VSim Reference Manual
Release 11.0.1-r3016

Tech-X Corporation

Jun 29, 2021

CONTENTS

1 Overview 1
1.1 The Structure of the Reference Manual 1
2 Visual Setup 3
2.1 DesCription v v v v e 3
2.2 CONSLANLS . . . v v v o e 3
2.3 Parameters e e e e e e e e e e e e e e e e 4
24 Basic SEttings e e e e e e e 5
2.5 FUnCtionsS o i e e e e e e e e e e e e e e e e 9
2.6 SpaceTimeFunctions e e e e e e 10
2.7 Materials L. e e e e e e e e e e 12
2.8 GEOMELTICS . . « v v v v e 14
2.9 Grids e e e e e e e e e 20
2.10 Field Dynamics. o v v i e e e e e e e e e e e e e e e e e e 20
2.11 Particle Dynamics o L e e e e e e e e e e 41
212 ColliSIONS . .« v v v o e e e e e e e e e e e e e e e e e e e 63
213 HIiStOTIES . . . v o v o e e e e e e e e e e e e e e e e e e 71
3 Text Setup 79
3.1 Global Variables e e e e e e 79
32 Grid . . . e e e e e e 82
3.3 DecompoSition e e e e e e e e e e e 87
34 GridBoundary e e e e e e e e e e e 89
3.5 EMField e e e e e e 97
3.6 ComboEmField Block e e e 102
3.7 Multifield e e e e e e e 103
3.8 ScalarDepositor and VectorDepositor L 208
3.9 SumRhoJ e e e e e e e 211
310 Fluid . . . o e e e e e e e e e 211
30T SPECIES . . v v o e e e e e e e e e e e e e e 213
3012 Reactions v v v e e e e e e e e e e e e e e e e 298
3.13 ImpactCollider / ImpactCollision L 328
3.14 Monte Carlo Interactions (DEPRECATED) 336
305 HIStOTY . . v o o e e e e e e e e e e e 389
3.16 Feedback o L e e e e e e 433
3.17 External Circuit Model e e e 433
3,18 Functions o e e e e e e e e e e e 439
3.19 SlabBlock e e e e e e e 490
320 MACTOS .+ . v v o e 491
3.21 Postprocessing ToOIS o o o o i e e e e e e e e e e e 531

4 Engine (Vorpal) Execution

4.1 Vorpal Command Line Options o o v v v vt e e e e e e e e e e e
4.2 Customizing Environment Variables o o

5 Analyzers
5.1 Guide to Analyzers .
5.2 Available Analyzers

6 Trademarks and licensing

Index

535
535
537

539
539
539

601

603

CHAPTER
ONE

OVERVIEW

The VSim Reference manual describes in detail all Visual Setup parameters, all Vorpal input file blocks, and all macros
that can be used.

VSim [?] is an arbitrary dimensional, electromagnetics and plasma simulation code consisting of two major compo-
nents:

» VSimComposer, the graphical user interface.
* Vorpal [?], the VSim Computational Engine.

VSim also includes many more items such as Python, MPI, data analyzers, and a set of input simplifying macros.

1.1 The Structure of the Reference Manual

The Reference Manual has three main sections, which are Visual Setup, Text Setup, and Analyzers.

The Visual Setup section will outline all available parameters in the VSim composer, with the commands themselves
organized by input property. The Text Setup section follows, and is where Vorpal blocks and macros are found, as
well as postprocessing tools.

The general format of each block’s description is:
* Block name
e Summary of the block’s purpose
* List of the block’s parameters
» Example of the block as used in a Vorpal input file

We note whenever a block can or should contain another block. For the purpose of this document, a kind or a function
can be considered a parameter of a block if the kind or function can be used to complete the description of the block
or modify block characteristics.

Wherever possible, we describe all of the parameters in the same section as the block. While this requires that we
repeat some information for different blocks that use the same parameters, you do not need to go elsewhere to find
the rest of the block’s description. In some cases, where a block’s parameters are themselves blocks, we list the
parameters’ names, however we completely describe the sub-block or block that is nested in its own section.

Still within the Text Setup section, the macros will follow all the Vorpal block descriptions, and will be organized by
VSim version. Postprocessing tools can also be found in Text Setup.

The final major section of VSim Reference is Analyzers, which includes details about all of the VSim (post engine run)
analyzer scripts. Each analyzer script section will generally outline the following:

* Analysis script name

VSim Reference Manual, Release 11.0.1-r3016

* Summary of usage with script options
e Qutput
Some analyzer script sections also include sections like examples, usage and testing, and other useful information.

VSim Reference is a quick-reference manual for VSim users to look up specific features and syntax for the compu-
tational engine, Vorpal. To learn about the complete VSim simulation process, including real-word physics models,
please refer to VSim Examples and VSim User Guide. To learn about executing Vorpal from the command line, please
refer to the VSim User Guide.

2 Chapter 1. Overview

CHAPTER
TWO

VISUAL SETUP

2.1 Description

The Description element holds basic user-supplied text information about the simulation. Most of the parameters are
most useful to advanced users who are creating and placing input files in the Examples directory of VSimComposer.
The examples directory can be found in [VorpallnstallDirectory]\Contents\Examples.

description: This is the description given in the window on the right side in the examples window
upon selecting an example.

image: The image parameter should give the name of a picture, located in the same directory as the input
file, that will be given on the right-hand side of the Edifor pane in the Setup tab for text-based setup.
Frequently, this image is used to illustrate key parameters such as dimensions of a physical structure. 400
x 500 pixels is a good image size.

long description: This text block will be visible above the image in text-based setup. It’s generally
used to give a description of what the simulation does, and what will happen when key parameters are
modified.

short description: This string is the title of the example in the New — From Example selection.
This also sets the title that appears at the top of the VSimComposer window when the simulation is open.

thumbnail: This is the small image that is visible when you select an example file, located in the same
directory as the input file. 250 x 250 pixels is a good image size.

version: (not editable) The version of VSim used to create this example.

2.2 Constants

The Constants element contains a set of pre-defined physical constants that can be used in other elements of the
simulation. Constants are just a number. You may add new constants by clicking the Add button under the Elements
Tree while the Constants element (in the Elements Tree) is highlighted. For information on the Elements Tree, see the
images in the VSim User Guide: Setup Window for Visual-setup Simulations page.

kind (not editable) The kind of constant; either a built-in kind or a User Defined kind.
description (only for User Defined constants) A descriptive name of the constant.

value The value of the constant. This is the user-supplied value of the constant if kind = User
Defined. Otherwise it is a non-editable value supplied by VSim.

VSim Reference Manual, Release 11.0.1-r3016

2.2.1 Built-In Constants:

e PI: The ratio of the circumference of a circle to its diameter.
— 3.141592653589793
e PIO2: 7 divided by two.
- 1.5707963267948966
* TWOPI: m multiplied by two.
— 6.283185307179586
* LIGHTSPEED: The speed of light in vacuum (in meters/second).
- 299792458.0
e MUO: The permeability of free space (in newtons/amp”?2 or (tesla meters)/amp) .
- 1.2566370614359173e-06
e ELEMCHARGE: The fundamental unit of charge (in coulombs).
- 1.602176487e-19
¢ ELECMASS: The mass of an electron (in kilograms).
- 9.10938215¢-31
* PROTMASS: The mass of a proton (in kilograms).
- 1.672621637e-27
* MUONMASS: The mass of a muon (in kilograms).
— 1.8835313e-28
* KB: Boltzmann’s constant in (joules/kelvin)
— 1.3806504e-23
e EPSILONO: The permittivity of free space (in farads/meters or (amps”2 seconds”™4)/(meters”3 kilograms)).
— 8.854187817620389%¢-12
* C2: The speed of light squared (in meters*2/seconds”2).
— 8.987551787368176e+16
e ELECCHARGE: The charge of an electron (in coulombs).
- (-1.602176487e-19)
¢ ELECMASSEV: The mass of an electron (in eV/c"2).
— 510998.90984764055

2.3 Parameters

The Parameters element is a location for evaluated, user defined variables that can be used in other elements of the
simulation. A parameter is a mathematical combination of constants and other parameters. You may add a new
parameter using the Add button under the Elements Tree.

4 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable): The kind of constant; a User Defined kind.
description: A descriptive name of the parameter.

expression: This is the user-supplied expression that will be calculated to determine the value of the
parameter. It can include any pre-defined Constants as well as real numbers and some functions. Use a
“A” to raise numbers to a power. Available functions include:

¢ abs (x): takes the absolute value of “x”

[T 1]

e rint (x): rounds “x” to an integer.

* sqrt (x): take the square root of “x”

“ Lt}

e sin(x): take the sine of “x”, where is in radians.

“ i)

e cos (x): take the cosine of “x”’, where is in radians.

“ i)

* tan (x): take the tangent of “x”, where 18 in radians.

[T 1]

e asin (x): take the arcsine of “x”, where “x” is in radians.

“ Lt}

¢ acos (x): take the arccosine of “x”, where is in radians.

“ ER)

* atan (x): take the arctangent of “x”, where is in radians.

(T3]

* sinh (x): take the hyperbolic sine of “x”, where “x” is in radians.

“ LE)

* cosh (x): take the hyperbolic cosine of “x”, where is in radians.

“ EL)

* tanh (x): take the hyperbolic tangent of “x”, where is in radians.
* log(x): take the natural log of “x”
* 1ogl0 (x): take the base 10 log of “x”

* exp (x): raise Euler’s constant to the power

value: The VSim calculated value of the expression.

2.4 Basic Settings

The Basic Settings element contains a group of property/value pairs that define the basic setup of the simulation.

surface meshing tolerance: Determines the relative size at which small cells from a meshed
geometry surface are dropped. Set to 1.0 for simulations that do not contain any geometries.

cfl number: If time step is set to zero, the time step is automatically calculated, and for EM simula-
tions, is reduced proportionately with the cfl number. The cfl number is the ratio of time step to Courant
limit.
time step: If set to a value that is non-zero, this will be used as the simulation time step. If set to zero,
the time step is calculated for you based on a number of factors.

e If it is an ES simulation without particles, the time step is set to 1.0.

e If it is an ES simulation with particles, the time step is set to the minimum of

(2/electronplasmafrequency or 1/(DLI x electronthermalvelocity) where DLI =
\/ 1/DX? +1/DY? +1/DZ? in 3 dimensions.

e If it is an EM simulation, time step is equal to the minimum of ES calculated time step or
1/LIGHTSPEED % DLI and multiplied by the c¢fl number and surface meshing tolerance.

2.4. Basic Settings

VSim Reference Manual, Release 11.0.1-r3016

number of steps: The number of time steps to run the simulation.

steps between dumps: The number of time steps between sequential dumps of data to hdf5 format
files.

dump in groups of: If set to 1, no change. If 3, data is dumped at the period specified in steps
between dumps, with an extra two dumps after each of the following 2 timesteps. For example, if steps
between dumps = 20, data is written to hdf5 format files at timesteps 20,21,22,40,41,42 etc. When using
this option Dump Periodicity must not be set as a Runtime Option in the Run pane.

precision: The precision of the real numbers in the simulation. For greater precision, use double.
¢ double
e float
length unit: The unit of length used for setting parameters.
* meter
use GPU (if found): If a GPU is found, do calculations based on faster GPU updaters.
¢ false

verbosity: The level of informative text to be output during the simulation run. The levels are listed
below in an increasing order. So, the information level will be the least verbose, and debug level
3 is the most verbose.

* information

* emergency

¢ alert

¢ critical

* error

* warning

* notice

* debug level 1

* debug level 2

¢ debug level 3
dimensionality: Setto 3, 2, or 1 to indicate how many dimensions in which to run the simulation.

*3

e 2

e 1

Note: For cylindrical coordinates, only two-dimensional electrostatic simulations are currently available
in visual setup. In a 2 or 1 dimensional simulation, boundary conditions and volumes can be set in higher
dimensions, but will be ignored.

grid spacing: The spacing of the grid cells.

e uniform

6 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

restore geometries: This parameter is typically set to true. Due to a bug in memory management
on Windows 10 systems, it should be set to false if working with complex geometries.

MPI decomposition: Typically set to default, but can be specified to decompose along a single axis.
Useful for simulations with significantly more cells in one direction than others.

* axis 0
e axis 1
* axis 2
coordinate system: The type of coordinate system to work in.
¢ cartesian

* cylindrical

Note: For cylindrical coordinates, only two-dimensional electrostatic simulations are currently available
in visual setup. If the simulation domain begins at r=0, then a flag called includeCylAxis (see Section
Grid) is set to true. In the electrostatic field solve, the r = 0 boundary is a computational boundary (as
opposed to a physical boundary). Nevertheless a boundary conditions must be set. Therefore, the default
boundary condition is Neumann with the electric field set to O if the simulation begins at r=0. This
boundary condition cannot be overwritten by a user. If the user specifies RMIN to begin at r > 0, then
the user will need to specify a field boundary condition at the RMIN axis. The default particle boundary
condition at r=0 is such that the particles undergo specular reflection.”

field solver: The field solver determines which equations will be used to calculate the fields.
¢ electrostatic

number of guard cells: For information about guard cells, see VSim User Guide:
Simulation Concepts. In VSim, the guard cell may be visualized, but it should be noted
that particles are removed from the simulation after they enter the guard cells.

* electromagnetic

background permittivity: The background permittivity of the simulation, typi-
cally 1.0

dielectric solver: The type of solver to use for any dielectrics in the simulation.

— point permittivity: Standard, sets permittivity of computational cells based
on a stair step method.

— permittivity averaging: Will calculate the average permittivity in a cell that
has two dielectric objects.

Cerenkov Filter: Electromagnetic problems allow for the selection of a numerical
Cerenkov noise filter. These filters come in 4 varieties, or no filter.

— none: No Filter

weak: Filters with a formula of (1 —) x (1 + x). Should be used in problems with
cavities or resonant structures.

medium: Filters with a formula of (1 — z) * (1 + 2z)(1 — z). Should be used in
problems with cavities or resonant structures.

strong: Filters with a formula of (1 — x). Should be used in problems with high
numbers of relativistic particles.

2.4. Basic Settings 7

VSim Reference Manual, Release 11.0.1-r3016

- extreme: Filters with a formula of (1 — z) * (1 —). Should be used in problems
with high numbers of relativistic particles.

Strong filters will execute the fastest, while medium will execute the slowest. These are all
Godfrey Filters, which use additional curl-curl operations on the electric field to update
the field at the next time step, removing short wavelengths. Friedman Filters are an-
other type of filter that remove high frequency noise rather than short wavelengths. Please
contact Tech-X if you wish to implement this class of filter.

* prescribed fields: The prescribed fields solver is used with a defined electric and magnetic
field that is allowed to have some time dependence. It is most commonly used for multipacting
simulations where it can provide very high resolution of the electric field near PEC objects.

— number of guard cells: Forinformation about guard cells, see VSim User Guide: Sim-
ulation Concepts.

* no field solver: For pure particle movement simulations with no fields.

periodic directions: The directions of the simulation which should be modeled as periodic, if
any. Phase shifting boundaries are used for structures which do not have a full period in the simulation

space. Phase shifting boundaries cannot be used in particle simulations.

L]

no periodicity
periodic x

periodic y
periodic z

periodic x and

periodic x and

periodic y and

periodic x, vy,
phase shifting
phase shift
phase shifting
phase shift
phase shifting
phase shift
phase shifting
phase shift
phase shift
phase shifting
phase shift
phase shift
phase shifting
phase shift

phase shift

y

z
z

and z

periodic x

x: Fields will be phase shifted in the x direction by this many radians.
periodic y

y: Fields will be phase shifted in the y direction by this many radians.
periodic z

z: Fields will be phase shifted in the z direction by this many radians.
periodic x and y

x: Fields will be phase shifted in the x direction by this many radians.
y: Fields will be phase shifted in the y direction by this many radians.
periodic x and z

x: Fields will be phase shifted in the x direction by this many radians.
z: Fields will be phase shifted in the z direction by this many radians.
periodic y and z

y: Fields will be phase shifted in the y direction by this many radians.

z: Fields will be phase shifted in the z direction by this many radians.

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

* phase shifting periodic x, y, and z
phase shift x: Fields will be phase shifted in the x direction by this many radians.
phase shift y: Fields will be phase shifted in the y direction by this many radians.
phase shift z: Fields will be phase shifted in the z direction by this many radians.
particles: Whether or not to include particles in the simulation.
* no particles

* include particles: If particles are included in the simulation, the following two properties
are used to help calculate the time step.

estimated max electron density: an estimate of the maximum electron den-
sity for setting a default timestep

estimated max electron temperature (eV): an estimate of the maximum
electron temperature for setting a default timestep

dump nodal fields: If True, the fields used to calculate particle pushes will be writ-
ten to memory. If false, they will not. This can save hard disk space in large simulations.

collisions framework: Collisions framework to be used in the simulations.
* no collisions
* reduced: Reduced collisions framework. Also called the “Impact Collider” framework.
* monte carlo: Legacy Monte-Carlo interactions from previous VSim versions.
* reactions: Full featured particle and fluid interactions most commonly used.

collision order: Either random, constant, or rotate. A random order will perform
each collision in a random order, constant in the order specified, and rotate will move down
the list of collisions, performing a new one first, each time. As each particle can only be
involved in one collision per timestep this can effect simulation results.

moving window: Whether or not to use a moving window, which allows the simulation window to
move at the speed of light in the chosen direction. Useful for simulations such as laser pulse or particle
beam moving at a velocity close to the speed of light. Can only set a moving window in an electromagnetic
simulation without phase shifting boundary conditions.

* no moving window
* with moving window

shift position fraction: This determines the time at which the window will
begin to move. The window will begin to move at a time equal to the shift position fraction
times the size of the simulation grid divided by the speed of light.

shift speed fraction: This is the relativistic 5 factor which determines the speed
v at which the window will move, where v = Sec.

2.5 Functions

The Functions element is a location for writing user defined functions that can be used in simplifying the definition of
a SpaceTimeFunction. When used in writing a SpaceTimeFunction, the arguments of the function can be set to user
defined constants and parameters. See the A6 Magnetron Modes Example for an example of the use of a Function.
You have options to create your own User Defined function or use the built-in furn on function. The furn on function
has the mathematical formula H (t) * 0.5 % (1 — cos(nt/T')) « H(T — t) where H(t) is the Heaviside Step Function.

2.5. Functions 9

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable): The kind of constant; a User Defined kind.
description: A string describing the function.

arguments: The arguments that are used in the expression. The function can contain any number of
arbitrary arguments and is not limited to the default values of x,y.

expression: This is the user-supplied expression that is a function of the arguments given in the
argument property. It can include any pre-defined Constants, Parameters, or Functions, as well as real
numbers and Python operators.

2.6 SpaceTimeFunctions

The SpaceTimeFunctions element is a location for writing user defined functions that specifically depend on the spatial
and temporal variables X, y, z, and t. A space time function can use Parameters and Constants by just typing them
directly in as a value of the property. However if you are to change the name of the Parameter / Constant used it will
not automatically update in the SpaceTimeFunction.

e User Defined. This option is deprecated. Use expression instead.

* expression This is the user-supplied expression that is a function of x, y, z, or t. It can include any pre-
defined Constants, Parameters, or Functions, as well as real numbers.

For a list of supported functions that be included in the user-written expression for the function, see ex-
pression (STFunc).

* monochromatic excitation This function is for using a variety of potential ramps to excite a source to
a set frequency and amplitude.

frequency Frequency of the source.
time begin Time to start the excitation.
time end Time to end the excitation.
amplitude Amplitude to excite the function to.
turn on function Function to use to ramp up the source.
— instantaneous Typically not reccommended, immediately excites at specified amplitude

— frequency based Will ramp up in the specified number of periods based on given frequency. 5
periods is typical

— standard Same ramping formula as frequency based, but with a directly specified amount of time.

— smoother step Will ramp using the smoother step formula, H(riseTime-t)*((riseRate*t) * (riseR-
ate*t) * (riseRate*t) * ((riseRate*t) * ((riseRate*t) * 6 - 15) + 10)) + H(t-riseTime)

— up and down Will ramp the signal both up and down

— frequency based up and down Will ramp both up and down in the specified number of periods
based on the given frequency.

* sinc hat function This function generates a relatively flat fourier spectrum over the given frequency
range, sometimes referred to as a top hat function. f; < f < f, of frequencies and falls off rapidly over
a frequency width of dy, so that it is nearly zero for f < f; —d or f > f, + 6.

frequency low Low end frequency of the fourier spectrum.
frequency high High end frequency of the fourier spectrum.

amplitude Amplitude of the function is typically 1.

10 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

suppresion factor Suppresion factor used in calculating the number of sigmas of the function.
Smaller Values lead to longer excitation times.

frequency gap factor Usedin calculating the Sigma_T of the excitation, which is the range of fre-
quencies the function takes to ramp from 0 specfied to the amplitude. The full function that describes
this sinc hat is

frequencyGap = (frequency high - frequency low)*frequency gap factor
numSigma = sqrt(-2.0*log(suppression factor))

sigmaT = (TWOPI*frequencyGap)/numSigma

timeExcite = 2*numSigma*sigmaT

. o _ . 204 . ., \2 sin(2w frequencyHigh(t—0.5timeExcite))—sin(2w frequencyLow(t—0.5time Exa
H (timeFExcite—t) exp(—0.5xsigmaT*(t—0.5time Fxcite)?) x O Froqueney Figh—an Fresuency Low) ({0 5timeEncits)

* python This space time function will allow access to a function defined in a Python file to be used in place of
a user-defined function.

name This is the name of the Python function to be accessed. The Python file must be in the same
directory as the runspace.

* feedback This space time function is used to take the value from a history and use that value in the next
timestep, allowing feedback.

expression The initial value to be used in the feedback loop. This expression will be multiplied from
the value of the history in the previous output.

history The name of the history from which to take values; pseudo-potential and absorbed particle
current histories are supported.

history goal The value of the history that should be obtained.

time constant Defines how quickly the feedback responds to a difference in the measured and de-
sired value. If too small, the measured value will oscillate near the desired value, if too large it will
take a long time to reach the desired value.

* chirpWavePulse Produces a plane wave modulated by a pulse envelope. For more information, see chirp-
WavePulse.

* cosineFlattop Flat top function. See cosineFlattop.
* cosineRamp Function for an initial ramp. See cosineRamp.
* gaussian Produces a Gaussian function. See gaussian.

* gaussianPulse Creates a sinusoidal pulse in the form of a Gaussian beam, modulated by a Gaussian enve-
lope longitudinally. See gaussianPulse.

* halfSinePulse Function for a sinusoidal pulse in the form of a Gaussian beam, modulated by a longitudinal
half-sine function. See halfSinePulse.

* leakychannel Function that is parabolic in radius, then drops linearly to zero. See leakychannel.

* planeWavePulse Creates a plane wave that’s modulated by a Gaussian transversely and by a half-sine
function longitudinally. See planeWavePulse.

* radialCosChannel Function for an initial ramp into a region of a channel. See radialCosChannel.
* sinePlaneWave Generates a plane wave pulse that is based on a sine wave. See sinePlaneWave.

e sum function This is the sum of two previously defined space time functions. The functions used must be
defined before their use in the sum function. Sum functions may be nested. For example, you could have
a second sum function that accepts a previously defined sum function in order to sum three or more space
time functions.

2.6. SpaceTimeFunctions 11

VSim Reference Manual, Release 11.0.1-r3016

sumFunctionl The first function to be summed.
sumFunction2 The second function to be summed.

e product function This is the product of two previously defined space time functions. The functions used
must be defined before their use in the product function. Product functions may be nested, for example, a
second product function can be used to accept a previously defined product function in order to multiply
three or more space time functions together.

prodFunctionl The first function to be summed.

prodFunction2 The second function to be summed.

2.7 Materials

The Materials element stores information about any materials used in the simulation. To use one of VSim’s pre-
defined materials, highlight the Materials element and then switch from 3D View to Database in the Geometry View
(see VSim User Guide: Setup Window for Visual-setup Simulations for a picture of the Geometry View). To add one
of the pre-defined materials from the table, highlight the material then press Add To Simulation button in upper right
hand corner of the VSim Composer window. The material will now be listed under the Materials element. To access
a wider selection of materials you may load the emthermal.vmat file by right-clicking on the Materials element and
selecting Import Materials. You may also import your own customized material (see Customizing Materials below).

The editable properties of the materials are:

kind (not editable) The kind of material (eg dielectric, conductor, particle absorber, permeable, etc), as
defined in the .vmat file.

heat capacity The heat capacity of the material.

thermal conductivity The thermal conductivity of the material.
resistance The resistance of the material.

conductivity The conductivity of the material.

relative permittivity The relative permittivity of the material. Note that when a material is as-
signed to a geometry, the relative permittivity is only used in the electromagnetic field solve. When
using the electrostatic field solve, a spatially dependent relative permittivity due to the addition
of different geometries in the simulation is done by defining a SpaceTimeFunctions and inserting
this SpaceTimeFunction in the relative permittivity feature under PoissonSolver in the FieldBound-
aryConditions tab. See PoissonSolver for more detail on how to include a dielectric in the simulation
using the electrostatic field solve. The difference between how dielectrics are handled using elec-
tromagnetic and electrostatic field solves is demonstrated in two different examples: “Dielectric in
Electromagnetics (dielectricInEM.sdf)” and “Dielectric in Electrostatics (dielectricInES.sdf)”.

2.7.1 Drude-Lorentz and Debye-Lorentz Materials

VSim includes the ability to model frequency dependent dielectrics, using either the Drude-Lorentz or Debye-Lorentz
models.

The Drude model focuses on the zero frequency limit of conductance, while the Debye Relaxation focuses on the zero
frequency limit of dielectric. The Drude model assumes unbound charge carriers which undergo collisions, resulting
in a frequency dependant conduction current. The Debye Relaxation Model assumes bound charge carriers whose
dielectric response relaxes at higher frequencies.

In general Drude models are more advantageous for conductivity dominated dielectrics while Debye models are for
permittivity dominated dielectrics.

12 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Each model makes use of Lorentz resonances to handle the middle frequencies of the dielectric. The Lorentz model
assumes bound charge carriers whose response is resonant at a material specified frequency and line width. Any
number of Lorentz resonances may be specified.

The total conduction current of the dielectric is given by the specified Infinity Limit Current + Drude/Debye Current
+ Sum of all Lorentz Currents.

These materials are most commonly used in plasmonics and photonics simulation problems.

Drude-Lorentz Material Parameters
collision function A function describing the collision frequency of the unbound charge carriers
used in the Drude model.
conductivity function A spatial function describing the conductivity of the material.

lorentz oscillator strength A vector describing the oscillation at each lorentz reso-
nance, the density of bound charge carriers seeing the lorentz resonance. Given in units of
1/(ohms*meters*seconds)

lorentz frequency A vector of frequencies of the Lorentz resonances, in Hz.

lorentz line width A vector of the line widths (bandwidths) of the Lorentz resonances, in 1/sec-
onds.

relative permittivity at infinite frequency The permittivity of the material at infi-
nite frequencies. Used to keep the simulation stable.

conductivity at infinite frequency The conductivity of the material at infinite frequen-
cies. Used to keep the simulation stable.

background conductivity The conductivity of the simulation space outside of this material.

Debye-Lorentz Material Parameters
relaxation function A function describing the time scale at which dielectric response relaxes
from the specified permittivity function to the specified relative permittivity at infinite frequency.
permittivity function A spatial function describing the relative permittivity of the material.

lorentz oscillator strength A vector describing the oscillation at each lorentz reso-
nance, the density of bound charge carriers seeing the lorentz resonance. Given in units of
1/(ohms*meters*seconds)

lorentz frequency A vector of frequencies of the Lorentz resonances, in Hz.

lorentz line width A vector of the line widths (bandwidths) of the Lorentz resonances, in 1/sec-
onds.

relative permittivity at infinite frequency The permittivity of the material at infi-
nite frequencies. Used to keep the simulation stable.

conductivity at infinite frequency The conductivity of the material at infinite frequen-
cies. Used to keep the simulation stable.

background conductivity The conductivity of the simulation space outside of this material.

2.7. Materials 13

VSim Reference Manual, Release 11.0.1-r3016

2.7.2 Customizing Materials

Custom materials properties can be created in a text editor and imported into VSim. To import a custom material:
1. Go to the “data” folder at the top level of the VSim installation directory.
2. Create a new text file that ends in the .vmat extension. For example: emthermalcustom.vmat.
3. Open the default materials file emthermal.vmat.
4. Copy a block from emthermal.vmat to emthermalcustom.vmat to use as a sample.

5. Edit the title and properties of the block as needed. For example:

<Material FreshWater>
<strings>
kind = "dielectric"
</strings>
<params>
heat capacity = 4.184
conductivity = 0.005
relative permittivity 80.4
thermal conductivity = 0.6065
</params>

</Material>

6. Save the new file.

7. Back in VSim, click on the Materials element in your simulation and then click Add —> Import
Materials. A file browser will appear with the data directory already open.

8. Select your custom vmat file. If you do not see your vmat file in the directory, navigate to where you
saved it.

9. The view will change to the Database tab and the materials added will be available here.

2.8 Geometries

The Geometries element contains information about any geometries that are in the simulation. You can import a file,
or create your own with CSG using the primitive shapes described below.

Be sure to assign a Material to a geometry object before it will appear elsewhere in the simulation (i.e. as an option
for a boundary condition, particle emitter, particle absorber, etc.).

2.8.1 CSG

Constructive Solid Geometry can be used to build your own complex geometry. To construct a CSG, left click on the
“+” sign next to Geometries and right click on the now revealed CSG tab. Choose “Add Primitive” and select your
shape.

kind (not editable) Construction Group

tessellation The size of triangles used to construct the shape. This is a unitless number that is the maximum
deviation of a facet from the curved surface divided by the diameter of the facet.

Sphere
kind (not editable) Sphere

14 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

radius The radius of the sphere.

angle Angle of the sphere, if below 360 will be only a section of the sphere corresponding to that
angle.

x position The location of the center of the sphere in the x direction.

y position The location of the center of the sphere in the y direction.

z position The location of the center of the sphere in the z direction.

color The color of the sphere if set explicitly instead of by material.
Box

kind (not editable) Box

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length The length of the box.

height The height of the box.

width The width of the box.

x position The location of the center of the box base in the x direction.
y position The location of the center of the box base in the y direction.
z position The location of the center of the box base in the z direction.

width direction x Setto | to make the width parameter of the box correspond to the x direc-
tion.

width direction y Setto 1 to make the width parameter of the box correspond to the y direc-
tion.

width direction z Setto | to make the width parameter of the box correspond to the z direc-
tion.

angle The angle of the box.

color The color of the geometry if set explicitly instead of by material.
Cylinder

kind (not editable) Cylinder

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length The length of the cylinder.
radius The radius of the cylinder.

angle Angle of the cylinder, if below 360 will be only a section of the cylinder corresponding to
that angle.

x position The location of the base of the cylinder in the x direction.
y position The location of the base of the cylinder in the y direction.

z position The location of the base of the cylinder in the z direction.

2.8. Geometries 15

VSim Reference Manual, Release 11.0.1-r3016

axis direction x Setto | to make the axial direction of the cylinder x; if set to -1, the length
parameter will extend in the negative direction.

axis direction y Setto I to make the axial direction of the cylinder y; if set to -1, the length
parameter will extend in the negative direction.

axis direction z Setto 1 to make the axial direction of the cylinder z; if set to -1, the length
parameter will extend in the negative direction.

color The color of the geometry if set explicitly instead of by material.
Cone
kind (not editable) Cone

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

height The height of the cone.
radius The radius of the base of the cone.

angle Angle of the cone, if below 360 will be only a section of the cone corresponding to that
angle.

x position The location of the center of the cone base in the x direction.
y position The location of the center of the cone base in the y direction.
z position The location of the center of the cone base in the z direction.
axis direction x Setto | to make the axial direction of the cone x.
axis direction y Setto I to make the axial direction of the cone y.
axis direction z Setto | to make the axial direction of the cone z.
color The color of the geometry if set explicitly instead of by material.
Torus
kind (not editable) Torus

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

major radius The radius to the center of the torus.
minor radius The radius from the center of the torus to the outside of the torus.

angle Angle of the torus, if below 360 will be only a section of the torus corresponding to that
angle.

x position The location of the center of the torus in the x direction.

y position The location of the center of the torus in the y direction.

z position The location of the center of the torus in the z direction.
axis direction x Setto | to make the axial direction of the torus x.
axis direction y Setto | to make the axial direction of the torus y.
axis direction z Setto | to make the axial direction of the torus z.
color The color of the geometry if set explicitly instead of by material.

Pipe

16 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable) Pipe

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length The length of the pipe.

inner radius The inner radius of the pipe.

outer radius The outer radius of the pipe.

angle Angle of the pipe, if below 360 will be only a section of the pipe corresponding to that angle.
x position The location of the base of the pipe in the x direction.

y position The location of the base of the pipe in the y direction.

z position The location of the base of the pipe in the z direction.

axis direction x Set to 1 to make the axial direction of the pipe x; if set to -1, the length
parameter will extend in the negative direction.

axis direction y Set to | to make the axial direction of the pipe y; if set to -1, the length
parameter will extend in the negative direction.

axis direction z Set to 1 to make the axial direction of the pipe z; if set to -1, the length
parameter will extend in the negative direction.

color The color of the geometry if set explicitly instead of by material.
TruncCone
kind (not editable) TruncCone (Truncated Cone)

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

height The height of the cone.
radiusl The radius of the base of the cone.
radius2 The radius of the top of the cone.

angle Angle of the cone, if below 360 will be only a section of the cone corresponding to that
angle.

x position The location of the center of the cone base in the x direction.
y position The location of the center of the cone base in the y direction.
z position The location of the center of the cone base in the z direction.
axis direction x Setto I to make the axial direction of the cone Xx.
axis direction y Setto I to make the axial direction of the cone y.
axis direction z Setto | to make the axial direction of the cone z.
color The color of the geometry if set explicitly instead of by material.
Wedge
kind (not editable) Wedge

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

lengthl One length of the wedge.

2.8. Geometries 17

VSim Reference Manual, Release 11.0.1-r3016

length2 The second length of the wedge.
height The height of the wedge.

width The width of the wedge. Extrudes the wedge from a two dimensional to three dimensional
object.

x position The location of the base of the wedge in the x direction.

y position The location of the base of the wedge in the y direction.

z position The location of the base of the wedge in the z direction.

width direction x Setto 1 to apply the width parameter in the x direction.

width direction y Setto 1 to apply the width parameter in the y direction.

width direction z Setto 1 to apply the width parameter in the z direction.

color The color of the geometry if set explicitly instead of by material.
Ellipsoid

kind (not editable) Ellipsoid

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

radius 1 Radius of the ellipsoid in the X direction.
radius 2 Radius of the ellipsoid in the Y direction.
radius 3 Radius of the ellipsoid in the Z direction.
x position The location of the center of the ellipsoid in the x direction.
y position The location of the center of the ellipsoid in the y direction.
z position The location of the center of the ellipsoid in the z direction.

Longest Principal Axis Direction X Setto 1 to set the radiusl parameter to be the X
direction.

Longest Principal Axis Direction Y Setto 1 to make the radiusl parameter to be the
Y direction.

Longest Principal Axis Direction Z Setto | to make the radiusl parameter to be the
Z direction.

color The color of the geometry if set explicitly instead of by material.
Pyramid
kind (not editable) Pyramid

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

baseLength Length of the base in the X direction.
height Distance between the base of the pyramid and the top, typically in the Y direction.
baseWidth Width of the pyramid base in the Z direction.

startTopLength If equal to the end top length, the pyramid will end in a point in the length
direction. Otherwise the top of the pyramid will have a length equal to (endTopLength - startTo-
pLength).

18 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

endTopLength If equal to the start top length, the pyramid will end in a point in the length direc-
tion.

startTopWidth If equal to the end top width, the pyramid will end in a point in the width di-
rection. Otherwise the top of the pyramid will have a width equal to (endTopWidth - startTop-
Width).

endTopWidth If equal to the start top width, the pyramid will end in a point in the width direction.
x position The location of the upper left corner of the sphere in the x direction.
y position The location of the upper left corner of the sphere in the y direction.
z position The location of the upper left corner of the sphere in the z direction.

X component of the width direction Set to 1 to apply the width parameter in the x
direction.

Y component of the width direction Set to 1 to apply the width parameter in the y
direction.

Z component of the width direction Set to 1 to apply the width parameter in the z
direction.

angle Rotates the pyramid around the x axis.

color The color of the geometry if set explicitly instead of by material.

2.8.2 Arrays

It is possible to generate an array of any CSG or imported CAD object in VSim. This is done by right clicking the
object in question and selecting Create Array. You will then be prompted to select a number of elements in the
X/Y/Z direction, and spacing between the centers of each object. It is also possible to have all objects in the array
automatically into a union.

2.8.3 Boolean Operations

CSG Primitives may be combined in three different ways:

Subtract This will subtract the second selected primitive from the first selected primitive. Denoted by

Union This will combine the two primitives into a single object. For use if the combined object is set to
be a particle sink. Denoted by U.

Intersect This will leave only the volume of the two primitives that intersect as an object. Denoted
by N.

