
VSim Reference Manual
Release 11.0.1-r3016

Tech-X Corporation

Jun 29, 2021

CONTENTS

1 Overview 1
1.1 The Structure of the Reference Manual . 1

2 Visual Setup 3
2.1 Description . 3
2.2 Constants . 3
2.3 Parameters . 4
2.4 Basic Settings . 5
2.5 Functions . 9
2.6 SpaceTimeFunctions . 10
2.7 Materials . 12
2.8 Geometries . 14
2.9 Grids . 20
2.10 Field Dynamics . 20
2.11 Particle Dynamics . 41
2.12 Collisions . 63
2.13 Histories . 71

3 Text Setup 79
3.1 Global Variables . 79
3.2 Grid . 82
3.3 Decomposition . 87
3.4 GridBoundary . 89
3.5 EM Field . 97
3.6 ComboEmField Block . 102
3.7 Multifield . 103
3.8 ScalarDepositor and VectorDepositor . 208
3.9 SumRhoJ . 211
3.10 Fluid . 211
3.11 Species . 213
3.12 Reactions . 298
3.13 ImpactCollider / ImpactCollision . 328
3.14 Monte Carlo Interactions (DEPRECATED) . 336
3.15 History . 389
3.16 Feedback . 433
3.17 External Circuit Model . 433
3.18 Functions . 439
3.19 Slab Block . 490
3.20 Macros . 491
3.21 Postprocessing Tools . 531

i

4 Engine (Vorpal) Execution 535
4.1 Vorpal Command Line Options . 535
4.2 Customizing Environment Variables . 537

5 Analyzers 539
5.1 Guide to Analyzers . 539
5.2 Available Analyzers . 539

6 Trademarks and licensing 601

Index 603

ii

CHAPTER

ONE

OVERVIEW

The VSim Reference manual describes in detail all Visual Setup parameters, all Vorpal input file blocks, and all macros
that can be used.

VSim [?] is an arbitrary dimensional, electromagnetics and plasma simulation code consisting of two major compo-
nents:

• VSimComposer, the graphical user interface.

• Vorpal [?], the VSim Computational Engine.

VSim also includes many more items such as Python, MPI, data analyzers, and a set of input simplifying macros.

1.1 The Structure of the Reference Manual

The Reference Manual has three main sections, which are Visual Setup, Text Setup, and Analyzers.

The Visual Setup section will outline all available parameters in the VSim composer, with the commands themselves
organized by input property. The Text Setup section follows, and is where Vorpal blocks and macros are found, as
well as postprocessing tools.

The general format of each block’s description is:

• Block name

• Summary of the block’s purpose

• List of the block’s parameters

• Example of the block as used in a Vorpal input file

We note whenever a block can or should contain another block. For the purpose of this document, a kind or a function
can be considered a parameter of a block if the kind or function can be used to complete the description of the block
or modify block characteristics.

Wherever possible, we describe all of the parameters in the same section as the block. While this requires that we
repeat some information for different blocks that use the same parameters, you do not need to go elsewhere to find
the rest of the block’s description. In some cases, where a block’s parameters are themselves blocks, we list the
parameters’ names, however we completely describe the sub-block or block that is nested in its own section.

Still within the Text Setup section, the macros will follow all the Vorpal block descriptions, and will be organized by
VSim version. Postprocessing tools can also be found in Text Setup.

The final major section of VSim Reference is Analyzers, which includes details about all of the VSim (post engine run)
analyzer scripts. Each analyzer script section will generally outline the following:

• Analysis script name

1

VSim Reference Manual, Release 11.0.1-r3016

• Summary of usage with script options

• Output

Some analyzer script sections also include sections like examples, usage and testing, and other useful information.

VSim Reference is a quick-reference manual for VSim users to look up specific features and syntax for the compu-
tational engine, Vorpal. To learn about the complete VSim simulation process, including real-word physics models,
please refer to VSim Examples and VSim User Guide. To learn about executing Vorpal from the command line, please
refer to the VSim User Guide.

2 Chapter 1. Overview

CHAPTER

TWO

VISUAL SETUP

2.1 Description

The Description element holds basic user-supplied text information about the simulation. Most of the parameters are
most useful to advanced users who are creating and placing input files in the Examples directory of VSimComposer.
The examples directory can be found in [VorpalInstallDirectory]\Contents\Examples.

description: This is the description given in the window on the right side in the examples window
upon selecting an example.

image: The image parameter should give the name of a picture, located in the same directory as the input
file, that will be given on the right-hand side of the Editor pane in the Setup tab for text-based setup.
Frequently, this image is used to illustrate key parameters such as dimensions of a physical structure. 400
x 500 pixels is a good image size.

long description: This text block will be visible above the image in text-based setup. It’s generally
used to give a description of what the simulation does, and what will happen when key parameters are
modified.

short description: This string is the title of the example in the New → From Example selection.
This also sets the title that appears at the top of the VSimComposer window when the simulation is open.

thumbnail: This is the small image that is visible when you select an example file, located in the same
directory as the input file. 250 x 250 pixels is a good image size.

version: (not editable) The version of VSim used to create this example.

2.2 Constants

The Constants element contains a set of pre-defined physical constants that can be used in other elements of the
simulation. Constants are just a number. You may add new constants by clicking the Add button under the Elements
Tree while the Constants element (in the Elements Tree) is highlighted. For information on the Elements Tree, see the
images in the VSim User Guide: Setup Window for Visual-setup Simulations page.

kind (not editable) The kind of constant; either a built-in kind or a User Defined kind.

description (only for User Defined constants) A descriptive name of the constant.

value The value of the constant. This is the user-supplied value of the constant if kind = User
Defined. Otherwise it is a non-editable value supplied by VSim.

3

VSim Reference Manual, Release 11.0.1-r3016

2.2.1 Built-In Constants:

• PI: The ratio of the circumference of a circle to its diameter.

– 3.141592653589793

• PIO2: 𝜋 divided by two.

– 1.5707963267948966

• TWOPI: 𝜋 multiplied by two.

– 6.283185307179586

• LIGHTSPEED: The speed of light in vacuum (in meters/second).

– 299792458.0

• MU0: The permeability of free space (in newtons/amp^2 or (tesla meters)/amp) .

– 1.2566370614359173e-06

• ELEMCHARGE: The fundamental unit of charge (in coulombs).

– 1.602176487e-19

• ELECMASS: The mass of an electron (in kilograms).

– 9.10938215e-31

• PROTMASS: The mass of a proton (in kilograms).

– 1.672621637e-27

• MUONMASS: The mass of a muon (in kilograms).

– 1.8835313e-28

• KB: Boltzmann’s constant in (joules/kelvin)

– 1.3806504e-23

• EPSILON0: The permittivity of free space (in farads/meters or (amps^2 seconds^4)/(meters^3 kilograms)).

– 8.854187817620389e-12

• C2: The speed of light squared (in meters^2/seconds^2).

– 8.987551787368176e+16

• ELECCHARGE: The charge of an electron (in coulombs).

– (-1.602176487e-19)

• ELECMASSEV: The mass of an electron (in eV/c^2).

– 510998.90984764055

2.3 Parameters

The Parameters element is a location for evaluated, user defined variables that can be used in other elements of the
simulation. A parameter is a mathematical combination of constants and other parameters. You may add a new
parameter using the Add button under the Elements Tree.

4 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable): The kind of constant; a User Defined kind.

description: A descriptive name of the parameter.

expression: This is the user-supplied expression that will be calculated to determine the value of the
parameter. It can include any pre-defined Constants as well as real numbers and some functions. Use a
“^” to raise numbers to a power. Available functions include:

• abs(x): takes the absolute value of “x”.

• rint(x): rounds “x” to an integer.

• sqrt(x): take the square root of “x”.

• sin(x): take the sine of “x”, where “x” is in radians.

• cos(x): take the cosine of “x”, where “x” is in radians.

• tan(x): take the tangent of “x”, where “x” is in radians.

• asin(x): take the arcsine of “x”, where “x” is in radians.

• acos(x): take the arccosine of “x”, where “x” is in radians.

• atan(x): take the arctangent of “x”, where “x” is in radians.

• sinh(x): take the hyperbolic sine of “x”, where “x” is in radians.

• cosh(x): take the hyperbolic cosine of “x”, where “x” is in radians.

• tanh(x): take the hyperbolic tangent of “x”, where “x” is in radians.

• log(x): take the natural log of “x”.

• log10(x): take the base 10 log of “x”.

• exp(x): raise Euler’s constant to the power “x”.

value: The VSim calculated value of the expression.

2.4 Basic Settings

The Basic Settings element contains a group of property/value pairs that define the basic setup of the simulation.

surface meshing tolerance: Determines the relative size at which small cells from a meshed
geometry surface are dropped. Set to 1.0 for simulations that do not contain any geometries.

cfl number: If time step is set to zero, the time step is automatically calculated, and for EM simula-
tions, is reduced proportionately with the cfl number. The cfl number is the ratio of time step to Courant
limit.

time step: If set to a value that is non-zero, this will be used as the simulation time step. If set to zero,
the time step is calculated for you based on a number of factors.

• If it is an ES simulation without particles, the time step is set to 1.0.

• If it is an ES simulation with particles, the time step is set to the minimum of
(2/𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑝𝑙𝑎𝑠𝑚𝑎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 or 1/(𝐷𝐿𝐼 * 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) where 𝐷𝐿𝐼 =√︁

1/𝐷𝑋2 + 1/𝐷𝑌 2 + 1/𝐷𝑍2 in 3 dimensions.

• If it is an EM simulation, time step is equal to the minimum of ES calculated time step or
1/𝐿𝐼𝐺𝐻𝑇𝑆𝑃𝐸𝐸𝐷 *𝐷𝐿𝐼 and multiplied by the cfl number and surface meshing tolerance.

2.4. Basic Settings 5

VSim Reference Manual, Release 11.0.1-r3016

number of steps: The number of time steps to run the simulation.

steps between dumps: The number of time steps between sequential dumps of data to hdf5 format
files.

dump in groups of: If set to 1, no change. If 3, data is dumped at the period specified in steps
between dumps, with an extra two dumps after each of the following 2 timesteps. For example, if steps
between dumps = 20, data is written to hdf5 format files at timesteps 20,21,22,40,41,42 etc. When using
this option Dump Periodicity must not be set as a Runtime Option in the Run pane.

precision: The precision of the real numbers in the simulation. For greater precision, use double.

• double

• float

length unit: The unit of length used for setting parameters.

• meter

use GPU (if found): If a GPU is found, do calculations based on faster GPU updaters.

• false

verbosity: The level of informative text to be output during the simulation run. The levels are listed
below in an increasing order. So, the information level will be the least verbose, and debug level
3 is the most verbose.

• information

• emergency

• alert

• critical

• error

• warning

• notice

• debug level 1

• debug level 2

• debug level 3

dimensionality: Set to 3, 2, or 1 to indicate how many dimensions in which to run the simulation.

• 3

• 2

• 1

Note: For cylindrical coordinates, only two-dimensional electrostatic simulations are currently available
in visual setup. In a 2 or 1 dimensional simulation, boundary conditions and volumes can be set in higher
dimensions, but will be ignored.

grid spacing: The spacing of the grid cells.

• uniform

6 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

restore geometries: This parameter is typically set to true. Due to a bug in memory management
on Windows 10 systems, it should be set to false if working with complex geometries.

MPI decomposition: Typically set to default, but can be specified to decompose along a single axis.
Useful for simulations with significantly more cells in one direction than others.

• axis 0

• axis 1

• axis 2

coordinate system: The type of coordinate system to work in.

• cartesian

• cylindrical

Note: For cylindrical coordinates, only two-dimensional electrostatic simulations are currently available
in visual setup. If the simulation domain begins at r=0, then a flag called includeCylAxis (see Section
Grid) is set to true. In the electrostatic field solve, the r = 0 boundary is a computational boundary (as
opposed to a physical boundary). Nevertheless a boundary conditions must be set. Therefore, the default
boundary condition is Neumann with the electric field set to 0 if the simulation begins at r=0. This
boundary condition cannot be overwritten by a user. If the user specifies RMIN to begin at r > 0, then
the user will need to specify a field boundary condition at the RMIN axis. The default particle boundary
condition at r=0 is such that the particles undergo specular reflection.”

field solver: The field solver determines which equations will be used to calculate the fields.

• electrostatic

number of guard cells: For information about guard cells, see VSim User Guide:
Simulation Concepts. In VSim, the guard cell may be visualized, but it should be noted
that particles are removed from the simulation after they enter the guard cells.

• electromagnetic

background permittivity: The background permittivity of the simulation, typi-
cally 1.0

dielectric solver: The type of solver to use for any dielectrics in the simulation.

– point permittivity: Standard, sets permittivity of computational cells based
on a stair step method.

– permittivity averaging: Will calculate the average permittivity in a cell that
has two dielectric objects.

Cerenkov Filter: Electromagnetic problems allow for the selection of a numerical
Cerenkov noise filter. These filters come in 4 varieties, or no filter.

– none: No Filter

– weak: Filters with a formula of (1 − 𝑥) * (1 + 𝑥). Should be used in problems with
cavities or resonant structures.

– medium: Filters with a formula of (1 − 𝑥) * (1 + 2𝑥)(1 − 𝑥). Should be used in
problems with cavities or resonant structures.

– strong: Filters with a formula of (1 − 𝑥). Should be used in problems with high
numbers of relativistic particles.

2.4. Basic Settings 7

VSim Reference Manual, Release 11.0.1-r3016

– extreme: Filters with a formula of (1 − 𝑥) * (1 − 𝑥). Should be used in problems
with high numbers of relativistic particles.

Strong filters will execute the fastest, while medium will execute the slowest. These are all
Godfrey Filters, which use additional curl-curl operations on the electric field to update
the field at the next time step, removing short wavelengths. Friedman Filters are an-
other type of filter that remove high frequency noise rather than short wavelengths. Please
contact Tech-X if you wish to implement this class of filter.

• prescribed fields: The prescribed fields solver is used with a defined electric and magnetic
field that is allowed to have some time dependence. It is most commonly used for multipacting
simulations where it can provide very high resolution of the electric field near PEC objects.

– number of guard cells: For information about guard cells, see VSim User Guide: Sim-
ulation Concepts.

• no field solver: For pure particle movement simulations with no fields.

periodic directions: The directions of the simulation which should be modeled as periodic, if
any. Phase shifting boundaries are used for structures which do not have a full period in the simulation
space. Phase shifting boundaries cannot be used in particle simulations.

• no periodicity

• periodic x

• periodic y

• periodic z

• periodic x and y

• periodic x and z

• periodic y and z

• periodic x, y, and z

• phase shifting periodic x

phase shift x: Fields will be phase shifted in the x direction by this many radians.

• phase shifting periodic y

phase shift y: Fields will be phase shifted in the y direction by this many radians.

• phase shifting periodic z

phase shift z: Fields will be phase shifted in the z direction by this many radians.

• phase shifting periodic x and y

phase shift x: Fields will be phase shifted in the x direction by this many radians.

phase shift y: Fields will be phase shifted in the y direction by this many radians.

• phase shifting periodic x and z

phase shift x: Fields will be phase shifted in the x direction by this many radians.

phase shift z: Fields will be phase shifted in the z direction by this many radians.

• phase shifting periodic y and z

phase shift y: Fields will be phase shifted in the y direction by this many radians.

phase shift z: Fields will be phase shifted in the z direction by this many radians.

8 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

• phase shifting periodic x, y, and z

phase shift x: Fields will be phase shifted in the x direction by this many radians.

phase shift y: Fields will be phase shifted in the y direction by this many radians.

phase shift z: Fields will be phase shifted in the z direction by this many radians.

particles: Whether or not to include particles in the simulation.

• no particles

• include particles: If particles are included in the simulation, the following two properties
are used to help calculate the time step.

estimated max electron density: an estimate of the maximum electron den-
sity for setting a default timestep

estimated max electron temperature (eV): an estimate of the maximum
electron temperature for setting a default timestep

dump nodal fields: If True, the fields used to calculate particle pushes will be writ-
ten to memory. If false, they will not. This can save hard disk space in large simulations.

collisions framework: Collisions framework to be used in the simulations.

• no collisions

• reduced: Reduced collisions framework. Also called the “Impact Collider” framework.

• monte carlo: Legacy Monte-Carlo interactions from previous VSim versions.

• reactions: Full featured particle and fluid interactions most commonly used.

collision order: Either random, constant, or rotate. A random order will perform
each collision in a random order, constant in the order specified, and rotate will move down
the list of collisions, performing a new one first, each time. As each particle can only be
involved in one collision per timestep this can effect simulation results.

moving window: Whether or not to use a moving window, which allows the simulation window to
move at the speed of light in the chosen direction. Useful for simulations such as laser pulse or particle
beam moving at a velocity close to the speed of light. Can only set a moving window in an electromagnetic
simulation without phase shifting boundary conditions.

• no moving window

• with moving window

shift position fraction: This determines the time at which the window will
begin to move. The window will begin to move at a time equal to the shift position fraction
times the size of the simulation grid divided by the speed of light.

shift speed fraction: This is the relativistic 𝛽 factor which determines the speed
𝑣 at which the window will move, where 𝑣 = 𝛽𝑐.

2.5 Functions

The Functions element is a location for writing user defined functions that can be used in simplifying the definition of
a SpaceTimeFunction. When used in writing a SpaceTimeFunction, the arguments of the function can be set to user
defined constants and parameters. See the A6 Magnetron Modes Example for an example of the use of a Function.
You have options to create your own User Defined function or use the built-in turn on function. The turn on function
has the mathematical formula 𝐻(𝑡) * 0.5 * (1 − cos(𝜋𝑡/𝑇)) *𝐻(𝑇 − 𝑡) where 𝐻(𝑡) is the Heaviside Step Function.

2.5. Functions 9

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable): The kind of constant; a User Defined kind.

description: A string describing the function.

arguments: The arguments that are used in the expression. The function can contain any number of
arbitrary arguments and is not limited to the default values of x,y.

expression: This is the user-supplied expression that is a function of the arguments given in the
argument property. It can include any pre-defined Constants, Parameters, or Functions, as well as real
numbers and Python operators.

2.6 SpaceTimeFunctions

The SpaceTimeFunctions element is a location for writing user defined functions that specifically depend on the spatial
and temporal variables x, y, z, and t. A space time function can use Parameters and Constants by just typing them
directly in as a value of the property. However if you are to change the name of the Parameter / Constant used it will
not automatically update in the SpaceTimeFunction.

• User Defined. This option is deprecated. Use expression instead.

• expression This is the user-supplied expression that is a function of x, y, z, or t. It can include any pre-
defined Constants, Parameters, or Functions, as well as real numbers.

For a list of supported functions that be included in the user-written expression for the function, see ex-
pression (STFunc).

• monochromatic excitation This function is for using a variety of potential ramps to excite a source to
a set frequency and amplitude.

frequency Frequency of the source.

time begin Time to start the excitation.

time end Time to end the excitation.

amplitude Amplitude to excite the function to.

turn on function Function to use to ramp up the source.

– instantaneous Typically not reccommended, immediately excites at specified amplitude

– frequency based Will ramp up in the specified number of periods based on given frequency. 5
periods is typical

– standard Same ramping formula as frequency based, but with a directly specified amount of time.

– smoother step Will ramp using the smoother step formula, H(riseTime-t)*((riseRate*t) * (riseR-
ate*t) * (riseRate*t) * ((riseRate*t) * ((riseRate*t) * 6 - 15) + 10)) + H(t-riseTime)

– up and down Will ramp the signal both up and down

– frequency based up and down Will ramp both up and down in the specified number of periods
based on the given frequency.

• sinc hat function This function generates a relatively flat fourier spectrum over the given frequency
range, sometimes referred to as a top hat function. 𝑓𝑙 < 𝑓 < 𝑓ℎ, of frequencies and falls off rapidly over
a frequency width of 𝛿𝑓 , so that it is nearly zero for 𝑓 < 𝑓𝑙 − 𝛿𝑓 or 𝑓 > 𝑓ℎ + 𝛿𝑓 .

frequency low Low end frequency of the fourier spectrum.

frequency high High end frequency of the fourier spectrum.

amplitude Amplitude of the function is typically 1.

10 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

suppresion factor Suppresion factor used in calculating the number of sigmas of the function.
Smaller Values lead to longer excitation times.

frequency gap factor Used in calculating the Sigma_T of the excitation, which is the range of fre-
quencies the function takes to ramp from 0 specfied to the amplitude. The full function that describes
this sinc hat is

frequencyGap = (frequency high - frequency low)*frequency gap factor

numSigma = sqrt(-2.0*log(suppression factor))

sigmaT = (TWOPI*frequencyGap)/numSigma

timeExcite = 2*numSigma*sigmaT

𝐻(𝑡𝑖𝑚𝑒𝐸𝑥𝑐𝑖𝑡𝑒−𝑡) exp(−0.5*𝑠𝑖𝑔𝑚𝑎𝑇 2(𝑡−0.5𝑡𝑖𝑚𝑒𝐸𝑥𝑐𝑖𝑡𝑒)2)× sin(2𝜋𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐻𝑖𝑔ℎ(𝑡−0.5𝑡𝑖𝑚𝑒𝐸𝑥𝑐𝑖𝑡𝑒))−sin(2𝜋𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐿𝑜𝑤(𝑡−0.5𝑡𝑖𝑚𝑒𝐸𝑥𝑐𝑖𝑡𝑒))
(2𝜋𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐻𝑖𝑔ℎ−2𝜋𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐿𝑜𝑤)(𝑡−0.5𝑡𝑖𝑚𝑒𝐸𝑥𝑐𝑖𝑡𝑒)

• python This space time function will allow access to a function defined in a Python file to be used in place of
a user-defined function.

name This is the name of the Python function to be accessed. The Python file must be in the same
directory as the runspace.

• feedback This space time function is used to take the value from a history and use that value in the next
timestep, allowing feedback.

expression The initial value to be used in the feedback loop. This expression will be multiplied from
the value of the history in the previous output.

history The name of the history from which to take values; pseudo-potential and absorbed particle
current histories are supported.

history goal The value of the history that should be obtained.

time constant Defines how quickly the feedback responds to a difference in the measured and de-
sired value. If too small, the measured value will oscillate near the desired value, if too large it will
take a long time to reach the desired value.

• chirpWavePulse Produces a plane wave modulated by a pulse envelope. For more information, see chirp-
WavePulse.

• cosineFlattop Flat top function. See cosineFlattop.

• cosineRamp Function for an initial ramp. See cosineRamp.

• gaussian Produces a Gaussian function. See gaussian.

• gaussianPulse Creates a sinusoidal pulse in the form of a Gaussian beam, modulated by a Gaussian enve-
lope longitudinally. See gaussianPulse.

• halfSinePulse Function for a sinusoidal pulse in the form of a Gaussian beam, modulated by a longitudinal
half-sine function. See halfSinePulse.

• leakychannel Function that is parabolic in radius, then drops linearly to zero. See leakychannel.

• planeWavePulse Creates a plane wave that’s modulated by a Gaussian transversely and by a half-sine
function longitudinally. See planeWavePulse.

• radialCosChannel Function for an initial ramp into a region of a channel. See radialCosChannel.

• sinePlaneWave Generates a plane wave pulse that is based on a sine wave. See sinePlaneWave.

• sum function This is the sum of two previously defined space time functions. The functions used must be
defined before their use in the sum function. Sum functions may be nested. For example, you could have
a second sum function that accepts a previously defined sum function in order to sum three or more space
time functions.

2.6. SpaceTimeFunctions 11

VSim Reference Manual, Release 11.0.1-r3016

sumFunction1 The first function to be summed.

sumFunction2 The second function to be summed.

• product function This is the product of two previously defined space time functions. The functions used
must be defined before their use in the product function. Product functions may be nested, for example, a
second product function can be used to accept a previously defined product function in order to multiply
three or more space time functions together.

prodFunction1 The first function to be summed.

prodFunction2 The second function to be summed.

2.7 Materials

The Materials element stores information about any materials used in the simulation. To use one of VSim’s pre-
defined materials, highlight the Materials element and then switch from 3D View to Database in the Geometry View
(see VSim User Guide: Setup Window for Visual-setup Simulations for a picture of the Geometry View). To add one
of the pre-defined materials from the table, highlight the material then press Add To Simulation button in upper right
hand corner of the VSim Composer window. The material will now be listed under the Materials element. To access
a wider selection of materials you may load the emthermal.vmat file by right-clicking on the Materials element and
selecting Import Materials. You may also import your own customized material (see Customizing Materials below).

The editable properties of the materials are:

kind (not editable) The kind of material (eg dielectric, conductor, particle absorber, permeable, etc), as
defined in the .vmat file.

heat capacity The heat capacity of the material.

thermal conductivity The thermal conductivity of the material.

resistance The resistance of the material.

conductivity The conductivity of the material.

relative permittivity The relative permittivity of the material. Note that when a material is as-
signed to a geometry, the relative permittivity is only used in the electromagnetic field solve. When
using the electrostatic field solve, a spatially dependent relative permittivity due to the addition
of different geometries in the simulation is done by defining a SpaceTimeFunctions and inserting
this SpaceTimeFunction in the relative permittivity feature under PoissonSolver in the FieldBound-
aryConditions tab. See PoissonSolver for more detail on how to include a dielectric in the simulation
using the electrostatic field solve. The difference between how dielectrics are handled using elec-
tromagnetic and electrostatic field solves is demonstrated in two different examples: “Dielectric in
Electromagnetics (dielectricInEM.sdf)” and “Dielectric in Electrostatics (dielectricInES.sdf)”.

2.7.1 Drude-Lorentz and Debye-Lorentz Materials

VSim includes the ability to model frequency dependent dielectrics, using either the Drude-Lorentz or Debye-Lorentz
models.

The Drude model focuses on the zero frequency limit of conductance, while the Debye Relaxation focuses on the zero
frequency limit of dielectric. The Drude model assumes unbound charge carriers which undergo collisions, resulting
in a frequency dependant conduction current. The Debye Relaxation Model assumes bound charge carriers whose
dielectric response relaxes at higher frequencies.

In general Drude models are more advantageous for conductivity dominated dielectrics while Debye models are for
permittivity dominated dielectrics.

12 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Each model makes use of Lorentz resonances to handle the middle frequencies of the dielectric. The Lorentz model
assumes bound charge carriers whose response is resonant at a material specified frequency and line width. Any
number of Lorentz resonances may be specified.

The total conduction current of the dielectric is given by the specified Infinity Limit Current + Drude/Debye Current
+ Sum of all Lorentz Currents.

These materials are most commonly used in plasmonics and photonics simulation problems.

