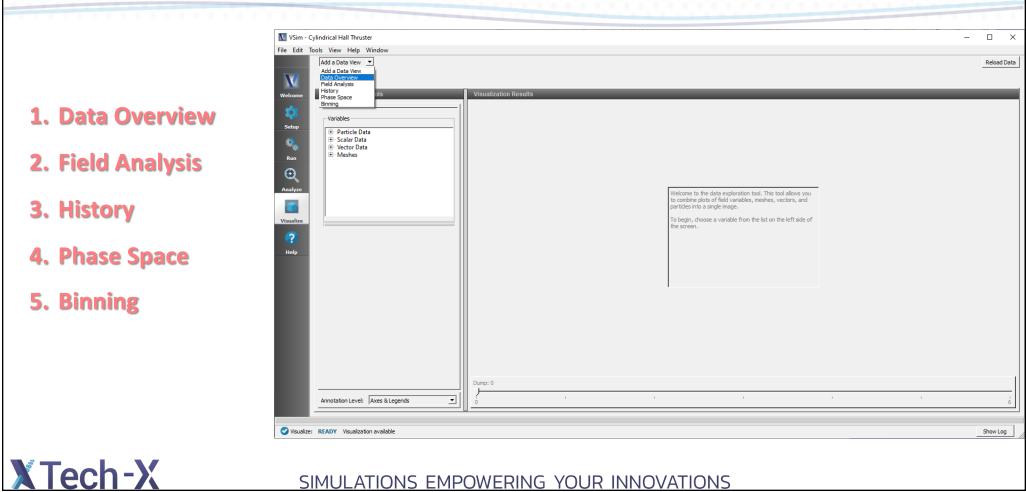




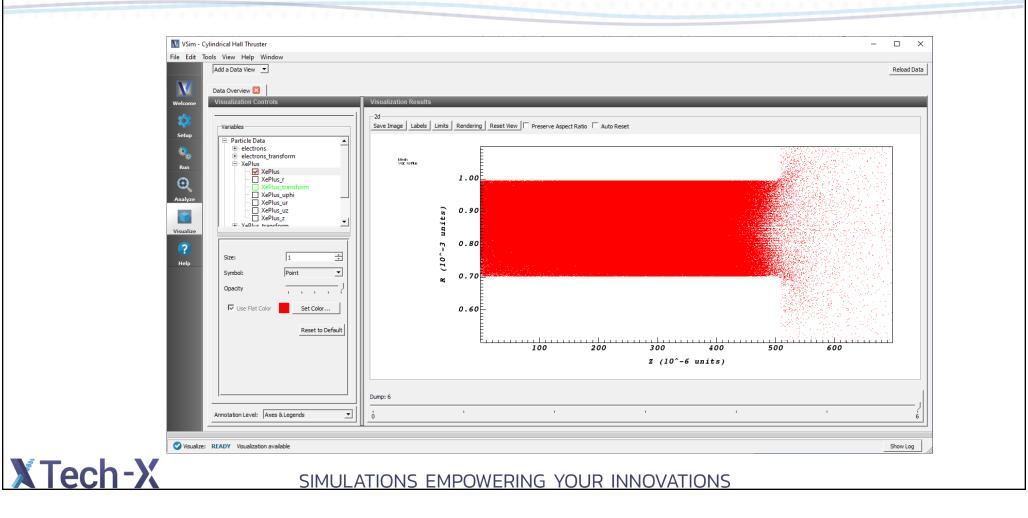
Text-Based and Visual Side-by-Side

Analyzing Results

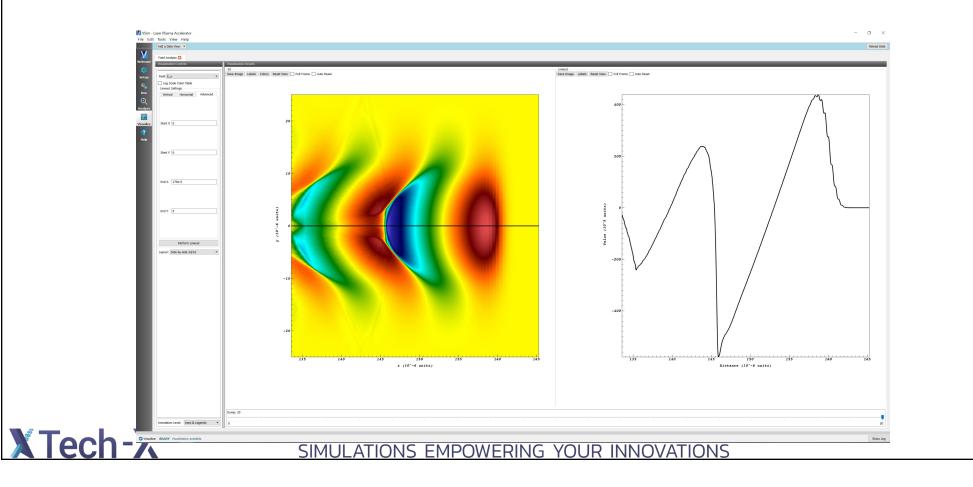
Click Analyze button at the top right


Analyzers, written in python may be used to calculate a variety of items. Custom scripts may be imported for easy use and access.

In this case, computePtclNumDens ty.py is being used to calculate the density o the electrons (or ions). To calculate the density of the electrons, set the speciesName to "electrons".


XTech-X

Analysis & Controls	Analysis & Results	
Search:	computePtdNumDensity.py	
		Analyze Stop Cit
	pen	
addSpeciesWithKinEnrgInEV.py annotateFieldOnLine.py	simulationName cylHallThruster	Loading Analyzer: C:\Program Files\Tech-X\VSim-11.0.1\Contents\engine\bin\computePtclNumDensity.p
Setup annotateSpeciesAbsPtclData2.py annotateSpeciesDataOnPlane.py	species electrons	Done.
compareFields.py compute2DantennaGainAndPhase.py		
computeAED.py	avgNxN	Command Line Usage: computePtclNumDensity.py [options]
computeBeam2ModeCoupling.py	iterateAvg	This analyzer generates particle number density fields based on particles data files.
computeCavityG.py computeCumulativeSumHistory.py computeDebyeLength.py		Options:
Analyze computeEmittanceFromDump.py	minDumpNum	help, -h Show this help message and exit. simulationName=SIMULATIONNAME, -s SIMULATIONNAME