Boolean operations may be nested, for example two primitives may be combined in a union, and then with a third
primitive in a second union. To combine primitive shapes, you must first add two or more shapes to your simulation.
Once your primitive shapes are added, highlight the two shapes you wish to combine and right-click and select Boolean
Operation then the operation you wish to perform. It is possible to perform a boolean combination between CSG and
Imported CAD Objects.

2.8.4 Importing files

You can import a geometry of type .stl, .ply, .vtk, .stp, .step, or .p12 by right-clicking the Geometries element and
selecting Import Geometries.

2.8. Geometries 19

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable)
* TriangSolid
* OceStepFromFile
filename The name and location of the imported file.
scale A factor to scale the imported geometry by. (Not available in 8.0.)

tessellation The size of triangles used to construct the shape. This is a unitless number that is the
maximum deviation of a facet from the curved surface divided by the diameter of the facet.

An imported .step (or .stp) file will always be converted to metric units (which is the unit system used by VSim).
However, an imported .stl file will not be converted to metric, since .stl files contain only the coordinate values.

2.9 Grids

The Grid is the computational domain of the simulation. It can be 1D, 2D or 3D, and if working with a 2D electrostatic
simulation, cylindrical coordinates are available in addition to cartesian.

Only objects that are inside of the grid will be simulated, those outside are ignored.
The grid is uniformly discretized based on the number of cells specified for the respective axial direction.

kind (not editable) The kind of grid used

xMin The domain extent in the negative x-direction.

xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

yMax The domain extent in the positive y-direction.

zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

xCells The number of cells in the x-direction.

yCells The number of cells in the y-direction.

zCells The number of cells in the z-direction.

Note: The grid, or grid faces should never be deleted from the simulation. If they are it will be necessary to recreate
the simulation file

2.10 Field Dynamics

2.10.1 FieldDynamics for Electromagnetic Simulations

This page describes the Field options available for electromagnetic simulations, that is, when the field solverin
the Basic Settings element is set to electromagnetic.

20 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Fields

Electric Field The Electric Field

Magnetic Field The magnetic field.

Current Density The current density field. Must be added by user by right clicking “Fields”, hovering over

“Add Field”, then choosing “Current Density”. Shows up as “J0”

External Field To allow external fields to either be added to the electric, magnetic or current fields. An external

field will be added after the field solve and effect particle movements in the simulation. Must be added by user
by right clicking “Fields”, hovering over “Add Field”, then choosing “External Field”

description A space to provide a descriptive comment for the field.
field type The type of field, electric, current or magnetic.
field specification Either import hS file, import hS file by grid index or function defined.

e import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the Oth component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the Oth component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

e function defined Allows for manual specification of each component of the field

component 0: The function defining the field in the Oth component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

time dependent: Set to true if any of the functions are time varying. The function will then
be recalculated at each time step.

2.10.

Field Dynamics 21

VSim Reference Manual, Release 11.0.1-r3016

* import h5 file by grid index A vis schema compliant h5 file. It does require that the
file be in the same directory as the simulation. An error message will be provided if the file fails to
import. This variant requires specifying the grid indices of both the source field to import as well as
the indices of where to place that field in the simulation. This can be used to translate fields in position
from a previous run to a new one.

The total number of cells between the source lower and upper bounds must match that of the simula-
tion lower and upper bounds.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

source lower bound 0: The grid index of the lower bound of the Oth dimension of
the source field to be imported.

source lower bound 1: The grid index of the lower bound of the 1st dimension of
the source field to be imported.

source lower bound 2: The grid index of the lower bound of the 2nd dimension of
the source field to be imported.

source upper bound 0: The grid index of the upper bound of the Oth dimension of
the source field to be imported.

source upper bound 1: The grid index of the upper bound of the 1st dimension of
the source field to be imported.

source upper bound 2: The grid index of the upper bound of the 2nd dimension of
the source field to be imported.

simulation lower bound 0: The grid index corresponding to the lower bound of the
Oth dimension where the field will be placed in the simulation.

simulation lower bound 1: The grid index corresponding to the lower bound of the
1st dimension where the field will be placed in the simulation.

simulation lower bound 2: The grid index corresponding to the lower bound of the
2nd dimension where the field will be placed in the simulation.

simulation upper bound 0: The grid index corresponding to the upper bound of the
Oth dimension where the field will be placed in the simulation.

simulation upper bound 1: The grid index corresponding to the upper bound of the
1st dimension where the field will be placed in the simulation.

simulation upper bound 2: The grid index corresponding to the upper bound of the
2nd dimension where the field will be placed in the simulation.

External Mode Launching Field This enables launching a 2D external electric field into a simulation. This

electric field can be recalculated at each time step with a temporal variation, and moved to be at any 2D plane
in the simulation space. Must be added by user by right clicking “Fields”, hovering over “Add Field”, then
choosing “External Mode Launching Field”

description A space to provide a descriptive comment for the field.

temporal variation The time function that will be applied to the field.
field type The type of field, only electric is supported.

field specification Either vsh5 file defined mode or function defined mode.

* vsh5 file defined mode Only requires specification of the file in the local simulation di-
rectory. These are typically generated from VSim analyzers. Must follow naming convention

22

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

sourceSimulationName_datasetName_dumpNum.vsh5, where datasetName corresponds to the
dataset to be loaded from the vsh5 file.

* function defined mode
EO(x, y, z): The spatial function defining the field in the Oth component.
El(x, y, z): The spatial function defining the field in the 1st component.
E2(x, y, z): The spatial function defining the field in the 2nd component.
surface The surface from which the field is launched. This will be visualized in the 3D view.
* yz plane
offset: The position of the plane on the x axis.
yMin: Minimum coordinate of the plane on the y axis.
yMax: Maximum coordinate of the plane on the y axis.
zMin: Minimum coordinate of the plane on the z axis.
zMax: Maximum coordinate of the plane on the z axis.
* xz plane
offset: The position of the plane on the y axis.
xMin: Minimum coordinate of the plane on the x axis.
xMax: Maximum coordinate of the plane on the x axis.
zMin: Minimum coordinate of the plane on the z axis.
zMax: Maximum coordinate of the plane on the z axis.
* xy plane
offset: The position of the plane on the z axis.
xMin: Minimum coordinate of the plane on the x axis.
xMax: Maximum coordinate of the plane on the x axis.
yMin: Minimum coordinate of the plane on the y axis.
yMax: Maximum coordinate of the plane on the y axis.

nodalkE This is a node centered electric field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be plot-able post run if dump nodal fields = true.

nodalB This is a node centered magnetic field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be plot-able post run if dump nodal fields = true.

invEps This is a field that stores the inverse values of dielectrics in a simulation. It cannot be added in the Fields
tab but is created automatically if necessary and can be visualized.

D This is the displacement field, only created if a dielectric is present in the simulation. It cannot be added in the
Fields tab but is created automatically if necessary and can be visualized.

Initial Condition

To add an Initial Condition to a field, right-click on the field and select Add FieldInitialCondition —> Initial Condition.

kind (not editable) Initial Condition

2.10. Field Dynamics 23

VSim Reference Manual, Release 11.0.1-r3016

expression The value of the initial condition. Can be assigned a Constant, Parameter, or SpaceTime-
Function by right-clicking.

component Can be 0, 1 or 2 for the first, second, or third component of the field.

Field Boundary Conditions

To add a Boundary Condition, right-click on FieldBoundaryConditions and select your choice from Add FieldBound-
aryCondition. Your choices for dimensionality and field solver in the Basic Settings element will determine which
Boundary Conditions are available to add to your simulation.

Field Boundary conditions may only be applied on the simulation boundaries.

Boundary Launcher A boundary launcher will set the chosen field to the value given in the applied
field functions of space and time.

field The field to which the boundary condition applies.

applied fields The location and orientation of the applied fields. The location is chosen from the simu-
lation domain boundaries. Depending on your choice for the applied field orientation (i.e., the Value of the
applied fields Property), you can set 2 of the following fields as a function of space and time.

* Fx(x,y,z,t)

* Fy(x,y,z,t)

* Fz(x,y,z,t)
Coaxial Waveguide

This is a port launcher boundary condition, with the functions defining it preset to create a coaxial cable.
See the VSimEM - Antennas example, “Coaxial Loop Antenna”, for a demonstration of its use. For
proper operation, a physical coaxial cable must be constructed in Geometries to match the specified cable
here.

inner radius The radius of the inner conductor.

outer radius The radius of the outer conductor.

frequency The frequency of the signal.

voltage The voltage of the signal.

relative permittivity The relative permittivity of the dielectric insulator.
start time The time at which to turn on the coaxial waveguide.

stop time The time at which to turn off the coaxial waveguide.

turn on time The amount of time to bring the coaxial waveguide up to full power. Typically, 2.5
periods of the carried signal.

coaxial waveguide surface The simulation domain boundary from which the coaxial waveg-
uide enters the simulation. Depending on the selected boundary, two of the following three options
are allowed.

* X-center coordinate The center of the coaxial waveguide in X.
* Y-center coordinate The center of the coaxial waveguide in Y.

e Z-center coordinate The center of the coaxial waveguide in Z.

24 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Matched Absorbing Layer A boundary condition that adds a Matched Absorbing Layer (MAL) to the speci-
fied face. A matched absorbing layer is an adiabatic absorber that uses isotropic electric and magnetic damping
profiles to absorb the incident wave. This is unlike a PML (Perfectly Matched Layer), which uses the same
electric and magnetic damping profiles, but is anisotropic. MAL boundaries are more stable, as an anisotropic
boundary condition can become unstable when the incident wave has a non-zero imaginary part to its normal
wavenumber (e.g., fringing fields from nearby structure, or particles entering the layer).

thickness The thickness of the MAL in meters. This value must be greater than the length of a computa-
tional cell in the direction of the boundary condition.

surface The simulation domain surface on which the MAL boundary condition should be set.

lower
lower
lower
upper
upper
upper

x
y
z
x

y

z

Open A boundary condition that is “open” allowing EM waves to freely exit. This is a [?] absorbing boundary
condition. The open boundary condition works best for waves normal to the surface.

surface The simulation domain surface on which the open boundary condition should be set.

lower
lower
lower
upper
upper
upper

Perfect Electric
zero. For example, if the PEC boundary condition is added to the lower x surface, the y and z components of
the electric field are set to zero.

X
Y
z
X
Y
z

Conductor A boundary condition that sets parallel components of the electric field to

surface The simulation domain surface on which the PEC boundary condition should be set.

lower
lower
lower
upper
upper
upper

Perfect Magnetic
zero. For example, if the PMC boundary condition is added to the lower x surface, the y and z components of
the magnetic field are set to zero.

x
y
z
x
Y
z

Conductor A boundary condition that sets parallel components of the magnetic field to

surface The simulation domain surface on which the PEC boundary condition should be set.

e lower x

* lower y

2.10. Field Dynamics 25

VSim Reference Manual, Release 11.0.1-r3016

* lower z
* upper x
¢ upper y
* upper z

Perfectly Matched Layer A perfectly matched layer (PML) boundary condition. PMLs provide boundary
conditions for the Yee algorithm that allow outgoing waves to leave without reflections (ideally). However in
practice, there are problems with reflections in some materials, particularly photonic crystals. It is recommended
to use the Matched Absorbing Layer (MAL) instead [?]. PMLs can also fail when combined with other active
boundary conditions, like ports, when there are particles present, or when structures exist at the PML boundary
which are not normal to the boundary. For additional options within Text Setup, see Pml/Region in VSim
Reference.

thickness The thickness of the PML in meters. This must correspond to a value greater than the length of
one computational cell in the direction of the boundary condition.

sigma The strength of the PML conductivity. Typically 3.0 or 5.0 x LIGHTSPFEFED /DL, where DL is the
cell size in the normal direction.

exponent The exponent in the PML conductivity. Typically 1.5.
surface The simulation domain surface on which the PML boundary condition should be set.
* lower x
* lower y
* lower z
* upper x
* upper y
* upper z

Port A Port boundary condition is a tuned phase-velocity boundary condition. It can be used as an open or outgoing
boundary condition, where waves traveling at exactly the specified phase velocity will exit the simulation with

no reflection at all. Waves traveling at other phase velocities will partially exit and partially reflect, with a power

reflection coefficient of p = (Vp wave — Vp.be)?/ (Vpwave + Vp be) -

phase velocity The phase velocity tuning parameter in meters/second.

surface The simulation domain surface on which the MAL boundary condition should be set.
* lower x
* lower y
* lower z
* upper x
® upper y
* upper z

Port Launcher

A Port Launcher boundary condition will add a Port boundary condition to the chosen surface as
well as setting the D field to the value given in the applied field functions of space and time.

phase velocity The phase velocity tuning parameter in meters/second.

26 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

applied fields The location and orientation of the applied fields. The location is chosen from the simu-
lation domain boundaries. Depending on your choice for the applied field orientation, you can set two of
the following fields as a function of space and time.

* Dx(x,y,z,t)
* Dy(x,y,z,t)
° DZ(XIYIzIt)

Rectangular Waveguide This is a port launcher boundary condition, with the functions defining it preset to
create a rectangular waveguide. See the VSimEM example Rectangular Waveguide for an demonstration of its
use. For proper operation, a physical waveguide must be constructed in Geometries at the location specified
here.

frequency The frequency of the signal.

voltage The voltage of the signal.

relative permittivity The relative permittivity of the dielectric insulator.
start time The time at which to turn on the rectangular waveguide.

stop time The time at which to turn off the rectangular waveguide.

turn on time The amount of time to bring the rectangular waveguide up to full power. If this time is set to
less than 2.5 periods of the carried signal, it will automatically be increased to 2.5 periods.

waveguide surface The simulation domain boundary from which the rectangular waveguide enters the
simulation. Depending on the selected boundary, two of the following three options are allowed, as well
as the polarization direction.

* X—center coordinate The center of the rectangular waveguide in X
* Y-center coordinate The center of the rectangular waveguide in Y
* Z-center coordinate The center of the rectangular waveguide in Z

* polarization direction The polarization direction of the waveguide. This will correspond
to the height parameter of the waveguide.

waveguide type The type of waveguide used. Several commonly used waveguides are included, as well as
the option to define your own.

e User Defined

— height The height of the waveguide. This will correspond to the polarization direction of the
waveguide

— width The width of the waveguide.

¢ Included Waveguides The eight predefined waveguides are WR-90, WR-340, WR-284, WR-
229, WR-187, WR-159, WR-137, and WR-112.

— WG equivalent (not-editable) The RCSC designation of this waveguide type.

standard frequency range (not-editable) The frequencies over which this waveguide
operates. A warning will be given if an operating frequency is given outside this range.

height (not-editable) The height of the waveguide. This will correspond to the polarization
direction of the waveguide.

width (not-editable) The width of the waveguide.

2.10. Field Dynamics 27

VSim Reference Manual, Release 11.0.1-r3016

Current Distributions

Dipole Current A dipole current is a current source centered around the user specified location and going +1

cell around the specified location.
kind (not editable) Dipole Current
description A space to provide a descriptive comment for the current.

expression The expression used to define the dipole. Can be assigned a Constant, Parameter, or Space-
TimeFunction by right-clicking. This should be either a constant or a function of time only.

component The component of the current density field to be set by the expression.

coordinate The physical location (in meters) where the dipole current should be set.

General Distributed Current A distributed current sets the values of the current density in the specified

volume. Note that within the specified volume, spatial functions can be used to shape the current, for example
to create a circular current excitation.

kind (not editable) General distributed current.
description A space to provide a descriptive comment for the current.
JO (x,y, z,t) If any, the expression for the current source in the x-direction.
J1(x,y,z,t) If any, the expression for the current source in the y-direction.
J2 (x,y, z,t) If any, the expression for the current source in the z-direction.
volume

xMin The domain extent in the negative x-direction.

xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

yMax The domain extent in the positive y-direction.

zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

Separable Distributed Current A separable distributed current can be used to load an external current

mode and vary it in time.
temporal variation A time function to calculate how the current varies.
spatial profile
e file specified A .h5 file that contains the current.
¢ function specified
JO0 (x,y, z) The spatial profile of the current in the x-direction.
J1 (x,y, z) The spatial profile of the current in the y-direction.
J2 (x,y,z) The spatial profile of the current in the z-direction.
volume
xMin The domain extent in the negative x-direction.
xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

yMax The domain extent in the positive y-direction.
zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

RCSBox Properties

The RCS box is available for electromagnetic simulations. It can be used to define a box and wave for calculation
of radar cross sections. The wave defined will be perfectly absorbed at the other edge of the box, while waves from
scattering off an object inside of the box will be allowed to exit. This allows for a relatively easy calculation of the
radar cross section using the Far-Field Box Data History.

kind Only “Radar Cross Section” is available and is not editable.

description A space to provide a descriptive comment for the RCSBox.

amplitude Amplitude of the incident wave.

frequency Frequency of the incident wave.

rise time (periods) Number of periods (as given by frequency) for wave to rise to the given amplitude.
x component incident direction Incident angle in the x direction in radians.

y component incident direction Incident angle in the y direction in radians.

z component incident direction Incident angle in the z direction in radians.

polarization direction x real Polarization of the real component of the wave in the x direction.
polarization direction y real Polarization of the real component of the wave in the y direction.
polarization direction z real Polarization of the real component of the wave in the z direction.

polarization direction x imaginary Polarization of the imaginary component of the wave in the x di-
rection.

polarization direction y imaginary Polarization of the imaginary component of the wave in the y di-
rection.

polarization direction z imaginary Polarization of the imaginary component of the wave in the z di-
rection.

volume
xMin The domain extent in the negative x-direction.
xMax The domain extent in the positive x-direction.
yMin The domain extent in the negative y-direction.
yMax The domain extent in the positive y-direction.
zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

Plasma Dielectric Properties

A plasma dielectric is available in electromagnetic simulations. This is effectively a dielectric formed by plasma, and
can be used more readily than generating the plasma from discrete particles.

A plasma dielectric is composed of a single electron type and as many ions as the user specifies.

2.10. Field Dynamics 29

VSim Reference Manual, Release 11.0.1-r3016

Plasma dielectrics are most commonly used for propogation of microwaves through a plasma, or in the construction of
a plasma antenna. Wave propogation through the ionosphere can be done with a plasma dielectric as well. To include
a plasma dielectric in the simulation, right click on Field Dynamics and click on Add Plasma Dielectric. A new option
will populate the Field Dynamics tab, typically called “PlasmaDielectric0”. The plasma dielectric algorithm used in
VSim is discussed in [?]. The plasma dielectric algorithm in the visual setup is the same as the one described in
linPlasDielcUpdater in the text-based setup, except in the visual setup, sheath effects are not included.

boundary damping frequency The time constant of the damping of the plasma. Can be used to filter the
signals passing through the plasma dielectric. Is a computational construct for absorbing boundary conditions.

dump plasma work arrays This wil dump the fields used in constructing the plasma dielectric if set to true.
compute plasma losses This will compute the losses in energy from the plasma.

filtering level Either none, weak, medium, or strong. This is used to filter computational noise of short
wavelengths, particularly at sharp corners in the dielectric. A higher filtering level will more accurately filter
but increases computational time.

sheath No sheath effects can be considered in VSim at this time.
electron The Electrons specified will not be modeled as discrete particles.
density profile A spatial profile describing the density of the electrons.

collision frequency A function describing electron drag on a neutral background, this will dampen
electrical signals.

impose charge neutrality If set to true the ratio of all ions must add up to 1.0. This will gurantee that
the plasma dielectric is charge neutral.

ion The ions specified will not be modeled as discrete particles.
mass number [amu] Mass of the ion in amu.
charge number Charge of the ion.
density ratio Fraction of all ions used consisting of this ion.

collision frequency A function describing ion drag on a neutral background, this will dampen electri-
cal signals.

Note: Plasma dielectrics are incompatible with a simulation that also features regular or Drude/Debye-Lorentz
modeled dielectrics.

Initial Beam Properties

Initial beams can be used for beam-driven Plasma Acceleration simulations.

These will perform an electrostatic field solve to setup the Lorentz boosted Poisson fields for launching the electron
beam. This ensures that the simulation is self-consistent from start as the beam initializes the fields using a speed
of light frame Poisson equation solve. This will also use a vector and scalar charge depositor for all particles in the
simulation, and use esirk2ndOrder interpolation.

beam gamma The Lorentz factor, v, of the beam

dump beam initialization fields True or False option to dump the fields used in beam initialization

30 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

2.10.2 FieldDynamics for Electrostatic Simulations

This page describes the Field options available for electrostatic simulations, that is, when the field solver inthe
Basic Settings element is set to electrostatic.

Fields

Phi The electric potential field. This field is un-editable, and is calculated automatically.
Charge Density The charge density field. This field is un-editable, and is calculated automatically.
Electric Field The Electric Field. This field is un-editable, and is calculated automatically.

Background Charge Density The background charge density field. This field can be added to a simulation
by right clicking “Fields”, hovering over “Add Field”, then clicking “Background Charge Density”. You may
add many Background Charge Densities to your simulation.

* expression The value of the background charge density field. Can be a constant, a parameter, or a
function of space and time.

External Field An External Field can be added to a simulation by right clicking “Fields”, hovering over “Add
Field”, then clicking “External Field”. An external field will be added after the field solve and effect particle
movements in the simulation.

description A space to provide a descriptive comment for the field.
field type In electrostatic simulations only magnetic fields may be added.
field specification Either import h5 file or function defined.

e import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the Oth component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the Oth component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

* function defined Allows for manual specification of each component of the field

2.10. Field Dynamics 31

VSim Reference Manual, Release 11.0.1-r3016

component 0: The function defining the field in the Oth component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

time dependent: Set to true if any of the functions are time varying. The function will then
be recalculated at each time step.

e import h5 file by grid index A vis schema compliant h5 file. It does require that the
file be in the same directory as the simulation. An error message will be provided if the file fails to
import. This variant requires specifying the grid indices of both the source field to import as well as
the indices of where to place that field in the simulation. This can be used to translate fields in position
from a previous run to a new one.

The total number of cells between the source lower and upper bounds must match that of the simula-
tion lower and upper bounds.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

source lower bound 0: The grid index of the lower bound of the Oth dimension of
the source field to be imported.

source lower bound 1: The grid index of the lower bound of the 1st dimension of
the source field to be imported.

source lower bound 2: The grid index of the lower bound of the 2nd dimension of
the source field to be imported.

source upper bound 0: The grid index of the upper bound of the Oth dimension of
the source field to be imported.

source upper bound 1: The grid index of the upper bound of the 1st dimension of
the source field to be imported.

source upper bound 2: The grid index of the upper bound of the 2nd dimension of
the source field to be imported.

simulation lower bound 0: The grid index corresponding to the lower bound of the
Oth dimension where the field will be placed in the simulation.

simulation lower bound 1: The grid index corresponding to the lower bound of the
1st dimension where the field will be placed in the simulation.

simulation lower bound 2: The grid index corresponding to the lower bound of the
2nd dimension where the field will be placed in the simulation.

simulation upper bound 0: The grid index corresponding to the upper bound of the
Oth dimension where the field will be placed in the simulation.

simulation upper bound 1: The grid index corresponding to the upper bound of the
1st dimension where the field will be placed in the simulation.

simulation upper bound 2: The grid index corresponding to the upper bound of the
2nd dimension where the field will be placed in the simulation.

nodalkE This is a node centered electric field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be visible if dump nodal fields = true.

32 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

nodalB This is a node centered magnetic field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be visible if dump nodal fields = true.

invEps This is a field that stores the inverse values of dielectrics in a simulation. It cannot be added in the Fields
tab but is created automatically if necessary and can be visualized.

D This is the displacement field, only created if a dielectric is present in the simulation. It cannot be added in the
Fields tab but is created automatically if necessary and can be visualized.

Initial Condition

To add an Initial Condition to a field, right-click on the field and select Add FieldlnitialCondition —> Initial Condition.
kind (not editable) Initial Condition

expression The value of the initial condition. Can be assigned a Constant, Parameter, or SpaceTime-
Function by right-clicking.

component Can be 0, 1 or 2 for the first, second, or third component of the field.

Field Boundary Conditions

To add a Boundary Condition, right-click on FieldBoundaryConditions and select your choice from Add FieldBound-
aryCondition. Your choices for dimensionality and field solver in the Basic Settings element will determine which
Boundary Conditions are available to add to your simulation. If the simulation is set up as an electrostatic 2D sim-
ulation in cylindrical coordinates (R-Z plane) and if the simulation begins at r=0, then a flag called includeCylAxis
(see Section Grid) is set to true. Atr =0, we have set the default field boundary condition to be Neumann with the
electric field set to 0. Therefore, the only boundary conditions that need to be set in a 2D cylindrical electrostatic
simulation are at RMAX, ZMIN, and ZMAX. If the simulation begins at r > 0, then the user will need to specify the
field boundary condition at RMIN.

Dirichlet Use a Dirichlet boundary condition to set the value of the potential field, Phi, on the surface.

value The value of the boundary condition. Can be assigned a Constant, Parameter, or SpaceTimeFunction
by right-clicking.

surface The surface on which the Dirichlet boundary condition should be set.
* lower x The lower x boundary of the simulation domain.
* lower y The lower y boundary of the simulation domain.
* lower z The lower z boundary of the simulation domain.
* upper x The upper x boundary of the simulation domain.
* upper y The upper y boundary of the simulation domain.
* upper z The upper z boundary of the simulation domain.

e partial lower x A Dirichlet boundary condition applied only to part of the lower x simulation
boundary. The entire lower x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.
upper y coordinate The exclusive upper y coordinate.

lower z coordinate The inclusive lower z coordinate.

2.10. Field Dynamics 33

VSim Reference Manual, Release 11.0.1-r3016

upper z coordinate The exclusive upper z coordinate.

* partial lower y A Dirichlet boundary condition applied only to part of the lower y simulation

boundary. The entire lower y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.
upper x coordinate The exclusive upper x coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

* partial lower z A Dirichlet boundary condition applied only to part of the lower z simulation

boundary. The entire lower z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.
upper x coordinate The exclusive upper x coordinate.
lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

* partial upper x A Dirichlet boundary condition applied only to part of the upper x simulation

boundary. The entire upper x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.
upper y coordinate The exclusive upper y coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

e partial upper y A Dirichlet boundary condition applied only to part of the upper y simulation

boundary. The entire upper y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.
upper x coordinate The exclusive upper x coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

e partial upper z A Dirichlet boundary condition applied only to part of the upper z simulation

boundary. The entire upper z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

34

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

upper x coordinate The exclusive upper x coordinate.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

* shape surface Use a shape surface to specify a Dirichlet boundary condition on the surface of a
geometry in your simulation.

object name: Choose from any pre-defined geometries in the simulation.

Neumann Use a Neumann boundary condition to set the value of the derivative of the potential field, Phi, on the

surface.

value The value of the derivative. Can be assigned a Constant, Parameter, or SpaceTimeFunction by right-
clicking.

surface The surface on which the Dirichlet boundary condition should be set.

lower x The lower x boundary of the simulation domain.

lower
lower
upper
upper
upper

y

z

%

y

z

partial

The lower y boundary of the simulation domain.

The lower z boundary of the simulation domain.

The upper x boundary of the simulation domain.

The upper y boundary of the simulation domain.

The upper z boundary of the simulation domain.

lower x A Neumann boundary condition applied only to part of the lower x simulation

boundary. The entire lower x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.
upper y coordinate The exclusive upper y coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

* partial lower y A Neumann boundary condition applied only to part of the lower y simulation

boundary. The entire lower y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.
upper x coordinate The exclusive upper x coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

e partial lower z A Neumann boundary condition applied only to part of the lower z simulation

boundary. The entire lower z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

2.10. Field Dynamics 35

VSim Reference Manual, Release 11.0.1-r3016

upper x coordinate The exclusive upper x coordinate.
lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

* partial upper x A Neumann boundary condition applied only to part of the upper x simulation

boundary. The entire upper x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.
upper y coordinate The exclusive upper y coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

e partial upper y A Neumann boundary condition applied only to part of the upper y simulation

boundary. The entire upper y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.
upper x coordinate The exclusive upper x coordinate.
lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

e partial upper z A Neumann boundary condition applied only to part of the upper z simulation

PoissonSolver

boundary. The entire upper z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.
upper x coordinate The exclusive upper x coordinate.
lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

kind (not editable) Poisson Solver

relative permittivity Function giving the relative permittivity, or background permittivity. Without a
VSimPD license, when using the electrostatic field solve, dielectrics with spatially dependent dielectric con-
stants cannot be added through the use of geometries (primitive and CAD-like imported objects). If you try
to add a non-PEC/Absorbium material, you will get the following error: “Dielectrics not supported in elec-
trostatic simulations”. However, you can add regions in the simulation domain that have spatially dependent
dielectric constants with SpaceTimeFunctions (see SpaceTimeFunctions). An example demonstrating how to
add dielectrics using SpaceTimeFunctions can be found in “Dielectric in Electrostatics” which can be found
in the “VsimExamples” documentation. Once you have written a SpaceTimeFunction describing the spatially
dependent dielectric constant, expand the Field Dynamics tab and left click on “PoissonSolver”. Then right
click on the region next to *relative permittivity”, left click on “Assign SpaceTimeFunction” and click on the

36

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

function that you wrote. With a VSimPD license it is possible to use geometry defined dielctrics. In this case
the relative permittivity assignment can still be used to set a background permittivity, or permittivity outside of
the geometries.

solver VSim allows the use of the direct solver SuperLU or one of the current choices for iterative solvers.

* SuperLU Use the SuperLU solver. This is a direct matrix solver which is not recommended for use in a
simulation with a grid larger than a few thousand cells. For grids with more than a few thousand cells,
use an iterative solver.

* conjugate gradient An iterative solver for symmetric positive definite matrices.
tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Anything
above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here. Met-
rics are one of:

r0 Use the ratio of the L2 norms of the residual and the initial residual.

rhs Use the ratio of the L2 norms of the residual and the right-hand side.

— Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum of
the matrix (L-infinity norm).

noscaled Use the ratio of the L2 norm of the residual.

sol Use the ratio of the maximum component of the residual and the sum of (L-infinity norm
of the matrix times the maximum absolute component of the first iterate to the solution + the
maximum absolute component of the right-hand side).

* generalized minimum residual An iterative solver. Actually the restarted GMRES. A very ro-
bust solver.

Krylov vector space size Number of vectors used in Krylov subspace.

max iterations The maximum number of iterations allowed to achieve the solution. Anything
above 30 is questionable.

tolerance The size of the error vector for stopping the iteration to solution.

convergence metric This is described in the AztecOO user guide, p. 17, currently here. Met-
rics are one of:

r0 Use the ratio of the L2 norms of the residual and the initial residual.

rhs Use the ratio of the L2 norms of the residual and the right-hand side.

— Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum of
the matrix (L-infinity norm).

noscaled Use the ratio of the L2 norm of the residual.

sol Use the ratio of the maximum component of the residual and the sum of (L-infinity norm
of the matrix times the maximum absolute component of the first iterate to the solution + the
maximum absolute component of the right-hand side).

orthogonalization How to orthogonalize the Krylov subspace. Options are:
— classic Uses two steps of the classical Gram-Schmidt orthogonalization (Default).
— modified Uses one step of the Modified Gram-Schmidt orthogonalization.

* conjugate gradient squared

2.10. Field Dynamics 37

https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf
https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf

VSim Reference Manual, Release 11.0.1-r3016

tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Any-
thing above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here.
Metrics are one of:

r0 Use the ratio of the L2 norms of the residual and the initial residual.
— rhs Use the ratio of the L2 norms of the residual and the right-hand side.

— Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum
of the matrix (L-infinity norm).

noscaled Use the ratio of the L2 norm of the residual.

sol Use the ratio of the maximum component of the residual and the sum of (L-infinity
norm of the matrix times the maximum absolute component of the first iterate to the
solution + the maximum absolute component of the right-hand side).

* biconjugate gradient stabilized
tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Any-
thing above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here.
Metrics are one of:

r0 Use the ratio of the L2 norms of the residual and the initial residual.

rhs Use the ratio of the L2 norms of the residual and the right-hand side.

— Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum
of the matrix (L-infinity norm).

noscaled Use the ratio of the L2 norm of the residual.

sol Use the ratio of the maximum component of the residual and the sum of (L-infinity
norm of the matrix times the maximum absolute component of the first iterate to the
solution + the maximum absolute component of the right-hand side).

* transpose—-free quasi-minimal residual
tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Any-
thing above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here.
Metrics are one of:

r0 Use the ratio of the L2 norms of the residual and the initial residual.

rhs Use the ratio of the L2 norms of the residual and the right-hand side.

Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum
of the matrix (L-infinity norm).

noscaled Use the ratio of the L2 norm of the residual.

sol Use the ratio of the maximum component of the residual and the sum of (L-infinity
norm of the matrix times the maximum absolute component of the first iterate to the
solution + the maximum absolute component of the right-hand side).

38 Chapter 2. Visual Setup

https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf
https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf
https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf

VSim Reference Manual, Release 11.0.1-r3016

preconditioner
* no preconditioner

e multigrid Multigrid has a large number of parameters. In most cases, the defaults are good. If one is using
particles, the linear solve often does not matter in overall timing. More information is available in the
VSim User Guide: VSim User Guide: Simulation Concepts: Fields

mg defaults

— SA Works best with symmetric matrices. Symmetric matrices occur when all boundary conditions in
the problem are periodic.

DD Works best in general.

DD-ML

Maxwell

maximum levels The maximum number of levels of multigrid smoother application before doing a
direct solve on the smaller problem. For highly parallel problems this should be limited to 3-4 to
minimize communication time.

smoother type The smoother to apply at each multigrid level. The default is a good choice, but the
user may try other smoothers to achieve best solving times. The choices are:

Gauss Seidel

— symmetric variable block Gauss Seidel

— Jacobi

Chebyshev
— Aztec

smoother sweeps The number of times to apply the smoother at each multigrid level. A good choice
is 3, but the user may try other values to achieve best solving times.

when to smooth Generally one wants to smooth both. The before and after choices are provided to
the user to try other values to achieve best solving times.

— both
— before
- after
coarse type The type of solver to use at the coarsest level.
— Jacobi
- KLU

damping factor Damping factor for smoothed aggregation. The default is a good choice. Users may
try other values to achieve best solving times.

threshold This determines the multigrid aggregation at each level.

increase or decrease If set to increasing, level O will correspond to the finest level. If set to
decreasing, max levels - 1 will correspond to the finest level. Should not affect convergence. The
choices are:

— increasing

— decreasing

2.10. Field Dynamics 39

VSim Reference Manual, Release 11.0.1-r3016

2.10.3 FieldDynamics for Prescribed Fields Simulations

This page describes the Field options available for prescribed field simulations, that is, when the field solverin
the Basic Settings element is set to prescribed fields.

Fields

externalElectricField The Electric Field as prescribed by the user.
kind (un-editable) External Electric Field
description A space to provide a descriptive comment for the field.
field type electric field(cannot be changed)
field specification Either import h5 file or function defined.
e function defined Allows for manual specification of each component of the field

component 0: The function defining the field in the Oth component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

* import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the Oth component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the Oth component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

externalMagneticField The Magnetic Field as prescribed by the user.
kind (un-editable) External Magnetic Field

description A space to provide a descriptive comment for the field.

40 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

field type magnetic (cannot be changed)
field specification Either import h5 file or function defined.
e function defined Allows for manual specification of each component of the field

component 0: The function defining the field in the Oth component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

* import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the Oth component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the Oth component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

Time Dependence Properties

Time Dependence is available for prescribed field simulations.
E-Field multiplier Time dependent function to be applied at each time step to the electric field.

B-Field multiplier Time dependent function to be applied at each time step to the magnetic field.

2.11 Particle Dynamics

2.11.1 Kinetic Particles

2.11. Particle Dynamics 4

VSim Reference Manual, Release 11.0.1-r3016

Charged Particles

Charged Particles can be used to define any kinetic particle with given mass and charge.

To add Charged Particles, right click on the “KineticParticles” element, hover over the “Add ParticleSpecies” and
choose “Charged Particles”.

kind (not editable) Charged Particles

nominal density A positive value suggesting the nominal density for the particles. This will be used in con-
junction with the weight setting to compute the density, weights, and number of particles in a macro particle for
your kinetic particles.

description A space to provide a descriptive comment for the particle species.
particle dynamics Whether to use relativistic or non-relativistic particles.

* relativistiec: Use the relativistic particle pushing algorithm to update the particle positions and ve-
locities by including a gamma term.

* non-relativistic: Use the non-relativistic particle pushing algorithm to update the particle positions
and velocities.

particle weights Whether to use constant or variable weight particles.
* variable weights: The weights of the macroparticles can vary throughout the simulation.
* constant weights: The weights of the macroparticles are constant throughout the simulation.

* managed weights: Variable weight particles that are managed to allow for maximum and minimum
weights, and maximum and minimum number of macroparticles per cell. Note if working in cylindrical
coordinates, some computational artifacts may arise in a few simulation types with managed weights.
Contact Tech-X support if this becomes a concern.

macroparticles per cell for splitting If more than this many macroparticles
are in a cell splitting will not occur.

macroparticles per cell for combining If fewer than this many macroparticles
are in a cell combining will not occur.

minimum split particle weight If the split particles would weigh under this value,
splitting will not occur.

maximum combined particle weight If the combined particle would weigh over this
value, combination will not occur.

splitting periodicity Number of time steps between assessing if particles should be
split.

combining periodicity (not editable) Number of time steps between assessing
if particles should be combined.

splitting algorithm Algorithm to use in determining split particle weights. This in-
teraction is designed to use variable-weight species. Kind of MonteCarlo interaction that
splits macroparticles of a single species into two or more macroparticles. This interaction
is designed to use variable-weight species. This interaction is applied at each time step.
The attribute algorithm_kind specifies the type of algorithm to be used when splitting
macroparticles. The possible values are 1 and 2. Algorithm 1 (default) performs a simple,
fast split operation, whereas option 2 is more accurate but more computationally intensive. In
algorithm 1, the weight of the macro particle is simply split to one half and a new macropar-
ticle gets added at the same location with one half weight value. In algorithm 2, the split
operation is done such that the number of macro particles within a cell meets the require-
ment of the threshold value specified by the user.