Drude-Lorentz Material Parameters

collision function A function describing the collision frequency of the unbound charge carriers
used in the Drude model.

conductivity function A spatial function describing the conductivity of the material.

lorentz oscillator strength A vector describing the oscillation at each lorentz reso-
nance, the density of bound charge carriers seeing the lorentz resonance. Given in units of
1/(ohms*meters*seconds)

lorentz frequency A vector of frequencies of the Lorentz resonances, in Hz.

lorentz line width A vector of the line widths (bandwidths) of the Lorentz resonances, in 1/sec-
onds.

relative permittivity at infinite frequency The permittivity of the material at infi-
nite frequencies. Used to keep the simulation stable.

conductivity at infinite frequency The conductivity of the material at infinite frequen-
cies. Used to keep the simulation stable.

background conductivity The conductivity of the simulation space outside of this material.

Debye-Lorentz Material Parameters

relaxation function A function describing the time scale at which dielectric response relaxes
from the specified permittivity function to the specified relative permittivity at infinite frequency.

permittivity function A spatial function describing the relative permittivity of the material.

lorentz oscillator strength A vector describing the oscillation at each lorentz reso-
nance, the density of bound charge carriers seeing the lorentz resonance. Given in units of
1/(ohms*meters*seconds)

lorentz frequency A vector of frequencies of the Lorentz resonances, in Hz.

lorentz line width A vector of the line widths (bandwidths) of the Lorentz resonances, in 1/sec-
onds.

relative permittivity at infinite frequency The permittivity of the material at infi-
nite frequencies. Used to keep the simulation stable.

conductivity at infinite frequency The conductivity of the material at infinite frequen-
cies. Used to keep the simulation stable.

background conductivity The conductivity of the simulation space outside of this material.

2.7. Materials 13

VSim Reference Manual, Release 11.0.1-r3016

2.7.2 Customizing Materials

Custom materials properties can be created in a text editor and imported into VSim. To import a custom material:

1. Go to the “data” folder at the top level of the VSim installation directory.

2. Create a new text file that ends in the .vmat extension. For example: emthermalcustom.vmat.

3. Open the default materials file emthermal.vmat.

4. Copy a block from emthermal.vmat to emthermalcustom.vmat to use as a sample.

5. Edit the title and properties of the block as needed. For example:

<Material FreshWater>
<strings>
kind = "dielectric"
</strings>
<params>
heat capacity = 4.184
conductivity = 0.005
relative permittivity = 80.4
thermal conductivity = 0.6065
</params>

</Material>

6. Save the new file.

7. Back in VSim, click on the Materials element in your simulation and then click Add –> Import
Materials. A file browser will appear with the data directory already open.

8. Select your custom vmat file. If you do not see your vmat file in the directory, navigate to where you
saved it.

9. The view will change to the Database tab and the materials added will be available here.

2.8 Geometries

The Geometries element contains information about any geometries that are in the simulation. You can import a file,
or create your own with CSG using the primitive shapes described below.

Be sure to assign a Material to a geometry object before it will appear elsewhere in the simulation (i.e. as an option
for a boundary condition, particle emitter, particle absorber, etc.).

2.8.1 CSG

Constructive Solid Geometry can be used to build your own complex geometry. To construct a CSG, left click on the
“+” sign next to Geometries and right click on the now revealed CSG tab. Choose “Add Primitive” and select your
shape.

kind (not editable) Construction Group

tessellation The size of triangles used to construct the shape. This is a unitless number that is the maximum
deviation of a facet from the curved surface divided by the diameter of the facet.

Sphere

kind (not editable) Sphere

14 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

radius The radius of the sphere.

angle Angle of the sphere, if below 360 will be only a section of the sphere corresponding to that
angle.

x position The location of the center of the sphere in the x direction.

y position The location of the center of the sphere in the y direction.

z position The location of the center of the sphere in the z direction.

color The color of the sphere if set explicitly instead of by material.

Box

kind (not editable) Box

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length The length of the box.

height The height of the box.

width The width of the box.

x position The location of the center of the box base in the x direction.

y position The location of the center of the box base in the y direction.

z position The location of the center of the box base in the z direction.

width direction x Set to 1 to make the width parameter of the box correspond to the x direc-
tion.

width direction y Set to 1 to make the width parameter of the box correspond to the y direc-
tion.

width direction z Set to 1 to make the width parameter of the box correspond to the z direc-
tion.

angle The angle of the box.

color The color of the geometry if set explicitly instead of by material.

Cylinder

kind (not editable) Cylinder

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length The length of the cylinder.

radius The radius of the cylinder.

angle Angle of the cylinder, if below 360 will be only a section of the cylinder corresponding to
that angle.

x position The location of the base of the cylinder in the x direction.

y position The location of the base of the cylinder in the y direction.

z position The location of the base of the cylinder in the z direction.

2.8. Geometries 15

VSim Reference Manual, Release 11.0.1-r3016

axis direction x Set to 1 to make the axial direction of the cylinder x; if set to -1, the length
parameter will extend in the negative direction.

axis direction y Set to 1 to make the axial direction of the cylinder y; if set to -1, the length
parameter will extend in the negative direction.

axis direction z Set to 1 to make the axial direction of the cylinder z; if set to -1, the length
parameter will extend in the negative direction.

color The color of the geometry if set explicitly instead of by material.

Cone

kind (not editable) Cone

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

height The height of the cone.

radius The radius of the base of the cone.

angle Angle of the cone, if below 360 will be only a section of the cone corresponding to that
angle.

x position The location of the center of the cone base in the x direction.

y position The location of the center of the cone base in the y direction.

z position The location of the center of the cone base in the z direction.

axis direction x Set to 1 to make the axial direction of the cone x.

axis direction y Set to 1 to make the axial direction of the cone y.

axis direction z Set to 1 to make the axial direction of the cone z.

color The color of the geometry if set explicitly instead of by material.

Torus

kind (not editable) Torus

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

major radius The radius to the center of the torus.

minor radius The radius from the center of the torus to the outside of the torus.

angle Angle of the torus, if below 360 will be only a section of the torus corresponding to that
angle.

x position The location of the center of the torus in the x direction.

y position The location of the center of the torus in the y direction.

z position The location of the center of the torus in the z direction.

axis direction x Set to 1 to make the axial direction of the torus x.

axis direction y Set to 1 to make the axial direction of the torus y.

axis direction z Set to 1 to make the axial direction of the torus z.

color The color of the geometry if set explicitly instead of by material.

Pipe

16 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable) Pipe

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length The length of the pipe.

inner radius The inner radius of the pipe.

outer radius The outer radius of the pipe.

angle Angle of the pipe, if below 360 will be only a section of the pipe corresponding to that angle.

x position The location of the base of the pipe in the x direction.

y position The location of the base of the pipe in the y direction.

z position The location of the base of the pipe in the z direction.

axis direction x Set to 1 to make the axial direction of the pipe x; if set to -1, the length
parameter will extend in the negative direction.

axis direction y Set to 1 to make the axial direction of the pipe y; if set to -1, the length
parameter will extend in the negative direction.

axis direction z Set to 1 to make the axial direction of the pipe z; if set to -1, the length
parameter will extend in the negative direction.

color The color of the geometry if set explicitly instead of by material.

TruncCone

kind (not editable) TruncCone (Truncated Cone)

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

height The height of the cone.

radius1 The radius of the base of the cone.

radius2 The radius of the top of the cone.

angle Angle of the cone, if below 360 will be only a section of the cone corresponding to that
angle.

x position The location of the center of the cone base in the x direction.

y position The location of the center of the cone base in the y direction.

z position The location of the center of the cone base in the z direction.

axis direction x Set to 1 to make the axial direction of the cone x.

axis direction y Set to 1 to make the axial direction of the cone y.

axis direction z Set to 1 to make the axial direction of the cone z.

color The color of the geometry if set explicitly instead of by material.

Wedge

kind (not editable) Wedge

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

length1 One length of the wedge.

2.8. Geometries 17

VSim Reference Manual, Release 11.0.1-r3016

length2 The second length of the wedge.

height The height of the wedge.

width The width of the wedge. Extrudes the wedge from a two dimensional to three dimensional
object.

x position The location of the base of the wedge in the x direction.

y position The location of the base of the wedge in the y direction.

z position The location of the base of the wedge in the z direction.

width direction x Set to 1 to apply the width parameter in the x direction.

width direction y Set to 1 to apply the width parameter in the y direction.

width direction z Set to 1 to apply the width parameter in the z direction.

color The color of the geometry if set explicitly instead of by material.

Ellipsoid

kind (not editable) Ellipsoid

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

radius 1 Radius of the ellipsoid in the X direction.

radius 2 Radius of the ellipsoid in the Y direction.

radius 3 Radius of the ellipsoid in the Z direction.

x position The location of the center of the ellipsoid in the x direction.

y position The location of the center of the ellipsoid in the y direction.

z position The location of the center of the ellipsoid in the z direction.

Longest Principal Axis Direction X Set to 1 to set the radius1 parameter to be the X
direction.

Longest Principal Axis Direction Y Set to 1 to make the radius1 parameter to be the
Y direction.

Longest Principal Axis Direction Z Set to 1 to make the radius1 parameter to be the
Z direction.

color The color of the geometry if set explicitly instead of by material.

Pyramid

kind (not editable) Pyramid

material The material to use for the shape. Chosen from a list of imported materials in your
simulation.

baseLength Length of the base in the X direction.

height Distance between the base of the pyramid and the top, typically in the Y direction.

baseWidth Width of the pyramid base in the Z direction.

startTopLength If equal to the end top length, the pyramid will end in a point in the length
direction. Otherwise the top of the pyramid will have a length equal to (endTopLength - startTo-
pLength).

18 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

endTopLength If equal to the start top length, the pyramid will end in a point in the length direc-
tion.

startTopWidth If equal to the end top width, the pyramid will end in a point in the width di-
rection. Otherwise the top of the pyramid will have a width equal to (endTopWidth - startTop-
Width).

endTopWidth If equal to the start top width, the pyramid will end in a point in the width direction.

x position The location of the upper left corner of the sphere in the x direction.

y position The location of the upper left corner of the sphere in the y direction.

z position The location of the upper left corner of the sphere in the z direction.

X component of the width direction Set to 1 to apply the width parameter in the x
direction.

Y component of the width direction Set to 1 to apply the width parameter in the y
direction.

Z component of the width direction Set to 1 to apply the width parameter in the z
direction.

angle Rotates the pyramid around the x axis.

color The color of the geometry if set explicitly instead of by material.

2.8.2 Arrays

It is possible to generate an array of any CSG or imported CAD object in VSim. This is done by right clicking the
object in question and selecting Create Array. You will then be prompted to select a number of elements in the
X/Y/Z direction, and spacing between the centers of each object. It is also possible to have all objects in the array
automatically into a union.

2.8.3 Boolean Operations

CSG Primitives may be combined in three different ways:

Subtract This will subtract the second selected primitive from the first selected primitive. Denoted by
−.

Union This will combine the two primitives into a single object. For use if the combined object is set to
be a particle sink. Denoted by ∪.

Intersect This will leave only the volume of the two primitives that intersect as an object. Denoted
by ∩.

Boolean operations may be nested, for example two primitives may be combined in a union, and then with a third
primitive in a second union. To combine primitive shapes, you must first add two or more shapes to your simulation.
Once your primitive shapes are added, highlight the two shapes you wish to combine and right-click and select Boolean
Operation then the operation you wish to perform. It is possible to perform a boolean combination between CSG and
Imported CAD Objects.

2.8.4 Importing files

You can import a geometry of type .stl, .ply, .vtk, .stp, .step, or .p12 by right-clicking the Geometries element and
selecting Import Geometries.

2.8. Geometries 19

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable)

• TriangSolid

• OceStepFromFile

filename The name and location of the imported file.

scale A factor to scale the imported geometry by. (Not available in 8.0.)

tessellation The size of triangles used to construct the shape. This is a unitless number that is the
maximum deviation of a facet from the curved surface divided by the diameter of the facet.

An imported .step (or .stp) file will always be converted to metric units (which is the unit system used by VSim).
However, an imported .stl file will not be converted to metric, since .stl files contain only the coordinate values.

2.9 Grids

The Grid is the computational domain of the simulation. It can be 1D, 2D or 3D, and if working with a 2D electrostatic
simulation, cylindrical coordinates are available in addition to cartesian.

Only objects that are inside of the grid will be simulated, those outside are ignored.

The grid is uniformly discretized based on the number of cells specified for the respective axial direction.

kind (not editable) The kind of grid used

xMin The domain extent in the negative x-direction.

xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

yMax The domain extent in the positive y-direction.

zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

xCells The number of cells in the x-direction.

yCells The number of cells in the y-direction.

zCells The number of cells in the z-direction.

Note: The grid, or grid faces should never be deleted from the simulation. If they are it will be necessary to recreate
the simulation file

2.10 Field Dynamics

2.10.1 FieldDynamics for Electromagnetic Simulations

This page describes the Field options available for electromagnetic simulations, that is, when the field solver in
the Basic Settings element is set to electromagnetic.

20 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Fields

Electric Field The Electric Field

Magnetic Field The magnetic field.

Current Density The current density field. Must be added by user by right clicking “Fields”, hovering over
“Add Field”, then choosing “Current Density”. Shows up as “J0”

External Field To allow external fields to either be added to the electric, magnetic or current fields. An external
field will be added after the field solve and effect particle movements in the simulation. Must be added by user
by right clicking “Fields”, hovering over “Add Field”, then choosing “External Field”

description A space to provide a descriptive comment for the field.

field type The type of field, electric, current or magnetic.

field specification Either import h5 file, import h5 file by grid index or function defined.

• import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the 0th component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the 0th component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

• function defined Allows for manual specification of each component of the field

component 0: The function defining the field in the 0th component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

time dependent: Set to true if any of the functions are time varying. The function will then
be recalculated at each time step.

2.10. Field Dynamics 21

VSim Reference Manual, Release 11.0.1-r3016

• import h5 file by grid index A vis schema compliant h5 file. It does require that the
file be in the same directory as the simulation. An error message will be provided if the file fails to
import. This variant requires specifying the grid indices of both the source field to import as well as
the indices of where to place that field in the simulation. This can be used to translate fields in position
from a previous run to a new one.

The total number of cells between the source lower and upper bounds must match that of the simula-
tion lower and upper bounds.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

source lower bound 0: The grid index of the lower bound of the 0th dimension of
the source field to be imported.

source lower bound 1: The grid index of the lower bound of the 1st dimension of
the source field to be imported.

source lower bound 2: The grid index of the lower bound of the 2nd dimension of
the source field to be imported.

source upper bound 0: The grid index of the upper bound of the 0th dimension of
the source field to be imported.

source upper bound 1: The grid index of the upper bound of the 1st dimension of
the source field to be imported.

source upper bound 2: The grid index of the upper bound of the 2nd dimension of
the source field to be imported.

simulation lower bound 0: The grid index corresponding to the lower bound of the
0th dimension where the field will be placed in the simulation.

simulation lower bound 1: The grid index corresponding to the lower bound of the
1st dimension where the field will be placed in the simulation.

simulation lower bound 2: The grid index corresponding to the lower bound of the
2nd dimension where the field will be placed in the simulation.

simulation upper bound 0: The grid index corresponding to the upper bound of the
0th dimension where the field will be placed in the simulation.

simulation upper bound 1: The grid index corresponding to the upper bound of the
1st dimension where the field will be placed in the simulation.

simulation upper bound 2: The grid index corresponding to the upper bound of the
2nd dimension where the field will be placed in the simulation.

External Mode Launching Field This enables launching a 2D external electric field into a simulation. This
electric field can be recalculated at each time step with a temporal variation, and moved to be at any 2D plane
in the simulation space. Must be added by user by right clicking “Fields”, hovering over “Add Field”, then
choosing “External Mode Launching Field”

description A space to provide a descriptive comment for the field.

temporal variation The time function that will be applied to the field.

field type The type of field, only electric is supported.

field specification Either vsh5 file defined mode or function defined mode.

• vsh5 file defined mode Only requires specification of the file in the local simulation di-
rectory. These are typically generated from VSim analyzers. Must follow naming convention

22 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

sourceSimulationName_datasetName_dumpNum.vsh5, where datasetName corresponds to the
dataset to be loaded from the vsh5 file.

• function defined mode

E0(x, y, z): The spatial function defining the field in the 0th component.

E1(x, y, z): The spatial function defining the field in the 1st component.

E2(x, y, z): The spatial function defining the field in the 2nd component.

surface The surface from which the field is launched. This will be visualized in the 3D view.

• yz plane

offset: The position of the plane on the x axis.

yMin: Minimum coordinate of the plane on the y axis.

yMax: Maximum coordinate of the plane on the y axis.

zMin: Minimum coordinate of the plane on the z axis.

zMax: Maximum coordinate of the plane on the z axis.

• xz plane

offset: The position of the plane on the y axis.

xMin: Minimum coordinate of the plane on the x axis.

xMax: Maximum coordinate of the plane on the x axis.

zMin: Minimum coordinate of the plane on the z axis.

zMax: Maximum coordinate of the plane on the z axis.

• xy plane

offset: The position of the plane on the z axis.

xMin: Minimum coordinate of the plane on the x axis.

xMax: Maximum coordinate of the plane on the x axis.

yMin: Minimum coordinate of the plane on the y axis.

yMax: Maximum coordinate of the plane on the y axis.

nodalE This is a node centered electric field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be plot-able post run if dump nodal fields = true.

nodalB This is a node centered magnetic field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be plot-able post run if dump nodal fields = true.

invEps This is a field that stores the inverse values of dielectrics in a simulation. It cannot be added in the Fields
tab but is created automatically if necessary and can be visualized.

D This is the displacement field, only created if a dielectric is present in the simulation. It cannot be added in the
Fields tab but is created automatically if necessary and can be visualized.

Initial Condition

To add an Initial Condition to a field, right-click on the field and select Add FieldInitialCondition –> Initial Condition.

kind (not editable) Initial Condition

2.10. Field Dynamics 23

VSim Reference Manual, Release 11.0.1-r3016

expression The value of the initial condition. Can be assigned a Constant, Parameter, or SpaceTime-
Function by right-clicking.

component Can be 0, 1 or 2 for the first, second, or third component of the field.

Field Boundary Conditions

To add a Boundary Condition, right-click on FieldBoundaryConditions and select your choice from Add FieldBound-
aryCondition. Your choices for dimensionality and field solver in the Basic Settings element will determine which
Boundary Conditions are available to add to your simulation.

Field Boundary conditions may only be applied on the simulation boundaries.

Boundary Launcher A boundary launcher will set the chosen field to the value given in the applied
field functions of space and time.

field The field to which the boundary condition applies.

applied fields The location and orientation of the applied fields. The location is chosen from the simu-
lation domain boundaries. Depending on your choice for the applied field orientation (i.e., the Value of the
applied fields Property), you can set 2 of the following fields as a function of space and time.

• Fx(x,y,z,t)

• Fy(x,y,z,t)

• Fz(x,y,z,t)

Coaxial Waveguide

This is a port launcher boundary condition, with the functions defining it preset to create a coaxial cable.
See the VSimEM - Antennas example, “Coaxial Loop Antenna”, for a demonstration of its use. For
proper operation, a physical coaxial cable must be constructed in Geometries to match the specified cable
here.

inner radius The radius of the inner conductor.

outer radius The radius of the outer conductor.

frequency The frequency of the signal.

voltage The voltage of the signal.

relative permittivity The relative permittivity of the dielectric insulator.

start time The time at which to turn on the coaxial waveguide.

stop time The time at which to turn off the coaxial waveguide.

turn on time The amount of time to bring the coaxial waveguide up to full power. Typically, 2.5
periods of the carried signal.

coaxial waveguide surface The simulation domain boundary from which the coaxial waveg-
uide enters the simulation. Depending on the selected boundary, two of the following three options
are allowed.

• X-center coordinate The center of the coaxial waveguide in X.

• Y-center coordinate The center of the coaxial waveguide in Y.

• Z-center coordinate The center of the coaxial waveguide in Z.

24 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Matched Absorbing Layer A boundary condition that adds a Matched Absorbing Layer (MAL) to the speci-
fied face. A matched absorbing layer is an adiabatic absorber that uses isotropic electric and magnetic damping
profiles to absorb the incident wave. This is unlike a PML (Perfectly Matched Layer), which uses the same
electric and magnetic damping profiles, but is anisotropic. MAL boundaries are more stable, as an anisotropic
boundary condition can become unstable when the incident wave has a non-zero imaginary part to its normal
wavenumber (e.g., fringing fields from nearby structure, or particles entering the layer).

thickness The thickness of the MAL in meters. This value must be greater than the length of a computa-
tional cell in the direction of the boundary condition.

surface The simulation domain surface on which the MAL boundary condition should be set.

• lower x

• lower y

• lower z

• upper x

• upper y

• upper z

Open A boundary condition that is “open” allowing EM waves to freely exit. This is a [?] absorbing boundary
condition. The open boundary condition works best for waves normal to the surface.

surface The simulation domain surface on which the open boundary condition should be set.

• lower x

• lower y

• lower z

• upper x

• upper y

• upper z

Perfect Electric Conductor A boundary condition that sets parallel components of the electric field to
zero. For example, if the PEC boundary condition is added to the lower x surface, the y and z components of
the electric field are set to zero.

surface The simulation domain surface on which the PEC boundary condition should be set.

• lower x

• lower y

• lower z

• upper x

• upper y

• upper z

Perfect Magnetic Conductor A boundary condition that sets parallel components of the magnetic field to
zero. For example, if the PMC boundary condition is added to the lower x surface, the y and z components of
the magnetic field are set to zero.

surface The simulation domain surface on which the PEC boundary condition should be set.

• lower x

• lower y

2.10. Field Dynamics 25

VSim Reference Manual, Release 11.0.1-r3016

• lower z

• upper x

• upper y

• upper z

Perfectly Matched Layer A perfectly matched layer (PML) boundary condition. PMLs provide boundary
conditions for the Yee algorithm that allow outgoing waves to leave without reflections (ideally). However in
practice, there are problems with reflections in some materials, particularly photonic crystals. It is recommended
to use the Matched Absorbing Layer (MAL) instead [?]. PMLs can also fail when combined with other active
boundary conditions, like ports, when there are particles present, or when structures exist at the PML boundary
which are not normal to the boundary. For additional options within Text Setup, see PmlRegion in VSim
Reference.

thickness The thickness of the PML in meters. This must correspond to a value greater than the length of
one computational cell in the direction of the boundary condition.

sigma The strength of the PML conductivity. Typically 3.0 or 5.0 * 𝐿𝐼𝐺𝐻𝑇𝑆𝑃𝐸𝐸𝐷/𝐷𝐿, where DL is the
cell size in the normal direction.

exponent The exponent in the PML conductivity. Typically 1.5.

surface The simulation domain surface on which the PML boundary condition should be set.

• lower x

• lower y

• lower z

• upper x

• upper y

• upper z

Port A Port boundary condition is a tuned phase-velocity boundary condition. It can be used as an open or outgoing
boundary condition, where waves traveling at exactly the specified phase velocity will exit the simulation with
no reflection at all. Waves traveling at other phase velocities will partially exit and partially reflect, with a power
reflection coefficient of 𝜌 = (𝑣𝑝,𝑤𝑎𝑣𝑒 − 𝑣𝑝,𝑏𝑐)

2/(𝑣𝑝,𝑤𝑎𝑣𝑒 + 𝑣𝑝,𝑏𝑐)
2.

phase velocity The phase velocity tuning parameter in meters/second.

surface The simulation domain surface on which the MAL boundary condition should be set.

• lower x

• lower y

• lower z

• upper x

• upper y

• upper z

Port Launcher

A Port Launcher boundary condition will add a Port boundary condition to the chosen surface as
well as setting the D field to the value given in the applied field functions of space and time.

phase velocity The phase velocity tuning parameter in meters/second.

26 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

applied fields The location and orientation of the applied fields. The location is chosen from the simu-
lation domain boundaries. Depending on your choice for the applied field orientation, you can set two of
the following fields as a function of space and time.

• Dx(x,y,z,t)

• Dy(x,y,z,t)

• Dz(x,y,z,t)

Rectangular Waveguide This is a port launcher boundary condition, with the functions defining it preset to
create a rectangular waveguide. See the VSimEM example Rectangular Waveguide for an demonstration of its
use. For proper operation, a physical waveguide must be constructed in Geometries at the location specified
here.

frequency The frequency of the signal.

voltage The voltage of the signal.

relative permittivity The relative permittivity of the dielectric insulator.

start time The time at which to turn on the rectangular waveguide.

stop time The time at which to turn off the rectangular waveguide.

turn on time The amount of time to bring the rectangular waveguide up to full power. If this time is set to
less than 2.5 periods of the carried signal, it will automatically be increased to 2.5 periods.

waveguide surface The simulation domain boundary from which the rectangular waveguide enters the
simulation. Depending on the selected boundary, two of the following three options are allowed, as well
as the polarization direction.

• X-center coordinate The center of the rectangular waveguide in X

• Y-center coordinate The center of the rectangular waveguide in Y

• Z-center coordinate The center of the rectangular waveguide in Z

• polarization direction The polarization direction of the waveguide. This will correspond
to the height parameter of the waveguide.

waveguide type The type of waveguide used. Several commonly used waveguides are included, as well as
the option to define your own.

• User Defined

– height The height of the waveguide. This will correspond to the polarization direction of the
waveguide

– width The width of the waveguide.

• Included Waveguides The eight predefined waveguides are WR-90, WR-340, WR-284, WR-
229, WR-187, WR-159, WR-137, and WR-112.

– WG equivalent (not-editable) The RCSC designation of this waveguide type.

– standard frequency range (not-editable) The frequencies over which this waveguide
operates. A warning will be given if an operating frequency is given outside this range.

– height (not-editable) The height of the waveguide. This will correspond to the polarization
direction of the waveguide.

– width (not-editable) The width of the waveguide.

2.10. Field Dynamics 27

VSim Reference Manual, Release 11.0.1-r3016

Current Distributions

Dipole Current A dipole current is a current source centered around the user specified location and going ±1
cell around the specified location.

kind (not editable) Dipole Current

description A space to provide a descriptive comment for the current.

expression The expression used to define the dipole. Can be assigned a Constant, Parameter, or Space-
TimeFunction by right-clicking. This should be either a constant or a function of time only.

component The component of the current density field to be set by the expression.

coordinate The physical location (in meters) where the dipole current should be set.

General Distributed Current A distributed current sets the values of the current density in the specified
volume. Note that within the specified volume, spatial functions can be used to shape the current, for example
to create a circular current excitation.

kind (not editable) General distributed current.

description A space to provide a descriptive comment for the current.

J0(x,y,z,t) If any, the expression for the current source in the x-direction.

J1(x,y,z,t) If any, the expression for the current source in the y-direction.

J2(x,y,z,t) If any, the expression for the current source in the z-direction.

volume

xMin The domain extent in the negative x-direction.

xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

yMax The domain extent in the positive y-direction.

zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

Separable Distributed Current A separable distributed current can be used to load an external current
mode and vary it in time.

temporal variation A time function to calculate how the current varies.

spatial profile

• file specified A .h5 file that contains the current.

• function specified

J0(x,y,z) The spatial profile of the current in the x-direction.