computeEmittanceOnPlane.py computeFarFieldFromKirchhoffBox.py	maxDumpNum	Name of the simulation. species=SPECIES S SPECIES
Visualize computeFieldCrossProduct.py computeFieldMaxAmplitude.py	overwrite 🔽	The particle species to analyze.
computeFieldRelIntensityHilbert.py	overwrite i	avgNxN=AVGNXN, -N AVGNXN Spatial Average over NxN cells, weighted. Set to 1 for
computeInverseQ.py		no average. iterateAvg=ITERATEAVG, -i ITERATEAVG
Help computeMassFlux.py computePtclBalance.py		Number of iterations for spatial average. Ignored if avgNxN = 1.
computePtclImpactSpectrum.py computePtclLimits.py		minDumpNum=MINDUMPNUM, -m MINDUMPNUM Minimum dump number to process.
computePtclNumDensity.py		maxDumpNum=MAXDUMPNUM, -M MAXDUMPNUM Maximum dump number to process.
computeS11Parameters.py computeSParamsFromHists.py		overwrite, -w Whether a dataset or group should be overwritten if it
computeSParamsViaOverlapIntegral.py computeSpectrogram.py		already exists.
computeThrust.py computeTimeSeriesAmplitude.py		This analyzer outputs particle number density data as fields. These density
computeTimeSeriesFrequency.py computeTransitTimeFactor.py		domain.
computeWaveguideModes.py	The following variables can be used in the above analyz	zer options:
convertFieldComponentCartToCylX.py convertFieldComponentCartToCylZ.py		
convertPtclComponentsCartToCylX.py convertPtclComponentsCartToCylZ.py		
convertSlabToPointHistories.py	•	
Import Custom A		


Visualizing Results

Data Overview

Field Analysis