42 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

combining algorithm Algorithm to use in determining combined particle weights. Kind
of MonteCarlo interaction that combines macroparticles of a single species together into
one single macroparticle. The algorithm_kind specifies the kind of algorithm to be
used when combining macroparticles. The possible values are 1, 2, 3, 4, 5, or 6. Option
1 indicates a simple pair-wise combination of macroparticles, deleting one and adding the
number of real particles (weight) to the other (decimation). Option 2 indicates a slightly
more accurate pair-wise approach, deleting one macroparticle and assigning the other the
mean position and velocity of the pair as well as the total weight of the pair (inelastic).
Option 3 is an elastic combination approach, where quartets of macroparticles are combined
into pairs that conserve energy and momentum (elastic). Option 4 is a pair-wise combining
approach similar to Option 2 except that it allows users to avoid combining particles that are
above the user specified limit. Option 5 is a pairwise approach in which the particles within a
cell are grouped in velocity phase-space bins and then particles in each velocity phase-space
bin are combined pair-wise. In this approach energy and momentum are conserved. Option
6 is a fluxConserving approach, combining 3+ particles into 2. This has enough degrees
of freedom to conserve energy, momentum and a third quantity. We chose the center of
momentum frame flux, which has the nice property that the solution is always real. This
conserves the original phase space of the particles.

Note: This feature replaces the selfCombCollision previously implemented in Vorpal
collision.

weight setting Whether to use computed weights or explicitly set weights.

* computed weights: Let VSim calculate your macroparticle weights for you based on the number
of macroparticles per cell you specify as well as the nominal density. The weights are calculated
such that the number of particles in a macro particle is equal to the nominalDensity * cell Volume /

macroparticles per cell.
macroparticles per cell: The number of macroparticles per cell.
* explicitly set weights: Declare the number of particles in a macro particle explicitly.
particles per macroparticle: The number of particles in a macroparticle.
molecule Molecule of the charged particle. A custom ion is available for those not pre-defined.
* mass [amu] The mass of a single real particle in atomic mass units.

* charge number The charge number of a single particle, multiple of the fundamental charge.

* ionization energy [eV] The ionization energy of the molecule in electron volts. This value will

be used by particle interactions set thresholds and determine energy losses.

Additional Features:

Emitters:

* Shape Settable Flux Emitter

e Slab Settable Flux Emitter
Boundary Conditions:

* Properties of Particle Boundary Conditions
Loaders:

e Particle Loader

2.11. Particle Dynamics

43

VSim Reference Manual, Release 11.0.1-r3016

Electrons

Electrons are pre-defined to have a charge = -1.602176487e-19 C and a mass = 9.10938215e-31 kg.

To add Electrons, right click on the “KineticParticles” element, hover over the “Add ParticleSpecies” and choose
“Electrons”.

kind (not editable): Electrons

nominal density: A positive value suggesting the nominal density for the particles. This will be used in con-
junction with the weight setting to compute the density, weights, and number of particles in a macro particle for
your kinetic particles.

description A space to provide a descriptive comment for the particle species.
particle dynamics: Whether to use relativistic or non-relativistic particles.

* relativistiec: Use the relativistic particle pushing algorithm to update the particle positions and ve-
locities by including a gamma term.

* non-relativistic: Use the non-relativistic particle pushing algorithm to update the particle positions
and velocities.

particle weights: Whether to use constant or variable weight particles.
* variable weights: The weights of the macroparticles can vary throughout the simulation.
* constant weights: The weights of the macroparticles are constant throughout the simulation.

* managed weights: Variable weight particles that are managed to allow for maximum and minimum
weights, and maximum and minimum number of macroparticles per cell. Note if working in cylindrical
coordinates, some computational artifacts may arise in a few simulation types with managed weights.
Contact Tech-X support if this becomes a concern.

macroparticles per cell for splitting: If more than this many macroparticles
are in a cell splitting will not occur.

macroparticles per cell for combining: If fewer than this many macroparticles
are in a cell combining will not occur.

minimum split particle weight: If the split particles would weigh under this value,
splitting will not occur.

maximum combined particle weight: If the combined particle would weigh over this
value, combination will not occur.

splitting periodicity: Number of time steps between assessing if particles should be
split.

combining periodicity (not editable): Number of time steps between assessing
if particles should be combined.

splitting algorithm: Algorithm to use in determining split particle weights.
combining algorithm: Algorithm to use in determining combined particle weights.
weight setting: Whether to use computed weights or explicitly set weights.

* computed weights: Let VSim calculate your macroparticle weights for you based on the number
of macroparticles per cell you specify as well as the nominal density. The weights are calculated
such that the number of particles in a macro particle is equal to the nominalDensity * cell Volume /
macroparticles per cell.

macroparticles per cell: The number of macroparticles per cell.

44 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

* explicitly set weights: Declare the number of particles in a macro particle explicitly.

particles per macroparticle: The number of particles in a macroparticle.

Additional Features:

Emitters:

* Shape Settable Flux Emitter

» Secondary Electron Emitter

e Slab Settable Flux Emitter
Boundary Conditions:

* Properties of Particle Boundary Conditions
Loaders:

e Particle Loader

Neutral Particles
Neutral Particles of the gas kinds listed below are pre-defined with the appropriate charge and mass values. Users can
also add custom neutral species.

To add Neutral Particles, right click on the “KineticParticles” element, hover over the “Add ParticleSpecies” and
choose “Neutral Particles”.

kind (not editable) Neutral Particles

nominal density A positive value suggesting the nominal density for the particles. This will be used, in con-
junction with the weight setting, to compute the density, weights, and number of particles in a macro particle
for your kinetic particles.

description A space to provide a descriptive comment for the particle species.
particle dynamics Whether to use relativistic or non-relativistic particles

* relativistic: Use the relativistic particle pushing algorithm to update the particle positions and ve-
locities by including a gamma term.

* non-relativistic: Use the non-relativistic particle pushing algorithm to update the particle positions
and velocities.

particle weights Whether to use constant or variable weight particles.
* variable weights The weights of the macroparticles can vary throughout the simulation.
* constant weights The weights of the macroparticles are constant throughout the simulation.

* managed weights Variable weight particles that are managed to allow for maximum and minimum
weights, and maximum and minimum number of macroparticles per cell. Note if working in cylin-
drical coordinates, some computational artifacts may arise in a few simulation types with managed
weights. Contact Tech-X support if this becomes a concern.

macroparticles per cell for splitting If more than this many macroparticles are in
a cell splitting will not occur.

macroparticles per cell for combining If fewer than this many macroparticles are in
a cell combining will not occur.

2.11. Particle Dynamics 45

VSim Reference Manual, Release 11.0.1-r3016

minimum split particle weight If the split particles would weigh under this value, split-
ting will not occur.

maximum combined particle weight If the combined particle would weigh over this
value, combination will not occur.

splitting periodicity Number of time steps between assessing if particles should be split.

combining periodicity (not editable) Number of time steps between assessing if
particles should be combined.

splitting algorithm Algorithm to use in determining split particle weights.

combining algorithm Algorithm to use in determining combined particle weights.

weight setting Whether to use computed weights or explicitly set weights.

computed weights Let VSim calculate your macroparticle weights for you, based on the number
of macroparticles per cell you specify as well as the nominal density. The weights are calculated
such that the number of particles in a macro particle is equal to the nominalDensity * cell Volume /
macroparticles per cell.

macroparticles per cell: The number of macroparticles per cell.
explicitly set weights Declare the number of particles in a macro particle explicitly.

particles per macroparticle: The number of particles in a macroparticle.

molecule Molecule of the neutral particle. Options are:

L]

H: Hydrogen (atomic)

H2: Hydrogen (molecular)

He: Helium

Ar: Argon

Xe: Xenon

Rn: Radon

Kr: Krypton

0: Oxygen (atomic)

02: Oxygen (molecular)

Ne: Neon

N: Nitrogen (atomic)

N2: Nitrogen (molecular)

custom molecule Setthe mass (in amu) and ionization energy (in eV) of a custom gas.
— mass [amu] The mass of a single real particle in atomic mass units.

— ionization energy [eV] The ionization energy of the molecule in electron volts.

Additional Features:

Emitters:

» Shape Settable Flux Emitter

* Sputter Emitter

46

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

e Slab Settable Flux Emitter
Boundary Conditions:

* Properties of Particle Boundary Conditions
Loaders:

e Particle Loader

Field Scaling Electrons

These are a special type of electron used in testing. Most notably, they consist of only one physical particle per
macroparticle. They are in fact given a variable weight, which is used to track whether the particles have been created
via secondary emission. Each particle also has a scaling value, allowing for multiple voltage levels to exist in the sim-
ulation simultaneously. Since there is only one physical particle per macroparticle, these particles will have negligible
effect on the simulation.

The primary use of these particles is to scan a structure for multipacting resonances across a number of power levels
at the same time.

To add Field Scaling Electrons, right click on the “KineticParticles” element, hover over the “Add TestParticleSpecies”
and choose “Field Scaling Electrons”.

Field Scaling Electron Loader

This particle loader is very similar to a standard particle species loader, with some notable exceptions.
description: A space to provide a descriptive comment for the particle species.
load density: Only the relative density of particles may be specified, as this is the same as the physical density.
physical density: This will specify the number of particles per cell.
particle load placement: At this time particles may only be loaded according to a bit-reversed algorithm.
load duration: Whether to only load the particles at the beginning of the simulation or repeatedly.
e initialize only: Particles will only be loaded at the beginning of the simulation.
* repeat loading: Particles will be loaded according to the parameters below.
start time: The time at which to start loading particles.
stop time: The time at which to stop loading particles.
load after initialization: Loading will repeat in all cells during the loading period.
load upon shift: Load particles into cells brought into the simulation by a moving window.

scaling factor: This will determine the minimum value, maximum value, and scaling factor applied to the field
scaling electrons. So for example with a minimum value of 10, and a scaling factor of 3, that individual electron is
charged to 30V.

minimum scaling factor: The minimum voltage of the particles loaded.
maximum scaling factor: The maximum voltage of the particles loaded.

number of scale factors: The number of scale factors, or steps, between the minimum scaling
factor and maximum scaling factor.

volume: The volume in which to load particles.

e cartesian 3d slab

2.11. Particle Dynamics 47

VSim Reference Manual, Release 11.0.1-r3016

* cylindrical 2d slab

Additional Features:

Fewer additional features are available for Field Scaling Electrons. The only emitter available for Field Scaling
Electrons is a secondary emitter.

e Secondary Electron Emitter

And the only available particle boundary conditions are: Absorbing, Boundary Absorb and Save, Cut-Cell Absorb and
Save, Interior Absorb and Save, and Reflecting.

* Properties of Particle Boundary Conditions

Particle Emitters

Shape Settable Flux Emitter

All particle types may emit from a shape settable flux emitter. Certain emission specifications are only available based
on particle type and particle weights specification. Available in cartesian coordinate simulations only.

start time Time to start emitting particles.

stop time Time to stop emitting particles.

emission specification: Specification of the emitted particles, note that the specification options vary for
constant or variable/managed weight particles.

* emission current density: Only available with variable/managed weight specified particles.

emission current density: Specify the current density of the emitter (amps/meter*2). Can be a
spatial profile.

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

average velocity O0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

thermal velocity O0: A spread (standard deviation) for particle speeds in the O direction.
thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

* emission flux: Only available with variable/managed weight specified particles.

emission flux: Specify the flux of the emitter (particles/meter*2). Can be a spatial profile.

48

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

— average velocity O0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

— average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the O direction.
— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

* emission current: Only available with constant weight particles.

emission current: Specify the total emitted current per second from the emitter (amps/second).

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

— average velocity O0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

— average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the O direction.
— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

* emission rate: Only available with constant weight particles.

emission rate: Specify the total emitted particles per second from the emitter (particle/second).

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

— average velocity O0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

2.11.

Particle Dynamics 49

VSim Reference Manual, Release 11.0.1-r3016

— average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the O direction.

— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

* Fowler Nordheim Emission: Specify particle emission according to the Fowler-Nordheim model
(3.22). Only available with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring.

A: Coefficient A of the Fowler-Nordheim emission model.

B: Coefficient B of the Fowler-Nordheim emission model.

field enhancement: Multiplies the measured electric field by this amount.

Cv: Coefficient Cv of the Fowler-Nordheim emission model.

Cy: Coefficient Cy of the Fowler-Nordheim emission model.

e Richardson Dushman Emission:

Specify particle emission according to the Richardson-Dushman model (3.20). Only available
with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring. Parameter in
the Richardson-Dushman model.

field evaluation offset: The offset from the surface where the field resulting from the particle
is evaluated.

temperature (K): Temperature of the material from which emission is occurring. Parameter in the
Richardson-Dushman model.

field enhancement: Multiplies the measured electric field by this amount.

flux multiplier: Multiplies the resulting output current by this amount.

* Child Langmuir Emission: Specify particle emission according to the Child Langmuir model. Only
available with variable/managed weight electron particle species.

* space charge limited emission: This will limit the current to provide a more consistent emission
current, providing higher accuracy particularly in explosive emission cases, such as a pulsed power magnetron.
For non pulsed-power simulations it is not necessary.

* average
* average
* average
* thermal
* thermal

e thermal

velocity
velocity
velocity
velocity
velocity

velocity

0: The average (mean) speed of particles in the O direction.
1: The average (mean) speed of particles in the 1 direction.
2: The average (mean) speed of particles in the 2 direction.
0: A spread (standard deviation) for particle speeds in the O direction.
1: A spread (standard deviation) for particle speeds in the 1 direction.

2: A spread (standard deviation) for particle speeds in the 2 direction.

50

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

emission surface The surface off of which to emit.
object name: The name of the geometry off of which to emit.

emission offset: The distance away from the object that emitted particles are placed, as a fraction of a
cell length.

macroparticle emission: Only available with variable/managed weight particles. This allows for the spec-
ification of the macroparticle emission independent of the emitted particles. Used to handle computational
concerns around macroparticle weight.

macroparticle rate: Number of macroparticles to emit per timestep. This value can be modified by the
macroparticle emission profile.

macroparticle emission profile: Spatial profile for emission of the macroparticles. If this corre-
sponded to half of the emissions shape, half of the number of macroparticles specified in macroparticle
rate would be emitted, while the emission specification would be unaffected.

Slab Settable Flux Emitter

All particle types may emit from a slab settable flux emitter. Certain emission specifications are only available based
on particle type and particle weights specification. Available in all coordinate simulations.

start time Time to start emitting particles in seconds.
stop time Time to stop emitting particles in seconds.

emission specification Specification of the emitted particles, note that the specification options vary for
constant or variable/managed weight particles.

* emission current density

emission current density Specify the current density of the emitter (amps/meter2).
Can be a spatial profile.

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission object. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

— average velocity O0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

— average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the O direc-
tion.

— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

2.11. Particle Dynamics 51

VSim Reference Manual, Release 11.0.1-r3016

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

* emission flux
emission flux Specify the flux of the emitter (particles/meter"2). Can be a spatial profile.

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission surface. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

— average velocity O0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

— average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the 0 direc-
tion.

— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

* emission current

emission current Specify the total emitted current per second from the emitter
(amps/second).

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission surface. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

— average velocity O0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

— average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the O direc-
tion.

52 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

* emission rate

emission rate Specify the total number of particles emitted per second (particles/second)

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission surface. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

— average velocity 0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

— average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

— thermal velocity O0: A spread (standard deviation) for particle speeds in the O direc-
tion.

— thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

— thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

Only available with variable/managed weight electron particle species.
work function [eV]: Work function of the material from which emission is occurring.
A: Coefficient A of the Fowler-Nordheim emission model.
B: Coefficient B of the Fowler-Nordheim emission model.
field enhancement: Multiplies the measured electric field by this amount.
Cv: Coefficient Cv of the Fowler-Nordheim emission model.

Cy: Coefficient Cy of the Fowler-Nordheim emission model

model. Only available with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring.
Parameter in the Richardson-Dushman model.

field evaluation offset:

temperature (K): Temperature of the material from which emission is occurring. Pa-
rameter in the Richardson-Dushman model.

field enhancement: Multiplies the measured electric field by this amount.

* Fowler Nordheim Emission Specify particle emission according to the Fowler-Nordheim model.

* Richardson Dushman Emission Specify particle emission according to the Richardson-Dushman

2.11. Particle Dynamics

53

VSim Reference Manual, Release 11.0.1-r3016

flux multiplier: Multiplies the resulting output current by this amount.

* Child Langmuir Emission Specify particle emission according to the Child Langmuir model.
Only available with variable/managed weight electron particle species.

* space charge limited emission: This will limit the current to provide a more consistent emis-
sion current, providing higher accuracy particularly in explosive emission cases, such as a pulsed power
magnetron. For non pulsed-power simulations it is not necessary.

* average velocity O0: The average (mean) speed of particles in the O direction.

* average velocity 1: The average (mean) speed of particles in the 1 direction.

* average velocity 2: The average (mean) speed of particles in the 2 direction.

* thermal velocity

1
2

* thermal velocity O0: A spread (standard deviation) for particle speeds in the O direction.
1: A spread (standard deviation) for particle speeds in the 1 direction.
2

* thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

emission surface
* lower x The lower x simulation boundary.
* lower y The lower y simulation boundary.
* lower z The lower z simulation boundary.
e upper x The upper x simulation boundary.
* upper y The upper y simulation boundary.
* upper z The upper z simulation boundary.

emission offset The distance away from the object that emitted particles are placed, as a fraction of a cell
length.

macroparticle emission Only available with variable/managed weight particles. This allows for the spec-
ification of the macroparticle emission independent of the emitted particles. Used to handle computational
concerns around macroparticle weight.

macroparticle rate Number of macroparticles to emit per timestep. This value can be modified by the
macroparticle emission profile.

macroparticle emission profile Spatial profile for emission of the macroparticles. If this corre-
sponded to half of the emissions shape, half of the number of macroparticles specified in macroparticle
rate would be emitted, while the emission specification would be unaffected.

NOTE: To allow the user to emit from non-Maxwellian probability distribution functions, one can import a Python
SpaceTimeFunctions. The easiest way to do this is to right-click with your mouse on the component of the mean
velocity you wish to emit (for example mean velocity 0) then click on Assign SpaceTimeFunction and finally choose
the python SpaceTimeFunction you have already defined. It is best not to mix this method with the default method
of choosing the velocity from a Maxwellian. Therefore, when you write your python SpaceTimeFunction, include all
drift- and thermal-velocity terms in the Python function. Then leave the thermal velocity 0 option set to 0.0. Also,
all three components are independent. So if your python function depends only on component 0, then you could treat
the other two components as Maxwellian and fill in the mean velocity and thermal velocity options using the methods
discussed above for components 1 and 2.

Secondary Electron Emitter

Secondary electrons can be emitted from a electron species, charged particle species, or neutral particle species. They
can then be emitted into a separate electron species, or into the same electron species.

54 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

To specify a secondary emitter an emitter boundary type must be chosen, as well as an emission specification algorithm.

The available types of emitter boundaries are.

* boundary emitter This is any Boundary Absorb and Save boundary condition, no other specification is
necessary.

* cut cell emitter This is any Cut-Cell Absorb and Save boundary condition, no other specification is
necessary.

* interior emitter Thisis any Interior Absorb and Save Boundary Condition. It does require specification
of a few more parameters.

emission axis The axial direction particles will be emitted in.

emission direction Either positive or negative, particles will be emitted in this direction
along the emission axis.

emission coordinate

The precise coordinate at which the emission will occur. Effectively this is an offset from the position of the parti
boundary condition.

4 types of emission specification are available in VSim.

* material properties This will emit particles according to the Furman and Pivi algorithm for either cop-
per or stainless steel. If using variable, or managed weight particles it is also necessary to specify a minimum
weight for the emitted particle.

* constant probability This will emit particles with a predefined probability, between 0.0 and 1.0.

* simple A secondary emitter that at most emits a single secondary electron macroparticle. An instance of
simpleSec, follow the link for more information.

emission probability The probability of a particle being emitted. This is slightly differ-
ent from the constant probability secondary electron emitter as this will emit only a single
electron, with a prescribed probability independent of all other factors.

emitted energy The energy of the emitted electrons if constant weight particles are used.

e Furman and Pivi This will emit electrons according to the Furman and Pivi algorithm. See table 1 of [?]
For an example of how these are computed. Note this is only available for use with cut cull emitters.

EO Total energy of the secondary electron yield, must be multiplied by ELEMCHARGE.
D_MAX Max Delta of the secondary electron yield.

minimum weight Only specified if using a variable or managed weight particle species, the emit-
ted secondary electron must be above this weight to be emitted.

Sputter Emitter

Neutral particle types may sputter from other particle species.
description A space to provide a descriptive comment of the emitter.
emitter type The type of emitter to use, either a sputter emitter or interior sputter emitter.

e sputter emitter This type of emitter should be used when emitting off a simulation particle bound-
ary condition.

particle boundary condition The particle boundary condition to sputter particles from. It
must be of the type Boundary Absorb and Save. It can be a particle boundary condition from

2.11. Particle Dynamics 55

VSim Reference Manual, Release 11.0.1-r3016

a different particle species, which will cause incident particles of that species to sputter as the
neutral particle species.

material properties This will determine the type of atom that is sputtered. Should be the
same as the species to which this emitter is applied.

sputtered velocity sigma The standard deviation of the velocity distribution of emitted
particles.

e interior sputter emitter This emitter is for use when emitting off an interior particle boundary
condition.

particle boundary condition The particle boundary condition to sputter particles from. It
must be of the type Interior Absorb and Save or Cut Cell Absorb and Save. It can be a particle
boundary condition from a different particle species, which will cause incident particles of that
species to sputter as the neutral particle species.

material properties This will determine the type of atom that is sputtered. Should be
the same as the species to which this emitter is applied.

sputtered velocity sigma The standard deviation of the velocity distribution of emit-
ted particles.

emission axis The axis along which particles are to be emitted, O for the Oth dimension, 1
for the 1st dimension or 2 for the 2nd dimension.

emission direction Set to either positive or negative, this is the direction in which parti-
cles are emitted.

emission coordinate The coordinate at which particles are actually emitted. Effectively
this is an offset from the position of the particle boundary condition.

Properties of Particle Boundary Conditions
Particle boundary conditions may be set to any particle type. If a particle boundary condition is not set on a simulation
boundary, it is automatically set to absorbing.

Absorbing: This type of particle boundary condition will absorb incident particles. It will not save any data from
them, so they may not be used in histories or secondary emitters.

volume

* lower x slab

* lower y slab

* lower z slab

* upper x slab

* upper y slab

* upper z slab

¢ cartesian 3d slab

¢ cylindrical 2d slab
* index 3d slab

Boundary Absorb and Save: This type of boundary condition will absorb incident particles and save them for
other uses, such as histories or secondary emission.

volume: The simulation boundary over which to apply this condition.

56 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Boundary Accumulate: Incident particles will be accumulated on this boundary and not allowed to move. This
allows for the charging of a simulation boundary. The accumulated particles will be stored in a new particle
species, appended with the prefix heavy.

volume: The simulation boundary to accumulate particles on.

Boundary Diffuse Reflector: This type of particle boundary condition will reflect particles back into the
simulation space, with an user supplied velocity. It may only be applied on simulation boundaries.

¢ average velocity 0
* average velocity 1
* average velocity 2
* thermal velocity 0
¢ thermal velocity 1
e thermal velocity 2
* volume
lower x slab
lower y slab
lower z slab
upper x slab
upper y slab
upper z slab
lower r slab
upper r slab

Cut-Cell Absorb and Save: This type of boundary condition will absorb incident particles and save them for
other uses, such as histories or secondary emission. It may be applied to geometries. In VSim9.0, only one
Cut-Cell Absorb and Save boundary condition may be used per particle species. If this boundary condition is
used Interior Absorb and Save boundary conditions may not be used.

volume
* object name The name of the geometry over which to apply this condition.

Cut-Cell Accumulate: Incident particles will be accumulated on this boundary and not allowed to move. This
allows for the charging of a shape The accumulated particles will be stored in a new particle species, appended
with the prefix heavy.

volume: The shape to accumulate particles on.

Interior Absorb and Save: This type of boundary condition will absorb incident particles and save them for
use with histories or secondary emission. It may be set to an internal volume of the simulation space.

volume: Depending on simulation properties this will be either a:
¢ cylindrical 2D slab
* cartesian 3D slab

Interior Accumulate: Incident particles will be accumulated on this boundary and not allowed to move. This
allows for the charging of a user specified interior plane. The accumulated particles will be stored in a new
particle species, appended with the prefix heavy.

volume

2.11. Particle Dynamics 57

VSim Reference Manual, Release 11.0.1-r3016

xMin The minimum x position of the boundary condition.

xMax The maximum x position of the boundary condition.

yMin The minimum y position of the boundary condition.

yMax The maximum y position of the boundary condition.

zMin The minimum z position of the boundary condition.

zMax The maximum z position of the boundary condition.
surface The surface of the described volume to accumulate particles on.

Interior Diffuse Reflector: This type of particle boundary condition will reflect particles back into the
simulation space, with an user supplied velocity. It may only be applied on internal planes of the simulation
space

average velocity 0
average velocity 1
average velocity 2
thermal velocity 0
thermal velocity 1
thermal velocity 2
orthogonal direction

Incoming direction of particles to apply the boundary condition on. Set as negative if particles are
coming from the negative direction and positive if particles are coming from the positive direction

negative x
x coordinate x coordinate of the boundary condition.
lower y coordinate lowery coordinate of the boundary condition.
lower z coordinate lower z coordinate of the boundary condition.
upper y coordinate upper y coordinate of the boundary condition.
upper z coordinate upper z coordinate of the boundary condition.
negative y
y coordinate y coordinate of the boundary condition.
lower x coordinate lower x coordinate of the boundary condition.
lower z coordinate lower z coordinate of the boundary condition.
upper x coordinate upper x coordinate of the boundary condition.
upper z coordinate upper z coordinate of the boundary condition.
negative z
z coordinate z coordinate of the boundary condition.
lower x coordinate lower x coordinate of the boundary condition.
lower y coordinate lower y coordinate of the boundary condition.
upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate uppery coordinate of the boundary condition.

58 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

positive

X

x coordinate x coordinate of the boundary condition.

lower
lower
upper
upper

positive

Y

y

z

Y

coordinate lower y coordinate of the boundary condition.
coordinate lower z coordinate of the boundary condition.
coordinate upper y coordinate of the boundary condition.

coordinate upper z coordinate of the boundary condition.

y coordinate y coordinate of the boundary condition.

lower
lower
upper
upper

positive

X

z

X

z

z

coordinate lower x coordinate of the boundary condition.
coordinate lower z coordinate of the boundary condition.
coordinate upper x coordinate of the boundary condition.

coordinate upper z coordinate of the boundary condition.

z coordinate z coordinate of the boundary condition.

lower

X

lower y

upper x

upper

Interior Partial

which they are reflected. This is a one way particle boundary condition, as set by the orthognal direction.

orthogonal direction: Incoming direction of particles to apply the boundary condition on.

negative

Y

coordinate lower x coordinate of the boundary condition.
coordinate lower y coordinate of the boundary condition.
coordinate upper x coordinate of the boundary condition.

coordinate upper y coordinate of the boundary condition.

Transmitter: An interior partial transmitter will transmit a user specified fraction of the
incident particles and either absorb or reflect the remainder. If reflected the user can specify the velocity with

X

x coordinate x coordinate of the boundary condition.

lower
lower
upper
upper

negative

Y

y

z

Y

coordinate lower y coordinate of the boundary condition.
coordinate lower z coordinate of the boundary condition.
coordinate upper y coordinate of the boundary condition.

coordinate upper z coordinate of the boundary condition.

y coordinate y coordinate of the boundary condition.

lower
lower
upper
upper

negative

X

z

X

z

coordinate lower x coordinate of the boundary condition.

coordinate lower z coordinate of the boundary condition.

coordinate upper x coordinate of the boundary condition.

coordinate upper z coordinate of the boundary condition.

z coordinate z coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

2.11. Particle Dynamics

59

VSim Reference Manual, Release 11.0.1-r3016

lower y coordinate lower y coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate uppery coordinate of the boundary condition.

positive

x coordinate x coordinate of the boundary condition.

X

lower y coordinate lower y coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper y coordinate uppery coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

positive

y coordinate y coordinate of the boundary condition.

Y

lower x coordinate lower x coordinate of the boundary condition.

lower
upper
upper

positive

z coordinate z coordinate of the boundary condition.

z coordinate lower z coordinate of the boundary condition.

x coordinate upper x coordinate of the boundary condition.

z coordinate upper z coordinate of the boundary condition.

z

lower x coordinate lower x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate uppery coordinate of the boundary condition.

non transmitted particles particles absorbed

particles reflected Note that the velocity corresponding to the orthogonal direction should al-
ways be specified as a positive number. If it is not this will be automatically corrected. average

veloc
avera

avera

ity O
ge velocity

ge velocity

thermal velocity

thermal velocity

thermal velocity

1
2
0
1

2

Specular Reflecting: This type of particle boundary condition will reflect particles back into the simulation

space. It may only be applied on simulation boundaries.

volume
e lower x
¢ lower y
e lower z

* upper x

slab
slab
slab
slab

60

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

* upper y slab
* upper z slab
¢ lower r slab

* upper r slab

Particle Loader

All kinetic particles have access to the same type of particle loader.
load density Whether to define the density of loaded particles by macroparticles or physical particles.

relative density Use a function defining the density of loaded particles in macroparticles. With constant
weight particles this is a value between 0 and 1 that will be multiplied by the macroparticles per cell of the
particles definition.

physical density Use a function defining the density of loaded particles in physical particles. With variable
weight particles this value is divided by the nominal density of the particles definition and is used to modify the
weight of each loaded macroparticle.

particle load placement Whether to use a bit-reversed or grid-defined placement of macroparticles in each
cell.

* grid Place particles equidistant on the grid lines of the simulation. Useful for starting simulations “cold”.

* macro particles per direction A vector describing the number of macroparticles to load per
cell on each axis.

* bit-reversed Places particles according to a bit-reversed algorithm. Number of macroparticles
loaded per cell is based on the value given in the weight setting of the particles definition.

load duration Whether to load the particles only at the beginning of the simulation or repeatedly.
e initialize only Particles will only be loaded at the beginning of the simulation.

* repeat loading Particles will be loaded according to the parameters below.

start time The time at which to start loading particles.

stop time The time at which to stop loading particles.

load after initialization Loading will repeat in all cells during the loading period.
— load upon shift Load particles into cells brought into the simulation by a moving window.

velocity distribution The velocity components of particles as they are loaded.

u0 The velocity in the Oth dimension.

ul The velocity in the 1st dimension.

u2 The velocity in the 2nd dimension.
volume The volume in which to load particles:

* cartesian 3d slab

¢ cylindrical 2d slab

2.11. Particle Dynamics 61

VSim Reference Manual, Release 11.0.1-r3016

Particle Loader from File Properties

All kinetic particles have access to the particle loader from file. This loader will use a user supplied .dat file consisting
of particle positions and velocities. This file should have at least six columns, separated by spaces (no commas). For
constant weight particles, the six columns specify x,y, z, P, P,, P, , where P; = ~yv;. For variable weight particles,
a 7th column needs to be included to specify the weight of the particle.

This file may then have a constant shift or custom density function applied to it, and can be reloaded multiple times
during the simulation run.

file Filename to load from. Must be located in the simulation directory.

particle shift in direction 0 A shift to apply to the Oth component of all loaded particles.
particle shift in direction 1 A shift to apply to the 1st component of all loaded particles.

particle shift in direction 2 A shift to apply to the 2nd component of all loaded particles.
density function A space time function which can modify the density of loaded particles.

load period [timesteps] If zero, particles only loaded at initialization, otherwise will load according to a
specified period.

2.11.2 Fluids
Fluids Properties

kind (not editable): Neutral Fluid
fluid temperature (K): The temperature of the neutral fluid in Kelvin.
molecule: Molecule of the neutral particle. A custom molecule is available for those not pre-defined.
* H: Hydrogen (atomic)
* H2: Hydrogen (molecular)
* He: Helium
e Ar: Argon
* Xe: Xenon
* Rn: Radon
* Kr: Krypton
* O: Oxygen (atomic)
* 02: Oxygen (molecular)
* Ne: Neon
* N: Nitrogen (atomic)
* N2: Nitrogen (molecular)
* custom molecule: Set the mass (in amu) and ionization energy (in eV) of a custom gas.
— mass [amu]: The mass of a single real particle in atomic mass units.
— ionization energy [eV]: The ionization energy of the molecule in electron volts.

volume: This volume value will change depending on your dimensionality and coordinate system.

62 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

xMin: The minimum x position of the background fluid.
xMax: The maximum x position of the background fluid.
yMin: The minimum y position of the background fluid.
yMax: The maximum y position of the background fluid.
zMin: The minimum z position of the background fluid.
zMax: The maximum z position of the background fluid.

fluid density: Whether to use a constant or variable fluid density. A constant density will not change due to
reactions with particles, while a variable will.

e constant fluid density: A constant fluid density is used to keep the fluid density constant after reac-
tions with particles.

* density: The value of the density of the neutral fluid per cubic meter.

* variable fluid density: A variable fluid density is used to allow the fluid density to vary due to
reactions with particles.

* density: The value of the density of the neutral fluid per cubic meter.

2.12 Collisions

2.12.1 Reactions Framework

The Reactions Framework surpasses previous interaction frameworks in both speed and flexibility in types of processes
that can be added to simulations. See Reactions Text-Setup Introduction, as well as relevant sections in the VSim User
Guide for more general information on the Reaction framework.

The Reaction framework collisions are available when particles in the Basic Settings element is set to include
particles and the collision framework is set to reactions. This will add a “Reactions” element to
appear within the “Particle Dynamics” element.

When a collision process is added to a simulation, the user must specify each of the products and reactants from the
drop down menus corresponding to each species in the chemical formula. Additionally, users must add a cross-sections
to determine the reaction probability as to determine how many particles to react with in each cell for each timestep.
Scroll to the bottom of this page for the reference on setting cross-sections.

Particle Particle Collisions

These collisions are for interactions between kinetically modeled particle species (for a process involving a background
gas use the “Particle Fluid Collisions”). The following interactions are available by right-clicking the “Particle Particle
Collisions” element and hovering the mouse pointer over the “Add CollisionType” menu.

* Charge Exchange A collision of the form A + BT — A' + B. This is the implementation of Charge
Exchange in the visual setup.

energyLoss The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will
give an elastic collision.

e Impact Ionization A collision of the form A + B — A% + B + e. This is the implementation of
Impact lonization in the visual setup. If one of the reactant species is an electron, the Electron lonization
productGenerator is used. Ionization energies are taken from the appropriate species blocks.

2.12. Collisions 63

VSim Reference Manual, Release 11.0.1-r3016

Note: If an electron is involved in an ionization process, the “product distribution” attribute won’t affect the
simulation. The scattering distribution is determined automatically by a physical model.

Elastic A collision of the form A + B — A + B. This is the implementation of Binary Elastic in the visual
setup.

energyLoss The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will
give an elastic collision.

Dissociative Double Ionization A collision of the form AB + C — AT + Bt + C + 2e. This is
the implementation of Dissociative lonization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

Dissociative Single Ionization A collision of the form AB + C — At + B + C + e. This is
the implementation of Dissociative lonization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

Dissociative Recombination A collision of the form ABT 4 ¢ — A + B. This is the implementation
of Dissociative Recombination in the visual setup.

dissociation energy The threshold energy for the reaction in eV. So, a pair of reactants will need at
least this much relative energy (i.e. energy in center of momentum frame) in order to react. If the reaction
occurs then this much energy is lost from the products to potential energy. If this is zero, then energy will
not be lost. If negative, then the products will gain kinetic energy.

General Binary Reaction A collision of the form A + B — C + D. This is the implementation of
Binary Reaction in the visual setup.

threshold energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (i.e. energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost from the products to potential energy. If this is zero, then energy will not be
lost. If negative, then the products will gain kinetic energy.

Electron Impact Dissociation A collision of the form AB+e — A+ B+ e. This is the implemen-
tation of Electron Impact Dissociation in the visual setup.

dissociation energy The energy required to dissociate the molecule in eV.

Electron Attachment A collision of the form A + e — A~. This is the implementation of Electron
Attachment in the visual setup.

binding energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs then
this much energy is lost.

Negative Ion Detachment A collision of the form A~ + B — A + B + e. The neutral reactant must be
a kinetically modeled species. This is the implementation of Negative lon Detachment in the visual setup.

detachment energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least
this much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost.