J1(x,y,z) The spatial profile of the current in the y-direction.

J2(x,y,z) The spatial profile of the current in the z-direction.

volume

xMin The domain extent in the negative x-direction.

xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

28 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

yMax The domain extent in the positive y-direction.

zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

RCSBox Properties

The RCS box is available for electromagnetic simulations. It can be used to define a box and wave for calculation
of radar cross sections. The wave defined will be perfectly absorbed at the other edge of the box, while waves from
scattering off an object inside of the box will be allowed to exit. This allows for a relatively easy calculation of the
radar cross section using the Far-Field Box Data History.

kind Only “Radar Cross Section” is available and is not editable.

description A space to provide a descriptive comment for the RCSBox.

amplitude Amplitude of the incident wave.

frequency Frequency of the incident wave.

rise time (periods) Number of periods (as given by frequency) for wave to rise to the given amplitude.

x component incident direction Incident angle in the x direction in radians.

y component incident direction Incident angle in the y direction in radians.

z component incident direction Incident angle in the z direction in radians.

polarization direction x real Polarization of the real component of the wave in the x direction.

polarization direction y real Polarization of the real component of the wave in the y direction.

polarization direction z real Polarization of the real component of the wave in the z direction.

polarization direction x imaginary Polarization of the imaginary component of the wave in the x di-
rection.

polarization direction y imaginary Polarization of the imaginary component of the wave in the y di-
rection.

polarization direction z imaginary Polarization of the imaginary component of the wave in the z di-
rection.

volume

xMin The domain extent in the negative x-direction.

xMax The domain extent in the positive x-direction.

yMin The domain extent in the negative y-direction.

yMax The domain extent in the positive y-direction.

zMin The domain extent in the negative z-direction.

zMax The domain extent in the positive z-direction.

Plasma Dielectric Properties

A plasma dielectric is available in electromagnetic simulations. This is effectively a dielectric formed by plasma, and
can be used more readily than generating the plasma from discrete particles.

A plasma dielectric is composed of a single electron type and as many ions as the user specifies.

2.10. Field Dynamics 29

VSim Reference Manual, Release 11.0.1-r3016

Plasma dielectrics are most commonly used for propogation of microwaves through a plasma, or in the construction of
a plasma antenna. Wave propogation through the ionosphere can be done with a plasma dielectric as well. To include
a plasma dielectric in the simulation, right click on Field Dynamics and click on Add Plasma Dielectric. A new option
will populate the Field Dynamics tab, typically called “PlasmaDielectric0”. The plasma dielectric algorithm used in
VSim is discussed in [?]. The plasma dielectric algorithm in the visual setup is the same as the one described in
linPlasDielcUpdater in the text-based setup, except in the visual setup, sheath effects are not included.

boundary damping frequency The time constant of the damping of the plasma. Can be used to filter the
signals passing through the plasma dielectric. Is a computational construct for absorbing boundary conditions.

dump plasma work arrays This wil dump the fields used in constructing the plasma dielectric if set to true.

compute plasma losses This will compute the losses in energy from the plasma.

filtering level Either none, weak, medium, or strong. This is used to filter computational noise of short
wavelengths, particularly at sharp corners in the dielectric. A higher filtering level will more accurately filter
but increases computational time.

sheath No sheath effects can be considered in VSim at this time.

electron The Electrons specified will not be modeled as discrete particles.

density profile A spatial profile describing the density of the electrons.

collision frequency A function describing electron drag on a neutral background, this will dampen
electrical signals.

impose charge neutrality If set to true the ratio of all ions must add up to 1.0. This will gurantee that
the plasma dielectric is charge neutral.

ion The ions specified will not be modeled as discrete particles.

mass number [amu] Mass of the ion in amu.

charge number Charge of the ion.

density ratio Fraction of all ions used consisting of this ion.

collision frequency A function describing ion drag on a neutral background, this will dampen electri-
cal signals.

Note: Plasma dielectrics are incompatible with a simulation that also features regular or Drude/Debye-Lorentz
modeled dielectrics.

Initial Beam Properties

Initial beams can be used for beam-driven Plasma Acceleration simulations.

These will perform an electrostatic field solve to setup the Lorentz boosted Poisson fields for launching the electron
beam. This ensures that the simulation is self-consistent from start as the beam initializes the fields using a speed
of light frame Poisson equation solve. This will also use a vector and scalar charge depositor for all particles in the
simulation, and use esirk2ndOrder interpolation.

beam gamma The Lorentz factor, 𝛾, of the beam

dump beam initialization fields True or False option to dump the fields used in beam initialization

30 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

2.10.2 FieldDynamics for Electrostatic Simulations

This page describes the Field options available for electrostatic simulations, that is, when the field solver in the
Basic Settings element is set to electrostatic.

Fields

Phi The electric potential field. This field is un-editable, and is calculated automatically.

Charge Density The charge density field. This field is un-editable, and is calculated automatically.

Electric Field The Electric Field. This field is un-editable, and is calculated automatically.

Background Charge Density The background charge density field. This field can be added to a simulation
by right clicking “Fields”, hovering over “Add Field”, then clicking “Background Charge Density”. You may
add many Background Charge Densities to your simulation.

• expression The value of the background charge density field. Can be a constant, a parameter, or a
function of space and time.

External Field An External Field can be added to a simulation by right clicking “Fields”, hovering over “Add
Field”, then clicking “External Field”. An external field will be added after the field solve and effect particle
movements in the simulation.

description A space to provide a descriptive comment for the field.

field type In electrostatic simulations only magnetic fields may be added.

field specification Either import h5 file or function defined.

• import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the 0th component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the 0th component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

• function defined Allows for manual specification of each component of the field

2.10. Field Dynamics 31

VSim Reference Manual, Release 11.0.1-r3016

component 0: The function defining the field in the 0th component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

time dependent: Set to true if any of the functions are time varying. The function will then
be recalculated at each time step.

• import h5 file by grid index A vis schema compliant h5 file. It does require that the
file be in the same directory as the simulation. An error message will be provided if the file fails to
import. This variant requires specifying the grid indices of both the source field to import as well as
the indices of where to place that field in the simulation. This can be used to translate fields in position
from a previous run to a new one.

The total number of cells between the source lower and upper bounds must match that of the simula-
tion lower and upper bounds.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

source lower bound 0: The grid index of the lower bound of the 0th dimension of
the source field to be imported.

source lower bound 1: The grid index of the lower bound of the 1st dimension of
the source field to be imported.

source lower bound 2: The grid index of the lower bound of the 2nd dimension of
the source field to be imported.

source upper bound 0: The grid index of the upper bound of the 0th dimension of
the source field to be imported.

source upper bound 1: The grid index of the upper bound of the 1st dimension of
the source field to be imported.

source upper bound 2: The grid index of the upper bound of the 2nd dimension of
the source field to be imported.

simulation lower bound 0: The grid index corresponding to the lower bound of the
0th dimension where the field will be placed in the simulation.

simulation lower bound 1: The grid index corresponding to the lower bound of the
1st dimension where the field will be placed in the simulation.

simulation lower bound 2: The grid index corresponding to the lower bound of the
2nd dimension where the field will be placed in the simulation.

simulation upper bound 0: The grid index corresponding to the upper bound of the
0th dimension where the field will be placed in the simulation.

simulation upper bound 1: The grid index corresponding to the upper bound of the
1st dimension where the field will be placed in the simulation.

simulation upper bound 2: The grid index corresponding to the upper bound of the
2nd dimension where the field will be placed in the simulation.

nodalE This is a node centered electric field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be visible if dump nodal fields = true.

32 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

nodalB This is a node centered magnetic field, used for calculating particle movements. It cannot be added to a
simulation but is created automatically and will be visible if dump nodal fields = true.

invEps This is a field that stores the inverse values of dielectrics in a simulation. It cannot be added in the Fields
tab but is created automatically if necessary and can be visualized.

D This is the displacement field, only created if a dielectric is present in the simulation. It cannot be added in the
Fields tab but is created automatically if necessary and can be visualized.

Initial Condition

To add an Initial Condition to a field, right-click on the field and select Add FieldInitialCondition –> Initial Condition.

kind (not editable) Initial Condition

expression The value of the initial condition. Can be assigned a Constant, Parameter, or SpaceTime-
Function by right-clicking.

component Can be 0, 1 or 2 for the first, second, or third component of the field.

Field Boundary Conditions

To add a Boundary Condition, right-click on FieldBoundaryConditions and select your choice from Add FieldBound-
aryCondition. Your choices for dimensionality and field solver in the Basic Settings element will determine which
Boundary Conditions are available to add to your simulation. If the simulation is set up as an electrostatic 2D sim-
ulation in cylindrical coordinates (R-Z plane) and if the simulation begins at r=0, then a flag called includeCylAxis
(see Section Grid) is set to true. At r = 0, we have set the default field boundary condition to be Neumann with the
electric field set to 0. Therefore, the only boundary conditions that need to be set in a 2D cylindrical electrostatic
simulation are at RMAX, ZMIN, and ZMAX. If the simulation begins at r > 0, then the user will need to specify the
field boundary condition at RMIN.

Dirichlet Use a Dirichlet boundary condition to set the value of the potential field, Phi, on the surface.

value The value of the boundary condition. Can be assigned a Constant, Parameter, or SpaceTimeFunction
by right-clicking.

surface The surface on which the Dirichlet boundary condition should be set.

• lower x The lower x boundary of the simulation domain.

• lower y The lower y boundary of the simulation domain.

• lower z The lower z boundary of the simulation domain.

• upper x The upper x boundary of the simulation domain.

• upper y The upper y boundary of the simulation domain.

• upper z The upper z boundary of the simulation domain.

• partial lower x A Dirichlet boundary condition applied only to part of the lower x simulation
boundary. The entire lower x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

lower z coordinate The inclusive lower z coordinate.

2.10. Field Dynamics 33

VSim Reference Manual, Release 11.0.1-r3016

upper z coordinate The exclusive upper z coordinate.

• partial lower y A Dirichlet boundary condition applied only to part of the lower y simulation
boundary. The entire lower y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

upper x coordinate The exclusive upper x coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial lower z A Dirichlet boundary condition applied only to part of the lower z simulation
boundary. The entire lower z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

upper x coordinate The exclusive upper x coordinate.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

• partial upper x A Dirichlet boundary condition applied only to part of the upper x simulation
boundary. The entire upper x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial upper y A Dirichlet boundary condition applied only to part of the upper y simulation
boundary. The entire upper y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

upper x coordinate The exclusive upper x coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial upper z A Dirichlet boundary condition applied only to part of the upper z simulation
boundary. The entire upper z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

34 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

upper x coordinate The exclusive upper x coordinate.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

• shape surface Use a shape surface to specify a Dirichlet boundary condition on the surface of a
geometry in your simulation.

object name: Choose from any pre-defined geometries in the simulation.

Neumann Use a Neumann boundary condition to set the value of the derivative of the potential field, Phi, on the
surface.

value The value of the derivative. Can be assigned a Constant, Parameter, or SpaceTimeFunction by right-
clicking.

surface The surface on which the Dirichlet boundary condition should be set.

• lower x The lower x boundary of the simulation domain.

• lower y The lower y boundary of the simulation domain.

• lower z The lower z boundary of the simulation domain.

• upper x The upper x boundary of the simulation domain.

• upper y The upper y boundary of the simulation domain.

• upper z The upper z boundary of the simulation domain.

• partial lower x A Neumann boundary condition applied only to part of the lower x simulation
boundary. The entire lower x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial lower y A Neumann boundary condition applied only to part of the lower y simulation
boundary. The entire lower y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

upper x coordinate The exclusive upper x coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial lower z A Neumann boundary condition applied only to part of the lower z simulation
boundary. The entire lower z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

2.10. Field Dynamics 35

VSim Reference Manual, Release 11.0.1-r3016

upper x coordinate The exclusive upper x coordinate.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

• partial upper x A Neumann boundary condition applied only to part of the upper x simulation
boundary. The entire upper x boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the Y or Z simulation boundary the first computational cell of the X boundary is
included in the Y or Z simulation boundary condition.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial upper y A Neumann boundary condition applied only to part of the upper y simulation
boundary. The entire upper y boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Z simulation boundary the first computational cell of the Y boundary is
included in the X or Z simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

upper x coordinate The exclusive upper x coordinate.

lower z coordinate The inclusive lower z coordinate.

upper z coordinate The exclusive upper z coordinate.

• partial upper z A Neumann boundary condition applied only to part of the upper z simulation
boundary. The entire upper z boundary must be filled with a boundary condition. The lower
coordinate is included in the simulation and the upper bound is exclusive. Also note that at the
intersection of the X or Y simulation boundary the first computational cell of the Z boundary is
included in the X or Y simulation boundary condition.

lower x coordinate The inclusive lower x coordinate.

upper x coordinate The exclusive upper x coordinate.

lower y coordinate The inclusive lower y coordinate.

upper y coordinate The exclusive upper y coordinate.

PoissonSolver

kind (not editable) Poisson Solver

relative permittivity Function giving the relative permittivity, or background permittivity. Without a
VSimPD license, when using the electrostatic field solve, dielectrics with spatially dependent dielectric con-
stants cannot be added through the use of geometries (primitive and CAD-like imported objects). If you try
to add a non-PEC/Absorbium material, you will get the following error: “Dielectrics not supported in elec-
trostatic simulations”. However, you can add regions in the simulation domain that have spatially dependent
dielectric constants with SpaceTimeFunctions (see SpaceTimeFunctions). An example demonstrating how to
add dielectrics using SpaceTimeFunctions can be found in “Dielectric in Electrostatics” which can be found
in the “VsimExamples” documentation. Once you have written a SpaceTimeFunction describing the spatially
dependent dielectric constant, expand the Field Dynamics tab and left click on “PoissonSolver”. Then right
click on the region next to *relative permittivity”, left click on “Assign SpaceTimeFunction” and click on the

36 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

function that you wrote. With a VSimPD license it is possible to use geometry defined dielctrics. In this case
the relative permittivity assignment can still be used to set a background permittivity, or permittivity outside of
the geometries.

solver VSim allows the use of the direct solver SuperLU or one of the current choices for iterative solvers.

• SuperLU Use the SuperLU solver. This is a direct matrix solver which is not recommended for use in a
simulation with a grid larger than a few thousand cells. For grids with more than a few thousand cells,
use an iterative solver.

• conjugate gradient An iterative solver for symmetric positive definite matrices.

tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Anything
above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here. Met-
rics are one of:

– r0 Use the ratio of the L2 norms of the residual and the initial residual.

– rhs Use the ratio of the L2 norms of the residual and the right-hand side.

– Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum of
the matrix (L-infinity norm).

– noscaled Use the ratio of the L2 norm of the residual.

– sol Use the ratio of the maximum component of the residual and the sum of (L-infinity norm
of the matrix times the maximum absolute component of the first iterate to the solution + the
maximum absolute component of the right-hand side).

• generalized minimum residual An iterative solver. Actually the restarted GMRES. A very ro-
bust solver.

Krylov vector space size Number of vectors used in Krylov subspace.

max iterations The maximum number of iterations allowed to achieve the solution. Anything
above 30 is questionable.

tolerance The size of the error vector for stopping the iteration to solution.

convergence metric This is described in the AztecOO user guide, p. 17, currently here. Met-
rics are one of:

– r0 Use the ratio of the L2 norms of the residual and the initial residual.

– rhs Use the ratio of the L2 norms of the residual and the right-hand side.

– Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum of
the matrix (L-infinity norm).

– noscaled Use the ratio of the L2 norm of the residual.

– sol Use the ratio of the maximum component of the residual and the sum of (L-infinity norm
of the matrix times the maximum absolute component of the first iterate to the solution + the
maximum absolute component of the right-hand side).

orthogonalization How to orthogonalize the Krylov subspace. Options are:

– classic Uses two steps of the classical Gram-Schmidt orthogonalization (Default).

– modified Uses one step of the Modified Gram-Schmidt orthogonalization.

• conjugate gradient squared

2.10. Field Dynamics 37

https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf
https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf

VSim Reference Manual, Release 11.0.1-r3016

tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Any-
thing above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here.
Metrics are one of:

– r0 Use the ratio of the L2 norms of the residual and the initial residual.

– rhs Use the ratio of the L2 norms of the residual and the right-hand side.

– Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum
of the matrix (L-infinity norm).

– noscaled Use the ratio of the L2 norm of the residual.

– sol Use the ratio of the maximum component of the residual and the sum of (L-infinity
norm of the matrix times the maximum absolute component of the first iterate to the
solution + the maximum absolute component of the right-hand side).

• biconjugate gradient stabilized

tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Any-
thing above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here.
Metrics are one of:

– r0 Use the ratio of the L2 norms of the residual and the initial residual.

– rhs Use the ratio of the L2 norms of the residual and the right-hand side.

– Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum
of the matrix (L-infinity norm).

– noscaled Use the ratio of the L2 norm of the residual.

– sol Use the ratio of the maximum component of the residual and the sum of (L-infinity
norm of the matrix times the maximum absolute component of the first iterate to the
solution + the maximum absolute component of the right-hand side).

• transpose-free quasi-minimal residual

tolerance The size of the error vector for stopping the iteration to solution.

max iterations The maximum number of iterations allowed to achieve the solution. Any-
thing above 30 is questionable.

convergence metric This is described in the AztecOO user guide, p. 17, currently here.
Metrics are one of:

– r0 Use the ratio of the L2 norms of the residual and the initial residual.

– rhs Use the ratio of the L2 norms of the residual and the right-hand side.

– Anorm Use the ratio of the L2 norm of the residual and the maximum absolute row sum
of the matrix (L-infinity norm).

– noscaled Use the ratio of the L2 norm of the residual.

– sol Use the ratio of the maximum component of the residual and the sum of (L-infinity
norm of the matrix times the maximum absolute component of the first iterate to the
solution + the maximum absolute component of the right-hand side).

38 Chapter 2. Visual Setup

https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf
https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf
https://trilinos.org/oldsite/packages/aztecoo/AztecOOUserGuide.pdf

VSim Reference Manual, Release 11.0.1-r3016

preconditioner

• no preconditioner

• multigrid Multigrid has a large number of parameters. In most cases, the defaults are good. If one is using
particles, the linear solve often does not matter in overall timing. More information is available in the
VSim User Guide: VSim User Guide: Simulation Concepts: Fields

mg defaults

– SA Works best with symmetric matrices. Symmetric matrices occur when all boundary conditions in
the problem are periodic.

– DD Works best in general.

– DD-ML

– Maxwell

maximum levels The maximum number of levels of multigrid smoother application before doing a
direct solve on the smaller problem. For highly parallel problems this should be limited to 3-4 to
minimize communication time.

smoother type The smoother to apply at each multigrid level. The default is a good choice, but the
user may try other smoothers to achieve best solving times. The choices are:

– Gauss Seidel

– symmetric variable block Gauss Seidel

– Jacobi

– Chebyshev

– Aztec

smoother sweeps The number of times to apply the smoother at each multigrid level. A good choice
is 3, but the user may try other values to achieve best solving times.

when to smooth Generally one wants to smooth both. The before and after choices are provided to
the user to try other values to achieve best solving times.

– both

– before

– after

coarse type The type of solver to use at the coarsest level.

– Jacobi

– KLU

damping factor Damping factor for smoothed aggregation. The default is a good choice. Users may
try other values to achieve best solving times.

threshold This determines the multigrid aggregation at each level.

increase or decrease If set to increasing, level 0 will correspond to the finest level. If set to
decreasing, max levels - 1 will correspond to the finest level. Should not affect convergence. The
choices are:

– increasing

– decreasing

2.10. Field Dynamics 39

VSim Reference Manual, Release 11.0.1-r3016

2.10.3 FieldDynamics for Prescribed Fields Simulations

This page describes the Field options available for prescribed field simulations, that is, when the field solver in
the Basic Settings element is set to prescribed fields.

Fields

externalElectricField The Electric Field as prescribed by the user.

kind (un-editable) External Electric Field

description A space to provide a descriptive comment for the field.

field type electric field(cannot be changed)

field specification Either import h5 file or function defined.

• function defined Allows for manual specification of each component of the field

component 0: The function defining the field in the 0th component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

• import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the 0th component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the 0th component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

externalMagneticField The Magnetic Field as prescribed by the user.

kind (un-editable) External Magnetic Field

description A space to provide a descriptive comment for the field.

40 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

field type magnetic (cannot be changed)

field specification Either import h5 file or function defined.

• function defined Allows for manual specification of each component of the field

component 0: The function defining the field in the 0th component. Can be a time varying
function

component 1: The function defining the field in the 1st component. Can be a time varying
function

component 2: The function defining the field in the 2nd component. Can be a time varying
function

• import h5 file A vis schema compliant h5 file. It does require that the file be in the same
directory as the simulation. An error message will be provided if the file fails to import.

filename: The name of the .hdf5 file to be imported. Typical convention is simulation-
Name_fieldName_dumpNum.h5

lower bound 0: The cell index of the 0th component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 1: The cell index of the 1st component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

lower bound 2: The cell index of the 2nd component lower bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 0: The cell index of the 0th component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 1: The cell index of the 1st component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

upper bound 2: The cell index of the 2nd component upper bound of the source field, to
be imported to the matching index in the simulation. If left not applicable the entire field
will be imported.

Time Dependence Properties

Time Dependence is available for prescribed field simulations.

E-Field multiplier Time dependent function to be applied at each time step to the electric field.

B-Field multiplier Time dependent function to be applied at each time step to the magnetic field.

2.11 Particle Dynamics

2.11.1 Kinetic Particles

2.11. Particle Dynamics 41

VSim Reference Manual, Release 11.0.1-r3016

Charged Particles

Charged Particles can be used to define any kinetic particle with given mass and charge.

To add Charged Particles, right click on the “KineticParticles” element, hover over the “Add ParticleSpecies” and
choose “Charged Particles”.

kind (not editable) Charged Particles

nominal density A positive value suggesting the nominal density for the particles. This will be used in con-
junction with the weight setting to compute the density, weights, and number of particles in a macro particle for
your kinetic particles.

description A space to provide a descriptive comment for the particle species.

particle dynamics Whether to use relativistic or non-relativistic particles.

• relativistic: Use the relativistic particle pushing algorithm to update the particle positions and ve-
locities by including a gamma term.

• non-relativistic: Use the non-relativistic particle pushing algorithm to update the particle positions
and velocities.

particle weights Whether to use constant or variable weight particles.

• variable weights: The weights of the macroparticles can vary throughout the simulation.

• constant weights: The weights of the macroparticles are constant throughout the simulation.

• managed weights: Variable weight particles that are managed to allow for maximum and minimum
weights, and maximum and minimum number of macroparticles per cell. Note if working in cylindrical
coordinates, some computational artifacts may arise in a few simulation types with managed weights.
Contact Tech-X support if this becomes a concern.

macroparticles per cell for splitting If more than this many macroparticles
are in a cell splitting will not occur.

macroparticles per cell for combining If fewer than this many macroparticles
are in a cell combining will not occur.

minimum split particle weight If the split particles would weigh under this value,
splitting will not occur.

maximum combined particle weight If the combined particle would weigh over this
value, combination will not occur.

splitting periodicity Number of time steps between assessing if particles should be
split.

combining periodicity (not editable) Number of time steps between assessing
if particles should be combined.

splitting algorithm Algorithm to use in determining split particle weights. This in-
teraction is designed to use variable-weight species. Kind of MonteCarlo interaction that
splits macroparticles of a single species into two or more macroparticles. This interaction
is designed to use variable-weight species. This interaction is applied at each time step.
The attribute algorithm_kind specifies the type of algorithm to be used when splitting
macroparticles. The possible values are 1 and 2. Algorithm 1 (default) performs a simple,
fast split operation, whereas option 2 is more accurate but more computationally intensive. In
algorithm 1, the weight of the macro particle is simply split to one half and a new macropar-
ticle gets added at the same location with one half weight value. In algorithm 2, the split
operation is done such that the number of macro particles within a cell meets the require-
ment of the threshold value specified by the user.

42 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

combining algorithm Algorithm to use in determining combined particle weights. Kind
of MonteCarlo interaction that combines macroparticles of a single species together into
one single macroparticle. The algorithm_kind specifies the kind of algorithm to be
used when combining macroparticles. The possible values are 1, 2, 3, 4, 5, or 6. Option
1 indicates a simple pair-wise combination of macroparticles, deleting one and adding the
number of real particles (weight) to the other (decimation). Option 2 indicates a slightly
more accurate pair-wise approach, deleting one macroparticle and assigning the other the
mean position and velocity of the pair as well as the total weight of the pair (inelastic).
Option 3 is an elastic combination approach, where quartets of macroparticles are combined
into pairs that conserve energy and momentum (elastic). Option 4 is a pair-wise combining
approach similar to Option 2 except that it allows users to avoid combining particles that are
above the user specified limit. Option 5 is a pairwise approach in which the particles within a
cell are grouped in velocity phase-space bins and then particles in each velocity phase-space
bin are combined pair-wise. In this approach energy and momentum are conserved. Option
6 is a fluxConserving approach, combining 3+ particles into 2. This has enough degrees
of freedom to conserve energy, momentum and a third quantity. We chose the center of
momentum frame flux, which has the nice property that the solution is always real. This
conserves the original phase space of the particles.

Note: This feature replaces the selfCombCollision previously implemented in Vorpal
collision.

weight setting Whether to use computed weights or explicitly set weights.

• computed weights: Let VSim calculate your macroparticle weights for you based on the number
of macroparticles per cell you specify as well as the nominal density. The weights are calculated
such that the number of particles in a macro particle is equal to the nominalDensity * cellVolume /
macroparticles per cell.

macroparticles per cell: The number of macroparticles per cell.

• explicitly set weights: Declare the number of particles in a macro particle explicitly.

particles per macroparticle: The number of particles in a macroparticle.

molecule Molecule of the charged particle. A custom ion is available for those not pre-defined.

• mass [amu] The mass of a single real particle in atomic mass units.

• charge number The charge number of a single particle, multiple of the fundamental charge.

• ionization energy [eV] The ionization energy of the molecule in electron volts. This value will
be used by particle interactions set thresholds and determine energy losses.

Additional Features:

Emitters:

• Shape Settable Flux Emitter

• Slab Settable Flux Emitter

Boundary Conditions:

• Properties of Particle Boundary Conditions

Loaders:

• Particle Loader

2.11. Particle Dynamics 43

VSim Reference Manual, Release 11.0.1-r3016

Electrons

Electrons are pre-defined to have a charge = -1.602176487e-19 C and a mass = 9.10938215e-31 kg.

To add Electrons, right click on the “KineticParticles” element, hover over the “Add ParticleSpecies” and choose
“Electrons”.

kind (not editable): Electrons

nominal density: A positive value suggesting the nominal density for the particles. This will be used in con-
junction with the weight setting to compute the density, weights, and number of particles in a macro particle for
your kinetic particles.

description A space to provide a descriptive comment for the particle species.

particle dynamics: Whether to use relativistic or non-relativistic particles.