64

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

* Excitation A collision of the form A + B — A* 4+ B. This is the implementation of Binary Excitation in
the visual setup.

excitation energy The potential energy, in eV, gained by the excited species (a positive value for this
attribute will result in an energy loss from the simulation). This is also a threshold energy. The reaction
will not occur between reactant that have a center of mass energy less than this value.

* Inelastic Electron Scattering A collision of the form e + A — e + A. This is the implementation
of Electron Scatter in the visual setup.

scatter type

— VahediSurendra Use the Vahedi-Surendra model to determine the scattering distrubution. See Electron
Scatter for more information.

— isotropic Use an isotropic scattering distribution.

e Recombination A collision of the form AT + e — A. This is the implementation of Binary Recombination
in the visual setup, for the specific case of electron recombination.

Particle Fluid Collisions

These collisions are for interactions between kinetically modeled particle species and a background gas. The following
interactions are available by right-clicking the “Particle Fluid Collisions” element and hovering the mouse pointer over
the “Add CollisionType” menu.

¢ Elastic A collision of the form A + B — A 4 B. This is the implementation of Binary Elastic in the visual
setup.

energyLoss The user can choose either fully elastic which conserves kinetic energy, or partially
elastic in which case the user

* Charge Exchange A collision of the form A + BT — AT + B. This is the implementation of Charge
Exchange in the visual setup.

energyLoss The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will
give an elastic collision.

* Impact Excitation A collision of the form A + B — A* 4+ B. This is the implementation of Binary
Excitation in the visual setup.

excitation energy The potential energy, in eV, gained by the excited species (a positive value for this
attribute will result in an energy loss from the simulation). This is also a threshold energy. The reaction
will not occur between reactant that have a center of mass energy less than this value.

e Impact Ionization A collision of the form A + B — A% + B + e. This is the implementation of
Impact Ionization in the visual setup. If one of the reactant species is an electron, the Electron Ionization
productGenerator is used. Ionization energies are taken from the appropriate species blocks.

Note: If an electron is involved in an ionization process, the “product distribution” attribute won’t affect the
simulation. The scattering distribution is determined automatically by a physical model.

* Electron Attachment A collision of the form A + e — A~. This is the implementation of Electron
Attachment in the visual setup.

binding energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs then
this much energy is lost.

2.12. Collisions 65

VSim Reference Manual, Release 11.0.1-r3016

* Negative Ion Detachment A collision of the form A~ + B — A + B + e. The neutral reactant must be
a kinetically modeled species. This is the implementation of Negative Ion Detachment in the visual setup.

detachment energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least
this much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost.

* Inelastic Scattering A collision of the form e + A — e + A. This is the implementation of Electron
Scatter in the visual setup.

scatter type

— VahediSurendra Use the Vahedi-Surendra model to determine the scattering distrubution. See Electron
Scatter for more information.

— isotropic Use an isotropic scattering distribution.

* General Binary Reaction A collision of the form A + B — C + D. This is the implementation of
Binary Reaction in the visual setup.

threshold energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (i.e. energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost from the products to potential energy. If this is zero, then energy will not be
lost. If negative, then the products will gain kinetic energy.

* Dissociative Double Ionization A collision of the form AB + C — A" + Bt + C + 2e. This is
the implementation of Dissociative lonization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

* Dissociative Single Ionization" A collision of the form AB + C — A' + B + C + e. This is
the implementation of Dissociative Ionization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

Three Body Reactions

¢ Three Body Recombination A collision of the form AT + ¢+ B — A + B. This is the implementation
of Three Body Recombination in the visual setup.

Field lonization Process
The “Fluid Field” and “Particle Field” ionization processes both use Field lonization productGenerator. The
distinction is made in the visual setup for benefit of the user.

* Particle Field Ionization This is the implementation of Field Ionization for ionization of kinetically
modeled particles by electric fields in the visual setup.

cross section type

— DCADK Use this when the time step resolves the oscillations of Electric field. See Field lonization
DCADK for more information.

66 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

— Average ADK Use this when the time step is much larger than the oscillations of Electric field. See Field
Ionization Average ADK for more information.

* Fluid Field Ionization This is the implementation of Field Ionization for ionization of background
gases by electric fields in the visual setup.

cross section type

— DCADK Use this when the time step resolves the oscillations of Electric field. See Field lonization
DCADK for more information.

— Average ADK Use this when the time step is much larger than the oscillations of Electric field. See Field
lonization Average ADK for more information.

Decay Process

* Decay This is the implementation of Decay in the visual setup

lifetime The lifetime (in seconds) of the unstable species.

Emission Process

* Photon Emission This simulates the emission of an untracked photon from a particle. Ths is the imple-
mentation of Radiation Reaction

Cross-Sections

Interpolated from 2Column Data

Import cross sections from a data file with the independent variable (either velocity or energy) in the first column and
the cross-section (dependent variable) in the second column. The imported file should NOT have any header.

cross section variable The unit of the independent variable in the first column of the data file. Either
velocity, or energy.

cross section data file The name of the cross section data file. This file must be in the run directory.

Constant Cross Section

This can be used to set a user defined function for the cross section.

constant A constant value (in m”2) for the cross section.

Power Law Cross Section

Use a cross section of the form Az, See Power Law Cross-Section for more information.
coefficient The value for the constant A in the expression above.
exponent The value for the constant E in the expression above.

cross section variable The unit of the independent variable (x in the expression above). Either velocity,
or energy.

2.12. Collisions 67

VSim Reference Manual, Release 11.0.1-r3016

Exponential Polynomial Cross Section

The cross-sections will take the functional from of the equation:

1 N Bln(y) + C x (y — "toZero”)
o) =1 (4mny) +)

y+ D

where
y=ua/I

See Exponential Polynomial Cross-Section for more information.

Acoeff The value for the fitting constant A in the formula above.

Bcoeff The value for the fitting constant B in the formula above.

Ccoeff The value for the fitting constant C in the formula above.

Dcoeff The value for the fitting constant D in the formula above.

Icoeff The value for the fitting constant / in the formula above. A scaling factor for the independent variable, x.

toZero Sets the value for the toZero parameter in the formula above. Enter either “0” to have the cross-section
go to zero at threshold, or “1” to have the cross-section go to a non-zero value.

cross section variable Set the independent variable, x, in the equation above. Options are:
* velocity

* energy

Additional Collision Attributes

update periodicity This sets how frequently the reaction is carried out. See the description of
updatePeriod in RxnProcessSettings Block for more information. The update periodicity setting in the
Visual Setup will set the updatePeriod when the . sdf is translated to a . in file. Options are:

every timestep The reaction update will occur every timestep.
update period not editable; defaulted to 1

custom Set a custom update periodicity.
update period Enter a constant to set the update periodicity.

product distribution This will apply an anisotropy to the cross-section. See the section Anisotropy for more
information. This attribute is only available for collisions with two reactant particles (or fluids) and two product
particles (or fluids) except for the Inelastic Electron Scattering process which as the anisotropy set according to
the Vahedi-Surendra model.

isotropic distribution The default. Set no preference for forward or backward scattering.
anisotropic distribution Add a preference for forward or backward scattering.

anisotropy Set a value between -1 and 1 (inclusive). A value of -1 will give full backward scattering
bias, and 1 will give full forward scattering bias.

68 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

2.12.2 Reduced Collisions

The “reduced” collisions framework is an implementation of the ImpactCollider framework in the Visual Setup. Pro-
cesses in this framework are limited to kinetic particles interacting via elastic, excitation, ionization, and a set of charge
exchange and momentum exchange collisions with a background gas species.

The “reduced” collisions are available when particles in the Basic Settings element is set to include
particles and the collision framework is setto reduced. This will add a “ReducedCollisions” element
to appear with in the “Particle Dynamics” element.

Electron Neutral Fluid Collisions
To include a collision process, right-click on the Electron Neutral Fluid Collision in the element tree and choose Add
CollisionProcess to choose one of either Elastic, Excitation, or lonization.

neutral gas Select the neutral gas to use in the collision. The drop down will automatically populate
with available pre-defined BackgroundGases elements.

impact particles Select the electron particles to use in the collision. The drop down will automat-
ically populate with available pre-defined KineticParticles of kind = Electrons.

Elastic

kind (not editable) Elastic

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

* user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface.

cross section data file The name of the file containing the cross-section data.
e product distribution The type of scattering.
— isotropic

— Vahedi-Surendra

Excitation

kind (not editable) Excitation

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

* user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface.

cross section data file The name of the file containing the cross-section data.
e product distribution The type of scattering:
— isotropic

— Vahedi-Surendra

2.12. Collisions 69

VSim Reference Manual, Release 11.0.1-r3016

lonization

kind (not editable) Ionization
product electrons The resultant electrons from the impact ionization collision.
product ions The resultant ions from the impact ionization collision.

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

¢ user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface

cross section data file The name of the file containing the cross-section data.
* product distribution The type of scattering:
— isotropic

— Vahedi-Surendra

lon Neutral Fluid Collisions
To include a collision process, right-click on the Ion Neutral Fluid Collision in the element tree and choose Add
CollisionProcess to choose one of either Charge Exchange or Momentum Exchange.

neutral gas Select the neutral gas to use in the collision. The drop down will automatically populate
with available pre-defined BackgroundGases elements.

impact particles Select the charged particles to use in the collision. The drop down will automat-
ically populate with available pre-defined KineticParticles of kind = Charged Particles.

Charge Exchange

kind (not editable) Charge Exchange

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

* built in The built-in collisions utilize existing internal collision cross-section data.

* user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface.

cross section data file The name of the file containing the cross-section data.
e product distribution The type of scattering.

— backward

Momentum Exchange

kind (not editable) Momentum Exchange

70 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

* built in The built-in collisions utilize existing internal collision cross-section data.

* user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface

cross section data file The name of the file containing the cross-section data.
* product distribution The type of scattering.

isotropic

2.13 Histories

Histories provide data from each time step of a simulation. They can provide useful diagnostics to make sure your
simulation is proceeding as intended. Some histories are only available with certain simulation setups (e.g. only
available in electromagnetic simulation, or only available in simulations with particles).

To add a history, right-click the “Histories” element of the setup tree then navigate to the history to be added to the
simulation

2.13.1 Array History

An Array History will output an array of data for each time-step.
Field Slab Data Store the value of a field at every timestep within a specified 3D volume.
kind (not editable) Field Slab Data
description A comment to describe the history.
field Choose the field to record. Options for electromagnetic simulations are:
* Electric Field
* Magnetic Field
Options for electromagnetic simulations are:
* Phi
* Charge Density
* Electric Field
volume The volume inside of which to collect the field data.
* cartesian 3d slab
— xMin The minimum x position of the box.
— xMax The maximum x position of the box.
— yMin The minimum y position of the box.
— yMax The maximum y position of the box.
— zMin The minimum z position of the box.

— zMax The maximum z position of the box.

2.13. Histories 4

VSim Reference Manual, Release 11.0.1-r3016

Particle Momentum Calculate the total momentum for a particular set of particles in the whole simulation do-
main. All three components of the momentum are recorded. Thus, for some simulations in 1D or 2D, some
components of the momentum may always be zero.

kind (not editable) Particle Momentum

particles Select any of the previously defined KineticParticles in your simulation.
Far-Field Box Data ONLY AVAILABLE IN ELECTROMAGNETIC SIMULATIONS
kind (not editable) Far-Field Box Data

measurement time The way to define measurement time.

* seconds defined Gives specification of time in seconds.

— start time The time to start recording data for far field calculations (seconds).

— end time The time to stop recording data for far field calculations (seconds).

* timesteps defined Gives specification of time in timestep number.

— start time The time to start recording data for far field calculations (timesteps).

— end time The time to stop recording data for far field calculations (timesteps).

volume The volume to use for the box.

e cartesian 3d slab

xMin The minimum x position of the box.

xMax The maximum x position of the box.

yMin The minimum y position of the box.

yMax The maximum y position of the box.

zMin The minimum z position of the box.

zMax The maximum z position of the box.

* index 3d slab Index 3d slab is used in cases where absolute symmetry is necessary so grid
alignment must be guranteed.

lower
lower
lower
upper
upper
upper

index
index
index
index
index

index

2.13.2 Combo History

0

The lower grid cell of the box in the Oth direction.
The lower grid cell of the box in the 1st direction.
The lower grid cell of the box in the 2nd direction.
The upper grid cell of the box in the Oth direction.
The upper grid cell of the box in the st direction.

The upper grid cell of the box in the 2nd direction.

Combo Histories are used to create new histories by combining other histories. The operation is done at every time
step and the resulting output will be a 1D array of the value vs time. Any number of histories may be combined.

Note: Due to the nature of the combination process, a combo history will always use data from the pre-
vious timestep as compared to the other histories, and will be initialized with a value of 1. The Combined
history will not have data from the last timestep of the simulation.

72

Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable) Combination History

Constituent History As many constituent histories as desired may be added. The name of the
constituent history itself is not of particular importance.

* history name Select one previously defined Field or Particle History.
* coefficient This is a multiplying factor on the selected history.

* combination This operation will be applied to combine the history with all preceding con-
stituent histories. The order of operations is demonstrated in an example with three histories
of each below

add (coefficient]l *history name 1) + (coefficient2*history name 2) + (coefficient3*history
name 3)

subtract (coefficient]*history name 1) - (coefficient2*history name 2) - (coeffi-
cient3*history name 3)

multiply (((coefficient]*history name 1)) * (coefficient2*history name 2)) * (coeffi-
cient3*history name 3)

divide (((coefficient]*history name 1)) / (coefficient2*history name 2)) / (coeffi-
cient3*history name 3)

As the above examples show, using a multiply or divide operation on the third or greater con-
stituent history, will multiply or divide by the combination of all preceding histories.

Time Average This history can reference other particle and field histories, averaging them in the selected time
window.

kind (not editable) Time Average
history name The history to be averaged.

time window The time window to be doing the averaging in.

2.13.3 Field History

Field Histories record on a per time-step basis. Field histories are used to measure quantities such as the value or
energy of the field at a location. The output will be a 1D array of the value vs time.

Accelerating Voltage This history creates a test electron and measures the accelerating voltage received by
an electron traveling at a fixed velocity across a gap in a cavity structure. See acceleratingVoltage for a reference
defining ‘acclerating voltage’.

kind (not editable) Accelerating Voltage
description A comment to describe the history.

start coordinate 0 The starting position of the test electron in the x-direction in Cartesian simulations
(or z-direction in cylindrical simulations).

start coordinate 1 The starting position of the test electron in the y-direction in Cartesian simulations
(or r-direction in cylindrical simulations).

start coordinate 2 The starting position of the test electron in the z-direction in Cartesian simulations
(or phi-direction in cylindrical simulations).

end coordinate 0 The starting position of the test electron in the x-direction in Cartesian simulations (or
z-direction in cylindrical simulations).

end coordinate 1 The starting position of the test electron in the y-direction in Cartesian simulations (or
r-direction in cylindrical simulations).

2.13. Histories 73

VSim Reference Manual, Release 11.0.1-r3016

end coordinate 2 The starting position of the test electron in the z-direction in Cartesian simulations (or
phi-direction in cylindrical simulations).

velocity The velocity of the test electron. By default this is the speed of light.
Electric Field Energy Calculate the total energy of the electric field in the specified volume (Joules).
kind (not editable) Electric Field Energy
volume The region over which to calculate the field energy.
* simulation region Use the entire simulation domain.
e index 3d slab A user-defined volume based on cell indices.
lower indices The lower indices of the volume.
upper indices The upper indices of the volume.

EM Field Energy Calculate the total energy of the electromagnetic field in the specified volume (Joules). Only
available in electromagnetic simulations.

kind (not editable) EM Field Energy
volume The region over which to calculate the field energy.
e simulation region Use the entire simulation domain.
e index 3d slab A user-defined volume based on cell indices.
lower indices The lower indices of the volume.
upper indices The upper indices of the volume.
shape A volume based on a previously defined geometry.
* object name Select from a previously defined geometry.
Magnetic Field Energy Calculate the total energy of the magnetic field in the specified volume (Joules).
kind (not editable) Magnetic Field Energy
volume The region over which to calculate the field energy.
* simulation region Use the entire simulation domain.
* index 3d slab A user-defined volume based on cell indices.
lower indices The lower indices of the volume.
upper indices The upper indices of the volume.

Field at Position Record the specified field at the specified coordinates. All components of the field are
recorded into an array.

kind (not editable) Field at Position

field Select the desired field.

coordinate 0 The position coordinate in the Oth dimension, x in cartesian coordinates, z in cylindrical.
coordinate 1 The position coordinate in the 1st dimension, y in cartesian coordinates, r in cylindrical.
coordinate 2 The position coordinate in the 2nd dimension, z in cartesian coordinates.

representationRadius The size of the sphere used to show the field at position history in the setup
window. Does not impact the recorded history.

74 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Poynting Flux ONLY AVAILABLE IN ELECTROMAGNETIC SIMULATIONS

Calculates the integrated Poynting vector (energy flux) through the area defined by the min and max values.

kind (not editable) Poynting Vector

surface The plane to use.

.yz

.xy

offset The x offset from zero, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

offset They offset from zero, in meters.

xMin The location of the X minimum, in meters.

xMax The location of the X maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

offset The z offset from zero, in meters.

xMin The location of the X minimum, in meters.

xMax The location of the x maximum, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

EM Field On Plane ONLY AVAILABLE IN ELECTROMAGNETIC SIMULATIONS

Records E and B Field data in the plane of cells specified, typically used for computation of S Parameters using

computeSParams Analyzers. The Two histories created will be historyName*_E and *historyName_B.

kind (not editable) S Parameter

surface The plane to use.

.yz

offset The x offset from zero, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

offset They offset from zero, in meters.

xMin The location of the X minimum, in meters.

2.13. Histories

75

VSim Reference Manual, Release 11.0.1-r3016

xMax The location of the x maximum, in meters.
zMin The location of the z minimum, in meters.
zMax The location of the z maximum, in meters.
. xy

offset The z offset from zero, in meters.

xMin The location of the X minimum, in meters.
xMax The location of the x maximum, in meters.
yMin The location of the y minimum, in meters.
yMax The location of the y maximum, in meters.

Pseudo-potential This option is deprecated. Use ‘Pseudo-potential at Coordinates’ or ‘pseudo-potential
at Indices’ instead.

kind (not editable) Pseudo-potential
start indices The indices of the cells for the starting location.
end indices The indices of the cells for the ending location.

Pseudo-potential at Coordinates Calculates the pseudo-potential difference, in Volts, between two
points. The start point would correspond to the measure point, while the end point would correspond to the
reference.

kind (not editable) Pseudo-potential

start coordinate 0 The coordinate of the start point in the Oth dimension.
start coordinate 1 The coordinate of the start point in the 1st dimension.
start coordinate 2 The coordinate of the start point in the 2nd dimension.
end coordinate 0 The coordinate of the end point in the Oth dimension.
end coordinate 1 The coordinate of the end point in the 1st dimension.
end coordinate 2 The coordinate of the end point in the 2nd dimension.

Pseudo-potential at Indices Calculates the pseudo-potential difference, in Volts, between two points,
specified by grid index.

kind (not editable) Pseudo-potential
description A description of the potential difference.
start indices The indices of the cells for the starting location.

end indices The indices of the cells for the ending location.

2.13.4 Log History

A Log History will record data based on user specified logging method. A single log history may contain multiple
particle quantities.

Absorbed Particle Log Record information about each and every particle that strikes a chosen absorbing
surface. The output will be a 1D array of the value.

kind (not editable) Absorbed Particle Log

76 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

particle absorber Select the previously defined particle absorbing boundary condition. This must be a
ParticleBoundaryCondition that can Save.

particle quantity What information about the particle is to be recorded. For vector-like quantities
(position, velocity, and weight), you must select which component of the vector you wish to record in the
component option (0 —> x, 1 —>y, 2 —> z) in Cartesian, (0 —>r, 1 —> z, 2 —> phi) in Cylindrical.

particle time The time the particle strikes the absorber.

particle position The position of the particle when it is absorbed.

particle velocity The velocity of the particle when it is absorbed (Non-relativistic m/s).
particle weight The weight of the particle when it is absorbed.

particle energy The total relativistic energy of all the particles that are absorbed (Joules).

particle current The total current of all the particles that are absorbed (Amps, the charge divided
by timestep).

particle gamma velocity The gamma velocity of the particle when it is absorbed (relativistic
m/s).

particle charge The charge of the particle when it is absorbed (Coulombs).

particles in macro particle The number of particles in that macro particle when it is ab-
sorbed.

particle mass The total mass of the macro particle (kilograms).

2.13.5 Particle History

Farticle Histories record on a per time-step basis. Particle histories are used to measure quantities such as the total
number of particles in a simulation at each step, or the current absorbed at chosen absorbing surface at each step. The
output will be a 1D array of the value vs time.

Absorbed Particle Current Calculates the absorbed current on a specified particle absorber, in Amps.
kind (not editable) Absorbed Particle Current

particle absorber Select the previously defined particle absorbing boundary condition. This must be a
ParticleBoundaryCondition that can Save.

Absorbed Particle Power Calculates the power absorbed on a specified particle absorber, in Joules/second.
kind (not editable) Absorbed Particle Power

particle absorber Select the previously defined particle absorbing boundary condition. This must be a
ParticleBoundaryCondition that can Save particle data.

Emitted Current Records the emitted current from the specified particle emitter, in Amps.
kind (not editable) Emitted Current
particle emitter Select the previously defined particle emitting boundary condition.

Number of Macroparticles Calculates the total number of macroparticles in the simulation domain for the
specified KineticParticle.

kind (not editable) Number of Macroparticles
particles Select the name of the previously defined KineticParticles.

Number of Physical Particles Calculates the total number of real particles in the simulation domain for
the specified KineticParticle.

2.13. Histories 77

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable) Number of Physical Particles
particles Select the name of the previously defined KineticParticles.
Particle Energy Calculates the total energy in the simulation domain for the specified KineticParticle, in Joules.
kind (not editable) Particle Energy
particles Select the name of the previously defined KineticParticles.

Particle Energy Change from Boundary Calculates the energy change in a particle species due to a dif-
fuse reflector boundary condition.

kind (not editable) Particle Energy Change from Boundary

particle absorber Select the name of the boundary diffuse reflector particle boundary condition.

78 Chapter 2. Visual Setup

CHAPTER
THREE

TEXT SETUP

3.1 Global Variables

globalvariables

3.1.1 Global Variables

floattype (string)
Variable that defines the precision of real numbers in the simulation. For greater precision, use the value
double, otherwise use the option f1oat. You must define f1oattype in an input file.

dimension (integer)
Variable that defines the dimensionality (1D, 2D, or 3D) of the simulation. The variable dimension indicates
how many dimensions this simulation will use. The —dim command line parameter overrides this variable. You
must define dimension in an input file or on the command line.

dt (real)
Step size to use in the simulation. When choosing the step size for your simulation, you must consider stability
requirements. For example, for electromagnetic simulations, you should specify a step size that satisfies the
Courant condition. You can override the dt variable using the —dt command line option. You must define dt
in an input file.

nsteps (integer)
Number of steps to take. (In the case of a restart, nsteps is the number of additional steps.) This can be
overridden with the —n command line parameter. You must define nsteps in an input file or on the command
line.

dumpPeriodicity (integer)
How often to dump the data; indicates data is to be dumped whenever the time step has increased by this
amount. The command line parameter -d overrides this variable. Must have this defined in an input file or on
the command line.

dumpSteps (integer)
An alternative to dumpPeriodicity allowing an irregular specification of times steps in which to dump. Steps
should be in increasing order, but do not need to be evenly spaced. If the simulation runs successfully, or is
ended by clicking “Dump and Stop” a final dump will be written so that the simulation can be restarted from
the final dump. If the simulation ends with a crash, dumpSteps will not write a final dump, and it will not be
possible to restart the simulation from a previous dump.

This option can also be applied to individual field blocks to set the steps at which the particular field is dumped.
If dumpSteps is used in this way, care must be taken when restarting the simulation from a previous dump.

79

VSim Reference Manual, Release 11.0.1-r3016

dumpSteps (Expression)

Alternative to dumpPeriodicity in which an expression block of name dumpSteps is defined. Can be used to
provide an expression for dumpsteps. For example:

<Expression dumpSteps>

expression = or(mod(n+l, VPMW_DUMP_PERIOD) == 1 , mod(n-1, VPMW_DUMP_PERIOD)
—== 1), mod(n, VPMW_DUMP_PERIOD) == 1)
</Expression>

Will dump at the specified VPMW_DUMP_PERIOD, as well as at timestep = VPMW_DUMP_PERIOD + 1
and VPMW_DUMP_PERIOD + 2

verbosity (integer)

Specifies the amount of text output from a simulation run. Increasing the value of verbosity may aid in
debugging a simulation. The value can be 2V — 1, with 0 <= N <= 10. The values, 1 <= N <= 4
are for severe problems that will stop the simulation. The values, N >= 8 are for increasing levels of debug
information. The other levels are:

* verbosity=0, N = 0, NONE, no messages output.

e verbosity=31, N = 5, WARNING, include warnings in the output, which should be examined by the
user in order to fix any errors that could be affecting the simulation.

e verbosity=63, N = 6, NOTICE, include notices in the output, which are not necessarily issues that
need to be fixed, but should still be examined by the user.

e verbosity=127, N =7, INFO, normal output for informing the user of simulation progress.

randomSeeding (string, default seedDeterministicallyByDefault)

Specifies how Vorpal seeds the (pseudo) random number generators use, e.g., to determine ini-
tial particle velocities or whether a Monte Carlo collision occurs. The recommended option,
seedDeterministicallyByDefault allows different random number generators to be used for different
input blocks, with the seeds chosen deterministically based on the input block (fully qualified...1i.e., including
names of parent blocks) name and randomSeed. Another option, seedRandomlyByDefault generates
seeds from a separate random number generator, which is itself seeded according to the current time; if run
twice (with enough time separation to be resolved by the internal timer), a simulation will use different random
number sequences. For these options, each MPI rank in a parallel simulation uses a different seed. If random
seeds are explicitly specified in an input file block, the specified seeds are used. The seedGlobalRng option
(deprecated) uses the same random number generator for many (but not all) objects.

randomSeed (integer, between -1 and 2147483647, default 1)

A seed for generating (pseudo) random numbers. If randomSeeding =
seedDeterministicallyByDefault, then changing this value will change the seeds for all ran-
dom number generators used in a simulation. If this is set to -1 (the recommended option), then a
randomSeed will be chosen based on the current time. This option has a similar effect for randomSeeding
= seedGlobalRng, except it affects only the global random number generator (excluding input
blocks that take seed or randomSeed options). This option has no effect for randomSeeding =
seedRandomlyByDefault.

maxcellxing (integer)

In particle simulations in which the particles could ordinarily cross more than one cell in a time step and cause
out-of-bounds memory access (such as can happen in electrostatic simulations with non-relativistic dynamics),
you can impose a velocity limit to prevent the out-of-bounds memory access from occurring by using the max-
cellxing variable. For example, maxcellxing = 1 will limit the particle velocity so that the particle cannot
cross more than one cell per step. That is, if for any direction i, velocity_i * dt > dx_i, then the velocity is
reduced in magnitude so that velocity_i * dt<= dx_i for all i. Since imposing a velocity limit introduces error
into the simulation, for cases in which you must use the velocity limit for a significant number of particles, you
should lower the time step for the simulation.

80

Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sortPtcls (boolean, default = true)
Specifies whether or not you want Vorpal to sort the particles based on an algorithm that intelligently selects the
time step at which to sort. This can affect performance and may be a parameter that you want to examine on
your own for its effect on performance.

dnSortMin (integer)
This parameter is used to instruct Vorpal what is the minimum number of time steps before sorting of the
particles. This allows sorting to be deterministic and thus repeatable.

dnSortMax (integer)
This parameter is used to instruct Vorpal what is the maximum number of time steps before sorting of the
particles. This allows sorting to be deterministic and thus repeatable.

useGridBndryRestore (boolean)
Switch to control the method for obtaining grid boundary information on restarts. The default (true) is to input
boundary information from the dump files. Setting this switch to false means that the grid boundary information
is re-calculated, which can be computationally more intensive.

useHistoryRestore (boolean)
The default(true), restores histories so that the dump and restart yields the same result as simply continuing
simulation (also important for feedback); if false, treat history dump file as if empty, and append data only with
no regard for previous data

copyHistoryAtEachDump (boolean)
The default(true), copies the History file at each dump in a HistoryOld file before appending the new history
data. This is a safety measure in case the history file gets corrupted. If false, the data is simply appended to the
History file, without creating a back up (or copied) file.

stepPrintPeriodicity (integer)
How often to print out the “Taking step n at clock time...” message as the simulation runs. By default, this
option is 1 and the message is printed every step. If this option is 0, the message will never be printed. If this
option is 10, the message will be printed for every tenth step. This option is useful for reducing the amount of
output of simulations that run many time steps.

timingAnalysisPeriodicity (integer)
How often to calculate (and print) rough timing diagnostics to evaluate the speed of a simulation. This is
useful for analyzing load-balancing and parallel scaling or for charactarizing the computational performance of
simulations.

By default, this option is -1, and no timings are calculated; if 0, timings are printed out for the entire simulation.
If a positive integer, timings will be printed out periodically. For example, if this option is 1000, the timing for
each set of 1000 time-steps will be printed out (as well as a summary for the entire simulation).

The output is repeated in a single-line format that can be converted into a .csv (comma separated values) file us-
ing the command line utility grep. For example, to extract the output of t imingAnalysisPeriodicity
from mySimulation.out into a new file timingAnalysis.csv that can be opened by most spreadsheet soft-
ware, one would execute grep —-oP ' (?<=timingAnalysis:,).*' mySimulation.out >
timingAnalysis.csv.

Timings are calculated from wallclock-time and will be affected by other activity. The timing resolution varies
from system to system. Short times (much less than one second) may be inaccurate.

Global Variables Specific To Moving Windows

The two global parameters downShiftDir and downShiftPos apply to Vorpal’s moving window
feature. The moving window feature allows the simulation window to move at the speed of light in the
chosen direction. This feature is used to reduce the size of the simulation box while following the physics

3.1. Global Variables 81

VSim Reference Manual, Release 11.0.1-r3016

phenomenon of interest such as a laser pulse or a particle beam propagating at a velocity close to the speed
of light.

downShiftDir (integer)
Control variable for the moving window option that sets the direction of the moving window. If the
downShiftDir parameter is not specified or set to —1 for, Vorpal does not use the moving window. Set
to a number between 0 and dimension to cause a down shift (moving window) in that direction.

downShiftDir Parameter Values

* null (If no value specified, Vorpal does not use the moving window.)

e -1 (If -1 is specified, Vorpal does not use the moving window)

¢ 0 (x direction)

e 1 (y direction)

¢ 2 (z direction)

downShiftPos (real)

Distance at which Vorpal should activate the moving window feature. Vorpal calculates the time equal to this
distance divided by the speed of light to determine when to turn on the moving window. The downShiftPos

parameter may be set to a variable such as DSHFTPOS, which has been assigned a real number value such as
0.95**L.X*, where LX is the length of the grid along the x axis.

OAFunc shiftSpeed (block)
Function (of one variable) that returns the velocity of the moving window (in m.s 1) as a function of time.
When using kind = expression in an OAFunc block x is the default variable, to use t instead, specify
variable = t in the OAFunc block [see expression (OAFunc)]. You can still use x but be aware that x
represents the time in this case.

Example Moving Window Code

Moving window
Shift along direction 0

downShiftDir = 0
Start shifting at t = DSHFTPOS/ (speed of 1light)
downShiftPos = DSHFTPOS

<OAFunc shiftSpeed>
kind = expression
expression = LIGHTSPEED * (BETA - ALPHA =xt)
variable = t

</OAFunc>

3.2 Grid

Grid

3.2.1 Grid

Determines the simulation size and relationship of physical coordinates to cell indices.

82 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Every object in Vorpal interacts with a grid defined by the Grid block. If there is more than one Grid block in the
input file, Vorpal uses the grid named globalGrid and ignores any others. If there are no Grid blocks named
globalGrid, the last Grid block will be used and all preceding Grid blocks will be ignored.

Grid defaults to a uniform Cartesian grid if you omit the kind parameter or when you set kind to uniCartGrid,
regardless of the presence or value of coordinateSystem parameter.

Note: There are no restrictions on the ratio of grid sizes among the dimensions. However, Tech-X recommends
novice users unfamiliar with effects of large aspect ratio cells, keep the grid sizes, DX, DY, and DZ, within a factor of
5 from each other.

By convention, Vorpal lays out its axes as follows:

x: left to right y: front to back z: bottom to top

Grid Parameters

maxIntDepHalfWidth (integer, optional, default = 1)
Maximum half-width of either the interpolator or depositor stencil.

Please see Additional Attributes for Particle Simulations for more information.

maxCellXings (integer, optional, default = 1)
The maximum number of cells a particle is allowed to cross in one time step. This does not override the
maxcellxing parameter specified in the species block, but must be equal to or larger than any species block
maxcellxing value. This is used in calculating the number of guard cells found in the simulation. Please see
Additional Attributes for Particle Simulations for more information.

kind (string)
Specifies type of grid to use, and is one of the following options.

e uniCartGrid (default) Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

numCells (integer vector, required) Sets number of cells in the x, y, and z directions. Should
contain at least as many values as there are dimensions in the grid. Example usage:

numCells = [5 10 15]
or
numCells = [NX NY NZ]

lengths (float vector, required) Sets lengths of the simulation space in meter units. Should con-
tain at least as many values as there are dimensions in the grid. Example usage:

lengths = [0.1 0.1 0.1]
or
lengths = [LX LY LZ]

startPositions (float vector, required, default = [0 0 0]) Specifies where the starting co-
ordinates in the simulation space are in meter units. Should contain at least as many values as
there are dimensions in the grid. Example usage:

startPositions = [-0.05 0.0 0.0]
or
startPositions = [XBGN YBGN ZBGN]

e coordProdGrid Works with VSimPD and VSimMD licenses.

3.2. Grid 83

VSim Reference Manual, Release 11.0.1-r3016

coordinateSystem (optional, default=Cartesian) Sets the coordinate system of the grid. One
of:

Cartesian (default), e.g. x,y,z

Cylindrical,e.g. z 1, phi

Polar,e.g. 1, phi,z
— Tubular,e.g. phi, z, r

includeCylAxis (integer, optional, default = 0) Whether or not to include the lower bound in
the radial direction that corresponds to r = 0 in the simulation. If includeCylAxis is true,
one needs to make sure that the starting position in the r direction (dirl) is set to 0.0. If
includeCylAxis is false, one needs to make sure that the starting position in the r direction (dirl)
is set to greater than 0.0. Setting includeCylAxis to true in the Grid block sets a flag that
allows for proper evaluation of the nodal volume element and Ez area element for the first cell.
One should also take care to set includeCylAxis in any necessary FieldUpdater blocks. See:
FieldUpdater for the different kinds of CoordProd updaters that are available.

coordinateGrid (block, required) Specifies the lower and upper bounds and cell size of each
dimension of the coordinate product grid independently in its own CoordinateGrid block. See
CoordinateGrid.

Example Uniform Cartesian Grid Block

<Grid globalGrid>
kind = uniCartGrid
numCells = [40 20 20]
lengths = [5e-06 5e-05 5e-05]
startPositions = [0.0 —-2.5e-05 -2.5e-05]
</Grid>

Example Cylindrical Grid Block

<Grid globalGrid>
kind = coordProdGrid
coordinateSystem = Cylindrical
includeCylAxis = 1
i

<CoordinateGrid dir0>
sectionBreaks = [ZBGN ZEND]
deltaAtBreaks = [DZ DZ]

</CoordinateGrid>
<CoordinateGrid dirl>

sectionBreaks = [RBGN REND]
deltaAtBreaks = [DR DR]
</CoordinateGrid>
</Grid>

3.2.2 CoordinateGrid

CoordinateGrid:

Specifies each dimension of the coordinate product grid independently in its own CoordinateGrid block.
(There is not a boundary condition to treat the origin of polar coordinates.)

84 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Valid CoordinateGrid names include:

* X

°y

°z

°r

* phi

* dir0 (generic axes designation for specified coordinate system)
* dirl (generic axes designation for specified coordinate system)
* dir2 (generic axes designation for specified coordinate system)

The exact coordinate of each grid point is internally known by Vorpal and is not available to the user. Instead, you can
select break points to describe the grid. Vorpal automatically fills the sections between breakpoints. The non-uniform
grid will be produced according to the following rules:

1. There will be a grid line exactly at the specified sectionBreaks.

2. There grid spacing to either side of the sectionBreaks will be approximately the corresponding value from
deltaAtBreaks.

3. The grid will be filled in between sectionBreaks with a smoothly varying grid spacing based upon geometric
expansion or contraction.

CoordinateGrid Parameters

sectionBreaks
List of breakpoints to construct the grid points along the coordinate axis associated with each block. There is no
upper limit on the number of break points specified in sectionBreaks, and there must be a value in deltaAtBreaks
for each break point specified in sectionBreaks. The coordinate axis will span from the first value to the last
value specified in sectionBreaks, so you must specify a minimum of two sectionBreaks.

Required Parameters:
deltaAtBreaks (required)
Grid spacing between breakpoints.
defRadius (required,default=1meter)

Default radius with which to compute physical lengths or areas for Tubular coordinates; ex-
pressed in meters. In the case of a 1D or 2D simulation using Tubular coordinates, the radial
direction is ignored.

Sample usage:

defRadius = 1.00

Example CoordinateGrid Block

<CoordinateGrid z>
sectionBreaks = [0.000 0.050 0.300 0.400]
deltaAtBreaks = [0.005 0.005 0.020 0.020]
</CoordinateGrid>

3.2. Grid 85

VSim Reference Manual, Release 11.0.1-r3016

3.2.3 Cylindrical Coordinates

To use cylindrical coordinates, set coordinateSystem = Cylindrical in the Grid block. In the case of a
cylindrical grid, expressions that normally call for x, y coordinates (see ParticleSource blocks, STFunc blocks,
etc.) instead refer to z, r respectively, however you should still use x and y in the actual expressions.

Example

The cylindrical grid
<Grid globalGrid>
kind=coordProdGrid
coordinateSystem=Cylindrical
includeCylAxis=1
<CoordinateGrid dir0>
sectionBreaks=[ZBGN ZEND]
deltaAtBreaks=[DZ DZ]
</CoordinateGrid>
<CoordinateGrid dirl>
sectionBreaks=[RBGN REND]
deltaAtBreaks=[DR DR]
</CoordinateGrid>
</Grid>

Also see
e STFunc Block.

e ParticleSource.

3.2.4 Additional Attributes for Particle Simulations

In some types of particle simulations, a user may want to add one or two additional Grid block attributes, both of
which affect the number of guard cells.

maxintDepHalfWidth

In particle simulations in which you use higher-order particle depositors or interpolators, you should invoke the
maxIntDepHal fWidth parameter with a value no less than (int) (particleOrder/2) +1. This is because
higher order particle depositors will spread a particle’s charge over more than just the nearest neighbor grid nodes.

maxCellXings/maxcellxings

It is not recommended to allow particles to move more than a cell in a single time step. By skipping over more than
a single cell, particles will not be accelerated in a completely self-consistent way (since they will experience slightly
non-local fields), which will introduce inaccuracies in the simulation.

However, if there are a few fast-moving particles at the top end of a speed distribution which are unimportant to the
overall physics of the simulation, it would be inconvenient to have to set a time step short enough to keep these fast
particles from crossing more than a cell per time step.

The maxCellXings attribute in the grid block combined with the maxcellxings (note the difference in case)
attribute in the species block can be used in such a situation. Both of these attributes should be set to the same value.
These two attributes must be set appropriately if particles are able to travel more than a cell in a time step.

86 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

The maxCellXings attribute in the grid block will (along with the maxIntDepHalfWidth attribute, see Guard
Cell Calculation and Setting Overlap in Fields below) sets the number of “guard cells” around the simulation domain
which absorb particles leaving the simulation. By default, there is one guard cell surrounding the simulation domain.
If particles can travel more than a cell per time step, they can skip over this absorber and cause a segmentation fault
when they ask for the field values from outside the simulation domain. For example, a setting of maxCellXings =
3 will set a layer of three guard cells around the simulation grid.

The maxcellxings attribute in the species block will impose a speed limit on each component of the velocity,
independently. So, if maxcellxings = 3 in a simulation, then the speed limit for the x-component of velocity
will be 3 x DX/DT, the speed limit for the y-component will be 3 x DY /DT, and the speed limit in z will be
3+ DZ/DT. Any particles with a velocity component larger than the limits will have the speed reduced to the speed
limit for each velocity component in violation of it’s respective speed limit. This will likely result in the modification
of both the magnitude and direction of the velocity of particles in an unphysical way. For simulations in which a
significant number of particles have their speeds limited, you should lower the time step for the simulation.

To see the effect of the speed limit, set the verbosity level to “NOTICE.” This will print out the numbers of particles
with limited speeds in the run log. Additionally, the phase space plot can be checked. If there are a significant number
of particles piled up along a vertical or horizontal line in the plot, reduce the time step.

Guard Cell Calculation and Setting Overlap in Fields
The number of guard cells is determined based on the preceding parameters. Each field in the multiField block
should include a two-component vector attribute, over lap, which is set according to the following.
For a non-dep field:
* overlap[0]=maxIntDepHalfWidth + (maxCellXings - 1)
* overlap[1]=maxIntDepHalfWidth + (maxCellXings - 1)
This defaults to overlap = [1 1]
For a dep field:
¢ overlap[0]=maxIntDepHalfWidth + (maxCellXings - 1)
¢ overlap[1]=maxIntDepHalfWidth + (maxCellXings - 1) + 1
This defaults to overlap = [1 2]

Please see Field for more details on manually overriding the number of guard cells for an individual field.
See also

e Grid

3.3 Decomposition

Decomp

3.3.1 Decomp

Determines the domain decomposition and periodicity. The Decomp block determines how the simulation
is broken up into domains for parallel processing and which directions are periodic.

3.3. Decomposition 87

VSim Reference Manual, Release 11.0.1-r3016

If the domain boundaries lead to a specification of a number of processors that is not found at runtime, Vorpal will
reconfigure the domain decomposition to match the runtime number of processors. That is, if you do not specify a
decomposition, Vorpal will try to calculate an appropriate domain decomposition for you.

The decomposition algorithm used by Vorpal proceeds by first doing a prime factorization of the number of processors.
It then uses that list of factors to divide up each dimension using the largest remaining factor on the dimension with
the largest number of cells.

For example, for a simulation using 30 processors and a domain size of 200 x 100 x 100, Vorpal will perform
the following calculations:

’30 = 5x3%2 ‘

The x direction has the largest number of cells (200) and 5 is the largest factor of the number of processors, so we
divide x into 5 regions, each

’40x100x100 ‘

With the x direction done, y is the now the direction with the largest number of cells (100), so Vorpal uses the next
largest factor to divide it into 3 sections:

’40x{33 or 34}x100 ‘

Finally, Vorpal partitions z with the remaining factor is 2, dividing it into 2 pieces.

’4OX{33 or 34}x50. ‘

That is the size of our final domains.

In practice, for parallelism, Vorpal simulations should have approximately 20 - 40 cells in each dimension. Otherwise,
the amount of messaging per computation increases and the benefits of using multiple processors is outweighed by the
cost of the communication between them. The 20 - 40 rule depends on the complexity of the calculations being done.
With a large number of particles per cell (20 or more) you could use approximately 20 cells in each direction.

The decomposition may affect what features can be used; for example, guard cells require a domain of at least four
cells in every direction. If the number of processors and dimensions of the simulation chosen cause this requirement
to be violated, you will see errors in the simulation.

Decomp Parameters
kind (string)
(deprecated in v8.0) regular only allowed at present. Version 8.0+ should simply omit the kind parameter.

periodicDirs (integervector)
Directions to have periodic boundary conditions.

decomp0 (integervector)
Domain boundaries along direction O.

decompl (integervector)
Domain boundaries along direction 1.

decomp2 (integervector)
Domain boundaries along direction 2.

88 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example of Default Decomposition Generation

In this example, Vorpal uses the aforementioned algorithm (prime factorization) to automatically generate a decompo-
sition for a parallel simulation. The y- and z- directions will be periodic as indicated by use of periodicDirs.

<Decomp decomp>
periodicDirs = [1 2]
</Decomp>

Example of User-specified Decomposition

In this example, assuming there is a 200 x 200 mesh grid as described in the section on Grid cell specification, the user
requests domain boundaries in the x-direction at 50, 100, and 150, and in the y-direction for 100. This will produce 8
domains, requiring that 8 processors be used for the simulation. If a different number of processors is actually used,
Vorpal will default to the auto-generated (prime factorization) decomposition as discussed in the general description
of Decomp, above.

<Decomp decomp>

periodicDirs = [1 2]

decomp0 = [50 100 150]

decompl = [100]
</Decomp>

3.4 GridBoundary

3.4.1 GridBoundary Blocks

GridBoundary

GridBoundary
Block for modeling curved surfaces (such as spheres or cylinders). A GridBoundary can be referenced by
constructs such as Initial and Boundary Conditions, ParticleSource, ParticleSink, and other constructs.

To restore a GridBoundary on restart of a simulation without recalculating it, see useGridBndryRestore.

GridBoundary Parameters
kind
One of:
e funcGridBndry Works with VSimEM, VSimPD, and VSimMD licenses.

Defines a region with an STFunc Block block. The inside is where the function value is non-negative.
See the example Example GridBoundary Block.

¢ rgnGridBndry Works with VSimEM, VSimPD, VSimMD, and VSimSD licenses.

A rgnGridBndry defines a GridBoundary by using one or multiple STRgn blocks. For more informa-
tion about the types of regions available, see STRgn. A rgnGridBoundary is a good way to combine
multiple regions into one large region using unions or intersections.

3.4. GridBoundary 89

VSim Reference Manual, Release 11.0.1-r3016

¢ gridRgnBndry Works with VSimEM, VSimPD, and VSimMD licenses.
Defines a region with a STereoLithography (stl) file.

calculateVolume (optional)
Forces the grid boundary to calculate various auxiliary quantities that are used by cut-cell particle boundaries.
Examples include the cut-cell volume and normal to the surface.

subMesh (integer, default = 7): When calculateVolume is true, the GridBoundary will
calculate area/volume fractions for cells cut by the boundary (i.e., the fraction of the cell inside
the boundary). Sometimes a GridBoundary is too complicated to allow accurate calculation
of volume fractions (such as a surface that isn’t smooth with small curvature compared to a cell
size, or when multiple surfaces cut through a cell). If GridBoundary realizes that the surface
is too complicated, it will estimate the inside fraction by sampling subMesh raised to NDIM
power points regularly-spaced within each cell to see whether they are inside or outside the
boundary. Sampling is a less accurate but more robust method for calculating volume fractions.

dmFrac (float)
Fraction of the Courant time step for which the simulation will be stable when using the Dey-Mittra boundary
algorithm with Yee electromagnetics. For example, if dmFrac = 0.25, then your time step for the simulation
must be 25% of the Courant time step.

boundaryPrecision (float, default = 1.e-5)
Precision to which lengths (such as the length of a cell edge inside a GridBoundary) are calculated.

gridBndryFuncIsSmooth (bool, optional)
If true then Vorpal assumes the boundary is a smooth function of x,y,z which allows for faster calculations of
certain quantities.

dumpPeriodicity (integer, optional)
How often to dump the data; indicates data is to be dumped whenever the time step has increased by this
amount. The command line parameter -d overrides this variable. Must have this defined in an input file or on
the command line.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in Output Data in
the VSim User Guide.

Example GridBoundary Block

<GridBoundary plane>
boundaryPrecision = le-14
calculateVolume = true
subMesh = SUBMESH
kind = funcGridBndry
gridBndryFuncIsSmooth = true

<STFunc function>

kind = expression
expression = (x/PI + y/2. + LZ/exp(3.)) - z
</STFunc>
</GridBoundary>

3.4.2 STRgn Blocks

strgn

920 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

STRgn

Block for modeling curved surfaces as Constructive Solid Geometry (CSG) objects. This allows complex shapes to
be created by combining geometry primitives with the three operations of union, difference and intersections. This is
primarily for creating geometries to use with the GridBoundary block to create complex boundaries.

Note: The name of the STRgn block defined can only be set to “region” (see example below). If there are multiple
nested STRgn blocks, only the first STRgn block must be named “region”.

Also see stRgnMask for information on using STRgn to assign properties of a fluid to an area or volume.

STRgn Kinds

* array

* box

e cylinder

* sphere

* stRgnMask

* setDifference
e stRgnlntersect
s stRgnUnion

* translation

e stFuncRgn

STRgn Example Block in a GridBoundary Block

<GridBoundary magTestPillBox3DparaShortPecShapes>
kind = rgnGridBndry
calculateVolume = 1
dmFrac = 0.5

<STRgn region> ##### block name must be 'region'
kind = stFuncRgn
<STFunc function>

kind = expression
expression = H(z—(0.5))*«H((0.4)-2z)*H(0.4"2-x"2-y"2)
</STFunc>
</STRgn>
</GridBoundary>
array

array

Works with VSimEM, VSimPD, and VSimMD licenses.

3.4. GridBoundary 91

VSim Reference Manual, Release 11.0.1-r3016

Creates a Constructive Solid Geometry (CSG) object that creates an array whose elements are another
space-time region.

array Parameters

numTranslations (integer, required)
Number of translations in the array.

region (string, required)
Name of the space-time region that will serve as the element of the array.

origin (vector float, required)
Position of the first element in the array.

period (vector float, required)
Period vector for the array.

Example array Block

<STRgn holeRow>
kind = array

region = hole
origin = [0.5 0.0 0.0]
period = [1.0 0.0 0.0]
numTranslations = 5
</STRgn>
box
box

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that creates a box.

box Parameters

lowerBounds (vector float, required)
Lower bounds for box.

upperBounds (vector float, required)
Upper bounds for box.

Example box Block

<STRgn box>

kind = box
lowerBounds = [0.0 0.0 -0.5]
upperBounds = [5.0 5.0 0.5]
</STRgn>
sphere

92 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sphere

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that creates a sphere.

sphere Parameters

center (vector float, required)
Center of sphere.

radius (float, required)
Radius of sphere.

Example sphere Block

<STRgn sphere>
kind = sphere
center = [0.0 0.0 0.0]
radius = 1.0

</STRgn>

cylinder

cylinder

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that creates a cylinder.

cylinder Parameters

axis (vector float, required)
Axis of cylinder.

center (vector float, required)
Center of cylinder.

radius (float, required)
Radius of cylinder.

height (float, required)
Height of cylinder.

Example cylinder Block

<STRgn hole>
kind = cylinder

center = [0.0 0.0 0.0]
axis = [0.0 0.0 1.0]
radius = 0.3

(continues on next page)

3.4. GridBoundary

93

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

height = 10.0
</STRgn>

stRgnMask

stRgnMask

Assigns properties of a fluid to an area or volume specified by an STRgn.

stRgnMask Parameters

region (string, required)

Name of the space-time region that will serve as the element of the array.

Example stRgnMask Block

<STRgn ellipsoidl>
kind = ellipsoid

center = [0.0 0.0 0.0]
semiaxes = [1.0 0.5 0.3]
</STRgn>

<Fluid testFluid>
kind = neutralGas
gasKind = H
<InitialCondition density>
kind = variable

lowerBounds = [-1 -1 -1]
upperBounds = [NX NY NZ]
components = [0]

<STFunc component0>
kind = stRgnMask
region = ellipsoidl
</STFunc>
</InitialCondition>
</Fluid>

setDifference

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that is the set difference of two CSG objects.

setDifference Parameters

regions (string vector)

List of regions to be combined. If this is not set then two STRgn blocks must be defined.

STRgnx (block)
A region to be combined.

94

Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example setDifference Block

<STRgn PBGSlab>
kind = setDifference
<STRgn box>
kind = box
lowerBounds = -0.5]
upperBounds = [5.0 5.0 0.5]
</STRgn>
<STRgn holeArray>
kind = array
region = holeRow
origin = [0.0 0.5
period = [0.0 1.0
numTranslations = 5
</STRgn>
</STRgn>

|
o
o
o
o

o O
o O

stRgnIntersect

stRgnintersect

Works with VSIimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that is the intersection of one or more CSG objects.

stRgnintersect Parameters

regions (string vector)

List of regions to be combined. If this is not set then one or more STRgn blocks must be defined.

STRgn (block)
A region to be combined.

Example stRgnintersect Block

<STRgn amoeba>
kind = stRgnIntersect

regions = [ellipsoidl ellipsoid2 ellipsoid3]

</STRgn>

stRgnUnion

stRgnUnion

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that is the union of one or more CSG objects.

3.4. GridBoundary

95

VSim Reference Manual, Release 11.0.1-r3016

stRgnUnion Parameters

regions (string vector)
List of regions to be combined. If this is not set then one or more STRgn blocks must be defined.

STRgn (block)
A region to be combined.

Example stRgnUnion Block

<STRgn amoeba2>

kind = stRgnUnion

regions [ellipsoidl ellipsoid2 ellipsoid3]
</STRgn>

translation

translation

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that that translates another CSG object.

translation Parameters

region (string, required)
Name of region to be translated.

offset (vector float, required)
The offset vector for the translation.

Example translation Block

<STRgn sphere2>
kind = translation

region = sphere

offset = [-1.0 2.0 0.0]
</STRgn>
stFuncRgn
stFuncRgn

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object based off a STFunc. The boundary of the object is where the function equals zero. Where the
function is positive is considered the interior and where the function is negative is the exterior.

stFuncRgn Parameters

STFunc (Block, required)

96 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example stFuncRgn Block

<STRgn region>
kind = stFuncRgn

<STFunc function>

kind = expression
expression = (H(RADIUS-sqgrt (xxx+y*y))—-0.5)
</STFunc>
</STRgn>

3.5 EM Field

3.5.1 EmField Block

EmField

EmField

Blocks define the properties of the electromagnetic (EM) fields in the simulation.

An EmField can be one of

many types, with the most commonly used being the explicitly time-advanced which can be constructed with the
emMultiField and the VSimEm.mac, in which the basic components of the field are on the Yee mesh, and these
fields are then averaged to cell nodes for use by other objects. The basic setup of the Yee EM field is illustrated below.
In this setup, electric fields are located on the edges of grid cells, and magnetic fields are on the faces of the cell

surfaces.

This EmField section describes general parameters for use with all EmField kinds, followed by descriptions of each
individual EmField kind. Parameters specific to each individual kind are discussed within the description of each
kind. InitialConditions and BoundaryConditions, including out Going and kinds for EM fields only,

are discussed in Initial and Boundary Conditions.

-= magnetic (B) field
- olectric (E) field

Fig. 3.1: Yee model for placing fields on the grid

3.5. EM Field

97

VSim Reference Manual, Release 11.0.1-r3016

Other fields include specified constant or functional fields and electrostatic fields. Multiple EM fields can co-exist in a
simulation. Since each field will have a unique name, other objects in the simulation can reference them individually.

Electromagnetic fields are described by EmField blocks. Defining the EM field (EmField) input block involves defin-
ing the kind parameter, as well as nested input blocks that describe the electromagnetic boundary conditions.

Vorpal has several different algorithms that can be used to model EmFields. You specify which algorithm you would
like Vorpal to use by using the kind parameter. For each different kind, different parameters apply.

All EmField kinds can specify initial and boundary conditions. Periodic boundary conditions are defined in the
Decomp input block.

EmField Parameters

EmField: Electromagnetic field implementation algorithm.

kind
One of the following:

e constEmField: Works with VSimBase, VSimEM, VSimMD, VSimPA, and VSimPD licenses.
EM field in which components are held constant throughout the simulation.
e emMultiField: Works with VSimBase, VSImEM, VSimMD, VSimPA, and VSimPD licenses.

Electromagnetic field described with the MultiField syntax. To construct standard Yee mesh explicit
update use the basicEM macro.

e funcEmField: Works with VSimBase, VSImEM, VSimMD, VSimPA, and VSimPD licenses.
Values for this field are set by a space/time function using the STFunc object.
rhojweighting (string)
Option for current/charge deposition when using higher-order particles.
gridBoundary (string, default = sphere)
Defines the boundaries for an EM Field in the simulation. One of:
¢ sphere (default)
* universe
* pycavity
e stlfile
* user—-defined boundary
interpolation (string)
Defines the interpolation used with higher-order particles.

* linearFromNodalFields: (default in case in which the interpolating
fields are on the nodes)

* esirklstOrder (default in case in which the Interpolating fields are on
the Yee mesh): Corresponds to bilinear or trilinear interpolation from the Yee
mesh points. With a VSimPA or VSimPD license up to 7th order interpolation
(esirk7thOrderCP) is available.

* esirklstOrderCP (default in case in which the Interpolating fields are on
the Yee mesh): Corresponds to bilinear or trilinear interpolation from the Yee

98 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

mesh points. With a VSimPA or VSimPD license up to 7th order interpo-
lation (esirk7thOrderCP) is available. This variant is intended for use with
coordProd (CP) grids.

interpOrder (string, default = 1inear)

String used in conjunction with the polynomial interpolation algorithm only.
interpOrder describes the order of the interpolation from the Yee mesh. In-
terpolation options include:

* linear (default)
e quadratic
e cubic

* quartic

Note: Most of the time, rhojweighting and interpolation parameters for EmField will be the same.
However, nodal fields use 1inearFromNodalFields and the Yee field uses esirklstOrder. That is:

rhojweighting = esirklstOrder
interpolation = esirklstOrder

However, in cases in which:

’rhojweighting = areaWeighting ‘

then:

interpolation = linearFromNodalFields ‘

which is the default for fields in which:

offset=none ‘

Otherwise the default for fields with any other offset is:

interpolation = esirklstOrder ‘

In the case in which:

’rhojweighting = bilinear ‘

then:

interpolation = linearFromNodalFields ‘

which is the default for fields in which:

’offset:none

Otherwise the default for fields with any other offset is:

interpolation = esirklstOrder ‘

Every gridField object has a default interpolation algorithm.

In the example below, the interpolation is set in a higher-level object and is valid for all gridField
objects created by that EmField:

3.5. EM Field 99

VSim Reference Manual, Release 11.0.1-r3016

<EmField ...>
kind = emMultiField
interpolation=...

</EmField>

The following code demonstrates how to change the interpolation for each gridField object individu-

ally:
<MultiField ...>
<Field ...>
kind = gridField
interpolation=...
</Field>
</MultiField>

See also

e [nitial and Boundary Conditions

EmField Block Kinds

constEmField

constEMField:

Kind of EmField that defines a constant field.

constEMField Parameters

elecField (float vector)
The electric field.

magField (float vector)
The magnetic field.

hasB (option, default=true)
Flag to specify that the magnetic field (if present) will be used in the species update step.

Example constEMField Block

<EmField constEM>
kind = constEmField
elecField = [0. 0. 0.]
magField = [0. 0. 0.]
</EmField>

100 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

See also

e EmkField

emMultiField

emMultiField

The emMultiField kind of EmField updates all the electromagnetic fields using the MultiField
feature. Please see the Multifield section of this manual for detailed information about MultiField and
MultiField parameters.

Use kind = emMultiField to create a MultiField that uses the EmField interface. Any valid Mul-
tiField parameters are valid for emMultiField except for depFields.

If emMultiField is going to be used with particles, the particle current/density must be brought in through
externalFields = [SumRhoJ].

If emMultiField is going to be used with particles, the particles must be told which fields are to be used
for the particle push algorithm. You have 3 options:

e Use the emField = syntax and define nodal fields specifically named nodalE and nodalB.

e Use the emField = syntax, change the interpolation to something other than
linearFromNodalFields, and also specifically name your Yee fields ElecMultiField
and MagMultiField.

* Use the fields=[] syntax and specify which fields are to be used for the particle push.

emMultiField Parameters

hasB (option, default=true)
Flag to specify that the magnetic field (if present) will be used in the species update step.

needsRho (option, default=false)
Flag to specify that the charge density is to be used for update step.

needsJ (option, default=true)
Flag to specify that the current density is to be used for update step.

EMField-funcEmField

funcEmField

Defines an EM field using a block to describe the characteristics of the EM field. funcEmField requires use of a code
block.

funcEmField Block Parameters

STFunc (block)

The function that sets the value for a specific field component. The name of the block determines which
component. E0,E1,E2 sets the x,y and z components of the electric field and BO,B1,B2 does the same for
the magnetic field. See STFunc Block.

3.5. EM Field 101

VSim Reference Manual, Release 11.0.1-r3016

Example funcEmField Block

<EmField myExternalField>
kind = funcEmField
<STFunc EO>
kind = expression
expression = EX_1 % cos(K_PE % x) * H(DRIVE_TIME - t)
</STFunc>
</EmField>

3.6 ComboEmField Block

ComboEmField

3.6.1 ComboEmField

The ComboEmField block combines other types of EmField descriptions defined within a simulation.
For example, use ComboEmField to add a static functionally defined magnetic field to a dynamic electro-
magnetic field. Being able to combine different types of EmField descriptions is useful in the delta-f parti-
cle simulation method for adding in the background, varying electromagnetic field to the self-consistently
generated electromagnetic field.

ComboEmField Parameters
kind (string)
Type of ComboEmPField. Currently comboEmField is the only valid type.
comboEmField works with VSimBase, VSimEM, VSimMD, VSimPA, and VSimPD licenses.

emFieldl (string)
User-defined EmField.

emField2 (string)
User-defined EmField.

dumpField (integer)
If non-zero, dump the values of the combined field into an HDF5 format output file.

hasB (option, default=false)
Flag to specify that the magnetic field (if present) will be used in the species update step.

needsRho (option, default=false)
Flag to specify that the charge density is to be used for update step.

needsJ (option, default=false)
Flag to specify that the current density is to be used for update step.

Example ComboEmField Block

102 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<ComboEmField scaledEmSum>
kind=comboEmField
emFieldl=myESField
emField2=scaledSextupoleField
</ComboEmField>

See also

e EmField

3.7 Multifield

3.7.1 Multifield Block

MultiField

MultiField

Advanced method for simulations that enables precise user control over fields and algorithms.
A MultiField object contains a trio of sub-objects:

¢ Field

e FieldUpdater

* UpdateStep

The MultiField object facilitates development and application of new algorithms by providing separate
specification of the data (Field), the update operations on those fields (FieldUpdater), and the
algorithmic sequencing of those update operations (UpdateStep). A crucial feature of UpdateStep
use is that instances of UpdateStep also govern communication during parallel processing. Additional
special cases of these sub-objects also exist, including InitialUpdateStep (an update operation
done once at the begining), FieldMultiUpdater (a special treatment of fields with more than one
component), and Pm1Region (a special absorber boundary object for electromagnetic simulation).

This additional level of control proves useful in two general circumstances. First, it allows the user to make
significant alterations in the sequencing of the traditional electrostatic and electromagnetic algorithms.
These changes might include custom sources and boundary conditions, custom fields for particle forces,
diagnostics, or post processing purposes, and/or custom combinations of different solvers in the same
simulation. One example is to swap out the traditional electromagnetic solvers in favor of GPU accelerated
solvers. A second useful circumstance is that it provides a means to create arbitrary partial differential
equaion (PDE) solvers, beyond the commonly used electrostatic and electromagnetic simulations. One
example provided with the software shows how to construct a solver for the heat conduction problem.

Electromagnetics Using MultiField

The traditional electromagnetic algorithm contains an electric Field and a magnetic Field, two in-
stances of FieldUpdater: Ampere (which updates electric field) and Faraday (which updates magnetic
field), and two instances of UpdateStep, one for each of the FieldUpdater. An UpdateStep can
designate one-and-only-one field for parallel-process messaging. Therefore UpdateStep must be used
twice, once to update-and-message the electric field, and again to update-and-message the magnetic field.

3.7. Multifield 103

VSim Reference Manual, Release 11.0.1-r3016

From this backbone electromagnetic algorithm, several commonly used enhancements arise and are found
in the following examples:

Metallic Boundaries and the FieldUpdater deyMittraUpdater When there are metallic
boundaries, an additonal FieldUpdater (deyMittraUpdater) applies a cut-cell bound-
ary condition to the magnetic field. This additional FieldUpdater is usually grouped
in the same UpdateStep as the Faraday FieldUpdater, so there remain only two
UpdateSteps.

Particles and the Magnetic Field UpdateStep When there are particles, the magnetic field
UpdateStep is usually split, so that half is done at the end of the cycle, in order to
have electric and magnetic fields at the same time during the cycle for particle forces. The
remaining half of the update is then done at the beginning of the next cycle, resulting in
three of UpdateStep instead of two.

Particles and Assisted Particle Force Computation with Field Definitions When there are
particles, a second set of electric and magnetic Field definitions centered at the nodes
may be introduced to assist in computing particle forces. The edgeToNodeVec
FieldUpdater and faceToNodeVec FieldUpdater provide this functionality,
and two new uses of UpdateStep, one for each new Field, are placed at the end of
the cycle.

Outgoing Wave Boundary Conditions with an Open FieldUpdater Outgoing wave
boundary conditions can be applied to the electric field with an open FieldUpdater.
This additional FieldUpdater is usually grouped in the same UpdateStep as the
Ampere FieldUpdater.

Dielectric Loss, Matched magnetic loss, and Traditional Bulk Electrical Conductivity
Dielectric loss (complex dielectric), matched magnetic loss, and traditional bulk electrical
conductivity, are added as additional uses of FieldUpdater, usually instances of
STFuncUpdater, just before and just after Ampere and Faraday, and usually grouped
together with the applicable field UpdateStep.

Electric Voltage and Current Sources Addition Electric voltage and current sources are
added as additional uses of FieldUpdater, usually instances of STFuncUpdater,
grouped with and applied just before or just after the Ampere UpdateStep.

Blocks Contained Inside MultiField Blocks

A MultiField is described between <MultiField nameOfThisMultiField> and </MultiField> tags. In ad-
dition to MultiField parameters, the MultiField block must contain the following blocks:

Field FieldUpdater FieldUpdateStep
and may in some circumstances contain the following additional blocks:
¢ InitialUpdateStep
¢ FieldMultiUpdater
* PmlRegion

Instances of Field are not required to appear in occurances of FieldUpdater, however, any
FieldUpdater must appear at least once in an UpdateStep oran InitialUpdateStep.

104 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

MultiField Parameters

kind
Type of MultiField algorithm; one of:

e Null: Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

no kind parameter; this is the default. The default behavior of not specifying a kind parameter for a
MultiField is usually the correct choice for simulations.

* lightFrameEnvelopeMultiField: Works with VSimPA license.

Implements the Laser Envelope Model. Fields can be discretized on Laser Envelope Model grids and
interpolated to particle positions. When using the Envelope Model with particles, the species should
be setto kind = envBoris. This l1ightFrameEnvelopeMultiField kind of MultiField
creates special grids that have the same size and spacing as the main grid, but that move in the +x
direction at the speed of light:

active grid: The position of this grid is initialized to be offset from the main grid by cAt/2 in
the x direction. It is shifted by cAt in the +z direction every timestep.

alternate grid: This grid is initially offset by —cAt/2, and is shifted by cAt in the 4+« direc-
tion every timestep.

activeLightFrameFields Specifies the fields which exist on the active light frame grid.

alternateLightFrameFields: Specifies the fields which exist on the alternate light frame
grid.

updateStepOrder (optional, string vector)
This specifies the order in which to execute the UpdateSteps. By default, if this attribute is not given, the
UpdateSteps are executed in the order in which they are specified in the input file.

shiftUpdaters (optional, integer; default = false)
If t rue, the updaters in the MultiField will be shifted along with the fields. This is only relevant for updaters
that rely on GridBoundary information that might shift.

restoreTimeFromField (optional, string)
Name of the field from which MultiField will get the current time when restoring from a dump.
restoreTimeFromField is required for cases in which MultiField cannot automatically determine the
proper field from which to restore. MultiField can make this determination if there is a field updated by an
updater which is specified in an UpdateStep with toDtFrac = 1.

3.7.2 Field Block

Field

Field

Field object code block contained between the tags:

<Field xnameOfThisFieldx>

</Field>

3.7. Multifield 105

VSim Reference Manual, Release 11.0.1-r3016

Field Parameters

kind (string, default = regular)
Type of field algorithm; one of:

* regular
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.
Sets its guard cells values by communication or boundary conditions.

e interior
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Field whose guard cells are expected to be invalid; when the field is shifted in a moving window
simulation, (newly) interior cells in a domain are filled from the (formerly) interior cells on other
domains.

¢ depField
Works with VSimBase, VSIimEM, VSimPD, VSimPA, and VSimMD licenses.

Field that fills guard cells and interior cells (during messaging) by adding together the values for
a cell on all domains that have that cell (either as interior or a guard cell). Particles are written
into depFields.

e funcField
Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Field that fills guard cells, or newly interior cells in a moving window simulation, by calculating
their values from a function.

Each of these kinds is explained in detail in the following sections. If no kind is given, the default (and usually correct
choice for most simulations) will be used by Vorpal.

numComponents (integer, default = 1)
Number of field components. Other field component values include:

e 1: scalar field
e 3: vector field
e 4: edgedv vector
e 9: tensor field

offset (string)
Offset positions where the field values are located within a cell. offset values include:

® none
Corner with lowest coordinates.
* center
Center of cell.
* edge
Component j is at the center of the lowest edge parallel to the jth direction.
e face
Component j is at the center of the lowest face perpendicular to the jth direction.

* edgedv

106 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

For rhol, 0-component is at node, 1 is at x-center-edge, 2 at y-center-edge, 3 at z-center-edge

overlap (integer vector)
depField default = [1 2], default for all others = [1 1] Number of lower and upper guard cells. The guard
cells are important if higher order particles are near the simulation boundaries or for communications when
running in parallel.

dumpPeriodicity (integer, default = Multifield dumpPeriod setting)

How often to dump the Field data relative to that set by the global variable globalvariables.
dumpPeriodicity. For example, if a simulation generates 10 dumps, then setting the Field’s
dumpPeriodicity to 3 will dump the Field data on the 3rd, 6th, and 9th dumps. Setting
dumpPeriodicity = 0 will suppress dumping. If dumpPeriodicity is omitted from the attribute
set, Field will inherit its parent MultiField’s dumpPeriodicity setting. If Field and its parent
MultiField have different values of dumpPeriodicity, Field will only dump when both its own
dumpPeriodicity and its parent MultiField’s dumpPeriodicity coincide, that is, it will not dump
at a time when there is no MultiField dump.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in the VSim User
Guide.

interpolation (string)
No offset default = linearFromNodalFields, default for all others = esirk1stOrder. Defines the interpolation
method used for particles. Values include:

¢ linearFromNodalFields Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD li-
censes.

e polynomial Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.
* esirkHalfSine Works with VSimPD and VSimPA licenses.
* esirkGaussian Works with VSimPD and VSimPA licenses.
¢ esirklstOrder Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.
¢ esirk2ndOrder,... esirk7thOrder Works VSimPD and VSimPA licenses.
No offset default = linearFromNodalFields, default for all others = esirk1stOrder

The default for offset = none is linearFromNodalFields, otherwise the default is esirk1stOrder. When using
higher order particles, maxIntDepHalfWidth must be set accordingly in the Grid block (see Additional
Attributes for Particle Simulations).

dumpOnly (integer)
If set to true 1 in a Field block of kind = depField then depositors depositing into that field will only execute
at dump time. This is useful for occurrences of depField that are dumped but not needed for the update, such
as charge density for EM PIC.

skipChecks (integer, default = 0)
When restoring a simulation with static fields or other fields that do not dump regularly, Vorpal performs an
automated check on the local dumpSteps line or Expression block to ensure that restoring from an older
.h5 dump will not adversely impact the simulation. The user can set this attribute to 1 to signal that the field is
safe to restore from any dump step and thus ignore these checks.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in Output Data in
the VSim User Guide.

3.7. Multifield 107

VSim Reference Manual, Release 11.0.1-r3016

Blocks Contained Within a Field Block

BoundaryCondition (block)
Boundary condition for the field.

InitialCondition (block)
Initial condition for the field.

Source (block)
A source for the field. This is the same as a BoundaryCondition for the field, however may be more useful
for introducing a condition over a region of the domain rather than a plane or line as you would expect from a
boundary condition.

Also See

Initial and Boundary Conditions

InitialCondition

Initial and Boundary Conditions

Nested input block for fields in MultiField that is applied only at the beginning of the simulation to
describe initial conditions. In typical use, an InitialCondition is set throughout a volume (although this
convention is not a requirement and, as with a BoundaryCondition, an InitialCondition may be set at select
surfaces).

BoundaryCondition: Nested input block for fields in MultiField that is applied at every time step to describe
boundary conditions. In typical use, boundary conditions are set at select surfaces (although this convention is
not a requirement and, as with an InitialCondition, a boundary condition may be set throughout a volume).

Periodic boundary conditions are defined in the Decomp input block.

InitialCondition and BoundaryCondition Parameters

kind (string)
Type of boundary condition. Possible kind values include:

* constant

* copy

 varadd

* varset

* outGoingWave (for electromagnetic fields only)

lowerBounds (integer vector)
Lower bounds of the volume where initial or boundary condition is applied.

upperBounds (integer vector)
Upper bounds of the volume where initial or boundary condition is applied.

amplitudes (float vector)
Values of the amplitude for each of the indices.

phases (float vector)
Values of the phase for each of the indices.

108 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

components (integer vector)
Components to be set by the condition.

STFunc (block)
The space-time function to be used. STFunc Block is a kind-dependent parameter. The STFune block must be
named componentn where n is the component the function is setting. STFunc applies only to the following
initial or boundary conditions:

e varadd
* varset
* outGoing

sourcelowerBounds (integer vector)
Lower bounds of the region from which to copy; copy boundary condition only.

sourceUpperBounds (integer vector)
Upper bounds of the region from which to copy; copy boundary condition only.

maxApplyTime (real)
Time until which this boundary condition is applied; this applies to only BoundaryCondition.

BoundaryCondition outGoing Kind

Specifying kind = outGoing in the BoundaryCondition block sets an open boundary which allows electromag-
netic waves with specific characteristics to leave the domain, instead of reflecting, as they would from a conductor.