• relativistic: Use the relativistic particle pushing algorithm to update the particle positions and ve-
locities by including a gamma term.

• non-relativistic: Use the non-relativistic particle pushing algorithm to update the particle positions
and velocities.

particle weights: Whether to use constant or variable weight particles.

• variable weights: The weights of the macroparticles can vary throughout the simulation.

• constant weights: The weights of the macroparticles are constant throughout the simulation.

• managed weights: Variable weight particles that are managed to allow for maximum and minimum
weights, and maximum and minimum number of macroparticles per cell. Note if working in cylindrical
coordinates, some computational artifacts may arise in a few simulation types with managed weights.
Contact Tech-X support if this becomes a concern.

macroparticles per cell for splitting: If more than this many macroparticles
are in a cell splitting will not occur.

macroparticles per cell for combining: If fewer than this many macroparticles
are in a cell combining will not occur.

minimum split particle weight: If the split particles would weigh under this value,
splitting will not occur.

maximum combined particle weight: If the combined particle would weigh over this
value, combination will not occur.

splitting periodicity: Number of time steps between assessing if particles should be
split.

combining periodicity (not editable): Number of time steps between assessing
if particles should be combined.

splitting algorithm: Algorithm to use in determining split particle weights.

combining algorithm: Algorithm to use in determining combined particle weights.

weight setting: Whether to use computed weights or explicitly set weights.

• computed weights: Let VSim calculate your macroparticle weights for you based on the number
of macroparticles per cell you specify as well as the nominal density. The weights are calculated
such that the number of particles in a macro particle is equal to the nominalDensity * cellVolume /
macroparticles per cell.

macroparticles per cell: The number of macroparticles per cell.

44 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

• explicitly set weights: Declare the number of particles in a macro particle explicitly.

particles per macroparticle: The number of particles in a macroparticle.

Additional Features:

Emitters:

• Shape Settable Flux Emitter

• Secondary Electron Emitter

• Slab Settable Flux Emitter

Boundary Conditions:

• Properties of Particle Boundary Conditions

Loaders:

• Particle Loader

Neutral Particles

Neutral Particles of the gas kinds listed below are pre-defined with the appropriate charge and mass values. Users can
also add custom neutral species.

To add Neutral Particles, right click on the “KineticParticles” element, hover over the “Add ParticleSpecies” and
choose “Neutral Particles”.

kind (not editable) Neutral Particles

nominal density A positive value suggesting the nominal density for the particles. This will be used, in con-
junction with the weight setting, to compute the density, weights, and number of particles in a macro particle
for your kinetic particles.

description A space to provide a descriptive comment for the particle species.

particle dynamics Whether to use relativistic or non-relativistic particles

• relativistic: Use the relativistic particle pushing algorithm to update the particle positions and ve-
locities by including a gamma term.

• non-relativistic: Use the non-relativistic particle pushing algorithm to update the particle positions
and velocities.

particle weights Whether to use constant or variable weight particles.

• variable weights The weights of the macroparticles can vary throughout the simulation.

• constant weights The weights of the macroparticles are constant throughout the simulation.

• managed weights Variable weight particles that are managed to allow for maximum and minimum
weights, and maximum and minimum number of macroparticles per cell. Note if working in cylin-
drical coordinates, some computational artifacts may arise in a few simulation types with managed
weights. Contact Tech-X support if this becomes a concern.

macroparticles per cell for splitting If more than this many macroparticles are in
a cell splitting will not occur.

macroparticles per cell for combining If fewer than this many macroparticles are in
a cell combining will not occur.

2.11. Particle Dynamics 45

VSim Reference Manual, Release 11.0.1-r3016

minimum split particle weight If the split particles would weigh under this value, split-
ting will not occur.

maximum combined particle weight If the combined particle would weigh over this
value, combination will not occur.

splitting periodicity Number of time steps between assessing if particles should be split.

combining periodicity (not editable) Number of time steps between assessing if
particles should be combined.

splitting algorithm Algorithm to use in determining split particle weights.

combining algorithm Algorithm to use in determining combined particle weights.

weight setting Whether to use computed weights or explicitly set weights.

• computed weights Let VSim calculate your macroparticle weights for you, based on the number
of macroparticles per cell you specify as well as the nominal density. The weights are calculated
such that the number of particles in a macro particle is equal to the nominalDensity * cellVolume /
macroparticles per cell.

macroparticles per cell: The number of macroparticles per cell.

• explicitly set weights Declare the number of particles in a macro particle explicitly.

particles per macroparticle: The number of particles in a macroparticle.

molecule Molecule of the neutral particle. Options are:

• H: Hydrogen (atomic)

• H2: Hydrogen (molecular)

• He: Helium

• Ar: Argon

• Xe: Xenon

• Rn: Radon

• Kr: Krypton

• O: Oxygen (atomic)

• O2: Oxygen (molecular)

• Ne: Neon

• N: Nitrogen (atomic)

• N2: Nitrogen (molecular)

• custom molecule Set the mass (in amu) and ionization energy (in eV) of a custom gas.

– mass [amu] The mass of a single real particle in atomic mass units.

– ionization energy [eV] The ionization energy of the molecule in electron volts.

Additional Features:

Emitters:

• Shape Settable Flux Emitter

• Sputter Emitter

46 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

• Slab Settable Flux Emitter

Boundary Conditions:

• Properties of Particle Boundary Conditions

Loaders:

• Particle Loader

Field Scaling Electrons

These are a special type of electron used in testing. Most notably, they consist of only one physical particle per
macroparticle. They are in fact given a variable weight, which is used to track whether the particles have been created
via secondary emission. Each particle also has a scaling value, allowing for multiple voltage levels to exist in the sim-
ulation simultaneously. Since there is only one physical particle per macroparticle, these particles will have negligible
effect on the simulation.

The primary use of these particles is to scan a structure for multipacting resonances across a number of power levels
at the same time.

To add Field Scaling Electrons, right click on the “KineticParticles” element, hover over the “Add TestParticleSpecies”
and choose “Field Scaling Electrons”.

Field Scaling Electron Loader

This particle loader is very similar to a standard particle species loader, with some notable exceptions.

description: A space to provide a descriptive comment for the particle species.

load density: Only the relative density of particles may be specified, as this is the same as the physical density.

physical density: This will specify the number of particles per cell.

particle load placement: At this time particles may only be loaded according to a bit-reversed algorithm.

load duration: Whether to only load the particles at the beginning of the simulation or repeatedly.

• initialize only: Particles will only be loaded at the beginning of the simulation.

• repeat loading: Particles will be loaded according to the parameters below.

start time: The time at which to start loading particles.

stop time: The time at which to stop loading particles.

load after initialization: Loading will repeat in all cells during the loading period.

load upon shift: Load particles into cells brought into the simulation by a moving window.

scaling factor: This will determine the minimum value, maximum value, and scaling factor applied to the field
scaling electrons. So for example with a minimum value of 10, and a scaling factor of 3, that individual electron is
charged to 30V.

minimum scaling factor: The minimum voltage of the particles loaded.

maximum scaling factor: The maximum voltage of the particles loaded.

number of scale factors: The number of scale factors, or steps, between the minimum scaling
factor and maximum scaling factor.

volume: The volume in which to load particles.

• cartesian 3d slab

2.11. Particle Dynamics 47

VSim Reference Manual, Release 11.0.1-r3016

• cylindrical 2d slab

Additional Features:

Fewer additional features are available for Field Scaling Electrons. The only emitter available for Field Scaling
Electrons is a secondary emitter.

• Secondary Electron Emitter

And the only available particle boundary conditions are: Absorbing, Boundary Absorb and Save, Cut-Cell Absorb and
Save, Interior Absorb and Save, and Reflecting.

• Properties of Particle Boundary Conditions

Particle Emitters

Shape Settable Flux Emitter

All particle types may emit from a shape settable flux emitter. Certain emission specifications are only available based
on particle type and particle weights specification. Available in cartesian coordinate simulations only.

start time Time to start emitting particles.

stop time Time to stop emitting particles.

emission specification: Specification of the emitted particles, note that the specification options vary for
constant or variable/managed weight particles.

• emission current density: Only available with variable/managed weight specified particles.

emission current density: Specify the current density of the emitter (amps/meter^2). Can be a
spatial profile.

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

– average velocity 0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direction.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

• emission flux: Only available with variable/managed weight specified particles.

emission flux: Specify the flux of the emitter (particles/meter^2). Can be a spatial profile.

48 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

– average velocity 0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direction.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

• emission current: Only available with constant weight particles.

emission current: Specify the total emitted current per second from the emitter (amps/second).

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

– average velocity 0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direction.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

• emission rate: Only available with constant weight particles.

emission rate: Specify the total emitted particles per second from the emitter (particle/second).

velocity coordinate system: Either global or surface. A global coordinate system will specify
the emission velocities according to global axis. A surface coordinate system will set the emission direc-
tions according to the normal of the emission object. A positive value will emit particles away from the
shape and a negative value will emit particles into the shape.

– average velocity 0: The average (mean) speed of particles in the x-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for the
direction normal to the emitting surface.

2.11. Particle Dynamics 49

VSim Reference Manual, Release 11.0.1-r3016

– average velocity 1: The average (mean) speed of particles in the y-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when velocity
coordinate system is set to “global”. If set to “surface” then this will be the average velocity for a
direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direction.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

• Fowler Nordheim Emission: Specify particle emission according to the Fowler-Nordheim model
(3.22). Only available with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring.

A: Coefficient A of the Fowler-Nordheim emission model.

B: Coefficient B of the Fowler-Nordheim emission model.

field enhancement: Multiplies the measured electric field by this amount.

Cv: Coefficient Cv of the Fowler-Nordheim emission model.

Cy: Coefficient Cy of the Fowler-Nordheim emission model.

• Richardson Dushman Emission:

Specify particle emission according to the Richardson-Dushman model (3.20). Only available
with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring. Parameter in
the Richardson-Dushman model.

field evaluation offset: The offset from the surface where the field resulting from the particle
is evaluated.

temperature (K): Temperature of the material from which emission is occurring. Parameter in the
Richardson-Dushman model.

field enhancement: Multiplies the measured electric field by this amount.

flux multiplier: Multiplies the resulting output current by this amount.

• Child Langmuir Emission: Specify particle emission according to the Child Langmuir model. Only
available with variable/managed weight electron particle species.

• space charge limited emission: This will limit the current to provide a more consistent emission
current, providing higher accuracy particularly in explosive emission cases, such as a pulsed power magnetron.
For non pulsed-power simulations it is not necessary.

• average velocity 0: The average (mean) speed of particles in the 0 direction.

• average velocity 1: The average (mean) speed of particles in the 1 direction.

• average velocity 2: The average (mean) speed of particles in the 2 direction.

• thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direction.

• thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

• thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

50 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

emission surface The surface off of which to emit.

object name: The name of the geometry off of which to emit.

emission offset: The distance away from the object that emitted particles are placed, as a fraction of a
cell length.

macroparticle emission: Only available with variable/managed weight particles. This allows for the spec-
ification of the macroparticle emission independent of the emitted particles. Used to handle computational
concerns around macroparticle weight.

macroparticle rate: Number of macroparticles to emit per timestep. This value can be modified by the
macroparticle emission profile.

macroparticle emission profile: Spatial profile for emission of the macroparticles. If this corre-
sponded to half of the emissions shape, half of the number of macroparticles specified in macroparticle
rate would be emitted, while the emission specification would be unaffected.

Slab Settable Flux Emitter

All particle types may emit from a slab settable flux emitter. Certain emission specifications are only available based
on particle type and particle weights specification. Available in all coordinate simulations.

start time Time to start emitting particles in seconds.

stop time Time to stop emitting particles in seconds.

emission specification Specification of the emitted particles, note that the specification options vary for
constant or variable/managed weight particles.

• emission current density

emission current density Specify the current density of the emitter (amps/meter^2).
Can be a spatial profile.

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission object. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

– average velocity 0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direc-
tion.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

2.11. Particle Dynamics 51

VSim Reference Manual, Release 11.0.1-r3016

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

• emission flux

emission flux Specify the flux of the emitter (particles/meter^2). Can be a spatial profile.

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission surface. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

– average velocity 0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direc-
tion.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

• emission current

emission current Specify the total emitted current per second from the emitter
(amps/second).

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission surface. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

– average velocity 0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direc-
tion.

52 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

• emission rate

emission rate Specify the total number of particles emitted per second (particles/second)

velocity coordinate system Either global or surface. A global coordinate system will
specify the emission velocities according to global axis. A surface coordinate system will set the
emission directions according to the normal of the emission surface. So in a surface coordinate
system a lower simulation bounds the emission velocity must be negative to emit into the sim-
ulation space, for an upper simulation boundary the particles must be positive to emit into the
simulation space.

– average velocity 0: The average (mean) speed of particles in the x-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for the direction normal to the emitting surface.

– average velocity 1: The average (mean) speed of particles in the y-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– average velocity 2: The average (mean) speed of particles in the z-direction when
velocity coordinate system is set to “global”. If set to “surface” then this will be the average
velocity for a direction perpendicular to the emitting surface.

– thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direc-
tion.

– thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direc-
tion.

– thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direc-
tion.

• Fowler Nordheim Emission Specify particle emission according to the Fowler-Nordheim model.
Only available with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring.

A: Coefficient A of the Fowler-Nordheim emission model.

B: Coefficient B of the Fowler-Nordheim emission model.

field enhancement: Multiplies the measured electric field by this amount.

Cv: Coefficient Cv of the Fowler-Nordheim emission model.

Cy: Coefficient Cy of the Fowler-Nordheim emission model

• Richardson Dushman Emission Specify particle emission according to the Richardson-Dushman
model. Only available with variable/managed weight electron particle species.

work function [eV]: Work function of the material from which emission is occurring.
Parameter in the Richardson-Dushman model.

field evaluation offset:

temperature (K): Temperature of the material from which emission is occurring. Pa-
rameter in the Richardson-Dushman model.

field enhancement: Multiplies the measured electric field by this amount.

2.11. Particle Dynamics 53

VSim Reference Manual, Release 11.0.1-r3016

flux multiplier: Multiplies the resulting output current by this amount.

• Child Langmuir Emission Specify particle emission according to the Child Langmuir model.
Only available with variable/managed weight electron particle species.

• space charge limited emission: This will limit the current to provide a more consistent emis-
sion current, providing higher accuracy particularly in explosive emission cases, such as a pulsed power
magnetron. For non pulsed-power simulations it is not necessary.

• average velocity 0: The average (mean) speed of particles in the 0 direction.

• average velocity 1: The average (mean) speed of particles in the 1 direction.

• average velocity 2: The average (mean) speed of particles in the 2 direction.

• thermal velocity 0: A spread (standard deviation) for particle speeds in the 0 direction.

• thermal velocity 1: A spread (standard deviation) for particle speeds in the 1 direction.

• thermal velocity 2: A spread (standard deviation) for particle speeds in the 2 direction.

emission surface

• lower x The lower x simulation boundary.

• lower y The lower y simulation boundary.

• lower z The lower z simulation boundary.

• upper x The upper x simulation boundary.

• upper y The upper y simulation boundary.

• upper z The upper z simulation boundary.

emission offset The distance away from the object that emitted particles are placed, as a fraction of a cell
length.

macroparticle emission Only available with variable/managed weight particles. This allows for the spec-
ification of the macroparticle emission independent of the emitted particles. Used to handle computational
concerns around macroparticle weight.

macroparticle rate Number of macroparticles to emit per timestep. This value can be modified by the
macroparticle emission profile.

macroparticle emission profile Spatial profile for emission of the macroparticles. If this corre-
sponded to half of the emissions shape, half of the number of macroparticles specified in macroparticle
rate would be emitted, while the emission specification would be unaffected.

NOTE: To allow the user to emit from non-Maxwellian probability distribution functions, one can import a Python
SpaceTimeFunctions. The easiest way to do this is to right-click with your mouse on the component of the mean
velocity you wish to emit (for example mean velocity 0) then click on Assign SpaceTimeFunction and finally choose
the python SpaceTimeFunction you have already defined. It is best not to mix this method with the default method
of choosing the velocity from a Maxwellian. Therefore, when you write your python SpaceTimeFunction, include all
drift- and thermal-velocity terms in the Python function. Then leave the thermal velocity 0 option set to 0.0. Also,
all three components are independent. So if your python function depends only on component 0, then you could treat
the other two components as Maxwellian and fill in the mean velocity and thermal velocity options using the methods
discussed above for components 1 and 2.

Secondary Electron Emitter

Secondary electrons can be emitted from a electron species, charged particle species, or neutral particle species. They
can then be emitted into a separate electron species, or into the same electron species.

54 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

To specify a secondary emitter an emitter boundary type must be chosen, as well as an emission specification algorithm.

The available types of emitter boundaries are.

• boundary emitter This is any Boundary Absorb and Save boundary condition, no other specification is
necessary.

• cut cell emitter This is any Cut-Cell Absorb and Save boundary condition, no other specification is
necessary.

• interior emitter This is any Interior Absorb and Save Boundary Condition. It does require specification
of a few more parameters.

emission axis The axial direction particles will be emitted in.

emission direction Either positive or negative, particles will be emitted in this direction
along the emission axis.

emission coordinate

The precise coordinate at which the emission will occur. Effectively this is an offset from the position of the particle
boundary condition.

4 types of emission specification are available in VSim.

• material properties This will emit particles according to the Furman and Pivi algorithm for either cop-
per or stainless steel. If using variable, or managed weight particles it is also necessary to specify a minimum
weight for the emitted particle.

• constant probability This will emit particles with a predefined probability, between 0.0 and 1.0.

• simple A secondary emitter that at most emits a single secondary electron macroparticle. An instance of
simpleSec, follow the link for more information.

emission probability The probability of a particle being emitted. This is slightly differ-
ent from the constant probability secondary electron emitter as this will emit only a single
electron, with a prescribed probability independent of all other factors.

emitted energy The energy of the emitted electrons if constant weight particles are used.

• Furman and Pivi This will emit electrons according to the Furman and Pivi algorithm. See table 1 of [?]
For an example of how these are computed. Note this is only available for use with cut cull emitters.

E0 Total energy of the secondary electron yield, must be multiplied by ELEMCHARGE.

D_MAX Max Delta of the secondary electron yield.

minimum weight Only specified if using a variable or managed weight particle species, the emit-
ted secondary electron must be above this weight to be emitted.

Sputter Emitter

Neutral particle types may sputter from other particle species.

description A space to provide a descriptive comment of the emitter.

emitter type The type of emitter to use, either a sputter emitter or interior sputter emitter.

• sputter emitter This type of emitter should be used when emitting off a simulation particle bound-
ary condition.

particle boundary condition The particle boundary condition to sputter particles from. It
must be of the type Boundary Absorb and Save. It can be a particle boundary condition from

2.11. Particle Dynamics 55

VSim Reference Manual, Release 11.0.1-r3016

a different particle species, which will cause incident particles of that species to sputter as the
neutral particle species.

material properties This will determine the type of atom that is sputtered. Should be the
same as the species to which this emitter is applied.

sputtered velocity sigma The standard deviation of the velocity distribution of emitted
particles.

• interior sputter emitter This emitter is for use when emitting off an interior particle boundary
condition.

particle boundary condition The particle boundary condition to sputter particles from. It
must be of the type Interior Absorb and Save or Cut Cell Absorb and Save. It can be a particle
boundary condition from a different particle species, which will cause incident particles of that
species to sputter as the neutral particle species.

material properties This will determine the type of atom that is sputtered. Should be
the same as the species to which this emitter is applied.

sputtered velocity sigma The standard deviation of the velocity distribution of emit-
ted particles.

emission axis The axis along which particles are to be emitted, 0 for the 0th dimension, 1
for the 1st dimension or 2 for the 2nd dimension.

emission direction Set to either positive or negative, this is the direction in which parti-
cles are emitted.

emission coordinate The coordinate at which particles are actually emitted. Effectively
this is an offset from the position of the particle boundary condition.

Properties of Particle Boundary Conditions

Particle boundary conditions may be set to any particle type. If a particle boundary condition is not set on a simulation
boundary, it is automatically set to absorbing.

Absorbing: This type of particle boundary condition will absorb incident particles. It will not save any data from
them, so they may not be used in histories or secondary emitters.

volume

• lower x slab

• lower y slab

• lower z slab

• upper x slab

• upper y slab

• upper z slab

• cartesian 3d slab

• cylindrical 2d slab

• index 3d slab

Boundary Absorb and Save: This type of boundary condition will absorb incident particles and save them for
other uses, such as histories or secondary emission.

volume: The simulation boundary over which to apply this condition.

56 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Boundary Accumulate: Incident particles will be accumulated on this boundary and not allowed to move. This
allows for the charging of a simulation boundary. The accumulated particles will be stored in a new particle
species, appended with the prefix heavy.

volume: The simulation boundary to accumulate particles on.

Boundary Diffuse Reflector: This type of particle boundary condition will reflect particles back into the
simulation space, with an user supplied velocity. It may only be applied on simulation boundaries.

• average velocity 0

• average velocity 1

• average velocity 2

• thermal velocity 0

• thermal velocity 1

• thermal velocity 2

• volume

lower x slab

lower y slab

lower z slab

upper x slab

upper y slab

upper z slab

lower r slab

upper r slab

Cut-Cell Absorb and Save: This type of boundary condition will absorb incident particles and save them for
other uses, such as histories or secondary emission. It may be applied to geometries. In VSim9.0, only one
Cut-Cell Absorb and Save boundary condition may be used per particle species. If this boundary condition is
used Interior Absorb and Save boundary conditions may not be used.

volume

• object name The name of the geometry over which to apply this condition.

Cut-Cell Accumulate: Incident particles will be accumulated on this boundary and not allowed to move. This
allows for the charging of a shape The accumulated particles will be stored in a new particle species, appended
with the prefix heavy.

volume: The shape to accumulate particles on.

Interior Absorb and Save: This type of boundary condition will absorb incident particles and save them for
use with histories or secondary emission. It may be set to an internal volume of the simulation space.

volume: Depending on simulation properties this will be either a:

• cylindrical 2D slab

• cartesian 3D slab

Interior Accumulate: Incident particles will be accumulated on this boundary and not allowed to move. This
allows for the charging of a user specified interior plane. The accumulated particles will be stored in a new
particle species, appended with the prefix heavy.

volume

2.11. Particle Dynamics 57

VSim Reference Manual, Release 11.0.1-r3016

xMin The minimum x position of the boundary condition.

xMax The maximum x position of the boundary condition.

yMin The minimum y position of the boundary condition.

yMax The maximum y position of the boundary condition.

zMin The minimum z position of the boundary condition.

zMax The maximum z position of the boundary condition.

surface The surface of the described volume to accumulate particles on.

Interior Diffuse Reflector: This type of particle boundary condition will reflect particles back into the
simulation space, with an user supplied velocity. It may only be applied on internal planes of the simulation
space

average velocity 0

average velocity 1

average velocity 2

thermal velocity 0

thermal velocity 1

thermal velocity 2

orthogonal direction

Incoming direction of particles to apply the boundary condition on. Set as negative if particles are
coming from the negative direction and positive if particles are coming from the positive direction

negative x

x coordinate x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

negative y

y coordinate y coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

negative z

z coordinate z coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

58 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

positive x

x coordinate x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

positive y

y coordinate y coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

positive z

z coordinate z coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

Interior Partial Transmitter: An interior partial transmitter will transmit a user specified fraction of the
incident particles and either absorb or reflect the remainder. If reflected the user can specify the velocity with
which they are reflected. This is a one way particle boundary condition, as set by the orthognal direction.

orthogonal direction: Incoming direction of particles to apply the boundary condition on.

negative x

x coordinate x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

negative y

y coordinate y coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

negative z

z coordinate z coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

2.11. Particle Dynamics 59

VSim Reference Manual, Release 11.0.1-r3016

lower y coordinate lower y coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

positive x

x coordinate x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

positive y

y coordinate y coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower z coordinate lower z coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper z coordinate upper z coordinate of the boundary condition.

positive z

z coordinate z coordinate of the boundary condition.

lower x coordinate lower x coordinate of the boundary condition.

lower y coordinate lower y coordinate of the boundary condition.

upper x coordinate upper x coordinate of the boundary condition.

upper y coordinate upper y coordinate of the boundary condition.

non transmitted particles particles absorbed

particles reflected Note that the velocity corresponding to the orthogonal direction should al-
ways be specified as a positive number. If it is not this will be automatically corrected. average
velocity 0

average velocity 1

average velocity 2

thermal velocity 0

thermal velocity 1

thermal velocity 2

Specular Reflecting: This type of particle boundary condition will reflect particles back into the simulation
space. It may only be applied on simulation boundaries.

volume

• lower x slab

• lower y slab

• lower z slab

• upper x slab

60 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

• upper y slab

• upper z slab

• lower r slab

• upper r slab

Particle Loader

All kinetic particles have access to the same type of particle loader.

load density Whether to define the density of loaded particles by macroparticles or physical particles.

relative density Use a function defining the density of loaded particles in macroparticles. With constant
weight particles this is a value between 0 and 1 that will be multiplied by the macroparticles per cell of the
particles definition.

physical density Use a function defining the density of loaded particles in physical particles. With variable
weight particles this value is divided by the nominal density of the particles definition and is used to modify the
weight of each loaded macroparticle.

particle load placement Whether to use a bit-reversed or grid-defined placement of macroparticles in each
cell.

• grid Place particles equidistant on the grid lines of the simulation. Useful for starting simulations “cold”.

• macro particles per direction A vector describing the number of macroparticles to load per
cell on each axis.

• bit-reversed Places particles according to a bit-reversed algorithm. Number of macroparticles
loaded per cell is based on the value given in the weight setting of the particles definition.

load duration Whether to load the particles only at the beginning of the simulation or repeatedly.

• initialize only Particles will only be loaded at the beginning of the simulation.

• repeat loading Particles will be loaded according to the parameters below.

– start time The time at which to start loading particles.

– stop time The time at which to stop loading particles.

– load after initialization Loading will repeat in all cells during the loading period.

– load upon shift Load particles into cells brought into the simulation by a moving window.

velocity distribution The velocity components of particles as they are loaded.

u0 The velocity in the 0th dimension.

u1 The velocity in the 1st dimension.

u2 The velocity in the 2nd dimension.

volume The volume in which to load particles:

• cartesian 3d slab

• cylindrical 2d slab

2.11. Particle Dynamics 61

VSim Reference Manual, Release 11.0.1-r3016

Particle Loader from File Properties

All kinetic particles have access to the particle loader from file. This loader will use a user supplied .dat file consisting
of particle positions and velocities. This file should have at least six columns, separated by spaces (no commas). For
constant weight particles, the six columns specify 𝑥, 𝑦, 𝑧, 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 , where 𝑃𝑖 = 𝛾𝑣𝑖. For variable weight particles,
a 7th column needs to be included to specify the weight of the particle.

This file may then have a constant shift or custom density function applied to it, and can be reloaded multiple times
during the simulation run.

file Filename to load from. Must be located in the simulation directory.

particle shift in direction 0 A shift to apply to the 0th component of all loaded particles.

particle shift in direction 1 A shift to apply to the 1st component of all loaded particles.

particle shift in direction 2 A shift to apply to the 2nd component of all loaded particles.

density function A space time function which can modify the density of loaded particles.

load period [timesteps] If zero, particles only loaded at initialization, otherwise will load according to a
specified period.

2.11.2 Fluids

Fluids Properties

kind (not editable): Neutral Fluid

fluid temperature (K): The temperature of the neutral fluid in Kelvin.

molecule: Molecule of the neutral particle. A custom molecule is available for those not pre-defined.

• H: Hydrogen (atomic)

• H2: Hydrogen (molecular)

• He: Helium

• Ar: Argon

• Xe: Xenon

• Rn: Radon

• Kr: Krypton

• O: Oxygen (atomic)

• O2: Oxygen (molecular)

• Ne: Neon

• N: Nitrogen (atomic)

• N2: Nitrogen (molecular)

• custom molecule: Set the mass (in amu) and ionization energy (in eV) of a custom gas.

– mass [amu]: The mass of a single real particle in atomic mass units.

– ionization energy [eV]: The ionization energy of the molecule in electron volts.

volume: This volume value will change depending on your dimensionality and coordinate system.

62 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

xMin: The minimum x position of the background fluid.

xMax: The maximum x position of the background fluid.

yMin: The minimum y position of the background fluid.

yMax: The maximum y position of the background fluid.

zMin: The minimum z position of the background fluid.

zMax: The maximum z position of the background fluid.

fluid density: Whether to use a constant or variable fluid density. A constant density will not change due to
reactions with particles, while a variable will.

• constant fluid density: A constant fluid density is used to keep the fluid density constant after reac-
tions with particles.

• density: The value of the density of the neutral fluid per cubic meter.

• variable fluid density: A variable fluid density is used to allow the fluid density to vary due to
reactions with particles.

• density: The value of the density of the neutral fluid per cubic meter.

2.12 Collisions

2.12.1 Reactions Framework

The Reactions Framework surpasses previous interaction frameworks in both speed and flexibility in types of processes
that can be added to simulations. See Reactions Text-Setup Introduction, as well as relevant sections in the VSim User
Guide for more general information on the Reaction framework.

The Reaction framework collisions are available when particles in the Basic Settings element is set to include
particles and the collision framework is set to reactions. This will add a “Reactions” element to
appear within the “Particle Dynamics” element.

When a collision process is added to a simulation, the user must specify each of the products and reactants from the
drop down menus corresponding to each species in the chemical formula. Additionally, users must add a cross-sections
to determine the reaction probability as to determine how many particles to react with in each cell for each timestep.
Scroll to the bottom of this page for the reference on setting cross-sections.

Particle Particle Collisions

These collisions are for interactions between kinetically modeled particle species (for a process involving a background
gas use the “Particle Fluid Collisions”). The following interactions are available by right-clicking the “Particle Particle
Collisions” element and hovering the mouse pointer over the “Add CollisionType” menu.

• Charge Exchange A collision of the form 𝐴 + 𝐵+ → 𝐴+ + 𝐵. This is the implementation of Charge
Exchange in the visual setup.

energyLoss The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will
give an elastic collision.

• Impact Ionization A collision of the form 𝐴 + 𝐵 → 𝐴+ + 𝐵 + 𝑒. This is the implementation of
Impact Ionization in the visual setup. If one of the reactant species is an electron, the Electron Ionization
productGenerator is used. Ionization energies are taken from the appropriate species blocks.

2.12. Collisions 63

VSim Reference Manual, Release 11.0.1-r3016

Note: If an electron is involved in an ionization process, the “product distribution” attribute won’t affect the
simulation. The scattering distribution is determined automatically by a physical model.

• Elastic A collision of the form 𝐴 + 𝐵 → 𝐴 + 𝐵. This is the implementation of Binary Elastic in the visual
setup.

energyLoss The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will
give an elastic collision.

• Dissociative Double Ionization A collision of the form 𝐴𝐵 + 𝐶 → 𝐴+ + 𝐵+ + 𝐶 + 2𝑒. This is
the implementation of Dissociative Ionization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

• Dissociative Single Ionization` A collision of the form 𝐴𝐵 + 𝐶 → 𝐴+ + 𝐵 + 𝐶 + 𝑒. This is
the implementation of Dissociative Ionization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

• Dissociative Recombination A collision of the form 𝐴𝐵+ + 𝑒 → 𝐴+𝐵. This is the implementation
of Dissociative Recombination in the visual setup.

dissociation energy The threshold energy for the reaction in eV. So, a pair of reactants will need at
least this much relative energy (i.e. energy in center of momentum frame) in order to react. If the reaction
occurs then this much energy is lost from the products to potential energy. If this is zero, then energy will
not be lost. If negative, then the products will gain kinetic energy.

• General Binary Reaction A collision of the form 𝐴 + 𝐵 → 𝐶 + 𝐷. This is the implementation of
Binary Reaction in the visual setup.

threshold energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (i.e. energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost from the products to potential energy. If this is zero, then energy will not be
lost. If negative, then the products will gain kinetic energy.

• Electron Impact Dissociation A collision of the form 𝐴𝐵 + 𝑒 → 𝐴+𝐵 + 𝑒. This is the implemen-
tation of Electron Impact Dissociation in the visual setup.

dissociation energy The energy required to dissociate the molecule in eV.

• Electron Attachment A collision of the form 𝐴 + 𝑒 → 𝐴−. This is the implementation of Electron
Attachment in the visual setup.

binding energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs then
this much energy is lost.

• Negative Ion Detachment A collision of the form 𝐴− +𝐵 → 𝐴+𝐵 + 𝑒. The neutral reactant must be
a kinetically modeled species. This is the implementation of Negative Ion Detachment in the visual setup.

detachment energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least
this much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost.

64 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

• Excitation A collision of the form 𝐴 + 𝐵 → 𝐴* + 𝐵. This is the implementation of Binary Excitation in
the visual setup.

excitation energy The potential energy, in eV, gained by the excited species (a positive value for this
attribute will result in an energy loss from the simulation). This is also a threshold energy. The reaction
will not occur between reactant that have a center of mass energy less than this value.

• Inelastic Electron Scattering A collision of the form 𝑒+𝐴 → 𝑒+𝐴. This is the implementation
of Electron Scatter in the visual setup.

scatter type

– VahediSurendra Use the Vahedi-Surendra model to determine the scattering distrubution. See Electron
Scatter for more information.

– isotropic Use an isotropic scattering distribution.

• Recombination A collision of the form 𝐴+ + 𝑒 → 𝐴. This is the implementation of Binary Recombination
in the visual setup, for the specific case of electron recombination.

Particle Fluid Collisions

These collisions are for interactions between kinetically modeled particle species and a background gas. The following
interactions are available by right-clicking the “Particle Fluid Collisions” element and hovering the mouse pointer over
the “Add CollisionType” menu.

• Elastic A collision of the form 𝐴 + 𝐵 → 𝐴 + 𝐵. This is the implementation of Binary Elastic in the visual
setup.

energyLoss The user can choose either fully elasticwhich conserves kinetic energy, or partially
elastic in which case the user

• Charge Exchange A collision of the form 𝐴 + 𝐵+ → 𝐴+ + 𝐵. This is the implementation of Charge
Exchange in the visual setup.

energyLoss The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will
give an elastic collision.

• Impact Excitation A collision of the form 𝐴 + 𝐵 → 𝐴* + 𝐵. This is the implementation of Binary
Excitation in the visual setup.

excitation energy The potential energy, in eV, gained by the excited species (a positive value for this
attribute will result in an energy loss from the simulation). This is also a threshold energy. The reaction
will not occur between reactant that have a center of mass energy less than this value.

• Impact Ionization A collision of the form 𝐴 + 𝐵 → 𝐴+ + 𝐵 + 𝑒. This is the implementation of
Impact Ionization in the visual setup. If one of the reactant species is an electron, the Electron Ionization
productGenerator is used. Ionization energies are taken from the appropriate species blocks.

Note: If an electron is involved in an ionization process, the “product distribution” attribute won’t affect the
simulation. The scattering distribution is determined automatically by a physical model.

• Electron Attachment A collision of the form 𝐴 + 𝑒 → 𝐴−. This is the implementation of Electron
Attachment in the visual setup.

binding energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs then
this much energy is lost.

2.12. Collisions 65

VSim Reference Manual, Release 11.0.1-r3016

• Negative Ion Detachment A collision of the form 𝐴− +𝐵 → 𝐴+𝐵 + 𝑒. The neutral reactant must be
a kinetically modeled species. This is the implementation of Negative Ion Detachment in the visual setup.

detachment energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least
this much relative energy (ie energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost.

• Inelastic Scattering A collision of the form 𝑒 + 𝐴 → 𝑒 + 𝐴. This is the implementation of Electron
Scatter in the visual setup.

scatter type

– VahediSurendra Use the Vahedi-Surendra model to determine the scattering distrubution. See Electron
Scatter for more information.

– isotropic Use an isotropic scattering distribution.

• General Binary Reaction A collision of the form 𝐴 + 𝐵 → 𝐶 + 𝐷. This is the implementation of
Binary Reaction in the visual setup.

threshold energy The threshold energy for the reaction in eV. So, a pair of reactants will need at least this
much relative energy (i.e. energy in center of momentum frame) in order to react. If the reaction occurs
then this much energy is lost from the products to potential energy. If this is zero, then energy will not be
lost. If negative, then the products will gain kinetic energy.

• Dissociative Double Ionization A collision of the form 𝐴𝐵 + 𝐶 → 𝐴+ + 𝐵+ + 𝐶 + 2𝑒. This is
the implementation of Dissociative Ionization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

• Dissociative Single Ionization` A collision of the form 𝐴𝐵 + 𝐶 → 𝐴+ + 𝐵 + 𝐶 + 𝑒. This is
the implementation of Dissociative Ionization in the visual setup.

dissociation energy The energy required to dissociate the molecule, in eV. This value also sets a thresh-
old for whether or not the reaction will occur. So a pair of particle will need at least this much relative
energy (i.e. energy in center of momentum frame) in order to react. This can be set as a negative value to
have the products gain kinetic energy.

Three Body Reactions

• Three Body Recombination A collision of the form 𝐴+ + 𝑒+𝐵 → 𝐴+𝐵. This is the implementation
of Three Body Recombination in the visual setup.

Field Ionization Process

The “Fluid Field” and “Particle Field” ionization processes both use Field Ionization productGenerator. The
distinction is made in the visual setup for benefit of the user.

• Particle Field Ionization This is the implementation of Field Ionization for ionization of kinetically
modeled particles by electric fields in the visual setup.

cross section type

– DCADK Use this when the time step resolves the oscillations of Electric field. See Field Ionization
DCADK for more information.

66 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

– Average ADK Use this when the time step is much larger than the oscillations of Electric field. See Field
Ionization Average ADK for more information.

• Fluid Field Ionization This is the implementation of Field Ionization for ionization of background
gases by electric fields in the visual setup.

cross section type

– DCADK Use this when the time step resolves the oscillations of Electric field. See Field Ionization
DCADK for more information.

– Average ADK Use this when the time step is much larger than the oscillations of Electric field. See Field
Ionization Average ADK for more information.

Decay Process

• Decay This is the implementation of Decay in the visual setup

lifetime The lifetime (in seconds) of the unstable species.

Emission Process

• Photon Emission This simulates the emission of an untracked photon from a particle. Ths is the imple-
mentation of Radiation Reaction

Cross-Sections

Interpolated from 2Column Data

Import cross sections from a data file with the independent variable (either velocity or energy) in the first column and
the cross-section (dependent variable) in the second column. The imported file should NOT have any header.

cross section variable The unit of the independent variable in the first column of the data file. Either
velocity, or energy.

cross section data file The name of the cross section data file. This file must be in the run directory.

Constant Cross Section

This can be used to set a user defined function for the cross section.

constant A constant value (in m^2) for the cross section.

Power Law Cross Section

Use a cross section of the form 𝐴𝑥𝐸 . See Power Law Cross-Section for more information.

coefficient The value for the constant A in the expression above.

exponent The value for the constant E in the expression above.

cross section variable The unit of the independent variable (𝑥 in the expression above). Either velocity,
or energy.

2.12. Collisions 67

VSim Reference Manual, Release 11.0.1-r3016

Exponential Polynomial Cross Section

The cross-sections will take the functional from of the equation:

𝜎(𝑦) =
1

𝑦

(︂
𝐴 ln(𝑦) +

𝐵 ln(𝑦) + 𝐶 * (𝑦 − ”𝑡𝑜𝑍𝑒𝑟𝑜”)

𝑦 + 𝐷

)︂
where

𝑦 = 𝑥/𝐼

See Exponential Polynomial Cross-Section for more information.

Acoeff The value for the fitting constant A in the formula above.

Bcoeff The value for the fitting constant B in the formula above.

Ccoeff The value for the fitting constant C in the formula above.

Dcoeff The value for the fitting constant D in the formula above.

Icoeff The value for the fitting constant I in the formula above. A scaling factor for the independent variable, x.

toZero Sets the value for the toZero parameter in the formula above. Enter either “0” to have the cross-section
go to zero at threshold, or “1” to have the cross-section go to a non-zero value.

cross section variable Set the independent variable, x, in the equation above. Options are:

• velocity

• energy

Additional Collision Attributes

update periodicity This sets how frequently the reaction is carried out. See the description of
updatePeriod in RxnProcessSettings Block for more information. The update periodicity setting in the
Visual Setup will set the updatePeriod when the .sdf is translated to a .in file. Options are:

every timestep The reaction update will occur every timestep.

update period not editable; defaulted to 1

custom Set a custom update periodicity.

update period Enter a constant to set the update periodicity.

product distribution This will apply an anisotropy to the cross-section. See the section Anisotropy for more
information. This attribute is only available for collisions with two reactant particles (or fluids) and two product
particles (or fluids) except for the Inelastic Electron Scattering process which as the anisotropy set according to
the Vahedi-Surendra model.

isotropic distribution The default. Set no preference for forward or backward scattering.

anisotropic distribution Add a preference for forward or backward scattering.

anisotropy Set a value between -1 and 1 (inclusive). A value of -1 will give full backward scattering
bias, and 1 will give full forward scattering bias.

68 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

2.12.2 Reduced Collisions

The “reduced” collisions framework is an implementation of the ImpactCollider framework in the Visual Setup. Pro-
cesses in this framework are limited to kinetic particles interacting via elastic, excitation, ionization, and a set of charge
exchange and momentum exchange collisions with a background gas species.

The “reduced” collisions are available when particles in the Basic Settings element is set to include
particles and the collision framework is set to reduced. This will add a “ReducedCollisions” element
to appear with in the “Particle Dynamics” element.

Electron Neutral Fluid Collisions

To include a collision process, right-click on the Electron Neutral Fluid Collision in the element tree and choose Add
CollisionProcess to choose one of either Elastic, Excitation, or Ionization.

neutral gas Select the neutral gas to use in the collision. The drop down will automatically populate
with available pre-defined BackgroundGases elements.

impact particles Select the electron particles to use in the collision. The drop down will automat-
ically populate with available pre-defined KineticParticles of kind = Electrons.

Elastic

kind (not editable) Elastic

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

• user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface.

cross section data file The name of the file containing the cross-section data.

• product distribution The type of scattering.

– isotropic

– Vahedi-Surendra

Excitation

kind (not editable) Excitation

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

• user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface.

cross section data file The name of the file containing the cross-section data.

• product distribution The type of scattering:

– isotropic

– Vahedi-Surendra

2.12. Collisions 69

VSim Reference Manual, Release 11.0.1-r3016

Ionization

kind (not editable) Ionization

product electrons The resultant electrons from the impact ionization collision.

product ions The resultant ions from the impact ionization collision.

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

• user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface

cross section data file The name of the file containing the cross-section data.

• product distribution The type of scattering:

– isotropic

– Vahedi-Surendra

Ion Neutral Fluid Collisions

To include a collision process, right-click on the Ion Neutral Fluid Collision in the element tree and choose Add
CollisionProcess to choose one of either Charge Exchange or Momentum Exchange.

neutral gas Select the neutral gas to use in the collision. The drop down will automatically populate
with available pre-defined BackgroundGases elements.

impact particles Select the charged particles to use in the collision. The drop down will automat-
ically populate with available pre-defined KineticParticles of kind = Charged Particles.

Charge Exchange

kind (not editable) Charge Exchange

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

• built in The built-in collisions utilize existing internal collision cross-section data.

• user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface.

cross section data file The name of the file containing the cross-section data.

• product distribution The type of scattering.

– backward

Momentum Exchange

kind (not editable) Momentum Exchange

70 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

cross section type The cross section for the collision must be specified. You can choose whether to use built
in cross sections, cross sections from the Evaluated Electron Data Library (EEDL) or by specifying your own
user defined cross sections in a text file.

• built in The built-in collisions utilize existing internal collision cross-section data.

• user defined cross section User provided cross-section data provided in a text file. For more
information on the format of the file, please see OAFunc Cross-Section Interface

cross section data file The name of the file containing the cross-section data.

• product distribution The type of scattering.

isotropic

2.13 Histories

Histories provide data from each time step of a simulation. They can provide useful diagnostics to make sure your
simulation is proceeding as intended. Some histories are only available with certain simulation setups (e.g. only
available in electromagnetic simulation, or only available in simulations with particles).

To add a history, right-click the “Histories” element of the setup tree then navigate to the history to be added to the
simulation

2.13.1 Array History

An Array History will output an array of data for each time-step.

Field Slab Data Store the value of a field at every timestep within a specified 3D volume.

kind (not editable) Field Slab Data

description A comment to describe the history.

field Choose the field to record. Options for electromagnetic simulations are:

• Electric Field

• Magnetic Field

Options for electromagnetic simulations are:

• Phi

• Charge Density

• Electric Field

volume The volume inside of which to collect the field data.

• cartesian 3d slab

– xMin The minimum x position of the box.

– xMax The maximum x position of the box.

– yMin The minimum y position of the box.

– yMax The maximum y position of the box.

– zMin The minimum z position of the box.

– zMax The maximum z position of the box.

2.13. Histories 71

VSim Reference Manual, Release 11.0.1-r3016

Particle Momentum Calculate the total momentum for a particular set of particles in the whole simulation do-
main. All three components of the momentum are recorded. Thus, for some simulations in 1D or 2D, some
components of the momentum may always be zero.

kind (not editable) Particle Momentum

particles Select any of the previously defined KineticParticles in your simulation.

Far-Field Box Data ONLY AVAILABLE IN ELECTROMAGNETIC SIMULATIONS

kind (not editable) Far-Field Box Data

measurement time The way to define measurement time.

• seconds defined Gives specification of time in seconds.

– start time The time to start recording data for far field calculations (seconds).

– end time The time to stop recording data for far field calculations (seconds).

• timesteps defined Gives specification of time in timestep number.

– start time The time to start recording data for far field calculations (timesteps).

– end time The time to stop recording data for far field calculations (timesteps).

volume The volume to use for the box.

• cartesian 3d slab

– xMin The minimum x position of the box.

– xMax The maximum x position of the box.

– yMin The minimum y position of the box.

– yMax The maximum y position of the box.

– zMin The minimum z position of the box.

– zMax The maximum z position of the box.

• index 3d slab Index 3d slab is used in cases where absolute symmetry is necessary so grid
alignment must be guranteed.

– lower index 0 The lower grid cell of the box in the 0th direction.

– lower index 1 The lower grid cell of the box in the 1st direction.

– lower index 2 The lower grid cell of the box in the 2nd direction.

– upper index 0 The upper grid cell of the box in the 0th direction.

– upper index 1 The upper grid cell of the box in the 1st direction.

– upper index 2 The upper grid cell of the box in the 2nd direction.

2.13.2 Combo History

Combo Histories are used to create new histories by combining other histories. The operation is done at every time
step and the resulting output will be a 1D array of the value vs time. Any number of histories may be combined.

Note: Due to the nature of the combination process, a combo history will always use data from the pre-
vious timestep as compared to the other histories, and will be initialized with a value of 1. The Combined
history will not have data from the last timestep of the simulation.

72 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable) Combination History

Constituent History As many constituent histories as desired may be added. The name of the
constituent history itself is not of particular importance.

• history name Select one previously defined Field or Particle History.

• coefficient This is a multiplying factor on the selected history.

• combination This operation will be applied to combine the history with all preceding con-
stituent histories. The order of operations is demonstrated in an example with three histories
of each below

add (coefficient1*history name 1) + (coefficient2*history name 2) + (coefficient3*history
name 3)

subtract (coefficient1*history name 1) - (coefficient2*history name 2) - (coeffi-
cient3*history name 3)

multiply (((coefficient1*history name 1)) * (coefficient2*history name 2)) * (coeffi-
cient3*history name 3)

divide (((coefficient1*history name 1)) / (coefficient2*history name 2)) / (coeffi-
cient3*history name 3)

As the above examples show, using a multiply or divide operation on the third or greater con-
stituent history, will multiply or divide by the combination of all preceding histories.

Time Average This history can reference other particle and field histories, averaging them in the selected time
window.

kind (not editable) Time Average

history name The history to be averaged.

time window The time window to be doing the averaging in.

2.13.3 Field History

Field Histories record on a per time-step basis. Field histories are used to measure quantities such as the value or
energy of the field at a location. The output will be a 1D array of the value vs time.

Accelerating Voltage This history creates a test electron and measures the accelerating voltage received by
an electron traveling at a fixed velocity across a gap in a cavity structure. See acceleratingVoltage for a reference
defining ‘acclerating voltage’.

kind (not editable) Accelerating Voltage

description A comment to describe the history.

start coordinate 0 The starting position of the test electron in the x-direction in Cartesian simulations
(or z-direction in cylindrical simulations).

start coordinate 1 The starting position of the test electron in the y-direction in Cartesian simulations
(or r-direction in cylindrical simulations).

start coordinate 2 The starting position of the test electron in the z-direction in Cartesian simulations
(or phi-direction in cylindrical simulations).

end coordinate 0 The starting position of the test electron in the x-direction in Cartesian simulations (or
z-direction in cylindrical simulations).

end coordinate 1 The starting position of the test electron in the y-direction in Cartesian simulations (or
r-direction in cylindrical simulations).

2.13. Histories 73

VSim Reference Manual, Release 11.0.1-r3016

end coordinate 2 The starting position of the test electron in the z-direction in Cartesian simulations (or
phi-direction in cylindrical simulations).

velocity The velocity of the test electron. By default this is the speed of light.

Electric Field Energy Calculate the total energy of the electric field in the specified volume (Joules).

kind (not editable) Electric Field Energy

volume The region over which to calculate the field energy.

• simulation region Use the entire simulation domain.

• index 3d slab A user-defined volume based on cell indices.

lower indices The lower indices of the volume.

upper indices The upper indices of the volume.

EM Field Energy Calculate the total energy of the electromagnetic field in the specified volume (Joules). Only
available in electromagnetic simulations.

kind (not editable) EM Field Energy

volume The region over which to calculate the field energy.

• simulation region Use the entire simulation domain.

• index 3d slab A user-defined volume based on cell indices.

lower indices The lower indices of the volume.

upper indices The upper indices of the volume.

shape A volume based on a previously defined geometry.

• object name Select from a previously defined geometry.

Magnetic Field Energy Calculate the total energy of the magnetic field in the specified volume (Joules).

kind (not editable) Magnetic Field Energy

volume The region over which to calculate the field energy.

• simulation region Use the entire simulation domain.

• index 3d slab A user-defined volume based on cell indices.

lower indices The lower indices of the volume.

upper indices The upper indices of the volume.

Field at Position Record the specified field at the specified coordinates. All components of the field are
recorded into an array.

kind (not editable) Field at Position

field Select the desired field.

coordinate 0 The position coordinate in the 0th dimension, x in cartesian coordinates, z in cylindrical.

coordinate 1 The position coordinate in the 1st dimension, y in cartesian coordinates, r in cylindrical.

coordinate 2 The position coordinate in the 2nd dimension, z in cartesian coordinates.

representationRadius The size of the sphere used to show the field at position history in the setup
window. Does not impact the recorded history.

74 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

Poynting Flux ONLY AVAILABLE IN ELECTROMAGNETIC SIMULATIONS

Calculates the integrated Poynting vector (energy flux) through the area defined by the min and max values.

kind (not editable) Poynting Vector

surface The plane to use.

• yz

offset The x offset from zero, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

• xz

offset The y offset from zero, in meters.

xMin The location of the x minimum, in meters.

xMax The location of the x maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

• xy

offset The z offset from zero, in meters.

xMin The location of the x minimum, in meters.

xMax The location of the x maximum, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

EM Field On Plane ONLY AVAILABLE IN ELECTROMAGNETIC SIMULATIONS

Records E and B Field data in the plane of cells specified, typically used for computation of S Parameters using
computeSParams Analyzers. The Two histories created will be historyName*_E and *historyName_B.

kind (not editable) S Parameter

surface The plane to use.

• yz

offset The x offset from zero, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

• xz

offset The y offset from zero, in meters.

xMin The location of the x minimum, in meters.

2.13. Histories 75

VSim Reference Manual, Release 11.0.1-r3016

xMax The location of the x maximum, in meters.

zMin The location of the z minimum, in meters.

zMax The location of the z maximum, in meters.

• xy

offset The z offset from zero, in meters.

xMin The location of the x minimum, in meters.

xMax The location of the x maximum, in meters.

yMin The location of the y minimum, in meters.

yMax The location of the y maximum, in meters.

Pseudo-potential This option is deprecated. Use ‘Pseudo-potential at Coordinates’ or ‘pseudo-potential
at Indices’ instead.

kind (not editable) Pseudo-potential

start indices The indices of the cells for the starting location.

end indices The indices of the cells for the ending location.

Pseudo-potential at Coordinates Calculates the pseudo-potential difference, in Volts, between two
points. The start point would correspond to the measure point, while the end point would correspond to the
reference.

kind (not editable) Pseudo-potential

start coordinate 0 The coordinate of the start point in the 0th dimension.

start coordinate 1 The coordinate of the start point in the 1st dimension.

start coordinate 2 The coordinate of the start point in the 2nd dimension.

end coordinate 0 The coordinate of the end point in the 0th dimension.

end coordinate 1 The coordinate of the end point in the 1st dimension.

end coordinate 2 The coordinate of the end point in the 2nd dimension.

Pseudo-potential at Indices Calculates the pseudo-potential difference, in Volts, between two points,
specified by grid index.

kind (not editable) Pseudo-potential

description A description of the potential difference.

start indices The indices of the cells for the starting location.

end indices The indices of the cells for the ending location.