You can also use the open BoundaryCondition to launch a wave. You might want to do this, for example, in the case
when you have launched a wave from the left, as a result of which some wave is reflected. You can use an outGoing
BoundaryCondition to launch the wave while allowing the reflected wave back through. See the Example of Using
kind = open to Handle Wave Reflection.

outGoing Kind Parameters

phaseVelocity (float)
Sets the phase velocity of the wave the user would like to leave the boundary. Giving phaseVelocity a value of the
speed of light allows plane waves in vacuum to leave a boundary. For modes in a waveguide or other structure,
the phase velocity may differ from the speed of light. A perfectly matched layer is required for allowing modes
with differing phase velocities all to leave a boundary.

Example BoundaryCondition Block for launching an electromagnetic wave

Wave launcher for E_y at left
<BoundaryCondition lowerOLauncher>
kind = varset

lowerBounds = [0 -1 —1]

upperBounds = [1 21 21] # upperBounds = [1 NY1 NZ1]
minDim = 1

components = [1]

<STFunc componentl>

k = [5026548.24574 0. 0.] # k = [KAY 0. 0.]
vg = 299790000.0 # vg = LIGHTSPEED

omega = 1.50690889859%9e+15

amplitudes = [2.56837310961e+12]

(continues on next page)

3.7. Multifield 109

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

phases = [0.] # sine

kind = planeWavePulse

widths = [4e-06 2e-05 2e-05] # widths = [WXPUMP WYPUMP WZPUMP]

origin = [-4e-06 0.0 0.0] # origin = [XSTARTPUMP 0.0 0.0]
</STFunc>

</BoundaryCondition>

Examples of BoundaryCondition Blocks for conductor electromagnetic boundary conditions

Set E_y to zero on x-lower boundary
<BoundaryCondition xLowerConductor>

kind = constant
Value same at all cells
lowerBounds = [0 -1 -1]

Lower cell limits for BC application
upperBounds = [1 21 21]

Upper cell limits for BC application

There should be one amplitude for each index

indices = [1]
E_y set by this
amplitudes = [0.]

</BoundaryCondition>

Set E_y and E_z to zero on x-upper boundary
<BoundaryCondition xUpperConductor>
kind = constant

lowerBounds = [40 -1 -1]
upperBounds = [41 21 21]
indices = [1 2]
amplitudes = [0. 0.]

</BoundaryCondition>

Example of Using kind = outGoingWave boundary condition

<BoundaryCondition rightOpen>
kind = outGoingWave
phaseVelocity = $V_OVER_C+«LIGHTSPEEDS

normalDir = 0
velOverC = V_OVER_C
lowerBounds = [NX -1 -1] # Lower cell limits for application of BC
upperBounds = [NX1 NY1 NZ1] # Upper cell limits for BC application
components = [1 2] # field components boundary is applied to
<STFunc function>

kind = constantFunc

amplitude = 0.
</STFunc>

</BoundaryCondition>

110 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example of Using kind = open to Handle Wave Reflection

<BoundaryCondition leftOpenWaveLauncher>

kind = outGoingWave

phaseVelocity = $V_OVER_C*LIGHTSPEEDS

normalDir = 0
lowerBounds = [0 -1 -1]
upperBounds = [1 NY1 NZz1l]
components = [2]
<STFunc function>

kind = planeWavePulse

amplitude = EWAVE
phase = 1.57

k = [KAY 0 O]
omega = OMEGA

vg = LIGHTSPEED

widths = [5.e-6 1l.e-5 1l.e-5]
origin = [-5.e-6 0.e-5 0.e-5]

</STFunc>
</BoundaryCondition>

See also

e MultiField

e Decomp

3.7.3 FieldUpdater Block

FieldUpdater

FieldUpdater

Field updaters are defined between the tags:

<FieldUpdater #xnameOfThisUpdaterx>

</FieldUpdater>

FieldUpdater Parameters

kind (required string)

Type of updater; one of the CPU updaters:

e curlUpdater
* curlUpdaterCoordProd
o cutCellPoisson

e cylEdgeToNodeVec

* deyMittraConstrainUpdater

3.7. Multifield

111

VSim Reference Manual, Release 11.0.1-r3016

lowerBounds (integer vector,
Lower bounds of updater region.

upperBounds (integer vector,
Upper bounds of updater region.

e deyMittraUpdater

* divUpdater

* divUpdaterCoordProd

e dummyUpdater

* edgeToNodeVec

e faceToNodeVec

e fieldBinOpUpdater

e geometryUpdater

» gradBndryUpdater

* gradVecUpdater

e gradVecUpdaterCoordProd
e importFromFileUpdater

e lightFrameEnvelopeUpdater
e lightFrameEnvForceUpdater
e linearApplyUpdater

e linearSolveUpdater

e linlterUpdater

e linPlasDielcUpdater

* malUpdater

* neutralBoltzmannUpdater
* open

e permittivityUpdater

* phaseShiftVecUpdater

* potentialUpdater

» setEpsilonUpdater

e smoothlD

e STFuncUpdater

* unaryFieldOpUpdater

e userFuncUpdater

* yeeAmpereDielVecUpdater
* yeeAmpereUpdater

* yeeFaradayUpdater

required)

required)

112

Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Advanced parameters available with certain updaters
Global region modification parameters

There are a number of parameters that modify the global region to be updated (as specified in lowerBounds and
upperBounds) based on the component of the field being updated. These are available for the following updaters,
which all update a single vector field:

* curlUpdater
* curlUpdaterCoordProd
* yeeAmpereUpdater
* yeeConductorUpdater
* yeeFaradayUpdater
The global region modification parameters are:

expandToTopInComponentDir (optional integer, default = 0 (false))
When true: if the region upper bound in the direction of the component (mod 3) is the upper bound of the
simulation, and that direction is not periodic, then the upper bound is increased by one so that the region
includes the top of the simulation.

contractFromBottomInComponentDir (optional integer, default = 0 (false))
When true: if the region lower bound in the direction of the component (mod 3) is the lower bound of the
simulation, and that direction is not periodic, then the lower bound is increased by one so that the region excludes
the bottom of the simulation.

expandToTopInNonComponentDir (optional integer, default = 0 (false))
When true: if the region upper bound in a direction perpendicular to the component (mod 3) is the upper bound
of the simulation, and that direction is not periodic, then the upper bound is increased by one so that the region
includes the top of the simulation.

contractFromBottomInNonComponentDir (optional integer, default = 0 (false))
When true: if the region lower bound in a direction perpendicular to the component (mod 3) is the lower bound
of the simulation, and that direction is not periodic, then the lower bound is increased by one so that the region
excludes the bottom of the simulation.

expandAboveTopInComponentDir (optional integer, default = 0)
If the region upper bound in the direction of the component (mod 3) is the upper bound of the simulation or
higher, and that direction is not periodic, then the upper bound is increased by this value.

expandBelowBottomInComponentDir (optional integer, default = 0)
When true: if the region lower bound in the direction of the component (mod 3) is the lower bound of the
simulation or below, and that direction is not periodic, then the lower bound is decreased by this value.

expandAboveTopInNonComponentDir (optional integer, default = 0)
When true: if the region upper bound in a direction perpendicular to the component (mod 3) is the upper bound
of the simulation or higher, and that direction is not periodic, then the upper bound is increased by this value.

expandBelowBottomInNonComponentDir (optional integer, default = 0)
When true: if the region lower bound perpendicular to the direction of the component (mod 3) is the lower
bound of the simulation or below, and that direction is not periodic, then the lower bound is decreased by this
value.

Note: If both expandToTopInComponentDir and expandAboveTopInComponentDir are specified,
and the conditions for expansion described above are met, the upper bound in the component direction is first
increased by one, and then increased again by the value of expandAboveTopInComponentDir. If both

3.7. Multifield 113

VSim Reference Manual, Release 11.0.1-r3016

contractFromBottomInComponentDir and expandBelowBottomInComponentDir are specified, and
the conditions for contraction are met, the lower bound is first increased by one, and then decreased by the value of
expandBelowBottomInComponentDir. Similar behavior occurs for the corresponding non-component direc-
tion parameters.

Local region modification parameters

There are two parameters available to expand the local update region beyond the local domain, into the guard cells.
This can in certain cases be useful in simulations with periodic boundaries, to allow updaters to overwrite the values
imposed by the periodic boundary conditions. It can also be used to make parallel algorithms more efficient, by
updating the local guard cells directly rather than getting values messages from other domains. These are available for
the following updaters:

* curlUpdater
* curlUpdaterCoordProd
* open
* phaseShiftVecUpdater
* yeeAmpereUpdater
* yeeFaradayUpdater
The local region modification parameters are:

cellsToUpdateBelowDomain (optional integer vector, default = [0 O 0])
The number of cells (in each direction, x, y, and z) the updater updates below the local domain.

cellsToUpdateAboveDomain (optional integer vector, default = [0 0 0])
The number of cells (in each direction, x, y, and z) the updater updates above the local domain.

StencilElement

StencilElement

A code block describing a stencil element in MultiField updaters that use a user-defined stencil. The updater is:

linlterUpdater

StencilElement Parameters

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, the element will not be used in the stencil.

rowFieldIndex (required integer)
The index of the field to which this stencil element maps. Thus, when treating the stencil operation as a matrix,
a value in this field corresponds to a matrix row.

columnFieldIndex (required integer)
The index of the field from which this stencil element maps. Thus, when treating the stencil operation as a
matrix, a value in this field corresponds to a matrix column.

celloffset (required integer vector)
The offset between the field component the stencil element maps to and the field component the element maps

114 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

from. Thus, a cel110ffset of [m n p] means that a cell will be updated from a cell displaced by mAz +
nAy + pAz.

value (required float)
The coefficient of the linear operation between the the mapped field values. Thus, when treating the stencil
operation as a matrix, this is the value of the matrix entry.

FieldUpdater Kinds

CPU updaters:

curlUpdater

curlUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater operation that solves equations of the form:

OF

—=A BH
5 (VxG)+ ,

via the operation:

Fi(t+ At) = Fy () + (co + 1 A) [A (VxG), .+ BHCW-] ,

Fisthe writeFields.

G is the first readFields.

H is an optional second readFields (if missing, the coefficient B is taken to be 0).
1 is the updater component.

co and ¢ are the dtCoefficients values (represented in the form [cy ¢1])

A and B are the readFieldFactors values.

cg and ¢y, are the readFieldCompShifts values (represented in the form [c, ¢,] and usually both O, see the note
following curlUpdater Parameters).

curlUpdater Differencing Definitions

Forward curlUpdater differencing definition:

Gijtikz:—Gijkz: Gijktiy — Gigik,
(V X G)i’j,k’w — Jj+1, Ay VELD) J,k+1 yAZ JRY (31)
Backward curlUpdater differencing definition:

_ Gijkz—Gij—1kz Gijky — Gigk-1y
i,3,k,@ Ay Az

(V x G) (3.2)

3.7. Multifield 115

VSim Reference Manual, Release 11.0.1-r3016

curlUpdater Parameters

The curlUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the global
region modification parameters and local region modification parameters. In addition, curlUpdater takes the
following parameters:

readFields (required string vector)
A vector of either one or two strings. The first string is the name of the field to take the curl of, and if provided,
the second is the name of the field (multiplied by the specified factors) to add to the result.

writeFields (required string vector)
A vector containing a single element, which is the name of the field to update.

differencing (required string)
Either forward or backward, as described above.

useVecUpdater (optional integer, default = 0 (false))
If true, the updater will update all three components of the vector field specified in writeFields, beginning
with the specified component. The updated field must therefore have at least component + 3 components.

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is t rue, the first field component to update.

readFieldCompShifts (optional integer vector, default = [0 0])
This vector must have the same number of elements as readFields. It specifies the amount by which
to increment the component indices of the first field and the (optional) second field. It is equal to [c4 cj]
in the description above. For example, if a magnetic field is represented by components 3-5 of the field
EandB, then to calculate the curl of that magnetic field, one would specify readFields = [EandB] and
readFieldCompShifts = [3].

readFieldFactors (optional float vector)
If this is specified, there must be one element for each field specified in readFields. The terms in the update
for each field are multiplied by the corresponding factors; they are the coefficients A and B in the description
above. If not specified, the factors use values of 1 for each field.

dtCoefficients (optional float vector, default = [1. 0.])
Two components [cg c1] as defined in the equation above. The result of the updater will be multiplied by (co +
c1At), where At is the current time step.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the o f £ set specified in the updated Field. One of:

¢ cellcenter: If offset = none, or offset = edged4v and component = 0, then a cell is
considered interior if its node is adjacent to at least one cell with center inside the boundary.

If offset = edge,oroffset = edgedv and component is not 0, then a cell is considered
interior if the edge specified by component is adjacent to at least one cell with center inside the
boundary.

If offset = face, then a cell is considered interior if the face specified by component is adja-
cent to at least one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

116 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

e deymittra Ifoffset = none,oroffset = edgedvand component = 0, then a cell is con-
sidered interior if all nodes adjacent to (i.e. displaced by a single edge from) its node are inside the
boundary.

If offset = edge,or offset = edgedv and component is not 0, then a cell is considered
interior if the edge specified by component has at least one adjacent node inside the boundary, and
that edge is not ignored by the Dey-Mittra algorithm given the dmFrac parameter specified in the
gridBoundary.

If offset = face, then a cell is considered interior if all nodes adjacent to the face specified by
component are inside the boundary.

This interiorness option cannot be specified with of fset = center.
e dmnodal This interiorness option is identical to deymittra.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example Yee Ampere (Ey) Update Block

To solve the y component of Ampere’s law with Maxwell’s correction,

V xB=pud + HOEO%a (3.3)
via the curlUpdater opperation
Ei(t+ At) = Eq(t) + (04 1A¢) |¢* (V x B), — %SQ , (3.4)
where
E is the elecField, B is the magField, J is the current density, and S is the SumRhol field defined by
S = (p, Jo, J1,J2), (3.5)

use the following code:

<FieldUpdater ampere-y>
kind = curlUpdater

component = 1
differencing = backward
writeFields = [elecField]
readFields = [magField SumRhoJ]
readFieldFactors = [$c"2$ ~$(-1/\epsilon_0)$]
dtCoefficients = [0. 1.]
readFieldCompShifts = [0 1]
</FieldUpdater>

Adding S, is adding .J1, thus the component on the SumRhodJ field must be shifted so that .J; is added to E;.

curlUpdaterCoordProd

3.7. Multifield 117

VSim Reference Manual, Release 11.0.1-r3016

curlUpdaterCoordProd

Works with VSimPD and VSimMD licenses.

This is a variation of the curlUpdater MultiField updater that should be used whenever non-uniform
or non-Cartesian grids are used in the simulation. The FieldUpdater variety does not currently work with
grid boundaries, however the FieldMultiUpdater variety does.

curlUpdaterCoordProd Parameters

The curlUpdaterCoordProd takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the global region modification parameters and local region modification parameters. In addition,
curlUpdaterCoordProd takes the following parameters:

readFields (required string vector)
A vector of either one or two strings. The first string is the name of the field to take the curl of, and if provided,
the second is the name of the field (multiplied by the specified factors) to add to the result.

writeFields (required string vector)
A vector containing a single element, which is the name of the field to update.

differencing (required string)
Either forward or backward, as described above.

useVecUpdater (optional integer, default = 0 (false))
If true, the updater will update all three components of the vector field specified in writeFields, beginning
with the specified component. The updated field must therefore have at least component + 3 components.

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is t rue, the first field component to update.

readFieldCompShifts (optional integer vector, default = [0 0])
This vector must have the same number of elements as readFields. It specifies the amount by which
to increment the component indices of the first field and the (optional) second field. It is equal to [c4 cp]
in the description above. For example, if a magnetic field is represented by components 3-5 of the field
EandB, then to calculate the curl of that magnetic field, one would specify readFields = [EandB] and
readFieldCompShifts = [3].

readFieldFactors (optional float vector)
If this is specified, there must be one element for each field specified in readFields. The terms in the update
for each field are multiplied by the corresponding factors; they are the coefficients A and B in the description
above. If not specified, the factors use values of 1 for each field.

dtCoefficients (optional float vector, default = [1. 0.])
Two components [cy c1] as defined in the equation above. The result of the updater will be multiplied by (co +
c1 At), where At is the current time step.

includeCylAxis (optional integer, default = 0 (false))
Set this to true (1) if the cylindrical axis (r = 0) is included in this update. In 3D simulations, it is necessary to
specify two separate curlUpdaterCoordProd updaters; one with just the axis and one without. In 2D simulations
that will have divergence on the cylindrical axis it is also necessary to have this second updater for the cylindrical
axis.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

118 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example curlUpdaterCoordProd Block

<FieldUpdater yeeFaraday_0>
kind=curlUpdaterCoordProd
useVecUpdater=1
differencing=forward
lowerBounds=[0 1 0]
upperBounds=[NZ NR NPHI]
dtCoefficients=[0.0 1.0]
readFieldFactors=[-1.0]
readFields=[elecField]
writeFields=[magField]

</FieldUpdater>

<FieldUpdater yeeFaraday_0O_cyl>
kind=curlUpdaterCoordProd
useVecUpdater=1
differencing=forward
includeCylAxis=1
lowerBounds=[0 0 0]
upperBounds=[NZ 1 NPHI]
dtCoefficients=[0.0 1.0]
readFieldFactors=[-1.0]
readFields=[elecField]
writeFields=[magField]

</FieldUpdater>

cutCellPoisson

cutCellPoisson

Works with a VSimPD license.

This is a MultiField FieldUpdater that solves the Poisson equation for the electrostatic potential, with
Dirichlet/metal boundaries, using the Trilinos library to execute the large matrix solve. The solve can
be performed for arbitrary potential specified on the boundaries (by a previous FieldUpdater), or the
boundary values can be set to equipotentials with this updater. In the latter case, it is possible to specify
that some of the distinct equipotential surfaces will float, with the potential determined by the charge on
each floating conductor.

There are two very different ways to set boundary potentials. Most commonly, the user will specify a
number of distinct conducting boundaries, along with the (time-dependent) voltage or charge on each
boundary. Each conductor is an equipotential (as a conductor should be), and information about a con-
ductors (such as voltage, charge, and capacitance) can be obtained using a conductorFunc.

Alternatively, the potentials on the boundaries can be taken from an arbitrary Field before each Poisson
solve. Although the user must then figure out how to set those field values, this allows arbitrary (non-
equipotential) Dirichlet boundary conditions. that specifies the potential at all necessary boundary points.
This precludes functionality such as filling the potential within the conducting bodies, calculating the
charge on conductors, and calculating capacitance and floating potentials.

3.7. Multifield 119

VSim Reference Manual, Release 11.0.1-r3016

cutCellPoisson Common Uses

The cutCellPoisson updater has a number of capabilities. Here are some common uses.

* Finding the electric potential in an arbitrary region with arbitrary Dirichlet boundary conditions specified via a
Field.

* Finding the electric potential in a region bounded by arbitrarily-shaped conductors with time-varying voltages.

e Evolving the electric potential in a region with floating conductors, with voltages determined by ab-
sorbed/emitted (charged) particles and/or user-specified (external) currents.

 Calculating capacitances.

* Evolving electrostatic systems with simple external circuits and charged particle motion within the sytem. For
example, one can observe the current induced by a charged particle flying through a grounded set of parallel
plates. (However, currently, all capacitance is simulated spatially; there is no easy way to add external capaci-
tances to the circuit.)

cutCellPoisson Basic Parameters

The cutCellPoisson kind takes the 1owerBounds and upperBounds parameters of FieldUpdater (typically set to
[0, 0, 0] and [NX+1, NY+1, NZ+1], the bounds of the entire simulation including the uppermost nodes), as well as the
following parameters:

writeFields (required string vector: [phi, [edgeLengths]])
A list of Field objects containing the (scalar) electric potential (at grid nodes, units of Volts) to update, and, op-
tionally, a 3-component vector field to which the grid cell edge lengths (i.e., the lengths not in metal conductors)
will be written at initialization time. The edge lengths field may be helpful for diagnostics or post processing.

readFields (required string vector: [rho, [phi]])
A list of Field objects containing one or two elements, the (scalar) charge density (rho) field (at grid nodes, with
units of C/m”3 in 3D, C/m”2 in 2D, or C/m in 1D) plus an optional (scalar) electric potential field (units of
Volts).

If no second field is given, the boundary potentials will be specified by <Conductor> blocks. In this case, the
<Conductor>s will be equipotentials, and their voltages or charges will be specified within the Conductor Block.

If the second field (phi) is given, then the boundary values will be taken from that field, with each boundary
shape specified via a ConductorShape Block. This offers maximum flexibility in setting the Dirichlet boundary
conditions, but because the (so-called) ‘conductor shapes’ are not necessarily equipotentials, information such
as voltage, induced charge, and capacitance cannot be calculated. The second readField can be the same as the
first writeField, or it can be a completely different Field.

<LinearSolver> (code block, required)
A code block describing the linear solver used to solve the Poisson equation: cf. LinearSolver. See the example
below: solvers for symmetric matrices are appropriate for this problem, and for large (parallel) problems an
iterativeSolver with a multigrid preconditioner may offer the best performance.

cutCellPoisson Parameters (setting boundary values from the second readField)

<ConductorShape> code blocks
Each ConductorShape Block describes the the shape of a conductor. An arbitrary number of <ConductorShape>
blocks can be used.

120 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

If <ConductorShape>s are specified, a second readField must be given; the potential on the <Conductor-
Shape> boundaries will be set to the values from the second readField. Some other updater must be used to set
the values of the second readField.

cutCellPoisson Parameters (setting equipotentials on Conductors)

<Conductor> code blocks
Each Conductor Block describes the the shape of a conductor, and how the voltage is determined on that con-
ductor. An arbitrary number of <Conductor> blocks can be used.

If <Conductor>s are specified, only one readField may be given.

cutCellPoisson Parameters (setting a Dirichlet boundary condition)

<Conductor> code blocks.
The Dirichlet boundary condition could be imposed on a boundary using the Conductor block. Inside the
conductor block, a <ConductorShape> block could be used to select the boundary.

cutCellPoisson Parameters (defining a Dielectric shape within the simulation domain.)

<DielectricShape > code blocks.
The ‘DielectricShape’ block could be used to define a dielectric region within the simulation domain.

cutCellPoisson Parameters (imposing a Neumann (gradient) condition on the simulation boundary)

setGradientBoundary = [xmin xmax ymin ymax zmin zmax]
The entries of the vector xmin, xmax, ... and zmax represent the boundaries in the coordinate directions. The
entries take either 1 or O to specify whether the boundary is Neumann or not. For example, if the upper boundary
in the x-direction and the lower boundary in the z-direction are Neumann, the vector is [0 1 00 1 0]. The gradient
values are specified using the vector ‘boundaryGradient’ as given below.

boundaryGradient = [0 0 0 O 0 O]
The vector entries as the gradient values to be set on the Neumann boundary. At present, the boundary condition
takes only ZEROS.

enforceMatrixSymmetry = 0
The parameter specifies whether or not to enforce matrix symmetry. If two of the boundaries at a corner or
edge are Neumann, according to the present discretization scheme, the matrix becomes asymmetric. Forcing the
matrix to be symmetric will result in an incorrect solution at the corners or edges. ‘enforceMatrixSymmetry’
takes 1 or 0 to enforce or not. Note that the matrix is enforced to be symmetric by default.

cutCellPoisson Usage Notes

* To calculate the electric field from the potential (taking into account the conductor geometry), use the gradB-
ndryUpdater.

* When particles are present near conducting surfaces and accuracy is important, the nodal electric field should
be extrapolated (to nodes just inside the metal regions) using the deyMittraFieldExtrapolator, so that
particles experience correct fields near metal surfaces.

3.7. Multifield 121

VSim Reference Manual, Release 11.0.1-r3016

* Itis best not to let <Conductor>s overlap. If they do overlap, the updater will issue a WARNING and do its best
to yield a reasonable solution. However, the updater may calculate edge lengths inaccurately. Of course, this
situation is actually unphysical if the <Conductor>s have different voltages; if they have the same voltage, it’s
usually best to replace them with a single <Conductor>.

* It is okay to have two conductors get very close to each other (e.g., much closer than a grid cell size). In general
(of course) the simulation cannot be expected to resolve features smaller than a grid cell; however, cases like
two large spheres (or parallel plates) that almost touch should be handled correctly if the spheres (or plates) are
different <Conductor>s.

* For performing repeated poisson solves with non-zero space charge, setting convergenceMetric=rhs in
the iterativeSolver may reduce the solve time if the previous solution is similiar to the next solution. (Using rhs
with zero space charge is not recommended, because the right-hand-side will be zero except near conducting
boundaries with non-zero voltage, making it a poor choice for normalizing the residual error.)

cutCellPoisson Advanced Parameters

The following parameters have default values that are appropriate for the majority of simulations.

exactRestart (default false)
If true, then restarting a simulation should produce exactly the same results as if the simulation hadn’t been
halted and restarted. If false, then (at each timestep) the previous solution will be used as a guess for the
next solution — this reduces the time to solution (if convergenceMetric=rhs in the iterativeSolver), but
prevents the restart from being exact (although the previous solution is nearly reconstructed, it cannot always be
exactly reconstructed). Restarting with exactRestart=false still yields an equally valid solution — but a
solution that differs (by machine-precision levels, or by the solver tolerance) from the non-restarted solution.

Important: to work, this option must be set to true in the original run and also in the restarted simulation.

shiftNodesNearMetalToMetal (optional boolean, default true)
This option specifies how to deal with the difficult case of tiny edges, when the boundary surface cuts through
a cell edge extremely close to the cell node (i.e., almost all of the edge is in metal). An edge is tiny (in this
sense) if its fraction in dielectric is less than minEdgeF rac, which is by default the square root of the machine
precision. Tiny fractional edges are a problem because the potential difference across them is inevitably tiny,
so that subtracting the potentials (e.g., to find the electric field) can result in extreme precision loss, yielding an
essentially random value for the potential difference (hence for the electric field).

If true, then tiny edges are replaced with all-metal edges, effectively shifting the metal boundary slightly so that
it goes through the node. This is the recommended option; it’s usually the most robust and convenient option.
However, it does change the metallicity of some nodes and edges: i.e., some nodes that are technically (but just
barely) in dielectric will be considered to be in metal.

If false, then the metal boundary will be shifted slightly away from the node until all edge fractions are greater
than minEdgeFrac. This option should be used when it’s important not to change the metallicity of any node.

The effect of shifting the metal boundary introduces some error to the solution, but that error (especially in
double precision) will typically be orders of magnitude lower than the finite difference error due to finite cell
size.

minEdgeFrac (optional float, default: square root of machine

precision)
the minimum edge fraction allowed in dielectric. Any edges with smaller non-zero fractions in dielectric will
either be reduced to zero, or increased to at least this value, depending on the samp:shiftNodesNearMetalToMetal
attribute.

messagePotentialField (optional float, default true)
whether to message the potential field (the first writeField) across MPI ranks, setting guard cell values. If true,
then the UpdateStep containing this updater does not need to mention the potential field, though it won’t hurt to

122 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

do it twice. If this is false, then the accuracy test (cf. accuracyTestStepSlice) may give incorrectly high
values on domain boundaries.

asymmetryWarningLevel (optional float, default 0.005)
When using floating potentials, capacitance and conductance matrices must be formed; they should be symmet-
ric, but sometimes can be asymmetric, either due to finite precision truncation or to input file mistakes (e.g.,
letting conductors overlap). In these cases, a warning will be issued if the asymmetry (relative to the maximum
element of the matrix) surpasses this level; in any case, the matrix will be symmetrized. Small asymmetries
arise naturally from finite precision arithmetic; however, large asymmetries may indicate a problem interpreting
the given geometry correctly (e.g., due to overlapping conductors).

accuracyTestStepSlice (optional vector of integers, default

[20, 2147483647, 1000])
a python-like ‘slice’ specifying the timesteps [start, stop, step] at which the accuracy of -
Laplacian.phi=rho/epsilon_0" will be tested and printed out (search output for “cutCellPoissonSolver [updater]
accuracy”). This is a relatively time-consuming operation, so it should be done infrequently. The default will
test accuracy at steps 20, 1020, 2020, 3020, etc.

This is sometimes useful because Trilinos solves a transformed matrix with a transformed right-hand side vector;
this error estimate shows the error of the solution in a more natural basis. Also, sometimes Trilinos thinks that it
hasn’t done a good enough job minimizing the residual (sometimes this happens, e.g., at t=0 when the potential
is zero everywhere), and this usually clarifies whether the solve has actually succeeded or not.

For this to work, messagePotentialField must be true.

detailedAccuracyEstimate (optional boolean, default: false)
If false, a basic error estimate is printed out at steps determined by accuracyTestStepSlice. If true, the
estimate will include a comma-separated-value table listing various norms and ways of measuring error (for
each individual MPI rank, in the appropriate comms file, as well as over all ranks). These quantities described
in terms of:

* rho: the charge density (at a node), in C
* phi: the potential (at a node), in V

e laplPhi: the laplacian of the potential (at a node), in V per square m; in finite difference, the divergence
involves the nodal volume V and dual face areas A; and the gradient uses edge lengths L, so we write
laplPhi = - VA{-1} div A L*{-1} grad phi.

* max_nnlphi A/Vdxl: for a given node, the maximum value, over the node and its nearest neighbors, of the
magnitude of phi times A/(V L), where A, V, and L are the geometric factors involved in calculating the
finite difference Laplacian.

* avglxl: the average value of the magnitude of x over all nodes
* max|xl: the maximum value of the magnitude of x over all nodes

Norms and errors are reported for all interior grid nodes, as well as the subset of nodes that don’t touch any cell
edges cut by a conducting boundary; norms and errors for individual ranks are written to the appropriate comms
file along with the norms and errors for the entire simulation.

timingStepSlice (optional vector of integers, default

[10, 2147483647, 100])
a python-like ‘slice’ specifying the timesteps [start, stop, step] at which the timing for this updater will be printed
out (search output for “cutCellPoissonUpdater timing” and “time per Trilinos matrix solve”).

printEdgelengths (optional string, default 'none')
whether to print (selected) cell edge lengths to the per-rank comms file: can be ‘none’, ‘modifiedOnly’, ‘fraction-
alOnly’, or ‘all’. If ‘modifiedOnly’, only edge lengths that were modified (usually because they were extremely
small; cf. samp:minEdgeFrac) will be printed.

3.7. Multifield 123

VSim Reference Manual, Release 11.0.1-r3016

printMatrices (optional vector of strings, default empty)
a list of Trilinos matrices/vectors to write to file in Matrix Market format: can be ‘M’ (interior Laplacian),
‘sqrtLminV’, ‘sqrtLminOverV’, ‘PMPbar’ (laplacian operating on boundary values), ‘philV_0’, ‘philV_1’,...,
‘epsEdotdA_0’, ‘epsEdotdA_1", where ‘°_0’ and ‘_1" (etc.) refer to the first and second (etc.) <Conductor>s
or <ConductorShape>s. Note that in the Matrix Market format that Trilinos outputs, indices are one-based,
although Trilinos uses zero-based indices.

rhsDumpSteps (optional vector of integers, default empty)
a list of timesteps at which the right-hand side of the (transformed) Poisson equation should be written to disk.

indexField (optional string)
the name of a vector <Field> into which to put the Trilinos vector index at each field location.

Example cutCellPoisson Blocks

This updater sets the voltage on one conductor to a function of time, while the other conductor floats—with a prescribed
current, as well as current from electrons and ions. Thus it uses <Conductor> blocks.

<FieldUpdater poisson>
kind = cutCellPoisson

lowerBounds = [0 0 0]
upperBounds = [40 80 40]
writeFields = [phi]
readFields = [rho]

Best practice: do not give the same name to the <Conductor> and
the gridBoundary.
<Conductor sphereC>
kind = setVoltage
calculateCharge = true
<ConductorShape shape>
kind = gridBoundary

gridBoundary = sphere
</ConductorShape>
<Expression voltage>
expression = 10. % sin(628xt)
</Expression>
</Conductor>

<Conductor smallSphereC>
kind = floating

initialCharge = -6e-11
ptclAbsorbers = [electrons.smallSphereAbsorber, ions.smallSphereAbsorber]
ptclSources = [electrons.smallSphereAbsorber, ions.emitSmallSphere]

<ConductorShape shape>
kind = gridBoundary
gridBoundary = smallSphere
</ConductorShape>
<Expression current>
expression should be a string, so if it looks like a number,

it should be surrounded by quotes. This value is in Amps.
expression = "-6e-11"
</Expression>
</Conductor>

<LinearSolver mySolver>
kind = iterativeSolver

(continues on next page)

124 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

convergenceMetric = rhs
<BaseSolver myBS>
kind = cg
</BaseSolver>
<Preconditioner precond>
kind = multigrid
mgDefaults = SA
numPdeEquations = 1
</Preconditioner>
tolerance = le-12
maxIterations = 10000
</LinearSolver>

</FieldUpdater>

This updater sets the boundary potential to the values given by the phi field (which must be previously set with some
other updater. . . being very careful to set values at every boundary node). Thus it uses <ConductorShape> blocks, not
<Conductor> blocks. It solves for the potential and writes it to the same phi field; however, in principle, different phi
fields could have been used for reading and writing.

<FieldUpdater poisson>
kind = cutCellPoisson

lowerBounds = [0 0 0]
upperBounds = [40 80 40]
writeFields = [phi]
readFields = [rho phi]

<ConductorShape sphereC>
kind = gridBoundary
gridBoundary = sphere

</ConductorShape>

<ConductorShape smallSphereC>
kind = gridBoundary
gridBoundary = smallSphere

</ConductorShape>

<LinearSolver mySolver>
kind = iterativeSolver
convergenceMetric = rhs
<BaseSolver myBS>
kind = cg
</BaseSolver>
<Preconditioner precond>
kind = multigrid
mgDefaults = SA

numPdeEquations = 1
</Preconditioner>
tolerance = le-12
maxIterations = 10000

</LinearSolver>
</FieldUpdater>
cylEdgeToNodeVec

3.7. Multifield 125

VSim Reference Manual, Release 11.0.1-r3016

cylEdgeToNodeVec

Works with VSimMD and VSimPD licenses.

This updater interpolates all components of a vector field between grid nodes and edges in cylindrical coordinates. It
should be used in conjucntion with the /inPlasDielcUpdater in cylindrical coordinates, it is not necessary for standard
edge to node updates.

cylEdgeToNodeVec Parameters

The cylEdgeToNodeVec takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

readFields (required string vector)
A single element, specifying the field to interpolate.

writeFields (required string vector)
A single element, specifying the field to update with the interpolated values.

nodeToEdge (optional integer, default = 0 (false))
Whether to interpolate from nodes to edges instead of the default edges to nodes.

Example cylEdgeToNodeVec block

<FieldUpdater edgeToNodes>
kind = cylEdgeToNodeVec

lowerBounds = [0 0 0]
upperBounds = [NZ1 NR1 NPHI1]
readFields = [deltaelecField]
writeFields = [deltaNodalkE]
</FieldUpdater>

MultiFiled-deyMittraConstrainUpdater

deyMittraConstrainUpdater

Works with VSimEM and VSimMD licenses.

Multifield updater that sets the electric field on the edges fully inside the conductor in a cut cell. This
is done such that the interpolated value of the electric field at the center of the cut segment obeys the
condition that the electric field parallel to the surface is 0. For cuts with two unknown edges, it also uses
the constraint that the derivative of the normal electric field at the center of the cut segment is 0. By
constraining the electric fields on the edges in this manner the interpolated fields will better match the
correct behavior as they approach the conducting surface represented by the cut segment.

deyMittraConstrainUpdater is designed purely to provide better field interpolation in the cut cells and is
not meant to do any dynamics. It should be used in conjugation with a deyMittraUpdater.

deyMittraConstrainUpdater Parameters

The deyMittraConstrainUpdater kind takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the following parameters:

126 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

readFields
(required string vector) A vector containing a single element, the electric field with an offset of edge.

writeFields
(required string vector): The same vector as in readFields.

gridBoundary
(required string): The boundary at which to modify the field.

Example deyMittraConstrainUpdater Block

<FieldUpdater deyMittraConstrain>
kind = deyMittraConstrainUpdater

lowerBounds = [0 0 0]
upperBounds = [$XSIZE+1$ SYSIZE+1$S $ZSIZE+1$]
readFields = [ElecMultiField]
writeFields = [ElecMultiField]
gridBoundary = cylinder
</FieldUpdater>
deyMittraUpdater

deyMittraUpdater

Works with VSimEM and VSimMD licenses.

MultiField updater that does the Yee Faraday update for Dey-Mittra (cut) cells. It updates those compo-
nents of the magnetic field whose faces are cut by the specified gridBoundary, and not ignored by the
Dey-Mittra algorithm given the dmF rac parameter of the boundary.

deyMittraUpdater Parameters

The deyMittraUpdater kind takes the 1 owerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (required string vector)
A vector containing a single element, the electric field with an offset of edge.

writeFields (required string vector)
A vector containing a single element, the magnetic field to update with an offset of face.

gridBoundary (required string)
The boundary at which to update the field.

subtractYeeFaraday (optional integer, default = 0 (false))
If true, the change in magnetic field given by the standard Yee update is subtracted from any components updated
by this updater.