2.13.4 Log History

A Log History will record data based on user specified logging method. A single log history may contain multiple
particle quantities.

Absorbed Particle Log Record information about each and every particle that strikes a chosen absorbing
surface. The output will be a 1D array of the value.

kind (not editable) Absorbed Particle Log

76 Chapter 2. Visual Setup

VSim Reference Manual, Release 11.0.1-r3016

particle absorber Select the previously defined particle absorbing boundary condition. This must be a
ParticleBoundaryCondition that can Save.

particle quantity What information about the particle is to be recorded. For vector-like quantities
(position, velocity, and weight), you must select which component of the vector you wish to record in the
component option (0 –> x, 1 –> y, 2 –> z) in Cartesian, (0 –> r, 1 –> z, 2 –> phi) in Cylindrical.

particle time The time the particle strikes the absorber.

particle position The position of the particle when it is absorbed.

particle velocity The velocity of the particle when it is absorbed (Non-relativistic m/s).

particle weight The weight of the particle when it is absorbed.

particle energy The total relativistic energy of all the particles that are absorbed (Joules).

particle current The total current of all the particles that are absorbed (Amps, the charge divided
by timestep).

particle gamma velocity The gamma velocity of the particle when it is absorbed (relativistic
m/s).

particle charge The charge of the particle when it is absorbed (Coulombs).

particles in macro particle The number of particles in that macro particle when it is ab-
sorbed.

particle mass The total mass of the macro particle (kilograms).

2.13.5 Particle History

Particle Histories record on a per time-step basis. Particle histories are used to measure quantities such as the total
number of particles in a simulation at each step, or the current absorbed at chosen absorbing surface at each step. The
output will be a 1D array of the value vs time.

Absorbed Particle Current Calculates the absorbed current on a specified particle absorber, in Amps.

kind (not editable) Absorbed Particle Current

particle absorber Select the previously defined particle absorbing boundary condition. This must be a
ParticleBoundaryCondition that can Save.

Absorbed Particle Power Calculates the power absorbed on a specified particle absorber, in Joules/second.

kind (not editable) Absorbed Particle Power

particle absorber Select the previously defined particle absorbing boundary condition. This must be a
ParticleBoundaryCondition that can Save particle data.

Emitted Current Records the emitted current from the specified particle emitter, in Amps.

kind (not editable) Emitted Current

particle emitter Select the previously defined particle emitting boundary condition.

Number of Macroparticles Calculates the total number of macroparticles in the simulation domain for the
specified KineticParticle.

kind (not editable) Number of Macroparticles

particles Select the name of the previously defined KineticParticles.

Number of Physical Particles Calculates the total number of real particles in the simulation domain for
the specified KineticParticle.

2.13. Histories 77

VSim Reference Manual, Release 11.0.1-r3016

kind (not editable) Number of Physical Particles

particles Select the name of the previously defined KineticParticles.

Particle Energy Calculates the total energy in the simulation domain for the specified KineticParticle, in Joules.

kind (not editable) Particle Energy

particles Select the name of the previously defined KineticParticles.

Particle Energy Change from Boundary Calculates the energy change in a particle species due to a dif-
fuse reflector boundary condition.

kind (not editable) Particle Energy Change from Boundary

particle absorber Select the name of the boundary diffuse reflector particle boundary condition.

78 Chapter 2. Visual Setup

CHAPTER

THREE

TEXT SETUP

3.1 Global Variables

globalvariables

3.1.1 Global Variables

floattype (string)
Variable that defines the precision of real numbers in the simulation. For greater precision, use the value
double, otherwise use the option float. You must define floattype in an input file.

dimension (integer)
Variable that defines the dimensionality (1D, 2D, or 3D) of the simulation. The variable dimension indicates
how many dimensions this simulation will use. The -dim command line parameter overrides this variable. You
must define dimension in an input file or on the command line.

dt (real)
Step size to use in the simulation. When choosing the step size for your simulation, you must consider stability
requirements. For example, for electromagnetic simulations, you should specify a step size that satisfies the
Courant condition. You can override the dt variable using the -dt command line option. You must define dt
in an input file.

nsteps (integer)
Number of steps to take. (In the case of a restart, nsteps is the number of additional steps.) This can be
overridden with the -n command line parameter. You must define nsteps in an input file or on the command
line.

dumpPeriodicity (integer)
How often to dump the data; indicates data is to be dumped whenever the time step has increased by this
amount. The command line parameter -d overrides this variable. Must have this defined in an input file or on
the command line.

dumpSteps (integer)
An alternative to dumpPeriodicity allowing an irregular specification of times steps in which to dump. Steps
should be in increasing order, but do not need to be evenly spaced. If the simulation runs successfully, or is
ended by clicking “Dump and Stop” a final dump will be written so that the simulation can be restarted from
the final dump. If the simulation ends with a crash, dumpSteps will not write a final dump, and it will not be
possible to restart the simulation from a previous dump.

This option can also be applied to individual field blocks to set the steps at which the particular field is dumped.
If dumpSteps is used in this way, care must be taken when restarting the simulation from a previous dump.

79

VSim Reference Manual, Release 11.0.1-r3016

dumpSteps(Expression)
Alternative to dumpPeriodicity in which an expression block of name dumpSteps is defined. Can be used to
provide an expression for dumpsteps. For example:

<Expression dumpSteps>
expression = or(mod(n+1, VPMW_DUMP_PERIOD) == 1 , mod(n-1, VPMW_DUMP_PERIOD)

→˓== 1), mod(n, VPMW_DUMP_PERIOD) == 1)
</Expression>

Will dump at the specified VPMW_DUMP_PERIOD, as well as at timestep = VPMW_DUMP_PERIOD + 1
and VPMW_DUMP_PERIOD + 2

verbosity (integer)
Specifies the amount of text output from a simulation run. Increasing the value of verbosity may aid in
debugging a simulation. The value can be 2𝑁 − 1, with 0 <= 𝑁 <= 10. The values, 1 <= 𝑁 <= 4
are for severe problems that will stop the simulation. The values, 𝑁 >= 8 are for increasing levels of debug
information. The other levels are:

• verbosity=0, 𝑁 = 0, NONE, no messages output.

• verbosity=31, 𝑁 = 5, WARNING, include warnings in the output, which should be examined by the
user in order to fix any errors that could be affecting the simulation.

• verbosity=63, 𝑁 = 6, NOTICE, include notices in the output, which are not necessarily issues that
need to be fixed, but should still be examined by the user.

• verbosity=127, 𝑁 = 7, INFO, normal output for informing the user of simulation progress.

randomSeeding (string, default seedDeterministicallyByDefault)
Specifies how Vorpal seeds the (pseudo) random number generators use, e.g., to determine ini-
tial particle velocities or whether a Monte Carlo collision occurs. The recommended option,
seedDeterministicallyByDefault allows different random number generators to be used for different
input blocks, with the seeds chosen deterministically based on the input block (fully qualified. . . i.e., including
names of parent blocks) name and randomSeed. Another option, seedRandomlyByDefault generates
seeds from a separate random number generator, which is itself seeded according to the current time; if run
twice (with enough time separation to be resolved by the internal timer), a simulation will use different random
number sequences. For these options, each MPI rank in a parallel simulation uses a different seed. If random
seeds are explicitly specified in an input file block, the specified seeds are used. The seedGlobalRng option
(deprecated) uses the same random number generator for many (but not all) objects.

randomSeed (integer, between -1 and 2147483647, default 1)
A seed for generating (pseudo) random numbers. If randomSeeding =
seedDeterministicallyByDefault, then changing this value will change the seeds for all ran-
dom number generators used in a simulation. If this is set to -1 (the recommended option), then a
randomSeed will be chosen based on the current time. This option has a similar effect for randomSeeding
= seedGlobalRng, except it affects only the global random number generator (excluding input
blocks that take seed or randomSeed options). This option has no effect for randomSeeding =
seedRandomlyByDefault.

maxcellxing (integer)
In particle simulations in which the particles could ordinarily cross more than one cell in a time step and cause
out-of-bounds memory access (such as can happen in electrostatic simulations with non-relativistic dynamics),
you can impose a velocity limit to prevent the out-of-bounds memory access from occurring by using the max-
cellxing variable. For example, maxcellxing = 1 will limit the particle velocity so that the particle cannot
cross more than one cell per step. That is, if for any direction i, velocity_i * dt > dx_i, then the velocity is
reduced in magnitude so that velocity_i * dt<= dx_i for all i. Since imposing a velocity limit introduces error
into the simulation, for cases in which you must use the velocity limit for a significant number of particles, you
should lower the time step for the simulation.

80 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sortPtcls (boolean, default = true)
Specifies whether or not you want Vorpal to sort the particles based on an algorithm that intelligently selects the
time step at which to sort. This can affect performance and may be a parameter that you want to examine on
your own for its effect on performance.

dnSortMin (integer)
This parameter is used to instruct Vorpal what is the minimum number of time steps before sorting of the
particles. This allows sorting to be deterministic and thus repeatable.

dnSortMax (integer)
This parameter is used to instruct Vorpal what is the maximum number of time steps before sorting of the
particles. This allows sorting to be deterministic and thus repeatable.

useGridBndryRestore (boolean)
Switch to control the method for obtaining grid boundary information on restarts. The default (true) is to input
boundary information from the dump files. Setting this switch to false means that the grid boundary information
is re-calculated, which can be computationally more intensive.

useHistoryRestore (boolean)
The default(true), restores histories so that the dump and restart yields the same result as simply continuing
simulation (also important for feedback); if false, treat history dump file as if empty, and append data only with
no regard for previous data

copyHistoryAtEachDump (boolean)
The default(true), copies the History file at each dump in a HistoryOld file before appending the new history
data. This is a safety measure in case the history file gets corrupted. If false, the data is simply appended to the
History file, without creating a back up (or copied) file.

stepPrintPeriodicity (integer)
How often to print out the “Taking step n at clock time. . . ” message as the simulation runs. By default, this
option is 1 and the message is printed every step. If this option is 0, the message will never be printed. If this
option is 10, the message will be printed for every tenth step. This option is useful for reducing the amount of
output of simulations that run many time steps.

timingAnalysisPeriodicity (integer)
How often to calculate (and print) rough timing diagnostics to evaluate the speed of a simulation. This is
useful for analyzing load-balancing and parallel scaling or for charactarizing the computational performance of
simulations.

By default, this option is -1, and no timings are calculated; if 0, timings are printed out for the entire simulation.
If a positive integer, timings will be printed out periodically. For example, if this option is 1000, the timing for
each set of 1000 time-steps will be printed out (as well as a summary for the entire simulation).

The output is repeated in a single-line format that can be converted into a .csv (comma separated values) file us-
ing the command line utility grep. For example, to extract the output of timingAnalysisPeriodicity
from mySimulation.out into a new file timingAnalysis.csv that can be opened by most spreadsheet soft-
ware, one would execute grep -oP '(?<=timingAnalysis:,).*' mySimulation.out >
timingAnalysis.csv.

Timings are calculated from wallclock-time and will be affected by other activity. The timing resolution varies
from system to system. Short times (much less than one second) may be inaccurate.

Global Variables Specific To Moving Windows

The two global parameters downShiftDir and downShiftPos apply to Vorpal’s moving window
feature. The moving window feature allows the simulation window to move at the speed of light in the
chosen direction. This feature is used to reduce the size of the simulation box while following the physics

3.1. Global Variables 81

VSim Reference Manual, Release 11.0.1-r3016

phenomenon of interest such as a laser pulse or a particle beam propagating at a velocity close to the speed
of light.

downShiftDir (integer)
Control variable for the moving window option that sets the direction of the moving window. If the
downShiftDir parameter is not specified or set to -1 for, Vorpal does not use the moving window. Set
to a number between 0 and dimension to cause a down shift (moving window) in that direction.

downShiftDir Parameter Values

• null (If no value specified, Vorpal does not use the moving window.)

• -1 (If -1 is specified, Vorpal does not use the moving window)

• 0 (x direction)

• 1 (y direction)

• 2 (z direction)

downShiftPos (real)
Distance at which Vorpal should activate the moving window feature. Vorpal calculates the time equal to this
distance divided by the speed of light to determine when to turn on the moving window. The downShiftPos
parameter may be set to a variable such as DSHFTPOS, which has been assigned a real number value such as
0.95**LX*, where LX is the length of the grid along the x axis.

OAFunc shiftSpeed (block)
Function (of one variable) that returns the velocity of the moving window (in m.s -1) as a function of time.
When using kind = expression in an OAFunc block x is the default variable, to use t instead, specify
variable = t in the OAFunc block [see expression (OAFunc)]. You can still use x but be aware that x
represents the time in this case.

Example Moving Window Code

Moving window
Shift along direction 0
downShiftDir = 0
Start shifting at t = DSHFTPOS/(speed of light)
downShiftPos = DSHFTPOS

<OAFunc shiftSpeed>
kind = expression
expression = LIGHTSPEED *(BETA - ALPHA *t)
variable = t

</OAFunc>

3.2 Grid

Grid

3.2.1 Grid

Determines the simulation size and relationship of physical coordinates to cell indices.

82 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Every object in Vorpal interacts with a grid defined by the Grid block. If there is more than one Grid block in the
input file, Vorpal uses the grid named globalGrid and ignores any others. If there are no Grid blocks named
globalGrid, the last Grid block will be used and all preceding Grid blocks will be ignored.

Grid defaults to a uniform Cartesian grid if you omit the kind parameter or when you set kind to uniCartGrid,
regardless of the presence or value of coordinateSystem parameter.

Note: There are no restrictions on the ratio of grid sizes among the dimensions. However, Tech-X recommends
novice users unfamiliar with effects of large aspect ratio cells, keep the grid sizes, DX, DY, and DZ, within a factor of
5 from each other.

By convention, Vorpal lays out its axes as follows:

x: left to right y: front to back z: bottom to top

Grid Parameters

maxIntDepHalfWidth (integer, optional, default = 1)
Maximum half-width of either the interpolator or depositor stencil.

Please see Additional Attributes for Particle Simulations for more information.

maxCellXings (integer, optional, default = 1)
The maximum number of cells a particle is allowed to cross in one time step. This does not override the
maxcellxing parameter specified in the species block, but must be equal to or larger than any species block
maxcellxing value. This is used in calculating the number of guard cells found in the simulation. Please see
Additional Attributes for Particle Simulations for more information.

kind (string)
Specifies type of grid to use, and is one of the following options.

• uniCartGrid (default) Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

numCells (integer vector, required) Sets number of cells in the x, y, and z directions. Should
contain at least as many values as there are dimensions in the grid. Example usage:

numCells = [5 10 15]
or
numCells = [NX NY NZ]

lengths (float vector, required) Sets lengths of the simulation space in meter units. Should con-
tain at least as many values as there are dimensions in the grid. Example usage:

lengths = [0.1 0.1 0.1]
or
lengths = [LX LY LZ]

startPositions (float vector, required, default = [0 0 0]) Specifies where the starting co-
ordinates in the simulation space are in meter units. Should contain at least as many values as
there are dimensions in the grid. Example usage:

startPositions = [-0.05 0.0 0.0]
or
startPositions = [XBGN YBGN ZBGN]

• coordProdGrid Works with VSimPD and VSimMD licenses.

3.2. Grid 83

VSim Reference Manual, Release 11.0.1-r3016

coordinateSystem (optional, default=Cartesian) Sets the coordinate system of the grid. One
of:

– Cartesian (default), e.g. x,y,z

– Cylindrical, e.g. z, r, phi

– Polar, e.g. r, phi,z

– Tubular, e.g. phi, z, r

includeCylAxis (integer, optional, default = 0) Whether or not to include the lower bound in
the radial direction that corresponds to r = 0 in the simulation. If includeCylAxis is true,
one needs to make sure that the starting position in the r direction (dir1) is set to 0.0. If
includeCylAxis is false, one needs to make sure that the starting position in the r direction (dir1)
is set to greater than 0.0. Setting includeCylAxis to true in the Grid block sets a flag that
allows for proper evaluation of the nodal volume element and Ez area element for the first cell.
One should also take care to set includeCylAxis in any necessary FieldUpdater blocks. See:
FieldUpdater for the different kinds of CoordProd updaters that are available.

coordinateGrid (block, required) Specifies the lower and upper bounds and cell size of each
dimension of the coordinate product grid independently in its own CoordinateGrid block. See
CoordinateGrid.

Example Uniform Cartesian Grid Block

<Grid globalGrid>
kind = uniCartGrid
numCells = [40 20 20]
lengths = [5e-06 5e-05 5e-05]
startPositions = [0.0 -2.5e-05 -2.5e-05]

</Grid>

Example Cylindrical Grid Block

<Grid globalGrid>
kind = coordProdGrid
coordinateSystem = Cylindrical
includeCylAxis = 1
<CoordinateGrid dir0>
sectionBreaks = [ZBGN ZEND]
deltaAtBreaks = [DZ DZ]

</CoordinateGrid>
<CoordinateGrid dir1>
sectionBreaks = [RBGN REND]
deltaAtBreaks = [DR DR]

</CoordinateGrid>
</Grid>

3.2.2 CoordinateGrid

CoordinateGrid:

Specifies each dimension of the coordinate product grid independently in its own CoordinateGrid block.
(There is not a boundary condition to treat the origin of polar coordinates.)

84 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Valid CoordinateGrid names include:

• x

• y

• z

• r

• phi

• dir0 (generic axes designation for specified coordinate system)

• dir1 (generic axes designation for specified coordinate system)

• dir2 (generic axes designation for specified coordinate system)

The exact coordinate of each grid point is internally known by Vorpal and is not available to the user. Instead, you can
select break points to describe the grid. Vorpal automatically fills the sections between breakpoints. The non-uniform
grid will be produced according to the following rules:

1. There will be a grid line exactly at the specified sectionBreaks.

2. There grid spacing to either side of the sectionBreaks will be approximately the corresponding value from
deltaAtBreaks.

3. The grid will be filled in between sectionBreaks with a smoothly varying grid spacing based upon geometric
expansion or contraction.

CoordinateGrid Parameters

sectionBreaks
List of breakpoints to construct the grid points along the coordinate axis associated with each block. There is no
upper limit on the number of break points specified in sectionBreaks, and there must be a value in deltaAtBreaks
for each break point specified in sectionBreaks. The coordinate axis will span from the first value to the last
value specified in sectionBreaks, so you must specify a minimum of two sectionBreaks.

Required Parameters:

deltaAtBreaks (required)

Grid spacing between breakpoints.

defRadius (required,default=1meter)

Default radius with which to compute physical lengths or areas for Tubular coordinates; ex-
pressed in meters. In the case of a 1D or 2D simulation using Tubular coordinates, the radial
direction is ignored.

Sample usage:

defRadius = 1.00

Example CoordinateGrid Block

<CoordinateGrid z>
sectionBreaks = [0.000 0.050 0.300 0.400]
deltaAtBreaks = [0.005 0.005 0.020 0.020]

</CoordinateGrid>

3.2. Grid 85

VSim Reference Manual, Release 11.0.1-r3016

3.2.3 Cylindrical Coordinates

To use cylindrical coordinates, set coordinateSystem = Cylindrical in the Grid block. In the case of a
cylindrical grid, expressions that normally call for x, y coordinates (see ParticleSource blocks, STFunc blocks,
etc.) instead refer to z, r respectively, however you should still use x and y in the actual expressions.

Example

The cylindrical grid
<Grid globalGrid>

kind=coordProdGrid
coordinateSystem=Cylindrical
includeCylAxis=1
<CoordinateGrid dir0>

sectionBreaks=[ZBGN ZEND]
deltaAtBreaks=[DZ DZ]

</CoordinateGrid>
<CoordinateGrid dir1>

sectionBreaks=[RBGN REND]
deltaAtBreaks=[DR DR]

</CoordinateGrid>
</Grid>

Also see

• STFunc Block.

• ParticleSource.

3.2.4 Additional Attributes for Particle Simulations

In some types of particle simulations, a user may want to add one or two additional Grid block attributes, both of
which affect the number of guard cells.

maxIntDepHalfWidth

In particle simulations in which you use higher-order particle depositors or interpolators, you should invoke the
maxIntDepHalfWidth parameter with a value no less than (int)(particleOrder/2)+1. This is because
higher order particle depositors will spread a particle’s charge over more than just the nearest neighbor grid nodes.

maxCellXings/maxcellxings

It is not recommended to allow particles to move more than a cell in a single time step. By skipping over more than
a single cell, particles will not be accelerated in a completely self-consistent way (since they will experience slightly
non-local fields), which will introduce inaccuracies in the simulation.

However, if there are a few fast-moving particles at the top end of a speed distribution which are unimportant to the
overall physics of the simulation, it would be inconvenient to have to set a time step short enough to keep these fast
particles from crossing more than a cell per time step.

The maxCellXings attribute in the grid block combined with the maxcellxings (note the difference in case)
attribute in the species block can be used in such a situation. Both of these attributes should be set to the same value.
These two attributes must be set appropriately if particles are able to travel more than a cell in a time step.

86 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

The maxCellXings attribute in the grid block will (along with the maxIntDepHalfWidth attribute, see Guard
Cell Calculation and Setting Overlap in Fields below) sets the number of “guard cells” around the simulation domain
which absorb particles leaving the simulation. By default, there is one guard cell surrounding the simulation domain.
If particles can travel more than a cell per time step, they can skip over this absorber and cause a segmentation fault
when they ask for the field values from outside the simulation domain. For example, a setting of maxCellXings =
3 will set a layer of three guard cells around the simulation grid.

The maxcellxings attribute in the species block will impose a speed limit on each component of the velocity,
independently. So, if maxcellxings = 3 in a simulation, then the speed limit for the x-component of velocity
will be 3 * 𝐷𝑋/𝐷𝑇 , the speed limit for the y-component will be 3 * 𝐷𝑌/𝐷𝑇 , and the speed limit in z will be
3 *𝐷𝑍/𝐷𝑇 . Any particles with a velocity component larger than the limits will have the speed reduced to the speed
limit for each velocity component in violation of it’s respective speed limit. This will likely result in the modification
of both the magnitude and direction of the velocity of particles in an unphysical way. For simulations in which a
significant number of particles have their speeds limited, you should lower the time step for the simulation.

To see the effect of the speed limit, set the verbosity level to “NOTICE.” This will print out the numbers of particles
with limited speeds in the run log. Additionally, the phase space plot can be checked. If there are a significant number
of particles piled up along a vertical or horizontal line in the plot, reduce the time step.

Guard Cell Calculation and Setting Overlap in Fields

The number of guard cells is determined based on the preceding parameters. Each field in the multiField block
should include a two-component vector attribute, overlap, which is set according to the following.

For a non-dep field:

• overlap[0]=maxIntDepHalfWidth + (maxCellXings - 1)

• overlap[1]=maxIntDepHalfWidth + (maxCellXings - 1)

This defaults to overlap = [1 1]

For a dep field:

• overlap[0]=maxIntDepHalfWidth + (maxCellXings - 1)

• overlap[1]=maxIntDepHalfWidth + (maxCellXings - 1) + 1

This defaults to overlap = [1 2]

Please see Field for more details on manually overriding the number of guard cells for an individual field.

See also

• Grid

3.3 Decomposition

Decomp

3.3.1 Decomp

Determines the domain decomposition and periodicity. The Decomp block determines how the simulation
is broken up into domains for parallel processing and which directions are periodic.

3.3. Decomposition 87

VSim Reference Manual, Release 11.0.1-r3016

If the domain boundaries lead to a specification of a number of processors that is not found at runtime, Vorpal will
reconfigure the domain decomposition to match the runtime number of processors. That is, if you do not specify a
decomposition, Vorpal will try to calculate an appropriate domain decomposition for you.

The decomposition algorithm used by Vorpal proceeds by first doing a prime factorization of the number of processors.
It then uses that list of factors to divide up each dimension using the largest remaining factor on the dimension with
the largest number of cells.

For example, for a simulation using 30 processors and a domain size of 200 x 100 x 100, Vorpal will perform
the following calculations:

30 = 5*3*2

The x direction has the largest number of cells (200) and 5 is the largest factor of the number of processors, so we
divide x into 5 regions, each

40x100x100

With the x direction done, y is the now the direction with the largest number of cells (100), so Vorpal uses the next
largest factor to divide it into 3 sections:

40x{33 or 34}x100

Finally, Vorpal partitions z with the remaining factor is 2, dividing it into 2 pieces.

40x{33 or 34}x50.

That is the size of our final domains.

In practice, for parallelism, Vorpal simulations should have approximately 20 - 40 cells in each dimension. Otherwise,
the amount of messaging per computation increases and the benefits of using multiple processors is outweighed by the
cost of the communication between them. The 20 - 40 rule depends on the complexity of the calculations being done.
With a large number of particles per cell (20 or more) you could use approximately 20 cells in each direction.

The decomposition may affect what features can be used; for example, guard cells require a domain of at least four
cells in every direction. If the number of processors and dimensions of the simulation chosen cause this requirement
to be violated, you will see errors in the simulation.

Decomp Parameters

kind (string)
(deprecated in v8.0) regular only allowed at present. Version 8.0+ should simply omit the kind parameter.

periodicDirs (integervector)
Directions to have periodic boundary conditions.

decomp0 (integervector)
Domain boundaries along direction 0.

decomp1 (integervector)
Domain boundaries along direction 1.

decomp2 (integervector)
Domain boundaries along direction 2.

88 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example of Default Decomposition Generation

In this example, Vorpal uses the aforementioned algorithm (prime factorization) to automatically generate a decompo-
sition for a parallel simulation. The y- and z- directions will be periodic as indicated by use of periodicDirs.

<Decomp decomp>
periodicDirs = [1 2]

</Decomp>

Example of User-specified Decomposition

In this example, assuming there is a 200 x 200 mesh grid as described in the section on Grid cell specification, the user
requests domain boundaries in the x-direction at 50, 100, and 150, and in the y-direction for 100. This will produce 8
domains, requiring that 8 processors be used for the simulation. If a different number of processors is actually used,
Vorpal will default to the auto-generated (prime factorization) decomposition as discussed in the general description
of Decomp, above.

<Decomp decomp>
periodicDirs = [1 2]
decomp0 = [50 100 150]
decomp1 = [100]

</Decomp>

3.4 GridBoundary

3.4.1 GridBoundary Blocks

GridBoundary

GridBoundary

Block for modeling curved surfaces (such as spheres or cylinders). A GridBoundary can be referenced by
constructs such as Initial and Boundary Conditions, ParticleSource, ParticleSink, and other constructs.

To restore a GridBoundary on restart of a simulation without recalculating it, see useGridBndryRestore.

GridBoundary Parameters

kind
One of:

• funcGridBndry Works with VSimEM, VSimPD, and VSimMD licenses.

Defines a region with an STFunc Block block. The inside is where the function value is non-negative.
See the example Example GridBoundary Block.

• rgnGridBndry Works with VSimEM, VSimPD, VSimMD, and VSimSD licenses.

A rgnGridBndry defines a GridBoundary by using one or multiple STRgn blocks. For more informa-
tion about the types of regions available, see STRgn. A rgnGridBoundary is a good way to combine
multiple regions into one large region using unions or intersections.

3.4. GridBoundary 89

VSim Reference Manual, Release 11.0.1-r3016

• gridRgnBndry Works with VSimEM, VSimPD, and VSimMD licenses.

Defines a region with a STereoLithography (stl) file.

calculateVolume (optional)
Forces the grid boundary to calculate various auxiliary quantities that are used by cut-cell particle boundaries.
Examples include the cut-cell volume and normal to the surface.

subMesh (integer, default = 7): When calculateVolume is true, the GridBoundary will
calculate area/volume fractions for cells cut by the boundary (i.e., the fraction of the cell inside
the boundary). Sometimes a GridBoundary is too complicated to allow accurate calculation
of volume fractions (such as a surface that isn’t smooth with small curvature compared to a cell
size, or when multiple surfaces cut through a cell). If GridBoundary realizes that the surface
is too complicated, it will estimate the inside fraction by sampling subMesh raised to NDIM
power points regularly-spaced within each cell to see whether they are inside or outside the
boundary. Sampling is a less accurate but more robust method for calculating volume fractions.

dmFrac (float)
Fraction of the Courant time step for which the simulation will be stable when using the Dey-Mittra boundary
algorithm with Yee electromagnetics. For example, if dmFrac = 0.25, then your time step for the simulation
must be 25% of the Courant time step.

boundaryPrecision (float, default = 1.e-5)
Precision to which lengths (such as the length of a cell edge inside a GridBoundary) are calculated.

gridBndryFuncIsSmooth (bool, optional)
If true then Vorpal assumes the boundary is a smooth function of x,y,z which allows for faster calculations of
certain quantities.

dumpPeriodicity (integer, optional)
How often to dump the data; indicates data is to be dumped whenever the time step has increased by this
amount. The command line parameter -d overrides this variable. Must have this defined in an input file or on
the command line.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in Output Data in
the VSim User Guide.

Example GridBoundary Block

<GridBoundary plane>
boundaryPrecision = 1e-14
calculateVolume = true
subMesh = SUBMESH
kind = funcGridBndry
gridBndryFuncIsSmooth = true

<STFunc function>
kind = expression
expression = (x/PI + y/2. + LZ/exp(3.)) - z

</STFunc>

</GridBoundary>

3.4.2 STRgn Blocks

strgn

90 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

STRgn

Block for modeling curved surfaces as Constructive Solid Geometry (CSG) objects. This allows complex shapes to
be created by combining geometry primitives with the three operations of union, difference and intersections. This is
primarily for creating geometries to use with the GridBoundary block to create complex boundaries.

Note: The name of the STRgn block defined can only be set to “region” (see example below). If there are multiple
nested STRgn blocks, only the first STRgn block must be named “region”.

Also see stRgnMask for information on using STRgn to assign properties of a fluid to an area or volume.

STRgn Kinds

• array

• box

• cylinder

• sphere

• stRgnMask

• setDifference

• stRgnIntersect

• stRgnUnion

• translation

• stFuncRgn

STRgn Example Block in a GridBoundary Block

<GridBoundary magTestPillBox3DparaShortPecShapes>
kind = rgnGridBndry
calculateVolume = 1
dmFrac = 0.5

<STRgn region> ##### block name must be 'region'
kind = stFuncRgn
<STFunc function>

kind = expression
expression = H(z-(0.5))*H((0.4)-z)*H(0.4^2-x^2-y^2)

</STFunc>
</STRgn>

</GridBoundary>

array

array

Works with VSimEM, VSimPD, and VSimMD licenses.

3.4. GridBoundary 91

VSim Reference Manual, Release 11.0.1-r3016

Creates a Constructive Solid Geometry (CSG) object that creates an array whose elements are another
space-time region.

array Parameters

numTranslations (integer, required)
Number of translations in the array.

region (string, required)
Name of the space-time region that will serve as the element of the array.

origin (vector float, required)
Position of the first element in the array.

period (vector float, required)
Period vector for the array.

Example array Block

<STRgn holeRow>
kind = array
region = hole
origin = [0.5 0.0 0.0]
period = [1.0 0.0 0.0]
numTranslations = 5

</STRgn>

box

box

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that creates a box.

box Parameters

lowerBounds (vector float, required)
Lower bounds for box.

upperBounds (vector float, required)
Upper bounds for box.

Example box Block

<STRgn box>
kind = box
lowerBounds = [0.0 0.0 -0.5]
upperBounds = [5.0 5.0 0.5]

</STRgn>

sphere

92 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sphere

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that creates a sphere.

sphere Parameters

center (vector float, required)
Center of sphere.

radius (float, required)
Radius of sphere.

Example sphere Block

<STRgn sphere>
kind = sphere
center = [0.0 0.0 0.0]
radius = 1.0

</STRgn>

cylinder

cylinder

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that creates a cylinder.

cylinder Parameters

axis (vector float, required)
Axis of cylinder.

center (vector float, required)
Center of cylinder.

radius (float, required)
Radius of cylinder.

height (float, required)
Height of cylinder.

Example cylinder Block

<STRgn hole>
kind = cylinder
center = [0.0 0.0 0.0]
axis = [0.0 0.0 1.0]
radius = 0.3

(continues on next page)

3.4. GridBoundary 93

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

height = 10.0
</STRgn>

stRgnMask

stRgnMask

Assigns properties of a fluid to an area or volume specified by an STRgn.

stRgnMask Parameters

region (string, required)
Name of the space-time region that will serve as the element of the array.

Example stRgnMask Block

<STRgn ellipsoid1>
kind = ellipsoid
center = [0.0 0.0 0.0]
semiaxes = [1.0 0.5 0.3]

</STRgn>

<Fluid testFluid>
kind = neutralGas
gasKind = H
<InitialCondition density>
kind = variable
lowerBounds = [-1 -1 -1]
upperBounds = [NX NY NZ]
components = [0]
<STFunc component0>

kind = stRgnMask
region = ellipsoid1

</STFunc>
</InitialCondition>

</Fluid>

setDifference

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that is the set difference of two CSG objects.

setDifference Parameters

regions (string vector)
List of regions to be combined. If this is not set then two STRgn blocks must be defined.

STRgnx (block)
A region to be combined.

94 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example setDifference Block

<STRgn PBGSlab>
kind = setDifference
<STRgn box>
kind = box
lowerBounds = [0.0 0.0 -0.5]
upperBounds = [5.0 5.0 0.5]

</STRgn>
<STRgn holeArray>
kind = array
region = holeRow
origin = [0.0 0.5 0.0]
period = [0.0 1.0 0.0]
numTranslations = 5

</STRgn>
</STRgn>

stRgnIntersect

stRgnIntersect

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that is the intersection of one or more CSG objects.

stRgnIntersect Parameters

regions (string vector)
List of regions to be combined. If this is not set then one or more STRgn blocks must be defined.

STRgn (block)
A region to be combined.

Example stRgnIntersect Block

<STRgn amoeba>
kind = stRgnIntersect
regions = [ellipsoid1 ellipsoid2 ellipsoid3]

</STRgn>

stRgnUnion

stRgnUnion

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that is the union of one or more CSG objects.

3.4. GridBoundary 95

VSim Reference Manual, Release 11.0.1-r3016

stRgnUnion Parameters

regions (string vector)
List of regions to be combined. If this is not set then one or more STRgn blocks must be defined.

STRgn (block)
A region to be combined.

Example stRgnUnion Block

<STRgn amoeba2>
kind = stRgnUnion
regions = [ellipsoid1 ellipsoid2 ellipsoid3]

</STRgn>

translation

translation

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object that that translates another CSG object.

translation Parameters

region (string, required)
Name of region to be translated.

offset (vector float,required)
The offset vector for the translation.

Example translation Block

<STRgn sphere2>
kind = translation
region = sphere
offset = [-1.0 2.0 0.0]

</STRgn>

stFuncRgn

stFuncRgn

Works with VSimEM, VSimPD, and VSimMD licenses.

Creates a CSG object based off a STFunc. The boundary of the object is where the function equals zero. Where the
function is positive is considered the interior and where the function is negative is the exterior.

stFuncRgn Parameters

STFunc (Block, required)

96 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example stFuncRgn Block

<STRgn region>
kind = stFuncRgn

<STFunc function>
kind = expression
expression = (H(RADIUS-sqrt(x*x+y*y))-0.5)

</STFunc>

</STRgn>

3.5 EM Field

3.5.1 EmField Block

EmField

EmField

Blocks define the properties of the electromagnetic (EM) fields in the simulation. An EmField can be one of
many types, with the most commonly used being the explicitly time-advanced which can be constructed with the
emMultiField and the VSimEm.mac, in which the basic components of the field are on the Yee mesh, and these
fields are then averaged to cell nodes for use by other objects. The basic setup of the Yee EM field is illustrated below.
In this setup, electric fields are located on the edges of grid cells, and magnetic fields are on the faces of the cell
surfaces.

This EmField section describes general parameters for use with all EmField kinds, followed by descriptions of each
individual EmField kind. Parameters specific to each individual kind are discussed within the description of each
kind. InitialConditions and BoundaryConditions, including outGoing and kinds for EM fields only,
are discussed in Initial and Boundary Conditions.

Fig. 3.1: Yee model for placing fields on the grid

3.5. EM Field 97

VSim Reference Manual, Release 11.0.1-r3016

Other fields include specified constant or functional fields and electrostatic fields. Multiple EM fields can co-exist in a
simulation. Since each field will have a unique name, other objects in the simulation can reference them individually.

Electromagnetic fields are described by EmField blocks. Defining the EM field (EmField) input block involves defin-
ing the kind parameter, as well as nested input blocks that describe the electromagnetic boundary conditions.

Vorpal has several different algorithms that can be used to model EmFields. You specify which algorithm you would
like Vorpal to use by using the kind parameter. For each different kind, different parameters apply.

All EmField kinds can specify initial and boundary conditions. Periodic boundary conditions are defined in the
Decomp input block.

EmField Parameters

EmField: Electromagnetic field implementation algorithm.

kind
One of the following:

• constEmField: Works with VSimBase, VSimEM, VSimMD, VSimPA, and VSimPD licenses.

EM field in which components are held constant throughout the simulation.

• emMultiField: Works with VSimBase, VSimEM, VSimMD, VSimPA, and VSimPD licenses.

Electromagnetic field described with the MultiField syntax. To construct standard Yee mesh explicit
update use the basicEM macro.

• funcEmField: Works with VSimBase, VSimEM, VSimMD, VSimPA, and VSimPD licenses.

Values for this field are set by a space/time function using the STFunc object.

rhojweighting (string)

Option for current/charge deposition when using higher-order particles.

gridBoundary (string, default = sphere)

Defines the boundaries for an EM Field in the simulation. One of:

• sphere (default)

• universe

• pycavity

• stlfile

• user-defined boundary

interpolation (string)

Defines the interpolation used with higher-order particles.

• linearFromNodalFields: (default in case in which the interpolating
fields are on the nodes)

• esirk1stOrder (default in case in which the Interpolating fields are on
the Yee mesh): Corresponds to bilinear or trilinear interpolation from the Yee
mesh points. With a VSimPA or VSimPD license up to 7th order interpolation
(esirk7thOrderCP) is available.

• esirk1stOrderCP (default in case in which the Interpolating fields are on
the Yee mesh): Corresponds to bilinear or trilinear interpolation from the Yee

98 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

mesh points. With a VSimPA or VSimPD license up to 7th order interpo-
lation (esirk7thOrderCP) is available. This variant is intended for use with
coordProd (CP) grids.

interpOrder (string, default = linear)

String used in conjunction with the polynomial interpolation algorithm only.
interpOrder describes the order of the interpolation from the Yee mesh. In-
terpolation options include:

• linear (default)

• quadratic

• cubic

• quartic

Note: Most of the time, rhojweighting and interpolation parameters for EmField will be the same.
However, nodal fields use linearFromNodalFields and the Yee field uses esirk1stOrder. That is:

rhojweighting = esirk1stOrder
interpolation = esirk1stOrder

However, in cases in which:

rhojweighting = areaWeighting

then:

interpolation = linearFromNodalFields

which is the default for fields in which:

offset=none

Otherwise the default for fields with any other offset is:

interpolation = esirk1stOrder

In the case in which:

rhojweighting = bilinear

then:

interpolation = linearFromNodalFields

which is the default for fields in which:

offset=none

Otherwise the default for fields with any other offset is:

interpolation = esirk1stOrder

Every gridField object has a default interpolation algorithm.

In the example below, the interpolation is set in a higher-level object and is valid for all gridField
objects created by that EmField:

3.5. EM Field 99

VSim Reference Manual, Release 11.0.1-r3016

<EmField ...>
kind = emMultiField
interpolation=...
...

</EmField>

The following code demonstrates how to change the interpolation for each gridField object individu-
ally:

<MultiField ...>
<Field ...>
kind = gridField
interpolation=...

</Field>
...

</MultiField>

See also

• Initial and Boundary Conditions

EmField Block Kinds

constEmField

constEMField:

Kind of EmField that defines a constant field.

constEMField Parameters

elecField (float vector)
The electric field.

magField (float vector)
The magnetic field.

hasB (option, default=true)
Flag to specify that the magnetic field (if present) will be used in the species update step.

Example constEMField Block

<EmField constEM>
kind = constEmField
elecField = [0. 0. 0.]
magField = [0. 0. 0.]

</EmField>

100 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

See also

• EmField

emMultiField

emMultiField

The emMultiField kind of EmField updates all the electromagnetic fields using the MultiField
feature. Please see the Multifield section of this manual for detailed information about MultiField and
MultiField parameters.

Use kind = emMultiField to create a MultiField that uses the EmField interface. Any valid Mul-
tiField parameters are valid for emMultiField except for depFields.

If emMultiField is going to be used with particles, the particle current/density must be brought in through
externalFields = [SumRhoJ].

If emMultiField is going to be used with particles, the particles must be told which fields are to be used
for the particle push algorithm. You have 3 options:

• Use the emField = syntax and define nodal fields specifically named nodalE and nodalB.

• Use the emField = syntax, change the interpolation to something other than
linearFromNodalFields, and also specifically name your Yee fields ElecMultiField
and MagMultiField.

• Use the fields=[] syntax and specify which fields are to be used for the particle push.

emMultiField Parameters

hasB (option, default=true)
Flag to specify that the magnetic field (if present) will be used in the species update step.

needsRho (option, default=false)
Flag to specify that the charge density is to be used for update step.

needsJ (option, default=true)
Flag to specify that the current density is to be used for update step.

EMField-funcEmField

funcEmField

Defines an EM field using a block to describe the characteristics of the EM field. funcEmField requires use of a code
block.

funcEmField Block Parameters

STFunc (block)

The function that sets the value for a specific field component. The name of the block determines which
component. E0,E1,E2 sets the x,y and z components of the electric field and B0,B1,B2 does the same for
the magnetic field. See STFunc Block.

3.5. EM Field 101

VSim Reference Manual, Release 11.0.1-r3016

Example funcEmField Block

<EmField myExternalField>
kind = funcEmField
<STFunc E0>
kind = expression
expression = EX_1 * cos(K_PE * x) * H(DRIVE_TIME - t)

</STFunc>
</EmField>

3.6 ComboEmField Block

ComboEmField

3.6.1 ComboEmField

The ComboEmField block combines other types of EmField descriptions defined within a simulation.
For example, use ComboEmField to add a static functionally defined magnetic field to a dynamic electro-
magnetic field. Being able to combine different types of EmField descriptions is useful in the delta-f parti-
cle simulation method for adding in the background, varying electromagnetic field to the self-consistently
generated electromagnetic field.

ComboEmField Parameters

kind (string)
Type of ComboEmField. Currently comboEmField is the only valid type.

comboEmField works with VSimBase, VSimEM, VSimMD, VSimPA, and VSimPD licenses.

emField1 (string)
User-defined EmField.

emField2 (string)
User-defined EmField.

dumpField (integer)
If non-zero, dump the values of the combined field into an HDF5 format output file.

hasB (option, default=false)
Flag to specify that the magnetic field (if present) will be used in the species update step.

needsRho (option, default=false)
Flag to specify that the charge density is to be used for update step.

needsJ (option, default=false)
Flag to specify that the current density is to be used for update step.

Example ComboEmField Block

102 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<ComboEmField scaledEmSum>
kind=comboEmField
emField1=myESField
emField2=scaledSextupoleField

</ComboEmField>

See also

• EmField

3.7 Multifield

3.7.1 Multifield Block

MultiField

MultiField

Advanced method for simulations that enables precise user control over fields and algorithms.

A MultiField object contains a trio of sub-objects:

• Field

• FieldUpdater

• UpdateStep

The MultiField object facilitates development and application of new algorithms by providing separate
specification of the data (Field), the update operations on those fields (FieldUpdater), and the
algorithmic sequencing of those update operations (UpdateStep). A crucial feature of UpdateStep
use is that instances of UpdateStep also govern communication during parallel processing. Additional
special cases of these sub-objects also exist, including InitialUpdateStep (an update operation
done once at the begining), FieldMultiUpdater (a special treatment of fields with more than one
component), and PmlRegion (a special absorber boundary object for electromagnetic simulation).

This additional level of control proves useful in two general circumstances. First, it allows the user to make
significant alterations in the sequencing of the traditional electrostatic and electromagnetic algorithms.
These changes might include custom sources and boundary conditions, custom fields for particle forces,
diagnostics, or post processing purposes, and/or custom combinations of different solvers in the same
simulation. One example is to swap out the traditional electromagnetic solvers in favor of GPU accelerated
solvers. A second useful circumstance is that it provides a means to create arbitrary partial differential
equaion (PDE) solvers, beyond the commonly used electrostatic and electromagnetic simulations. One
example provided with the software shows how to construct a solver for the heat conduction problem.

Electromagnetics Using MultiField

The traditional electromagnetic algorithm contains an electric Field and a magnetic Field, two in-
stances of FieldUpdater: Ampere (which updates electric field) and Faraday (which updates magnetic
field), and two instances of UpdateStep, one for each of the FieldUpdater. An UpdateStep can
designate one-and-only-one field for parallel-process messaging. Therefore UpdateStep must be used
twice, once to update-and-message the electric field, and again to update-and-message the magnetic field.

3.7. Multifield 103

VSim Reference Manual, Release 11.0.1-r3016

From this backbone electromagnetic algorithm, several commonly used enhancements arise and are found
in the following examples:

Metallic Boundaries and the FieldUpdater deyMittraUpdater When there are metallic
boundaries, an additonal FieldUpdater (deyMittraUpdater) applies a cut-cell bound-
ary condition to the magnetic field. This additional FieldUpdater is usually grouped
in the same UpdateStep as the Faraday FieldUpdater, so there remain only two
UpdateSteps.

Particles and the Magnetic Field UpdateStep When there are particles, the magnetic field
UpdateStep is usually split, so that half is done at the end of the cycle, in order to
have electric and magnetic fields at the same time during the cycle for particle forces. The
remaining half of the update is then done at the beginning of the next cycle, resulting in
three of UpdateStep instead of two.

Particles and Assisted Particle Force Computation with Field Definitions When there are
particles, a second set of electric and magnetic Field definitions centered at the nodes
may be introduced to assist in computing particle forces. The edgeToNodeVec
FieldUpdater and faceToNodeVec FieldUpdater provide this functionality,
and two new uses of UpdateStep, one for each new Field, are placed at the end of
the cycle.

Outgoing Wave Boundary Conditions with an Open FieldUpdater Outgoing wave
boundary conditions can be applied to the electric field with an open FieldUpdater.
This additional FieldUpdater is usually grouped in the same UpdateStep as the
Ampere FieldUpdater.

Dielectric Loss, Matched magnetic loss, and Traditional Bulk Electrical Conductivity
Dielectric loss (complex dielectric), matched magnetic loss, and traditional bulk electrical
conductivity, are added as additional uses of FieldUpdater, usually instances of
STFuncUpdater, just before and just after Ampere and Faraday, and usually grouped
together with the applicable field UpdateStep.

Electric Voltage and Current Sources Addition Electric voltage and current sources are
added as additional uses of FieldUpdater, usually instances of STFuncUpdater,
grouped with and applied just before or just after the Ampere UpdateStep.

Blocks Contained Inside MultiField Blocks

A MultiField is described between <MultiField nameOfThisMultiField> and </MultiField> tags. In ad-
dition to MultiField parameters, the MultiField block must contain the following blocks:

Field FieldUpdater FieldUpdateStep

and may in some circumstances contain the following additional blocks:

• InitialUpdateStep

• FieldMultiUpdater

• PmlRegion

Instances of Field are not required to appear in occurances of FieldUpdater, however, any
FieldUpdater must appear at least once in an UpdateStep or an InitialUpdateStep.

104 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

MultiField Parameters

kind
Type of MultiField algorithm; one of:

• Null: Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

no kind parameter; this is the default. The default behavior of not specifying a kind parameter for a
MultiField is usually the correct choice for simulations.

• lightFrameEnvelopeMultiField: Works with VSimPA license.

Implements the Laser Envelope Model. Fields can be discretized on Laser Envelope Model grids and
interpolated to particle positions. When using the Envelope Model with particles, the species should
be set to kind = envBoris. This lightFrameEnvelopeMultiField kind of MultiField
creates special grids that have the same size and spacing as the main grid, but that move in the +x
direction at the speed of light:

– active grid: The position of this grid is initialized to be offset from the main grid by 𝑐∆𝑡/2 in
the 𝑥 direction. It is shifted by 𝑐∆𝑡 in the +𝑥 direction every timestep.

– alternate grid: This grid is initially offset by −𝑐∆𝑡/2, and is shifted by 𝑐∆𝑡 in the +𝑥 direc-
tion every timestep.

– activeLightFrameFields Specifies the fields which exist on the active light frame grid.

– alternateLightFrameFields: Specifies the fields which exist on the alternate light frame
grid.

updateStepOrder (optional, string vector)
This specifies the order in which to execute the UpdateSteps. By default, if this attribute is not given, the
UpdateSteps are executed in the order in which they are specified in the input file.

shiftUpdaters (optional, integer; default = false)
If true, the updaters in the MultiField will be shifted along with the fields. This is only relevant for updaters
that rely on GridBoundary information that might shift.

restoreTimeFromField (optional, string)
Name of the field from which MultiField will get the current time when restoring from a dump.
restoreTimeFromField is required for cases in which MultiField cannot automatically determine the
proper field from which to restore. MultiField can make this determination if there is a field updated by an
updater which is specified in an UpdateStep with toDtFrac = 1.

3.7.2 Field Block

Field

Field

Field object code block contained between the tags:

<Field *nameOfThisField*>

</Field>

3.7. Multifield 105

VSim Reference Manual, Release 11.0.1-r3016

Field Parameters

kind (string, default = regular)
Type of field algorithm; one of:

• regular

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Sets its guard cells values by communication or boundary conditions.

• interior

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Field whose guard cells are expected to be invalid; when the field is shifted in a moving window
simulation, (newly) interior cells in a domain are filled from the (formerly) interior cells on other
domains.

• depField

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Field that fills guard cells and interior cells (during messaging) by adding together the values for
a cell on all domains that have that cell (either as interior or a guard cell). Particles are written
into depFields.

• funcField

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Field that fills guard cells, or newly interior cells in a moving window simulation, by calculating
their values from a function.

Each of these kinds is explained in detail in the following sections. If no kind is given, the default (and usually correct
choice for most simulations) will be used by Vorpal.

numComponents (integer, default = 1)
Number of field components. Other field component values include:

• 1: scalar field

• 3: vector field

• 4: edge4v vector

• 9: tensor field

offset (string)
Offset positions where the field values are located within a cell. offset values include:

• none

Corner with lowest coordinates.

• center

Center of cell.

• edge

Component j is at the center of the lowest edge parallel to the jth direction.

• face

Component j is at the center of the lowest face perpendicular to the jth direction.

• edge4v

106 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

For rhoJ, 0-component is at node, 1 is at x-center-edge, 2 at y-center-edge, 3 at z-center-edge

overlap (integer vector)
depField default = [1 2], default for all others = [1 1] Number of lower and upper guard cells. The guard
cells are important if higher order particles are near the simulation boundaries or for communications when
running in parallel.

dumpPeriodicity (integer, default = Multifield dumpPeriod setting)
How often to dump the Field data relative to that set by the global variable globalvariables.
dumpPeriodicity. For example, if a simulation generates 10 dumps, then setting the Field’s
dumpPeriodicity to 3 will dump the Field data on the 3rd, 6th, and 9th dumps. Setting
dumpPeriodicity = 0 will suppress dumping. If dumpPeriodicity is omitted from the attribute
set, Field will inherit its parent MultiField’s dumpPeriodicity setting. If Field and its parent
MultiField have different values of dumpPeriodicity, Field will only dump when both its own
dumpPeriodicity and its parent MultiField’s dumpPeriodicity coincide, that is, it will not dump
at a time when there is no MultiField dump.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in the VSim User
Guide.

interpolation (string)
No offset default = linearFromNodalFields, default for all others = esirk1stOrder. Defines the interpolation
method used for particles. Values include:

• linearFromNodalFields Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD li-
censes.

• polynomial Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

• esirkHalfSine Works with VSimPD and VSimPA licenses.

• esirkGaussian Works with VSimPD and VSimPA licenses.

• esirk1stOrder Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

• esirk2ndOrder, . . . esirk7thOrder Works VSimPD and VSimPA licenses.

No offset default = linearFromNodalFields, default for all others = esirk1stOrder

The default for offset = none is linearFromNodalFields, otherwise the default is esirk1stOrder. When using
higher order particles, maxIntDepHalfWidth must be set accordingly in the Grid block (see Additional
Attributes for Particle Simulations).

dumpOnly (integer)
If set to true 1 in a Field block of kind = depField then depositors depositing into that field will only execute
at dump time. This is useful for occurrences of depField that are dumped but not needed for the update, such
as charge density for EM PIC.

skipChecks (integer, default = 0)
When restoring a simulation with static fields or other fields that do not dump regularly, Vorpal performs an
automated check on the local dumpSteps line or Expression block to ensure that restoring from an older
.h5 dump will not adversely impact the simulation. The user can set this attribute to 1 to signal that the field is
safe to restore from any dump step and thus ignore these checks.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in Output Data in
the VSim User Guide.

3.7. Multifield 107

VSim Reference Manual, Release 11.0.1-r3016

Blocks Contained Within a Field Block

BoundaryCondition (block)
Boundary condition for the field.

InitialCondition (block)
Initial condition for the field.

Source (block)
A source for the field. This is the same as a BoundaryCondition for the field, however may be more useful
for introducing a condition over a region of the domain rather than a plane or line as you would expect from a
boundary condition.