Example deyMittraUpdater Block

<FieldUpdater deyMittraFaraday>
kind = deyMittraUpdater
lowerBounds = [0 0 0]

(continues on next page)

3.7. Multifield 127

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

upperBounds = [XSIZE YSIZE ZSIZE]

readFields = [ElecMultiField]

writeFields = [MagMultiField]

gridBoundary = cylinder
</FieldUpdater>

Multifield-divUpdater

divUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that takes the divergence of the of a field, and writes the result into another field.

divUpdater Parameters

The divUpdater kind takes the 1lowerBounds and upperBounds parameters of FieldUpdater, as well as the fol-
lowing parameters:

readFields (required string vector)
A vector containing a single element, the name of a vector field of which to take the divergence.

writeFields (required string vector)
A vector containing a single element, the name of a scalar field to update.

differencing (optional string, default = backward)
One of forward or backward, specifying the direction in which to take the finite difference. The default,
backward, is generally used for taking the divergence of an edge field to update a node field; the forward
value is used for the divergence of a face field to update a cell-centered field.

skipFirst (optional integer, default = 0 (false))
Set this flag to 1 (true) to skip the first component of the vector field, i.e. to use components 1-3 in the divergence
rather than 0-2. This should be used when taking the divergence of J in a SumRhodJ charge-current field. A
SumRhoJ field has four components, the first of which is p; therefore the first component of this field must be
skipped to get to the J components.

factor (optional float, default = 1)
A factor that multiplies the end result after taking the divergence.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters. If this parameter is provided, then the field
specified in writeFields musthave offset = noneoroffset = center.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the o f £ set specified in the updated Field. One of:

e cellcenter: If offset = none, then a cell is considered interior if its node is adjacent to at least
one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

* deymittra: If offset = none, then a cell is considered interior if all nodes adjacent to (i.e. dis-
placed by a single edge from) its node are inside the boundary.

This interiorness option cannot be specified with of fset = center.

128 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example divUpdater Block

<FieldUpdater divergence>

kind = divUpdater

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]

readFields = [ElecMultiField]

writeFields = [divE]

skipFirst = false
</FieldUpdater>
divUpdaterCoordProd
divUpdaterCoordProd

Works with VSimPD and VSimMD licenses.

MultiField updater that takes the divergence of the of a field, and writes the result into another field, on a
non-uniform or non-Cartesian grid.

divUpdaterCoordProd Parameters

The divUpdaterCoordProd kind takes the 1owerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

readFields (required string vector)
A vector containing a single element, the name of a vector field of which to take the divergence.

writeFields (required string vector)
A vector containing a single element, the name of a scalar field to update.

skipFirst (optional integer, default = 0 (false))
Set this flag to 1 (true) to skip the first component of the vector field, i.e. to use components 1-3 in the divergence
rather than 0-2. This should be used when taking the divergence of J in a SumRhoJ charge-current field. A
SumRhoJ field has four components, the first of which is p; therefore the first component of this field must be
skipped to get to the J components.

factor (optional float, default = 1)
A factor that multiplies the end result after taking the divergence.

includeCylAxis (optional integer, default = 0 (false))
Set this to true (1) if the cylindrical axis (r = 0) is included in this update. In 3D simulations, it is necessary
to specify two separate updaters; one with just the axis and one without. In 2D simulations that will have
divergence on the cylindrical axis it is also necessary to have this second updater for the cylindrical axis.

Example divUpdaterCoordProd Block

<FieldUpdater Div_k_Grad_T>
kind=divUpdaterCoordProd
lowerBounds=[0 1 0]
upperBounds=[NZ NR NPHI]
readFields=[HeatFlux]
writeFields=[dTemp]

(continues on next page)

3.7. Multifield 129

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<FieldUpdater>

<FieldUpdater Div_k_Grad_T_axis>
kind=divUpdaterCoordProd
includeCylAxis=1
lowerBounds=[0 0 0]
upperBounds=[NZ 1 NPHI]
readFields=[HeatFlux]
writeFields=[dTemp]

</FieldUpdater>

dummyUpdater

dummyUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that does not update values. Use of dummyUpdater may be helpful if you require
specific timing and messaging of fields. In the update step, you can specify a t oDt Frac such that during
that update step, nothing is done to the field except for modifying its time.

dummyUpdater Parameters

The dummyUpdater kind requires the lowerBounds and upperBounds parameters of FieldUpdater, though they
are ignored. It also takes the following parameter:

writeFields (optional string vector, default = [])
A vector containing the names of any number of fields. The updater will modify the times of these fields.

Example dummyUpdater Block

<FieldUpdater dummy>
kind = dummyUpdater

lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
writeFields = [activeEnvF1d]
</FieldUpdater>
edgeToNodeVec
edgeToNodeVec

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that interpolates field components between grid edges and nodes.

nodeToEdge Parameters

The edgeToNodeVec updater takes the 1lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

130 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

readFields (required string vector)
A vector containing a single element, the name of the field to interpolate.

writeFields (required string vector)
A vector containing a single element, the name of field to update with the interpolated values.

nodeToEdge (optional integer, default = 0 (false))
If t rue, the updater interpolates from nodes to edges. By default, the updater interpolates from edges to nodes.

Example edgeToNodeVec Block

<FieldUpdater nodalEupdate>

kind = edgeToNodeVec
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZzZ1]
readFields = [elecField]
writeFields = [nodalE]

</FieldUpdater>

faceToNodeVec

faceToNodeVec

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that interpolates field components between grid faces and nodes.

faceToNodeVec Parameters

The faceToNodeVec updater takes the 1owerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

readFields (required string vector)
A vector containing a single element, the name of the field to interpolate.

writeFields (required string vector)
A vector containing a single element, the name of field to update with the interpolated values.

nodeToFace (optional integer, default = 0 (false))
If t rue, the updater interpolates from nodes to faces. By default, the updater interpolates from faces to nodes.

Example faceToNodeVec Block

<FieldUpdater nodalBupdate>

kind = faceToNodeVec
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZz1]
readFields = [magField]
writeFields = [nodalB]
</FieldUpdater>
fieldBinOpUpdater

3.7. Multifield 131

VSim Reference Manual, Release 11.0.1-r3016

fieldBinOpUpdater

Works with VSimBase, VSIimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that applies a mathematical operation on two fields (F and G) specified through the
readFields parameter, and writes the result to the writeFields parameter.

fieldBinOpUpdater Parameters

The fieldBinOpUpdater takes the 1owerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

readFields (required string vector)
A vector of the names of the two fields on which to operate.

writeFields (required string vector)
A vector containing a single element, the name of field to update.

binOp (required string)
Operation to apply to the field; one of add, subtract, multiply or divide. Operations are:

add: (aCoeff+Fj)+ (bCoeffxG7)

subtract: (aCoeff+Fj)— (bCoeffxG7)
multiply: (aCoeff+Fj) » (bCoeff+Gj)
divide: (aCoeff+Fj)/ (bCoeff+Gj)

readComponents (optional integer vector)
The components to use in the operand fields.

writeComponent (optional integer)
The component to update.

Note: The readComponents and writeComponent parameters work together, and if one is specified, the other
must be as well. If neither are specified, then all the components are updated. In that case, both of the readFields
and the writeFields must all have the same number of components.

aCoeff (optional float)
Coefficient for first field (F, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0.

bCoeff (optional float)
Coefficient for second field (G, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0.

132 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example fieldBinOpUpdater Block

<FieldUpdater addUpdate> # aA + bB
kind = fieldBinOpUpdater
lowerBounds = [0 O 0]
upperBounds = [NX1 NY1 NZ1]
binOp = add
aCoeff 1.0
bCoeff = 1.0
readFields = [F1l F2]
writeFields = [addField]
</FieldUpdater>

geometryUpdater

geometryUpdater

works with VSimEM and VSimMD licenses.

MultiField updater that evaluates a geometric quantity (pertaining to the individual cell) and sets (or adds
or multiplies) the field component to that geometric quantity.

geometryUpdater Parameters

The geometryUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the

following parameters:

operation (required string)

One of:
’set: Fi=g
’add: Fi+=g

’multiply: Fix=g

geometricQuantity (required string)
geometric quantity g (see operation) to be evaluated; one of:

volumeFraction: Fraction of the volume in the cell that is inside the specified
gridBoundary.

surfaceOutwardNormal: Outward normal to the surface of the gridBoundary in a cell.
surfaceArea The surface area of the queryGridBoundary within the cell.

faceAreaFraction The fraction of the cell face (normal to queryComponent) that is inside
the queryGridBoundary

edgelineFraction The fraction of the cell edge (parallel to the queryComponent direction)
that is inside the queryGridBoundary.

octantVolumeFraction The fraction of the «cell octant that 1is inside the
queryGridBoundary.

3.7. Multifield

133

VSim Reference Manual, Release 11.0.1-r3016

queryGridBoundary (required string)
Name of the gridBoundary to be used to calculate the geomet ricQuantity (as opposed to the gridBoundary
all updaters have, which determines which cells are updated by that updater).

queryComponent (optional integer, default = 0)
Component of the data to be read for the surfaceOutwardNormal, edgelLineFraction, and
faceAreaFraction quantities.

writeFields (required string vector)
A vector containing a single element, the name of field to update with the geometric data.

writeComponents (required integer vector)
The components of F' to update. The geometric quantity will be evaluated for each component.

Example geometryUpdater Block

<FieldUpdater calcVolPlane>
kind = geometryUpdater

lowerBounds = [0 O 0]

upperBounds = [NX NY NZ]

operation = set

geometricQuantity = volumeFraction

update cell volume using queryGridBndry
queryGridBoundary = plane

writeFields = [VolFracPlane]

writeComponents = [0]
</FieldUpdater>
gradBndryUpdater
gradBndryUpdater

Works with VSimPD license.

The FieldUpdater of kind=gradBndryUpdater is a MultiField FieldUpdater that calculates the gra-
dient of a field (only) on fractional cell edges (i.e., on cell edges that are cut by a GridBoundary surface)
— taking into account the fractional edge lengths.

It can be used, for example, to find the static electric field (on cut cell edges) from a scalar electric potential
(on cell nodes). Most commonly, the potential comes from a cutCellPoisson updater, which solves for the
potential taking into account fractional edge lengths.

Another updater must be used to calculate the gradient on full (uncut) edges: cf. gradVecUpdater or
gradVecUpdaterCoordProd.

gradBndryUpdater Parameters

The gradBndryUpdater kind takes the 1lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

writeFields (required string vector: [E])
A list containing a single 3-component vector Field, i.e., the electric field at cell edges. This updater will update
all 3 components.

readFields (required string vector: [phi])
A list containing a single scalar Field, i.e., the electric potential at cell nodes.

134 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

cutCellPoissonUpdater (optional string)
the name of a curCellPoisson updater. The fractional edge lengths used to calculate the gradient will be identical
to those used by the cutCellPoissonUpdater updater, ensuring consistency. NOTE: gradBndryUpdater
must be placed after cut Cel1lPoissonUpdater in the input file.

If this option is not specified, then metalGridBoundaries must be specified.

metalGridBoundaries (optional string vector)
alist of GridBoundary names; each GridBoundary represents an shape outside of which is all metal. The fraction
edge lengths will be obtained from the GridBoundaries. For calculating the electric field, it is recommended to
specify the cutCellPoissonUpdater instead of metalGridboundaries.

Each edge length will be the GridBoundary-interior fraction of the edge (not the exterior fraction). If two or more
of the metalGridBoundaries cut the same edge, the result will be one of the two — it is strongly recommended
that the metalGridBoundaries be separated by at least a full cell to avoid this situation.

factor (optional float, default: 1)
An arbitrary factor by which to multiply the field gradient. For calculating the electric field from a potential,
this should be set to -1 (negative one).

differencing (optional string, default: forward)
Currently, only forward differencing is allowed for this updater. (gradVecUpdater and gradVecUpdaterCoord-
Prod updaters allow the backward option as well.) This is appropriate for calculating the gradient of a field
located at cell nodes (with the gradient located at cell edges), as when calculating the electric field.

gradBndryUpdater Advanced Parameters

printMatrices (optional boolean, default: false)
If true, the elements of the sparse matrix representing this updater will be printed out.

Example gradBndryUpdater Blocks

The gradBndryUpdater sets the field value only on cut edges; another update (gradVecUpdater or gradVec UpdaterCo-
ordProd) must be used to set field values on full edges.

Unless the interiorness option is used (wisely) for the full-edge grad updater, the full-edge updater must perform
its update before the gradBndryUpdater so that the latter can overwrite the gradient on cut edges (cf. UpdateStep and
InitialUpdateStep).

<FieldUpdater setBulkE> # set E everywhere, ignoring the cut/exterior edges
kind = gradVecUpdater

lowerBounds = [O 0 0]
upperBounds = [NX NY NZ]
readFields = [phi]
writeFields = [E]
differencing = forward
factor = 1.
</FieldUpdater>

<FieldUpdater setBndryE>
kind = gradBndryUpdater

lowerBounds = [O 0 0]
upperBounds = [NX NY NZ]
readFields = [phi]
writeFields = [E]
differencing = forward
factor = -1.

(continues on next page)

3.7. Multifield 135

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

cutCellPoissonUpdater = poissonUpdater
</FieldUpdater>

<FieldUpdateStep stepé>
toDtFrac = 1.
updaters = [poissonUpdater]
messageFields = [phi]
</FieldUpdateStep>
<FieldUpdateStep stepb5>
toDtFrac = 1.
updaters = [setBulkE setBndryE] # setBndryE must be done after setBulkE
messageFields = [E]
</FieldUpdateStep>

gradVecUpdater

gradVecUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that computes the gradient of a scalar field given by the readFields parameter and
writes the resulting vector field to writeFields.

gradVecUpdater Parameters

The gradvVecUpdater takes the 1lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (required string vector)
A single element, the name of the scalar field for which to compute the gradient.

writeFields (required string vector)
A single element, the vector field to update with the computed gradient.

factor (optional float, default = 1)
Factor by which to multiply the field.

differencing (optional string, default = forward)
The direction in which to take the finite differences, one of:

» forward: Performs a gradient of a nodal field to compute the gradient on grid edges.

* backward: Performs a gradient of a cell-centered field to compute the gradient on grid faces.

Example gradVecUpdater Block

<FieldUpdater grad_T>

kind = gradVecUpdater

lowerBounds = [0O 0 0]

upperBounds = [SNX+1$ $SNY+1$ SNZ+1$]

readFields = [Temperature]

writeFields = [HeatFlux]
</FieldUpdater>

gradVecUpdaterCoordProd

136 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

gradVecUpdaterCoordProd

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that computes the gradient of a scalar field given by the readFields parameter and writes the
resulting vector field to writeFields, on a non-uniform or non-Cartesian grid.

gradVecUpdaterCoordProd Parameters

The gradvecUpdaterCoordProd takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readFields (required, string, vector)
A single element, the name of the scalar field for which to compute the gradient.

writeFields (required, string, vector)
A single element, the vector field to update with the computed gradient.

factor (optional float, default = 1)
Factor by which to multiply the field.

includeCylAxis (optional integer, default = 0 (false))
Set this to true (1) if the cylindrical axis (r = 0) is included in this update. In 3D simulations, it is necessary
to specify two separate updaters; one with just the axis and one without. In 2D simulations that will have
divergence on the cylindrical axis it is also necessary to have this second updater for the cylindrical axis.

Example gradVecUpdaterCoordProd Block

<FieldUpdater gradPhi>
kind=gradVecUpdaterCoordProd
lowerBounds=[0 1]
upperBounds=[NZ NR]
readFields=[phi]
writeFields=[edgeE]
factor = 1.0

</FieldUpdater>

<FieldUpdater gradPhi_axis>
kind=gradVecUpdaterCoordProd
includeCylAxis=1
lowerBounds=[0 0]
upperBounds=[NZ 1]
readFields=[phi]
writeFields=[edgeE]
factor = 1.0

</FieldUpdater>

importFromFileUpdater

importFromFileUpdater

Works with VSimBase, VSIimEM, VSimPD, VSimPA, and VSimMD licenses.

Updates a field from a file (e.g,. an hdf5 file). This updater sets the values of a field from a dataset in an appropriate
file (e.g., a Vorpal field dump file).

3.7. Multifield 137

VSim Reference Manual, Release 11.0.1-r3016

importFromFileUpdater Parameters

The importFromFileUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the following parameters:

writeFields (required string vector)

A single element, the field to update with the imported data.

fileName (required string)

Name of the HDFS file containing the data to read.

dataset (required string)

Name of the HDF5 dataset to read from the file.

component (optional integer, default = 0)

The component to read, if reading a single component. Either this parameter or writeComponents must be
given, but not both.

writeComponents (optional integer vector)

The components of the writeField to be set from the file. If given, the vector must have at least one element, and
elements must be in sequence, e.g., [0 1 2] or [2 3], not [0 2], not [3 2]. If writeComponents is not given,
the updater will update only the component corresponding to the component parameter. Either component
or writeComponents must be given, but not both.

datasetLowerBounds (optional integer vector)

See datasetUpperBounds.

datasetUpperBounds (optional integer vector)

With datasetLowerBounds, the bounds describing the subset of the file’s dataset (array) to be copied
to the field; the region of cells includes the lower bound, but excludes the upper (as usual for lowerBounds
and upperBounds in Vorpal). These bounds are specified by grid index, and must be of the same size as the
upper/lowerBounds provided. So for example to import the first 10 cells of a 3 component field

lowerBounds = [0 0 0] upperBounds = [10 10 10] dataSetLowerBounds = [0 0 0 0] datasetUpperBounds = [10
10 10 3]

If you wanted to import the first 10 cells of a 3 component field into cells 10-20 of the destination field it would
look like lowerBounds = [10 10 10] upperBounds = [20 20 20] dataSetLowerBounds = [0 0 0 0] datasetUpper-
Bounds =[10 10 10 3]

The length in each dimension must correspond to the length in a spatial dimension (of the volume described by
lower/upperBounds), in order. For example, if the updater updates a box in space of size 10 x 12 x 20, then
then the subset of the file’s dataset may be 10 x 1 x 12 x 20o0r 1 x 10 x 1 x 12 x 1 x 12 x 1, but it may not be
12 x 10 x 20 or 12 x 12 x 20.

(In a serial simulation, the above correspondence is relaxed if the allowDatasetReshapeInSerial op-
tion is true.)

The compatibility of bounds is slightly altered if copyUniformInDir is set; in this case, the length of the dataset
dimension corresponding to the direction specified by copyUniformInDir must be one, rather than the same as
the length of the updater’s bounds in that direction.

Default: include entire simulation domain + 1 in each dimension, and all components of the writeField (because
that corresponds to Vorpal’s field dump-files)

copyUniformInDir (optional integer)

Allows a (lower-dimensional) file dataset to be copied to a field slice, after which those values are copied
into adjacent field slices. For example, if a file contains a 2D dataset representing a function f(z,y), set-
ting copyUniformDir = 2 would allow setting a 3D field F'(z,y,z) = f(x,y) for every z. When
copyUniformInDir is specified, the dataset dimensions must correspond to the updater’s bounds after the
updater’s bounds have been modified to have length 1 in the direction of copyUniformDir.

138

Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

For example, suppose we have a 1D dataset with length 4 and values [10,20,30,40], and a 2+1-
dimensional field with dimensions 4 x 3 x 1 (a 4 x 3 scalar field in 2D). If the dataset bounds
are dataSetLowerBounds=[0] and datasetUpperBounds=[4], and the field bounds are
lowerBounds=[0,1] and upperBounds=[4, 2] (and writeComponents=[0], the only choice for
this scalar field), then the field will be set to:

0 0 0 ©
10 20 30 40
0 0 0 O

(where the first dimension is horizontal, and the second vertical) but if field bounds are [0, 1] and [4, 3] and
copyUniformDir = 1, then the field will be set to:

0 0 0 ©
10 20 30 40
10 20 30 40

allowDatasetReshapeInSerial (optional integer, default = 0 (false))
This option, available only for serial simulations, allows the datasetBounds to be reshaped to match the updater’s
bounds; for example, a 1D dataset with 12 elements might be used to update a 4 x 3 sub-array of the writeField.
Use of this option is discouraged.

Example importFromFileUpdater Block

<FieldUpdater readB>
kind = importFromFileUpdater

fileName = sourceSim_B_5.hb

dataset = "B"

writeFields = [B]

writeComponents = [0 1 2]

lowerBounds = [0 0 0]

upperBounds = [SNX+1$ $NY+1$ $SNZ+1$]
</FieldUpdater>

lightFrameEnvelopeUpdater

lightFrameEnvelopeUpdater

Works with VSimPA license.

Multifield updater that updates the envelope fields in the laser envelope model. To use it effectively, you must use
it with the lightFrameEnvelopeMultiField kind of MultiField. When using the envelope model with particles, the
species should be of kind envBoris Species Kind.

lightFrameEnvelope Updater Parameters

The lightFrameEnvelopeUpdater takes the lowerBounds and upperBounds parameters of FieldUp-
dater, as well as the following parameters:

readFields (required string vector)
Three field names: the active envelope field, the alternate field, and the susceptibility field. The envelope fields
are complex scalars, with the real part in component 0 and the imaginary part in component 1.

3.7. Multifield 139

VSim Reference Manual, Release 11.0.1-r3016

writeFields (required string vector)
Two field names: the active and alternate envelope fields.

omega (required float)
Angular frequency of the laser, in Hz.

Solver (required parameter block)
The 1ightFrameEnvelopeUpdater requires a block of type Solver of any name. This block provides
parameters for the linear solver used in the update.

In general, the possible values of solver block parameters correspond to the values of parameters of the AztecOO
library used by Vorpal. String parameters are case insensitive and need not have the AZ_ prefix. Not all AztecOO
parameters can be set from the input file, and the parameters in the example file have been found to work well.
However, solver parameters that you may want to adjust include:

kind (optional string): Specifies the iterative solver available in Aztec to use for the linear system of equations
of the envelope model. Please refer to the Trilinos documentation for further details. One of:

* cg
* gmres

* cgs

e tfgmr

* bicgstab

precond (optional string): Please refer to the Trilinos documentation for details regarding Trilinos precon-
ditioners. The precond parameter specifies a Trilinos preconditioner; one of:

e ml

* dom_decomp_ilu
¢ dom_decomp_ilut
* neumann

e 1ls

* jacobi

output (optional string): specifies information to be printed. Possible values to specify level of output in-
clude:

* all

* none: suppress residual data
* warnings

e last

¢ summary

tolerance (optional float): Tolerance for solver convergence.

Example lightFrameEnvelopeUpdater Block

<FieldUpdater envUpdater>
kind = lightFrameEnvelopeUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]

(continues on next page)

140 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

readFields = [activeEnvF1ld altEnvFld chi]
writeFields = [activeEnvF1ld altEnvFld]

omega = OMEGA

<Solver mySolver>
kind = gmres
precond = dom_decomp
output = all
tolerance = 1.e-08
</Solver>
</FieldUpdater>

lightFrameEnvForceUpdater

lightFrameEnvForceUpdater

Works with VSimPA license.

MultiField updater that computes the ponderomotive force from an envelope field in the Laser Envelope Model; see

lightFrameEnvelopeMultiField for details.

lightFrameEnvForceUpdater Parameters

The 1ightFrameEnvForceUpdater takes the lowerBounds and upperBounds parameters of FieldUp-

dater, as well as the following parameters:

readFields (required string vector)
A single element, the name of the envelope field.

writeFields (required string vector)

A single element, the name of the resulting force field.

Example lightFrameEnvForceUpdater Block

<FieldUpdater forceUpdater>
kind = lightFrameEnvForceUpdater

lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [activeEnvF1d]
writeFields = [forceFld]
</FieldUpdater>
linearApplyUpdater
linearApplyUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

3.7. Multifield

141

VSim Reference Manual, Release 11.0.1-r3016

Multifield updater that works by defining a matrix relationship, Az = b, between two vectors, = and b, and the matrix

A eg.,
Ao Aoz Iy _ Fy
A An G Ga |’

linearApplyUpdater Parameters

The linearApplyUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

readFields (required string vector)
A vector containing the names of fields to read. If multiple components of a field are read, then the field name
must be repeated once for each component.

readComponents (required integer vector)
For each readField, a component; references to the jth readField will use the component specified in the
jth element of this vector.

writeFields (required string vector)
A vector containing the names of fields to update. If multiple components of a field are written, then the field
name must be repeated once for each component.

writeComponents (required integer vector)
For each writeField, a component; references to the jth writeField will use the component specified in
the jth element of this vector.

writeEquationToFile (optional integer, default = 0 (false))
The matrix A, left-hand side vector x, and (after solution) unknown vector b, will be written out in MatrixMarket
format when set to t rue.

matrixfiller (required parameter block)
To define the matrix A, you must use a MatrixFiller block. At least one MatrixFiller block is required for the
linearApplyUpdater.

vectorwriter (required parameter block)
To define the left-hand side vector x, you must use a VectorWriter block. At least one VectorWriter block is
required for the linearApplyUpdater.

vectorreader (required parameter block)
To access the unknown vector b, you must use a VectorReader block. At least one VectorReader block is
required for the linearApplyUpdater.

Example linearApplyUpdater Block

<FieldUpdater eyUpdate>

kind = linearApplyUpdater

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]

readFields = [edgeElec faceMag faceMag]
readComponents = [1 2 0] # 0 = Ey, 1 = Bz, 2 = Bx
writeFields = [edgeElec]

(continues on next page)

142 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

writeComponents = [1]

<MatrixFiller eyupmat>
kind = interior
<StencilElement eyey>
value = 1.
minDim = 0
cellOffset = [0 0 O]
rowFieldIndex = 0
columnFieldIndex = 0
</StencilElement>
<StencilElement eybxup>

</StencilElement>
</MatrixFiller>

<VectorWriter eyuplhs>
kind = fieldVectorWriter
minDim = 0
readField = faceMag
readComponent = 2
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
component = 1

</VectorWriter>

<VectorReader eyupunk>

kind fieldVectorReader

minDim = 0

writeField = edgeElec

writeComponent = 1

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]

</VectorReader>

</FieldUpdater>

linearSolveUpdater

linearSolveUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that works by defining a matrix relationship, Az = b, between two vectors, = and b, and the matrix

A, e.g.,
Agg Aot Py _ I3
AlO All Gl G2 '
linearSolveUpdater Parameters

The 1linearSolveUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

3.7. Multifield 143

VSim Reference Manual, Release 11.0.1-r3016

readFields (required string vector)
A vector containing the names of fields to read. If multiple components of a field are read, then the field name
must be repeated once for each component.

readComponents (required integer vector)
For each readField, a component; references to the jth readField will use the component specified in the
jth element of this vector.

writeFields (required string vector)
A vector containing the names of fields to update. If multiple components of a field are written, then the field
name must be repeated once for each component.

writeComponents (required integer vector)
For each writeField, a component; references to the jth writeField will use the component specified in
the jth element of this vector.

writeEquationToFile (optional integer, default = 0 (false))
The matrix A, right-hand side vector b, and (after solution) unknown vector z, will be written out in MatrixMar-
ket format when set to t rue.

MatrixFiller (required parameter block):

To define the matrix A, you must use a matrixFiller block. At least one matrixFiller block is required for
the linearSolveUpdater.

VectorWriter (required parameter block):

To define the right-hand side vector b, you must use a VectorWriter block. At least one VectorWriter
block is required for the linearSolveUpdater.

VectorReader (required parameter block):

To access the unknown vector x, you must use a VectorReader block. At least one VectorReader block is
required for the linearSolveUpdater.

LinearSolver (required parameter block):

To solve the equation, you must use a LinearSolver block.

Example linearSolveUpdater Block

<FieldUpdater eyUpdate>

kind = linearSolveUpdater

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]

readFields = [edgeElec faceMag faceMag]
readComponents = [1 2 0] # 0 = Fy, 1 = Bz, 2 = Bx
writeFields = [edgeElec]

writeComponents = [1]

<MatrixFiller eyupmat>
kind = interior
<StencilElement eyey>
value = 1.
minDim = 0
cellOffset = [0 0 0]
rowFieldIndex = 0
columnFieldIndex = 0

(continues on next page)

144 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</StencilElement>
<StencilElement eybxup>

</StencilElement>
</MatrixFiller>
<VectorWriter eyuprhs>

kind = fieldVectorWriter

minDim = 0
readField = faceMag

readComponent = 2
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
component = 1
</VectorWriter>

<VectorReader eyupunk>
kind = fieldVectorReader
minDim = 0
writeField = edgeElec

writeComponent = 1

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]
</VectorReader>

<LinearSolver mySolver>
kind = iterativeSolver
<BaseSolver>
kind = gmres
</BaseSolver>
<Preconditioner>
kind = multigrid
mgDefaults = SA
</Preconditioner>
tolerance = 1.e-10
maxIterations = 1000
output = 1
</LinearSolver>

</FieldUpdater>

linIterUpdater

linlterUpdater

Works with VSimBase, VSIimEM, VSimPD, VSimPA, and VSimMD licenses.

General translation-invariant linear Multifield updater. Depending on the specified parameter operation, linlterUpdater
can perform the following updates for multiple fields: E!, ..., EN simultaneously, where:

Eéi(m,y,z,t—i—At ZA” 9 (x +mjAz,y+n;Ay, 2+ pjAz,t)

E} (2,y,2,t+ At) = B} (2,y,2,1) +ZA” 9 (x+mjAz,y+n;Ay, z +pjAz,t)
J

3.7. Multifield 145

VSim Reference Manual, Release 11.0.1-r3016

Eil (.13, Y, th + At) = Ell)l (I7y7 Zat) ZAZJFJS (.’13 + mijay + njAyv z +ijZa t)
J
B} (x,y,2,1)

B}, (x,y,2,t + At) = - i
Zj Ay F) (x +mjAx,y +njAy, z + pjAz,t)
J

In each case, b; is the user-chosen component of the field E, b} is the user-chosen component of the field F, mj, nj,
and p; correspond to the cellOffset StencilElement parameter (see StencilElement), and Ax, Ay, and Az are the
dimensions of the cell.

linIterUpdater updates cell-by-cell, based on an internal iterator approach (hence the name ifer). linlterUpdater eval-
uates the right-hand-side of the equation (as shown above) for a cell, applies the updates to the left-hand-side of the
equation for a cell, and then proceeds to the next cell. This is important to remember if a field is both a readFields
andawriteFields.

The matrix A is described in the input file in such a way as to be compatible with other matrix solvers in Vorpal. There
are a few differences, however, because with the linlterUpdater, the full matrix is never created, so the linlterUpdater
can perform some extra operations to modify matrix elements at each time-step with negligible computation. Vorpal
performs multiplication and division cell-by-cell, not using matrix multiplication.

You can choose to modify the matrix coefficients at each time-step. In many updates, for instance, you may prefer to
multiply the coefficients by the time-step at each time-step, allowing for (usually only very slightly) varying time-steps.
You are likely to find that this operation is too costly to implement in matrix updaters that construct the entire matrix.
(Of course, such updaters can use matrices that are not translationally invariant, while the linlterUpdater cannot.)

linlterUpdater cannot perform matrix solves, so rowFieldIndex always refers to writeFieldIndex, but
you must use the rowFieldIndex attribute. .columnFieldIndex refers to . readFieldIndex, meaning
the index of fields in the writeFields and readFields lists. For example, if readFields = [elecField
elecField elecField SumRhoJ SumRhoJ SumRhoJ] and readComponents = [0 1 2 0 1

2] then columnFieldIndex = 3 refersto SumRhoJ_O.

linlterUpdater Parameters

The linIterUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

operation (required string)
One of:

e set: See Equation 1.

e add: See Equation 2.

e multiply: See Equation 3.
e divide: See Equation 4.

readFields (required string vector)
A vector containing the names of fields to read. If multiple components of a field are read, then the field name
must be repeated once for each component.

readComponents (required integer vector)
For each readFields, a component; the jth component of this vector is used for the jth readFields
specified.

writeFields (required string vector)
A vector containing the names of fields to update. If multiple components of a field are written, then the field
name must be repeated once for each component.

146 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

writeComponents (required integer vector)
For each writeFields, a component; the jth component of this vector is used for the jth writeFields
specified.

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [¢y ¢1]. The matrix coefficients will be multiplied by (¢ + ¢1 At) where At is the current time
step. If ¢y is not specified it is assumed to be zero.

FieldMatrix (required parameter block)
Describes matrix A. It must contain only StencilElement code blocks, each of which is used to describe an
element of matrix A.

Example linlterUpdater Block

<FieldUpdater amperelLinIterVec>
kind = linIterUpdater
operation = add
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
dtCoefficients = [0. 1.]
readFields = [Binit Binit Binit SumRhoJ SumRhoJ SumRhoJ]
readComponents = [0 1 2 1 2 3]
writeFields = [EcalcLinIterVec EcalcLinIterVec EcalcLinlIterVec]
writeComponents = [0 1 2]
<FieldMatrix dEdt>
dEx / dt
<StencilElement ExBz0>
minDim = 2
value = SLIGHTSPEED**2/DYS$
cellOffset = [0 O 0]
columnFieldIndex = 2
rowFieldIndex = 0
</StencilElement>

</FieldMatrix>
</FieldUpdater>

linPlasDielcUpdater

linPlasDielcUpdater

Works with VSimEM and VSimMD licenses.

Multifield updater that is used to describe linear plasma dielectric model for cold plasma. To use this updater,
readFields should always have a background magnetic field defined in the Mult iField block. Also, if damping
is used the damping fields need to be added to readFields. In the update step, the nodal electric field must be
specified in the messageFields parameter.

linPlasDielcUpdater Parameters

The 1inPlasDielcUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

nspecies (required integer)
An integer value that defines the number of species (e.g., 2 might refer to Krypton ions and electrons).

3.7. Multifield 147

VSim Reference Manual, Release 11.0.1-r3016

massNumbers (required float vector)
A vector of floating point values that defines the mass of the species. See the example block for common mass
numbers.

chargeNumbers (required float vector)
A vector of floating point values that defines the charge of the species.

includeDamping (optional integer, default = 0 (false))
Defines whether damping on the simulation will be used.

readFields (required string vector)
The names of the fields to use in this update: The background magnetic field, of offset none, a particle density
field for each species, also of offset none, and if damping is included, a damping coefficient for each species.

writeFields (required string vector)
The fields to update: An electric field, of offset none, and a three-component current field for each species, also
of offset none.

Example linPlasDielcUpdater Block

<FieldUpdater plasmaDielectric>
kind = linPlasDielcUpdater

lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
nspecies = 2
common mass numbers: e=0.5486e-3, He=4.00, N=14.00, Ne=20.18, Ar=39.95, Kr=83.80
massNumbers = [83.80 0.5486e-3]
chargeNumbers = [1.0 -1.0]
includeDamping = 0
readFields = [BO densityOionl densityOelectron]
writeFields = [nodalE 1linearJionl linearJelectron]
</FieldUpdater>

Multifield-malUpdater

malUpdater

Works with VSimEM, VSimPA, and VSimMD licenses.

The malUpdater is a MultiField updater that uses isotropic electric and magnetic damping profiles to
absorb an incident wave in a slab. These Matched Absoring Layers (MALSs) are more stable than Perfectly
Matched Layers (PMLs), which use the same electric and magnetic damping profiles, but are anisotropic.

malUpdater Parameters

The malUpdater takes the LlowerBounds and upperBounds parameters of FieldUpdater, as well as the following
parameters:

upperOrLower (required string)
A string specifying whether the damping increases (upper) or decreases (lower) as the coordinate increases.

numOrDenom (required string)
A string, specifying whether this updater damps field by (1 - xi*pwr) (num) or 1/(1 + xi"pwr) (denom)

writeField (required string)
A string indicating field to damp. (E) or (B).

148 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

dir (required integer)
An integer, 0-ndim, in which damping coefficient should vary. (0), (1), or (2).

frac (optional float)
The peak damping amplitude: 0.5 is suggested, typical range is 0.125 to 2.0.

power (optional float)
The damping profile goes as frac*x power: 3.0 is suggested, typical range is 1.0 to 4.0.

Example malUpdater Block

<FieldUpdater malexlow>
kind = malUpdater
lowerBounds = [0 O 0]
upperBounds = [MAL_THICKNESS NY NZ]
upperOrLower = lower
numOrDenom = denom
writeField = E
dir = 0
frac = 0.5
power = 3.0
</FieldUpdater>

multiDielectricUpdater

Works with VSimEM license.

This FieldUpdater sets the inverse permittivity to multiple gridBoundary shapes.

multiDielectricUpdater Parameters

The multiDielectricUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the following parameters:

permittivityField (required string)
The name of the vector field to write the inverse permittivity to.

backgroundPermittivity (required float)
The value of the permittivity for all other space that is not given in a DielectricShape block.

DielectricShape (optional block)
Any number of DielectricShape blocks may be included. These blocks allow for setting the permittivity inside a
pre-defined GridBoundary. If GridBoundaries specified in multiple DielectricShape blocks overlap, the permit-
tivity in the last such block is used; thus later blocks overwrite earlier ones. The parameters of a DielectricShape
block are described in DielectricShape Block.

multiDielectricUpdater Example

<FieldUpdater setInvEps>
kind = multiDielectricUpdater
lowerBounds = [0 0O 0]
upperBounds = [46 51 51]

(continues on next page)

3.7. Multifield 149

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

permittivityField = invEps

<DielectricShape cylinderOUnionsphereOShape>
boundary = cylinderOUnionsphere0
permittivity = 9.9

</DielectricShape>

<DielectricShape cubeOMinuscylinder00Shape>
boundary = cubeOMinuscylinder00
permittivity = 9.0

</DielectricShape>

backgroundPermittivity = 1.0
</FieldUpdater>

neutralBoltzmannUpdater

neutralBoltzmannUpdater

Works with VSimPD license.

MultiField updater that computes the electrostatic potential satisfying the Boltzmann relation. It reads a
charge density field p and updates a potential field.

6= ~Tyin(-L—) ~ gy

noqo

neutralBoltzmannUpdater Parameters

The neutralBoltzmannUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readFields (required string vector)
A single element, the name of the field containing the charge density in component O.

writeFields (required string vector)
A single element, the name of field to update. Component 0 of this field will be updated with the electrostatic
potential.

n0 (required float)
Background density in #/m>.

TO (required float)
Temperature (in eV).

q0 (required float)
Charge of electron.

phi0 (required float)
Constant offset to electrostatic potential.

mion (required float)
(not used).

mindensity (required float)
Lowest density allowed.

150 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example neutralBoltzmannUpdater Block

<FieldUpdater esSolve>
kind = neutralBoltzmannUpdater

n0 = ELECDENS

TO = ELECTEMPERATURE
g0 = ELECCHARGE

phi0 = 4.6

mindensity = NP2C

lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [rhoJ]
writeFields = [phi]

</FieldUpdater>

open

open

Works with VSimEM, VSimPD, and VSimMD licenses.

Allows for outgoing waves on a Yee grid. This is only allowable as a boundary condition on the domain
boundary.

open Parameters

The open MultiField updater takes the 1owerBounds and upperBounds parameters of FieldUpdater, as well as
the local region modification parameters. In addition, open takes the following parameters:

readFields (required string vector)
A vector containing a single element, the name of the magnetic field to use in the open boundary comdition.

writeFields (required string vector)
A vector containing a single element, the name of the electric field to update with appropriate values for an open
boundary.

component (required integer)
The component of the electric field to update.

velOverC (required float)
Ratio of the wave velocity to the speed of light. velOverC can be negative to specify direction of propagation.

normalDir (optional integer)
Propagation axis of the outgoing wave. If normalD1ir is not specified, Vorpal assumes that the axis will be the
first simulated direction with an upper bound 1 greater than the lower bound.

STFunc (required parameter block)
A parameter block of type STFunc (with any name) must be specified. This describes the anticipated functional
form of the outgoing wave.

3.7. Multifield 151

VSim Reference Manual, Release 11.0.1-r3016

Example open Block

<FieldMultiUpdater leftOpenBC>
kind=open

lowerBounds = [0 -1 -1]
upperBounds = [1 SYSIZE+1S SZSIZE+1S]
readFields = [MagMultiField]
writeFields = [ElecMultiField]
components = [1 2]
velOverC = -1.0
<STFunc function>
kind = expression
expression = AMP % sin (OMEGA x t)
</STFunc>

</FieldMultiUpdater>

permittivityUpdater

permittivityUpdater

Works with a VSimEM license.

This is a MultiField updater that computes the effective tensor permittivity on the computational grid in the presence
of a material interface. One specifies a region and the relative permittivities inside and outside the region, and the
updater will compute the inverse physical permittivity tensor everywhere within 1 owerBounds and upperBounds,
including the effective tensor at the interface.

permittivityUpdater Parameters

The permittivityUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

region (required string)
The name of the STRgn block describing the dielectric geometry.

invPermittivityField (required string)
The name of the inverse permittivity tensor field to update. It must have 6 components.

The permittivities can be specified as either scalars or tensors. To use scalars, use the following parameters:

insidePermittivity (required float)
The relative dielectric permittivity inside the volume given in the region parameter.

outsidePermittivity (required float)
The relative dielectric permittivity outside the volume given in the region parameter.

To use tensor permittivities, use the following parameters:

insidePermittivityDiag (required float vector)
The diagonal components of the relative permittivity inside the volume given in the region pa-
rameter. This vector must have 3 elements, which correspond to [e,, €yy> €2z

insidePermittivityOffDiag (optional float vector, default = [0. 0. 0.])
The off-diagonal components of the relative permittivity inside the volume given in the region
parameter. This vector must have 3 elements, which correspond to [e;, €., €5,]. This updater
enforces a symmetric permittivity tensor, i.e. €;; = €;;.

152 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

outsidePermittivityDiag (required float vector)
The diagonal components of the relative permittivity outside the volume given in the region pa-
rameter. This vector must have 3 elements, which correspond to [€g4, €4y €22]-

outsidePermittivityOffDiag (optional float vector, default = [0. 0. 0.])
The off-diagonal components of the relative permittivity outside the volume given in the region
parameter. This vector must have 3 elements, which correspond to [eyz, €y Ewy]~ This updater
enforces a symmetric permittivity tensor, i.e. €;; = €;;.

Example permittivityUpdater Block

<FieldUpdater setEpsilon>
kind = permittivityUpdater

lowerBounds = [O 0 0]
upperBounds = [NX1 NY1 NZ1]
region = sphere
invPermittivityField = invEpsilon
insidePermittivityDiag = [REL_EPS_XX REL_EPS_YY REL_EPS_2zZ]
insidePermittivityOffDiag = [REL_EPS_YZ REL_EPS_XZ REL_EPS_XY]
outsidePermittivityDiag = [1.0 1.0 1.0]
</FieldUpdater>
phaseShiftVecUpdater

phaseShiftVecUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

A phaseShiftVecUpdater is a MultiField updater that treats the two specified fields as the real and imaginary
components of a single complex field, and applies a phase shift. Thus, if F and G are the fields and ¢ is the phase
shift, the operation is

F . Fcos¢p — Gsing
G Fsing+ Geoso|”

Therefore, if E = F + i@, then the operation is E > PR,

This updater is useful for applying a phase shift across a periodic boundary to enforce a specific Bloch
wavevector in a system with a periodic geometry.

phaseShiftVecUpdater Parameters

The phaseShiftVecUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the local region modification parameters. In addition, phaseShiftVecUpdater takes the following pa-
rameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

writeFields (required string vector)
The two fields to update. The first is the real part of the complex field (corresponding to F above) and the second
is the imaginary part (G).

3.7. Multifield 153

VSim Reference Manual, Release 11.0.1-r3016

phase (required float)
The phase to use in the phase shift transformation, corresponding to ¢ in the description above.

Example phaseShiftVecUpdater Block

<FieldUpdater leftPhaseShift_E>
kind = phaseShiftVecUpdater

lowerBounds = [-1 0 0]
upperBounds = [0 NY NZ]
cellsToUpdateBelowDomain = [1 1 1]
cellsToUpdateAboveDomain = [1 1 1]
writeFields = [elecField elecFieldI]
phase = —-X_PHASE

</FieldUpdater>

potentialUpdater

potentialUpdater

Works with VSimEM, VSimPD, and VSimMD licenses.

An updater that calculates the potential due to a charge distribution field.

potentialUpdater Parameters

The potentialUpdater MultiField updater takes the 1owerBounds and upperBounds parameters of Field-
Updater. In addition, potentialUpdater takes the following parameters:

sourceLowerBounds (required int vector)
The lower bounds of the region containing sources.

sourceUpperBounds (required int vector)
The upper bounds of the region containing sources.

direction (required integer)
The direction associated with the update region.

factor (required float)
Multiplicative factor for scaling of potential.

readField (required string vector)
A vector containing a single element, the name of the field to use in the potentialUpdater.

writeField (required string vector)
A vector containing a single element, the name of the field to update with appropriate values for a potentialUp-
dater.

readComponent (optional integer)
The component of the read field to be used.

writeComponent (optional integer)
The component of the write field to write to.

gammaVec (optional float vector)
Relativistic gamma used for scaling of lengths.

154 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

minDim (optional integer)
The minimum dimensionality for which to apply the updater.

Example potentialUpdater Block

<FieldUpdater psiZHiBoundaryCalculation>
kind = potentialUpdater
lowerBounds = [0 0 176]
upperBounds = [129 177 177]
minDim = 3
readField = kappa
readComponent = 0
writeField = psi
writeComponent = 0
direction = 2
sourcelLowerBounds = [0 0 0]
sourceUpperBounds = [129 177 177]
restoreTimeFromField = phi
factor = 112940906675.81473
gammaVec = [490.2367906066536 1.0 1.0]
</FieldUpdater>

setEpsilonUpdater

setEpsilonUpdater

Works with VSimEM and VSimMD licenses.

Fills the symmetric inverseEpsilon field (6 components, xx, yy, Zz, Xy=yX, yzZ=zy, zx=xz) from the given dielectric
functions.

When a cell is partially filled (as determined by subsampling the functions over the cell), the dielectric is averaged
appropriately over the cell. The number of samples per cell should increase as the simulation resolution increases, to
maintain accuracy.

The setEpsilonUpdater requires one writeFields (the invEpsilon field with six (6) components) and no (0)
readFields.

To define the dielectric constant, use STFunec blocks with the name dielectricConstNM where N and M repre-
sent the components [X Y Z]. A total of 6 blocks (components) are needed. Vorpal will first look for XY, YZ, and ZX,
and use these values if they are present. However, if, XY is missing, Vorpal will use YX instead. If both XY and YX
are present, Vorpal will use XY and ignore YX.

To define the surface normals (the vector normal to the dielectric interface at any location (x,y,z) that is within a cell
length of the interface), use an STFunc block with a name surfNormalN where N represents the component [X Y
VAR

setEpsilonUpdater Parameters

The setEpsilonUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

writeFields (required string vector)
A single element, the name of the 6-component inverse permittivity tensor field to update.

3.7. Multifield 155

VSim Reference Manual, Release 11.0.1-r3016

samplesPerCell (optional integer vector, default = [1 1 1])
Number of locations (in each direction, x, y, and z) at which the dielectric is sampled in each cell. Although the
defaultis [1 1 1],usually [7 7 7] orhigher would be a better choice.

dielectricConstXX (required parameter block)
This parameter block, which must be of type STFune, specifies a function describing the xz component of the
relative permittivity.

dielectricConstYY (required parameter block)
Similar to dielectricConstXX, but describing the yy component.

dielectricConstZZ (required parameter block)
Similar to dielectricConstXX, but describing the zz component.

dielectricConstXY (required parameter block)
and

dielectricConstY¥X (required parameter block)
This parameter block, which must be of type STFunec, specifies a function describing the zy compo-
nent of the relative permittivity. At least one of these parameter blocks must be specified; if both are,
dielectricConstXYisused and dielectricConstYX isignored.

dielectricConstYZ (required parameter block)
and

dielectricConstZY (required parameter block)
Similar to dielectricConstXY and dielectricConstYX, but describing the yz component. If both
are specified, dielectricConstYZisused and dielectricConstZY is ignored.

dielectricConstZX (required parameter block)
and

dielectricConstXZ (required parameter block)
Similar to dielectricConstXY and dielectricConstYX, but describing the zz component. If both
are specified, dielectricConstZX isused and dielectricConstXZ is ignored.

surfNormalX (required parameter block)
This parameter block, which must be of type STFunc, specifies a function describing the x component of the
unit vector normal to the dielectric interface at the point on the interface closest to the position of the function
argument. This value must be valid for any position argument within one grid cell of the interface.

surfNormalY (required parameter block)
Similar to surfNormalX, but describing the y component of the surface normal unit vector.

surfNormalZ (required parameter block)
Similar to surfNormalX, but describing the z component of the surface normal unit vector.

Example dielectricConst STFunc Block

<STFunc dielectricConstXZ>

kind = expression

expression = 1.+H(R"2-(x-X0)"2-(y-Y0)"2-(z-20)"2)» (REL_EPS_ZZ-1)
</STFunc>

156 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example surfNormal STFunc Block

<STFunc surfNormalX>

kind = expression
expression = x-X_SPHERE
</STFunc>
smoothlD
smoothiD

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Updater applies a multiplicative 1D digital filter of the form [a b a] across a 1D grid for the specified
component of a specified field. smoothlD is typically used for a single pass smoothing of the current.
Only one field component can be smoothed. This updater can be applied to a 1D, 2D or 3D grid for which
smoothDir will give the specific axis on which to apply smooth1D in a 1D fashion.

smooth1D Parameters

The smooth1D updater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (required string vector)
A single element, the name of the field to smooth.

writeFields (required string vector)
A single element, the name of the field to update with the smoothed values.

aFac (optional float, default = 0.25)
The off-center stencil element value.

bFac (optional float, default
The center stencil element value.

0.5)

smoothDir (optional integer, default = 0)
The direction over which to smooth.

smoothComp (optional integer, default = 0)
The field component to smooth.

Example smooth1D Block

<FieldUpdater smthPhiTau>
kind = smoothlD
lowerBounds = [1 0 0]
upperBounds = [NX NY NZ]
readFields = [phiTauF1ld]
writeFields = [phiTauFldSmth]
aFac = 0.25
bFac = 0.5
smoothDir = 0
smoothComp = 0
</FieldUpdater>

3.7. Multifield 157

VSim Reference Manual, Release 11.0.1-r3016

STFuncUpdater

STFuncUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that performs one of the following operations on a field F and an STFunc f:

Fi(z,y,2,t+ At) = f(z,y, 2,t) (3.6)
Fj(:c,y,z,t—i—At):Fj(m,y,z,t)—l—f(:c,y,z,t) (37)
Fi(z,y,z,t + At) = Fj(2,y,2,t) f(2,y, 2,) (3.8)

For updating a single component of F, the updater is straightforward; the operation is specified by the operation
parameter.

However, for updating multiple components of F, if different components of F' are located at different places
(e.g., for a Yee electric field, E, and I are located at different places within a mesh cell), STFunc is evaluated
only once for all components; STFunc is evaluated at the position of the component given by the component
parameter of the updater and the field offset of field F'. In this case, the components of F that are updated are
those given by the parameter writeComponents.

If you want to have f evaluated at the location of each component then you must use a sep-
arate STFuncUpdater definition for each component (or otherwise update all components using
FieldMultiUpdater).

STFuncUpdater Parameters

The STFuncUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

operation (required string)
One of:

e Set: See (3.6).
e Add: See (3.7).
* Multiply: See (3.8).

writeFields (required string vector)
A single element, the name of the field to update.

component (optional integer, default = 0)
Component j of F to be updated. However, if writeComponents isnot [0], the component, along with the
field offset of F, determines the location in each cell where the function f will be evaluated.

writeComponents (optional integer vector, default = [0])
List of components of F that will be updated.

Note: The STFunc f will be evaluated only once per cell for all components, and the location within each cell at
which f is evaluated is determined by the component parameter.

158 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [cq ¢1]: the function will be multiplied by (co + ¢1 At), where At is the current time step. If
c; is not specified it is assumed to be zero.

STFunc (required parameter block)
A parameter block of type STFunc (with any name) must be specified. This describes f.

Example STFuncUpdater block

<FieldUpdater initialPulse>
kind = STFuncUpdater
lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]
operation = set
writeFields = [elecField]
component = 2
<STFunc unimportantName> # a gaussian
kind = expression
expression = E_AMP * exp(-0.5 * ((x-X_INIT)"2 + (y-Y_INIT)"2 \
+ (z-Z_INIT)”2) / WIDTH_INIT"2)
</STFunc>
</FieldUpdater>

unaryFieldOpUpdater

unaryFieldOpUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that performs one of the following operations on a field F, another field G, and a STFunc f:

Fj(x,y,z,t+ At) = f(z,y,2,t)G,(x,y, 2, 1) (3.9)

Fi(x,y,z,t+ At) = Fj(z,y, 2,t) + f(z,y,2,t)G,(x,y, 2, 1) (3.10)

Fj(z,y,z,t+ At) = Fj(z,y,2,t) f(z,y, 2,t)Gj (2, v, 2, t) 3.11)
Fi(z,y,2,1)

Fj(z,y,z,t+ At) = (3.12)

f(xa Y, z, t)GJ (.’L‘, Y, z, t)
For updating a single component of F, the updater is straightforward; the operation is specified by the operation
parameter.

However, for updating multiple components of F, if different components of F are located at different places (e.g., for
a Yee electric field, £, and E, are located at different places within a mesh cell), STFunc is evaluated only once for all
components; STFunc is evaluated at the position of the component given by the component parameter of the updater
and the field offset of field F. In this case, the components of F that are updated are those given by the parameter
writeComponents.

If you want to have f evaluated at the location of each component, you must use a separate STFuncUpdater
definition for each component (or otherwise update all components using FieldMultiUpdater).

3.7. Multifield 159

VSim Reference Manual, Release 11.0.1-r3016

unaryFieldOpUpdater Parameters

The unaryFieldOpUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

operation (required string)
One of:

e Set: See (3.9).

e Add: See (3.10).

e Multiply: See (3.11).
¢ Divide: See (3.12).

readFields (required string vector)
A single element, the name of the field to use in the operation (G, above).

writeFields (required string vector)
A single element, the name of the field to update (F', above).

component (optional integer, default = 0)
Component j of F to be updated. However, if writeComponents isnot [0], the component, along with the
field offset of F', determines the location in each cell where the function f will be evaluated.

readComponents (optional integer vector)
List of components of G used to update F, e.g., if writeComponents= [0 1 3] and readComponents
=[2 1 3],then Fy = fGo, F1 = fG1,and F3 = fGj3, where f is evaluated at the location of component. If
this is not specified, it defaults to the value of writeComponents.

writeComponents (optional integer vector, default = [0])
List of components j of F that will be updated.

Note: The STFunc f will be evaluated only once per cell for all components, and the location within each cell at
which f is evaluated is determined by the component parameter.

bumpReadIter (integer vector, default = [0 0 O0])
Number of cells in each simulated dimension to offset the location where G is written from the location where
F'is read.

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [cq ¢1]: the function f will be multiplied by (¢ + ¢1 At), where At is the current time step. If
¢ is not specified it is assumed to be zero.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters. If this parameter is provided, then the field
specified in writeFields musthave offset = noneoroffset = center.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the . of fset specified in the updated Field.

One of:

cellcenter: If offset = none, thenacell is considered interior if its node is adjacent to at least one cell
with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

160 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

deymittra: If offset = none, then a cell is considered interior if all nodes adjacent to (i.e. displaced by
a single edge from) its node are inside the boundary.

This interiorness option cannot be specified with of fset = center.
STFunc (required parameter block)
A parameter block of type STFunc (with any name) must be specified. This describes f.

userFuncUpdater

userFuncUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.
Sets field values to the result of a user-given function.

The FieldUpdater of kind = userFuncUpdater is a very flexible updater that sets a field to the result of a user-
given <Expression> (see expression). The expression takes as arguments field values and spatial positions, as well as
time and time step.

The userFuncUpdater can be used to do many different things; to understand how it works in some simple cases, it
may be easier to skip to the examples at the end of this section.

The userFuncUpdater places iterators at the first cell of each read/writeField. The iterators are then moved from cell
to cell; each iterator keeps track of its position and the field value at that position. As the iterators are collectively
moved from cell to cell, an update is performed at each cell. An iterator knows its cell index, as well as the exact
spatial location of the field value corresponding to that cell index (taking into account the field offset; e.g., the Yee
electric field is usually located at the center-edges of a cell).

A userFuncUpdater has one iterator for every writeField, and one for every readField. The userFuncUpdater sets
the field-values through the iterators on its writeFields according to a function of, among other things, the iterator
positions, and the values of the readFields at their iterators. It then moves all the iterators by one cell and does the
same thing, etc.

A userFuncUpdater can also has one or more readScalars. These scalars are read only. They can be used as vari-
ables in the function expression. userFuncUpdater can not update any scalars. To updater a scalar, one should use
userFuncScalarUpdater.

A userFuncUpdater specifies a function (an Expression) that takes as arguments the values of the read fields, the
positions of the read- and write-Field iterators, as well as the time and time step; and the function returns a vector with
one value for each writeField (at each cell, each writeField is set to the corresponding value).

userFuncUpdater Parameters

The userFuncUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (optional string vector, default = [])
The names of the fields to read. A field name can be repeated if multiple iterators are used from a single field.

readScalars (optional string vector, default = [])
The names of the scalars to read. A scalar name can be directly used as a variable in a userFunc expression.

writeFields (required string vector)
The names of the fields to write. A field name can be repeated if multiple iterators are used from a single field.

3.7. Multifield 161

VSim Reference Manual, Release 11.0.1-r3016

readComponents (optional integer vector)
The component used for each readField. If any readFields are specified, this must be as well, and have the
same number of elements as readFields.

writeComponents (required integer vector)
The component used for each writeField. This must have the same length as writeFields.

readItersShiftInX (optional integer vector)
This has the same length as readFields; by default it is all zeros. With this specified, each readFields it-
erator is shifted by the corresponding number of cells in the x direction. For example, readItersShiftInX
= [1 0] will shift the iterators on the first readFields by one cell in the 4z direction, and won’t shift the
iterators on the second readFields in x.

readItersShiftInY (optional integer vector)
Similar to readItersShiftInX, but shifts iterators in y. If the y direction is not simulated, this is ignored.

readItersShiftInZ (optional integer vector)
Similar to readItersShiftInX, but shifts iterators in z. If the z direction is not simulated, this is ignored.

readFieldVarNames (optional string vector)
The variable names given to the value of each field—this is how the field values will be referenced in the Ex-
pression. If any readFields are specified, this must be as well, and have the same number of elements as
readFields. Each name must be unique; some names are forbidden, such as t and dt and n.

readFieldPosVariables (optional string vector)

The names given to the variables representing the position of the corresponding readField value; each such
variable is an N-dimensional vector, where [V is the dimension of the simulation. However, not Used means
that the corresponding field position is not used in the Expression; ignoring a position in this way can speed
up computation. If pos is the variable name given to a certain readField, then the variable pos (that appears
in the Expression) will be an N-dimensional vector. For example, in an expression, the x position would be
accessed by select (pos, 0) and the y position (in 2D or 3D simulation) by select (pos, 1).Ifgiven,
this parameter must be a vector with the same length as readFields. If not given, all elements are set to
notUsed.

writeFieldPosVariables (optional string vector)
Analogous to readFieldPosVariables, butforwriteFields.

updateFunction (required parameter block)
A parameter block of type Expression and name updateFunction is required to define the function used
to update the writeFields. This block takes the same parameters as an expression UserFunc, except for
Input blocks and the inputOrder parameter. The input variables for the expression are defined by the
above parameters, so they are not to be specified in the updateFunction block. In addition, the expression
can take the following input valiables:

t: The simulation time (actually, the time to which the updater been told to update its writeFields; c.f. toDtFrac
in a MultiField UpdateStep).

dt: The most recent time step (At).
n: The current simulation step (an integer).

(These names are reserved—they cannot be used as variable names in readFieldVarNames,
readFieldPosVariables,orwriteFieldPosVariables.)

The Expression must return a vector with the same length as the number of writeFields—each writeField value
will be set to the corresponding component of the return vector.

162 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

userFuncUpdater Examples

Here is a userFuncUpdater to set a scalar field F to a function f(z,y, z,t):

<FieldUpdater setF>
kind = userFuncUpdater

lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
writeFields = [F]
writeComponents = [0]
writeFieldPosVariables = [Fpos] # Jjust a choice of name
maxNumEvals = 64
<Expression updateFunction>
$ X = select (Fpos, 0) # makes the function more readable
$ Y = select (Fpos, 1)
expression = sin(kx » X + ky * Y + kz x select (Fpos, 2) - omega x t)
<Term kx>
kind = constant
value = [10.]
</Term>

<Term ky>
kind = constant
value = [20.]
</Term>
<Term kz>
kind = constant

value = [3.]
</Term>
<Term omega>
kind = constant
value = [$ LIGHTSPEED * math.sqgrt (1072 + 2072 + 372) $]
</Term>
</Expression>
</FieldUpdater>

The above could be done equally well with a STFuncUpdater. However, setting a vector field F to a field can be done
better with a userFuncUpdater, since it can evaluate the function at a different position for each component:

<FieldUpdater setF>

kind = userFuncUpdater

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]

writeFields = [F F F]

writeComponents = [0 1 2]
writeFieldPosVariables = [FxPos FyPos FzPos]
maxNumEvals = 64

<Expression updateFunction>
kind = expression
$ XPHASE = kx % select (FxPos,0) + ky x select (FxPos, 1) + kz * select (FxPos, 2)
$ YPHASE = kx * select (FyPos,0) + ky * select (FyPos, 1) + kz x select (FyPos, 2)
$ ZPHASE = kx *x select (FzPos,0) + ky % select (FzPos, 1) + kz » select (FzPos, 2)
expression = sin(vector (XPHASE, YPHASE, ZPHASE) - omega * t)
<Term kx>
kind = constant
value = [10.]
</Term>
<Term ky>

(continues on next page)

3.7. Multifield 163

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = constant
value = [20.]
</Term>
<Term kz>
kind = constant

value = [3.]
</Term>
<Term omega>
kind = constant
value = [$ LIGHTSPEED * math.sqgrt (1072 + 2072 + 372) $ 1]
</Term>
</Expression>
</FieldUpdater>

Here is a userFuncUpdater that multiplies a 3-vector field G by At and adds it to a 3-vector field F (i.e., F —
F + GAtb):

<FieldUpdater addGdtToF>
kind = userFuncUpdater

lowerBounds = [0 0 0]

upperBounds = [NX NY NZ]

readFields = [F F F G G G]
readComponents = [0 1 2 0 1 2]
readFieldVarNames = [Fx Fy Fz Gx Gy Gz]
writeFields = [F F F]

writeComponents = [0 1 2]

maxNumkEvals = 64

<Expression updateFunction>
expression = vector (Fx, Fy, Fz) + dt x vector(Gx, Gy, Gz)
</Expression>
</FieldUpdater>

Here is an example of a userFuncUpdater that uses the values of a History to perform its update (see historyFunc):

A field updater that sets field values to the x—-index of the cell
with the (most recent) maximum value of a field, by using a History
that finds that x-index. Of course, one could also use a History
that calculates voltage to use as feedback.
<FieldUpdater setFieldToIndexOfMax>
kind = userFuncUpdater

lowerBounds = [0 0 0]
upperBounds = [2 2 2]
writeFields = [G]

writeComponents = [0]

<Expression updateFunction>
Presumably the input file defines a <History max> that records
the location of the maximum field value;
This HistoryFunc gets the x-value of that location.
<UserFunc i1OfLastMax>
kind = historyFunc

index = [0] # x-index of cell
history = max
</UserFunc>

get (1000%) x-index of cell with most recent maximum value of field F
expression = 1000 % i0fLastMax (0)
</Expression>
</FieldUpdater>

164 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

yeeAmpereDielVecUpdater

yeeAmpereDielVecUpdater

Works with VSimEM license.

Multifield updater that updates all three (3) components of the electric field according to Ampere’s Law,
but takes into account the inverse dielectric tensor given by a 6-component inverse permittivity field. You
can set this inverse permittivity field with a permittivityUpdater or setEpsilonUpdater.

yeeAmpereDielVecUpdater Parameters

The yeeAmpereDielVecUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readFields (required string vector)
The names of the three fields to use in the update. These are given, for instance, as readFields = [yeeB
source invEpsilon], where:

yeeB: Name of the Yee magnetic field.

source: This is the name of a field containing the current source. This can either be a 3-component field
contining just the current, or a 4-component field containing the current in its last three components.

invEpsilon: 6-component symmetric inverse permittivity field, with components.

This can be created with permittivityUpdater or setEpsilonUpdater.

writeFields (required string vector)
A single element, the name of the electric field to update.

dtCoefficients (optional float vector, default = [1. 0.])
Two components [cy c1] as defined in the equation above. The result of the updater will be multiplied by (cq +
c1At), where At is the current time step.

yeeAmpereDielVecUpdater Example

<FieldUpdater yeeAmpere>
kind = yeeAmpereDielVecUpdater

lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]
readFields = [magField J invEpsilon]
writeFields = [elecField]

</FieldUpdater>

yeeAmpereUpdater

3.7. Multifield 165

VSim Reference Manual, Release 11.0.1-r3016

yeeAmpereUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that updates an electric field, defined on grid edges, according to the standard second-order Yee
leapfrog algorithm, using a magnetic field (on faces), and optionally a current field. This current field can be a 3-vector
or the last three components of a 4-vector.

yeeAmpereUpdater Parameters

The yeeAmpereUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the global region modification parameters and local region modification parameters. In addition,
yeeAmpereUpdater takes the following parameters:

readFields (required string vector)
A vector of either one or two strings. The first string is the name of magnetic field, and if provided, the second
is the name of the current field to add to the result (multiplied by the specified factors).

writeFields (required string vector)
A vector contining a single element, the name of the electric field to update.

useVecUpdater (optional integer, default = false)
If true, the updater will update all three components of the electric field, beginning with the specified
component. The updated field must therefore have at least component + 3 components.

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is t rue, the first field component to update.

readFieldCompShifts (optional integer vector, default = [0 1])
This vector must have the same number of elements as readFields. It specifies the amount by which to
increment the component indices of the first field and the (optional) second field. For example, if a magnetic
field is represented by components 3-5 of the field EandB, then to calculate the curl of that magnetic field, one
would specify readFields = [EandB] and readFieldCompShifts = [3]. If the second (current)
field is not a 4-vector, then it is proper to set readFieldCompShifts = [0 0].

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the o ffset specified in the updated Field. One of:

e cellcenter: If offset = none, or offset = edge4v and component = 0, then a cell is
considered interior if its node is adjacent to at least one cell with center inside the boundary.

If offset = edge,oroffset = edgedv and component is not 0, then a cell is considered
interior if the edge specified by component is adjacent to at least one cell with center inside the
boundary.

If offset = face, then a cell is considered interior if the face specified by component is adja-
cent to at least one cell with center inside the boundary.

Ifoffset = center, then a cell is considered interior if its center is inside the boundary.

* deymittra Ifoffset = none,oroffset = edgedvand component = O0,then a cell is con-
sidered interior if all nodes adjacent to (i.e. displaced by a single edge from) its node are inside the
boundary.

166 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

If offset = edge,oroffset = edged4v and component is not 0, then a cell is considered
interior if the edge specified by component has at least one adjacent node inside the boundary, and
that edge is not ignored by the Dey-Mittra algorithm given the dmFrac parameter specified in the
gridBoundary.

If offset = face, then a cell is considered interior if all nodes adjacent to the face specified by
component are inside the boundary.

This interiorness option cannot be specified with of fset = center.
e .dmnodal This interiorness option is identical to deymittra.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example yeeAmpereUpdater Block

<FieldUpdater yeeAmpere>
kind = yeeAmpereUpdater

lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]
readFields = [yeeB]
writeFields = [yeeE]
useVecUpdater = true

</FieldUpdater>

yeeFaradayUpdater

yeeFaradayUpdater

Works with VSimBase, VSImEM, VSimPD, VSimPA, and VSimMD licenses.

Updates a magnetic field, defined on grid faces, according to the standard second-order Yee leapfrog
algorithm, using an electric field defined on grid edges.

yeeFaradayUpdater Parameters

The yeeFaradayUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the global region modification parameters and local region modification parameters. In addition,
yeeFaradayUpdater takes the following parameters:

readFields (required string vector)
A single element, the electric field to use in performing the update.

writeFields (required string vector)
A vector contining a single element, the name of the magnetic field to update.

useVecUpdater (optional integer, default = 0 (false))
If true, the updater will update all three components of the magnetic field, beginning with the specified
component. The updated field must therefore have at least component + 3 components.

3.7. Multifield 167

VSim Reference Manual, Release 11.0.1-r3016

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is true, the first field component to update.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the o ffset specified in the updated Field. One of:

e cellcenter:

If offset = none, or offset = edgedv and component = 0, then a cell is consid-
ered interior if its node is adjacent to at least one cell with center inside the boundary.

If offset = edge, or offset = edgedv and component is not O, then a cell is con-
sidered interior if the edge specified by component is adjacent to at least one cell with center
inside the boundary.

If offset = face, then a cell is considered interior if the face specified by component is
adjacent to at least one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

e deymittra

If offset = none, or offset = edgedv and component = 0, then a cell is consid-
ered interior if all nodes adjacent to (i.e. displaced by a single edge from) its node are inside the
boundary.

If offset = edge, or offset = edgedv and component is not 0, then a cell is con-

sidered interior if the edge specified by component has at least one adjacent node inside the
boundary, and that edge is not ignored by the Dey-Mittra algorithm given the dmF rac parameter
specified in the gridBoundary.

If offset = face, then a cell is considered interior if all nodes adjacent to the face specified
by component are inside the boundary.

This interiorness option cannot be specified with of fset = center.
¢ dmnodal
This interiorness option is identical to deymittra.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example yeeFaradayUpdater Block

<FieldUpdater yeeFaraday>
kind = yeeFaradayUpdater
lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]

(continues on next page)

168 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

readFields = [yeeE]

writeFields = [yeeB]

useVecUpdater = true
</FieldUpdater>

3.7.4 FieldMultiUpdater Block

FieldMultiUpdater

FieldMultiUpdater
A FieldMultiUpdater block is similar to a FieldUpdater block, but always specifies multiple components
of a field to update using the component s parameter.

In some cases, the FieldMultiUpdater parameters correspond to the FieldUpdater block of the same
kind, but with the components integer parameter replaced by the integer vector components. In that case,
the FieldMultiUpdater creates as many occurances of the corresponding FieldUpdater as elements in the
components parameter. For example, a FieldMultiUpdater with components equalto [0 1 2] creates
three occurrences of the corresponding FieldUpdater. There will therefore be three update passes through the
updated cells, one for each specified component. The cells updated in each pass may differ due to any global region
modification parameters, or, if the updater has a region specification, depending on how that region is treated for each
component.

The updater kind with corresponding FieldMultiUpdater blocks are:
e curlUpdater
* curlUpdaterCoordProd
* open
e STFuncUpdater
* unaryFieldOpUpdater
* yeeAmpereUpdater
* yeeFaradayUpdater
There are also updates that can only be specified using FieldMultiUpdater. They are:
* amperePmlUpdater
* fieldSqrDiagUpdater
e perfDispPmlUpdater

* yeeConductorUpdater

FieldMultiUpdater Parameters

All FieldMultiUpdater blocks take the lowerBounds and upperBounds parameters of FieldUpdater, as
well as:

kind (required string)
Type of updater; one of:

o amperePmlUpdater

3.7. Multifield 169

VSim Reference Manual, Release 11.0.1-r3016

e curlUpdater

* curlUpdaterCoordProd
e fieldSqrDiagUpdater

* open

e perfDispPmlUpdater

STFuncUpdater

* unaryFieldOpUpdater
* yeeAmpereUpdater

» yeeConductorUpdater
» yeeFaradayUpdater

components (required integer vector)
The components that should be updated.

FieldMultiUpdater Kinds

amperePmlUpdater

amperePmlUpdater

This implements the standard (as in Taflove) PML algorithm for an Ampere-type Maxwell update.

amperePmlUpdater Parameters

The amperePmlUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater and the
components parameter of FieldMultiUpdater, as well as the following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

readFields (required string vector)
A vector containing a single element, the magnetic field to use in the update.

writeFields (required string vector)
A vector contining a two elements, the electric field and auxiliary displacement fields to update.

sigmaX (optional parameter block)
An STFunc block specifying the functional form of the conductivity for absorbtion of waves propagating in the
x direction.

sigmaY (optional parameter block)
An STFunc block specifying the functional form of the conductivity for absorbtion of waves propagating in the
vy direction.

sigmaZ (optional parameter block)
An STFunc block specifying the functional form of the conductivity for absorbtion of waves propagating in the
z direction.

170 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Note: At least one of sigmaX, sigmaY, or sigmaZ must be specified. A . sigma function should be specified for
every direction in which the PML region borders the edge of the simulation domain, e.g. if the region for this updater
is along the y direction, then sigmaY should be specified.

kappaX (optional parameter block)
Effective dielectric constant for the PML absorption in the = direction. Making this greater than 1 can improve
absorption of oblique-incidence waves without disturbing the analytically perfect matching. However, the best
parameters to use are problem-dependent and users are encouraged to experiment.

kappaY (optional parameter block)
Effective dielectric constant for the PML absorption in the y direction. Making this greater than 1 can improve
absorption of oblique-incidence waves without disturbing the analytically perfect matching. However, the best
parameters to use are problem-dependent and users are encouraged to experiment.

kappaZ (optional parameter block)
Effective dielectric constant for the PML absorption in the z direction. Making this greater than 1 can improve
absorption of oblique-incidence waves without disturbing the analytically perfect matching. However, the best
parameters to use are problem-dependent and users are encouraged to experiment.

Example amperePmlUpdater block

<FieldMultiUpdater frontPMLE>
kind = amperePmlUpdater

lowerBounds = [0 0 NZ_BEGIN]
upperBounds = [NX NY_BEGIN NZ_END]
readFields = [magField]
writeFields = [elecField pmlAuxE]
components = [0 1 2]
minDim = 2
<STFunc sigmaY>
kind = expression
expression = SIGMA_MAX * ((LY_BEGIN - y) / LY_PML)"PML_EXP
</STFunc>

<STFunc kappa¥Y>
kind = expression
expression = 1. + (KAPPA_MAX - 1) * ((LY_BEGIN - y) / LY_PML)"PMIL_EXP
</STFunc>
</FieldMultiUpdater>

fieldSqrDiagUpdater

fieldSqrDiagUpdater

Works with VSimBase, VSIimEM, VSimPD, VSimPA, and VSimMD licenses.

FieldMultiUpdater that computes an integral over the sum of