Also See

Initial and Boundary Conditions

InitialCondition

Initial and Boundary Conditions

Nested input block for fields in MultiField that is applied only at the beginning of the simulation to
describe initial conditions. In typical use, an InitialCondition is set throughout a volume (although this
convention is not a requirement and, as with a BoundaryCondition, an InitialCondition may be set at select
surfaces).

BoundaryCondition: Nested input block for fields in MultiField that is applied at every time step to describe
boundary conditions. In typical use, boundary conditions are set at select surfaces (although this convention is
not a requirement and, as with an InitialCondition, a boundary condition may be set throughout a volume).

Periodic boundary conditions are defined in the Decomp input block.

InitialCondition and BoundaryCondition Parameters

kind (string)
Type of boundary condition. Possible kind values include:

• constant

• copy

• varadd

• varset

• outGoingWave (for electromagnetic fields only)

lowerBounds (integer vector)
Lower bounds of the volume where initial or boundary condition is applied.

upperBounds (integer vector)
Upper bounds of the volume where initial or boundary condition is applied.

amplitudes (float vector)
Values of the amplitude for each of the indices.

phases (float vector)
Values of the phase for each of the indices.

108 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

components (integer vector)
Components to be set by the condition.

STFunc (block)
The space-time function to be used. STFunc Block is a kind-dependent parameter. The STFunc block must be
named componentn where n is the component the function is setting. STFunc applies only to the following
initial or boundary conditions:

• varadd

• varset

• outGoing

sourceLowerBounds (integer vector)
Lower bounds of the region from which to copy; copy boundary condition only.

sourceUpperBounds (integer vector)
Upper bounds of the region from which to copy; copy boundary condition only.

maxApplyTime (real)
Time until which this boundary condition is applied; this applies to only BoundaryCondition.

BoundaryCondition outGoing Kind

Specifying kind = outGoing in the BoundaryCondition block sets an open boundary which allows electromag-
netic waves with specific characteristics to leave the domain, instead of reflecting, as they would from a conductor.

You can also use the open BoundaryCondition to launch a wave. You might want to do this, for example, in the case
when you have launched a wave from the left, as a result of which some wave is reflected. You can use an outGoing
BoundaryCondition to launch the wave while allowing the reflected wave back through. See the Example of Using
kind = open to Handle Wave Reflection.

outGoing Kind Parameters

phaseVelocity (float)
Sets the phase velocity of the wave the user would like to leave the boundary. Giving phaseVelocity a value of the
speed of light allows plane waves in vacuum to leave a boundary. For modes in a waveguide or other structure,
the phase velocity may differ from the speed of light. A perfectly matched layer is required for allowing modes
with differing phase velocities all to leave a boundary.

Example BoundaryCondition Block for launching an electromagnetic wave

Wave launcher for E_y at left
<BoundaryCondition lower0Launcher>

kind = varset
lowerBounds = [0 -1 -1]
upperBounds = [1 21 21] # upperBounds = [1 NY1 NZ1]
minDim = 1
components = [1]
<STFunc component1>
k = [5026548.24574 0. 0.] # k = [KAY 0. 0.]
vg = 299790000.0 # vg = LIGHTSPEED
omega = 1.50690889859e+15
amplitudes = [2.56837310961e+12]

(continues on next page)

3.7. Multifield 109

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

phases = [0.] # sine
kind = planeWavePulse
widths = [4e-06 2e-05 2e-05] # widths = [WXPUMP WYPUMP WZPUMP]
origin = [-4e-06 0.0 0.0] # origin = [XSTARTPUMP 0.0 0.0]

</STFunc>
</BoundaryCondition>

Examples of BoundaryCondition Blocks for conductor electromagnetic boundary conditions

Set E_y to zero on x-lower boundary
<BoundaryCondition xLowerConductor>

kind = constant
Value same at all cells
lowerBounds = [0 -1 -1]
Lower cell limits for BC application
upperBounds = [1 21 21]
Upper cell limits for BC application
There should be one amplitude for each index
indices = [1]
E_y set by this
amplitudes = [0.]

</BoundaryCondition>

Set E_y and E_z to zero on x-upper boundary
<BoundaryCondition xUpperConductor>

kind = constant
lowerBounds = [40 -1 -1]
upperBounds = [41 21 21]
indices = [1 2]
amplitudes = [0. 0.]

</BoundaryCondition>

Example of Using kind = outGoingWave boundary condition

<BoundaryCondition rightOpen>
kind = outGoingWave
phaseVelocity = $V_OVER_C*LIGHTSPEED$
normalDir = 0
velOverC = V_OVER_C
lowerBounds = [NX -1 -1] # Lower cell limits for application of BC
upperBounds = [NX1 NY1 NZ1] # Upper cell limits for BC application
components = [1 2] # field components boundary is applied to
<STFunc function>
kind = constantFunc
amplitude = 0.

</STFunc>
</BoundaryCondition>

110 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example of Using kind = open to Handle Wave Reflection

<BoundaryCondition leftOpenWaveLauncher>
kind = outGoingWave
phaseVelocity = $V_OVER_C*LIGHTSPEED$
normalDir = 0
lowerBounds = [0 -1 -1]
upperBounds = [1 NY1 NZ1]
components = [2]
<STFunc function>
kind = planeWavePulse
amplitude = EWAVE
phase = 1.57
k = [KAY 0 0]
omega = OMEGA
vg = LIGHTSPEED
widths = [5.e-6 1.e-5 1.e-5]
origin = [-5.e-6 0.e-5 0.e-5]

</STFunc>
</BoundaryCondition>

See also

• MultiField

• Decomp

3.7.3 FieldUpdater Block

FieldUpdater

FieldUpdater

Field updaters are defined between the tags:

<FieldUpdater *nameOfThisUpdater*>

</FieldUpdater>

FieldUpdater Parameters

kind (required string)
Type of updater; one of the CPU updaters:

• curlUpdater

• curlUpdaterCoordProd

• cutCellPoisson

• cylEdgeToNodeVec

• deyMittraConstrainUpdater

3.7. Multifield 111

VSim Reference Manual, Release 11.0.1-r3016

• deyMittraUpdater

• divUpdater

• divUpdaterCoordProd

• dummyUpdater

• edgeToNodeVec

• faceToNodeVec

• fieldBinOpUpdater

• geometryUpdater

• gradBndryUpdater

• gradVecUpdater

• gradVecUpdaterCoordProd

• importFromFileUpdater

• lightFrameEnvelopeUpdater

• lightFrameEnvForceUpdater

• linearApplyUpdater

• linearSolveUpdater

• linIterUpdater

• linPlasDielcUpdater

• malUpdater

• neutralBoltzmannUpdater

• open

• permittivityUpdater

• phaseShiftVecUpdater

• potentialUpdater

• setEpsilonUpdater

• smooth1D

• STFuncUpdater

• unaryFieldOpUpdater

• userFuncUpdater

• yeeAmpereDielVecUpdater

• yeeAmpereUpdater

• yeeFaradayUpdater

lowerBounds (integer vector, required)
Lower bounds of updater region.

upperBounds (integer vector, required)
Upper bounds of updater region.

112 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Advanced parameters available with certain updaters

Global region modification parameters

There are a number of parameters that modify the global region to be updated (as specified in lowerBounds and
upperBounds) based on the component of the field being updated. These are available for the following updaters,
which all update a single vector field:

• curlUpdater

• curlUpdaterCoordProd

• yeeAmpereUpdater

• yeeConductorUpdater

• yeeFaradayUpdater

The global region modification parameters are:

expandToTopInComponentDir (optional integer, default = 0 (false))
When true: if the region upper bound in the direction of the component (mod 3) is the upper bound of the
simulation, and that direction is not periodic, then the upper bound is increased by one so that the region
includes the top of the simulation.

contractFromBottomInComponentDir (optional integer, default = 0 (false))
When true: if the region lower bound in the direction of the component (mod 3) is the lower bound of the
simulation, and that direction is not periodic, then the lower bound is increased by one so that the region excludes
the bottom of the simulation.

expandToTopInNonComponentDir (optional integer, default = 0 (false))
When true: if the region upper bound in a direction perpendicular to the component (mod 3) is the upper bound
of the simulation, and that direction is not periodic, then the upper bound is increased by one so that the region
includes the top of the simulation.

contractFromBottomInNonComponentDir (optional integer, default = 0 (false))
When true: if the region lower bound in a direction perpendicular to the component (mod 3) is the lower bound
of the simulation, and that direction is not periodic, then the lower bound is increased by one so that the region
excludes the bottom of the simulation.

expandAboveTopInComponentDir (optional integer, default = 0)
If the region upper bound in the direction of the component (mod 3) is the upper bound of the simulation or
higher, and that direction is not periodic, then the upper bound is increased by this value.

expandBelowBottomInComponentDir (optional integer, default = 0)
When true: if the region lower bound in the direction of the component (mod 3) is the lower bound of the
simulation or below, and that direction is not periodic, then the lower bound is decreased by this value.

expandAboveTopInNonComponentDir (optional integer, default = 0)
When true: if the region upper bound in a direction perpendicular to the component (mod 3) is the upper bound
of the simulation or higher, and that direction is not periodic, then the upper bound is increased by this value.

expandBelowBottomInNonComponentDir (optional integer, default = 0)
When true: if the region lower bound perpendicular to the direction of the component (mod 3) is the lower
bound of the simulation or below, and that direction is not periodic, then the lower bound is decreased by this
value.

Note: If both expandToTopInComponentDir and expandAboveTopInComponentDir are specified,
and the conditions for expansion described above are met, the upper bound in the component direction is first
increased by one, and then increased again by the value of expandAboveTopInComponentDir. If both

3.7. Multifield 113

VSim Reference Manual, Release 11.0.1-r3016

contractFromBottomInComponentDir and expandBelowBottomInComponentDir are specified, and
the conditions for contraction are met, the lower bound is first increased by one, and then decreased by the value of
expandBelowBottomInComponentDir. Similar behavior occurs for the corresponding non-component direc-
tion parameters.

Local region modification parameters

There are two parameters available to expand the local update region beyond the local domain, into the guard cells.
This can in certain cases be useful in simulations with periodic boundaries, to allow updaters to overwrite the values
imposed by the periodic boundary conditions. It can also be used to make parallel algorithms more efficient, by
updating the local guard cells directly rather than getting values messages from other domains. These are available for
the following updaters:

• curlUpdater

• curlUpdaterCoordProd

• open

• phaseShiftVecUpdater

• yeeAmpereUpdater

• yeeFaradayUpdater

The local region modification parameters are:

cellsToUpdateBelowDomain (optional integer vector, default = [0 0 0])
The number of cells (in each direction, x, y, and z) the updater updates below the local domain.

cellsToUpdateAboveDomain (optional integer vector, default = [0 0 0])
The number of cells (in each direction, x, y, and z) the updater updates above the local domain.

StencilElement

StencilElement

A code block describing a stencil element in MultiField updaters that use a user-defined stencil. The updater is:

linIterUpdater

StencilElement Parameters

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, the element will not be used in the stencil.

rowFieldIndex (required integer)
The index of the field to which this stencil element maps. Thus, when treating the stencil operation as a matrix,
a value in this field corresponds to a matrix row.

columnFieldIndex (required integer)
The index of the field from which this stencil element maps. Thus, when treating the stencil operation as a
matrix, a value in this field corresponds to a matrix column.

cellOffset (required integer vector)
The offset between the field component the stencil element maps to and the field component the element maps

114 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

from. Thus, a cellOffset of [𝑚 𝑛 𝑝] means that a cell will be updated from a cell displaced by 𝑚∆𝑥 +
𝑛∆𝑦 + 𝑝∆𝑧.

value (required float)
The coefficient of the linear operation between the the mapped field values. Thus, when treating the stencil
operation as a matrix, this is the value of the matrix entry.

FieldUpdater Kinds

CPU updaters:

curlUpdater

curlUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater operation that solves equations of the form:

𝜕F

𝜕𝑡
= 𝐴 (∇×G) + 𝐵H,

via the operation:

𝐹𝑖 (𝑡 + ∆𝑡) = 𝐹𝑖 (𝑡) + (𝑐0 + 𝑐1∆𝑡)
[︁
𝐴 (∇×G)𝑐𝑔+𝑖 + 𝐵𝐻𝑐ℎ+𝑖

]︁
,

F is the writeFields.

G is the first readFields .

H is an optional second readFields (if missing, the coefficient B is taken to be 0).

𝑖 is the updater component.

𝑐0 and 𝑐1 are the dtCoefficients values (represented in the form [𝑐0 𝑐1])

𝐴 and 𝐵 are the readFieldFactors values.

𝑐𝑔 and 𝑐ℎ are the readFieldCompShifts values (represented in the form [𝑐𝑔 𝑐ℎ] and usually both 0, see the note
following curlUpdater Parameters).

curlUpdater Differencing Definitions

Forward curlUpdater differencing definition:

(∇×𝐺)𝑖,𝑗,𝑘,𝑥 =
𝐺𝑖,𝑗+1,𝑘,𝑧 −𝐺𝑖,𝑗,𝑘,𝑧

∆𝑦
− 𝐺𝑖,𝑗,𝑘+1,𝑦 −𝐺𝑖,𝑗,𝑘,𝑦

∆𝑧
(3.1)

Backward curlUpdater differencing definition:

(∇×𝐺)𝑖,𝑗,𝑘,𝑥 =
𝐺𝑖,𝑗,𝑘,𝑧 −𝐺𝑖,𝑗−1,𝑘,𝑧

∆𝑦
− 𝐺𝑖,𝑗,𝑘,𝑦 −𝐺𝑖,𝑗,𝑘−1,𝑦

∆𝑧
(3.2)

3.7. Multifield 115

VSim Reference Manual, Release 11.0.1-r3016

curlUpdater Parameters

The curlUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the global
region modification parameters and local region modification parameters. In addition, curlUpdater takes the
following parameters:

readFields (required string vector)
A vector of either one or two strings. The first string is the name of the field to take the curl of, and if provided,
the second is the name of the field (multiplied by the specified factors) to add to the result.

writeFields (required string vector)
A vector containing a single element, which is the name of the field to update.

differencing (required string)
Either forward or backward, as described above.

useVecUpdater (optional integer, default = 0 (false))
If true, the updater will update all three components of the vector field specified in writeFields, beginning
with the specified component. The updated field must therefore have at least component + 3 components.

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is true, the first field component to update.

readFieldCompShifts (optional integer vector, default = [0 0])
This vector must have the same number of elements as readFields. It specifies the amount by which
to increment the component indices of the first field and the (optional) second field. It is equal to [𝑐𝑔 𝑐ℎ]
in the description above. For example, if a magnetic field is represented by components 3–5 of the field
EandB, then to calculate the curl of that magnetic field, one would specify readFields = [EandB] and
readFieldCompShifts = [3].

readFieldFactors (optional float vector)
If this is specified, there must be one element for each field specified in readFields. The terms in the update
for each field are multiplied by the corresponding factors; they are the coefficients 𝐴 and 𝐵 in the description
above. If not specified, the factors use values of 1 for each field.

dtCoefficients (optional float vector, default = [1. 0.])
Two components [𝑐0 𝑐1] as defined in the equation above. The result of the updater will be multiplied by (𝑐0 +
𝑐1∆𝑡), where ∆𝑡 is the current time step.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the offset specified in the updated Field. One of:

• cellcenter: If offset = none, or offset = edge4v and component = 0, then a cell is
considered interior if its node is adjacent to at least one cell with center inside the boundary.

If offset = edge, or offset = edge4v and component is not 0, then a cell is considered
interior if the edge specified by component is adjacent to at least one cell with center inside the
boundary.

If offset = face, then a cell is considered interior if the face specified by component is adja-
cent to at least one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

116 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• deymittra If offset = none, or offset = edge4v and component = 0, then a cell is con-
sidered interior if all nodes adjacent to (i.e. displaced by a single edge from) its node are inside the
boundary.

If offset = edge, or offset = edge4v and component is not 0, then a cell is considered
interior if the edge specified by component has at least one adjacent node inside the boundary, and
that edge is not ignored by the Dey-Mittra algorithm given the dmFrac parameter specified in the
gridBoundary.

If offset = face, then a cell is considered interior if all nodes adjacent to the face specified by
component are inside the boundary.

This interiorness option cannot be specified with offset = center.

• dmnodal This interiorness option is identical to deymittra.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example Yee Ampere (Ey) Update Block

To solve the y component of Ampere’s law with Maxwell’s correction,

∇×B = 𝜇0J + 𝜇0𝜀0
𝜕E

𝜕𝑡
, (3.3)

via the curlUpdater opperation

𝐸1(𝑡 + ∆𝑡) = 𝐸1(𝑡) + (0 + 1∆𝑡)

[︂
𝑐2 (∇×B)1 −

1

𝜖0
𝑆2

]︂
, (3.4)

where

E is the elecField, B is the magField, J is the current density, and S is the SumRhoJ field defined by

S = (𝜌, 𝐽0, 𝐽1, 𝐽2), (3.5)

use the following code:

<FieldUpdater ampere-y>
kind = curlUpdater
component = 1
differencing = backward
writeFields = [elecField]
readFields = [magField SumRhoJ]
readFieldFactors = [c^2 ~$(-1/\epsilon_0)$]
dtCoefficients = [0. 1.]
readFieldCompShifts = [0 1]

</FieldUpdater>

Adding 𝑆2 is adding 𝐽1, thus the component on the SumRhoJ field must be shifted so that 𝐽1 is added to 𝐸1.

curlUpdaterCoordProd

3.7. Multifield 117

VSim Reference Manual, Release 11.0.1-r3016

curlUpdaterCoordProd

Works with VSimPD and VSimMD licenses.

This is a variation of the curlUpdater MultiField updater that should be used whenever non-uniform
or non-Cartesian grids are used in the simulation. The FieldUpdater variety does not currently work with
grid boundaries, however the FieldMultiUpdater variety does.

curlUpdaterCoordProd Parameters

The curlUpdaterCoordProd takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the global region modification parameters and local region modification parameters. In addition,
curlUpdaterCoordProd takes the following parameters:

readFields (required string vector)
A vector of either one or two strings. The first string is the name of the field to take the curl of, and if provided,
the second is the name of the field (multiplied by the specified factors) to add to the result.

writeFields (required string vector)
A vector containing a single element, which is the name of the field to update.

differencing (required string)
Either forward or backward, as described above.

useVecUpdater (optional integer, default = 0 (false))
If true, the updater will update all three components of the vector field specified in writeFields, beginning
with the specified component. The updated field must therefore have at least component + 3 components.

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is true, the first field component to update.

readFieldCompShifts (optional integer vector, default = [0 0])
This vector must have the same number of elements as readFields. It specifies the amount by which
to increment the component indices of the first field and the (optional) second field. It is equal to [𝑐𝑔 𝑐ℎ]
in the description above. For example, if a magnetic field is represented by components 3–5 of the field
EandB, then to calculate the curl of that magnetic field, one would specify readFields = [EandB] and
readFieldCompShifts = [3].

readFieldFactors (optional float vector)
If this is specified, there must be one element for each field specified in readFields. The terms in the update
for each field are multiplied by the corresponding factors; they are the coefficients 𝐴 and 𝐵 in the description
above. If not specified, the factors use values of 1 for each field.

dtCoefficients (optional float vector, default = [1. 0.])
Two components [𝑐0 𝑐1] as defined in the equation above. The result of the updater will be multiplied by (𝑐0 +
𝑐1∆𝑡), where ∆𝑡 is the current time step.

includeCylAxis (optional integer, default = 0 (false))
Set this to true (1) if the cylindrical axis (𝑟 = 0) is included in this update. In 3D simulations, it is necessary to
specify two separate curlUpdaterCoordProd updaters; one with just the axis and one without. In 2D simulations
that will have divergence on the cylindrical axis it is also necessary to have this second updater for the cylindrical
axis.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

118 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example curlUpdaterCoordProd Block

<FieldUpdater yeeFaraday_0>
kind=curlUpdaterCoordProd
useVecUpdater=1
differencing=forward
lowerBounds=[0 1 0]
upperBounds=[NZ NR NPHI]
dtCoefficients=[0.0 1.0]
readFieldFactors=[-1.0]
readFields=[elecField]
writeFields=[magField]

</FieldUpdater>
<FieldUpdater yeeFaraday_0_cyl>

kind=curlUpdaterCoordProd
useVecUpdater=1
differencing=forward
includeCylAxis=1
lowerBounds=[0 0 0]
upperBounds=[NZ 1 NPHI]
dtCoefficients=[0.0 1.0]
readFieldFactors=[-1.0]
readFields=[elecField]
writeFields=[magField]

</FieldUpdater>

cutCellPoisson

cutCellPoisson

Works with a VSimPD license.

This is a MultiField FieldUpdater that solves the Poisson equation for the electrostatic potential, with
Dirichlet/metal boundaries, using the Trilinos library to execute the large matrix solve. The solve can
be performed for arbitrary potential specified on the boundaries (by a previous FieldUpdater), or the
boundary values can be set to equipotentials with this updater. In the latter case, it is possible to specify
that some of the distinct equipotential surfaces will float, with the potential determined by the charge on
each floating conductor.

There are two very different ways to set boundary potentials. Most commonly, the user will specify a
number of distinct conducting boundaries, along with the (time-dependent) voltage or charge on each
boundary. Each conductor is an equipotential (as a conductor should be), and information about a con-
ductors (such as voltage, charge, and capacitance) can be obtained using a conductorFunc.

Alternatively, the potentials on the boundaries can be taken from an arbitrary Field before each Poisson
solve. Although the user must then figure out how to set those field values, this allows arbitrary (non-
equipotential) Dirichlet boundary conditions. that specifies the potential at all necessary boundary points.
This precludes functionality such as filling the potential within the conducting bodies, calculating the
charge on conductors, and calculating capacitance and floating potentials.

3.7. Multifield 119

VSim Reference Manual, Release 11.0.1-r3016

cutCellPoisson Common Uses

The cutCellPoisson updater has a number of capabilities. Here are some common uses.

• Finding the electric potential in an arbitrary region with arbitrary Dirichlet boundary conditions specified via a
Field.

• Finding the electric potential in a region bounded by arbitrarily-shaped conductors with time-varying voltages.

• Evolving the electric potential in a region with floating conductors, with voltages determined by ab-
sorbed/emitted (charged) particles and/or user-specified (external) currents.

• Calculating capacitances.

• Evolving electrostatic systems with simple external circuits and charged particle motion within the sytem. For
example, one can observe the current induced by a charged particle flying through a grounded set of parallel
plates. (However, currently, all capacitance is simulated spatially; there is no easy way to add external capaci-
tances to the circuit.)

cutCellPoisson Basic Parameters

The cutCellPoisson kind takes the lowerBounds and upperBounds parameters of FieldUpdater (typically set to
[0, 0, 0] and [NX+1, NY+1, NZ+1], the bounds of the entire simulation including the uppermost nodes), as well as the
following parameters:

writeFields (required string vector: [phi, [edgeLengths]])
A list of Field objects containing the (scalar) electric potential (at grid nodes, units of Volts) to update, and, op-
tionally, a 3-component vector field to which the grid cell edge lengths (i.e., the lengths not in metal conductors)
will be written at initialization time. The edge lengths field may be helpful for diagnostics or post processing.

readFields (required string vector: [rho, [phi]])
A list of Field objects containing one or two elements, the (scalar) charge density (rho) field (at grid nodes, with
units of C/m^3 in 3D, C/m^2 in 2D, or C/m in 1D) plus an optional (scalar) electric potential field (units of
Volts).

If no second field is given, the boundary potentials will be specified by <Conductor> blocks. In this case, the
<Conductor>s will be equipotentials, and their voltages or charges will be specified within the Conductor Block.

If the second field (phi) is given, then the boundary values will be taken from that field, with each boundary
shape specified via a ConductorShape Block. This offers maximum flexibility in setting the Dirichlet boundary
conditions, but because the (so-called) ‘conductor shapes’ are not necessarily equipotentials, information such
as voltage, induced charge, and capacitance cannot be calculated. The second readField can be the same as the
first writeField, or it can be a completely different Field.

<LinearSolver> (code block, required)
A code block describing the linear solver used to solve the Poisson equation: cf. LinearSolver. See the example
below: solvers for symmetric matrices are appropriate for this problem, and for large (parallel) problems an
iterativeSolver with a multigrid preconditioner may offer the best performance.

cutCellPoisson Parameters (setting boundary values from the second readField)

<ConductorShape> code blocks
Each ConductorShape Block describes the the shape of a conductor. An arbitrary number of <ConductorShape>
blocks can be used.

120 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

If <ConductorShape>s are specified, a second readField must be given; the potential on the <Conductor-
Shape> boundaries will be set to the values from the second readField. Some other updater must be used to set
the values of the second readField.

cutCellPoisson Parameters (setting equipotentials on Conductors)

<Conductor> code blocks
Each Conductor Block describes the the shape of a conductor, and how the voltage is determined on that con-
ductor. An arbitrary number of <Conductor> blocks can be used.

If <Conductor>s are specified, only one readField may be given.

cutCellPoisson Parameters (setting a Dirichlet boundary condition)

<Conductor> code blocks.
The Dirichlet boundary condition could be imposed on a boundary using the Conductor block. Inside the
conductor block, a <ConductorShape> block could be used to select the boundary.

cutCellPoisson Parameters (defining a Dielectric shape within the simulation domain.)

<DielectricShape > code blocks.
The ‘DielectricShape’ block could be used to define a dielectric region within the simulation domain.

cutCellPoisson Parameters (imposing a Neumann (gradient) condition on the simulation boundary)

setGradientBoundary = [xmin xmax ymin ymax zmin zmax]
The entries of the vector xmin, xmax, . . . and zmax represent the boundaries in the coordinate directions. The
entries take either 1 or 0 to specify whether the boundary is Neumann or not. For example, if the upper boundary
in the x-direction and the lower boundary in the z-direction are Neumann, the vector is [0 1 0 0 1 0]. The gradient
values are specified using the vector ‘boundaryGradient’ as given below.

boundaryGradient = [0 0 0 0 0 0]
The vector entries as the gradient values to be set on the Neumann boundary. At present, the boundary condition
takes only ZEROS.

enforceMatrixSymmetry = 0
The parameter specifies whether or not to enforce matrix symmetry. If two of the boundaries at a corner or
edge are Neumann, according to the present discretization scheme, the matrix becomes asymmetric. Forcing the
matrix to be symmetric will result in an incorrect solution at the corners or edges. ‘enforceMatrixSymmetry’
takes 1 or 0 to enforce or not. Note that the matrix is enforced to be symmetric by default.

cutCellPoisson Usage Notes

• To calculate the electric field from the potential (taking into account the conductor geometry), use the gradB-
ndryUpdater.

• When particles are present near conducting surfaces and accuracy is important, the nodal electric field should
be extrapolated (to nodes just inside the metal regions) using the deyMittraFieldExtrapolator, so that
particles experience correct fields near metal surfaces.

3.7. Multifield 121

VSim Reference Manual, Release 11.0.1-r3016

• It is best not to let <Conductor>s overlap. If they do overlap, the updater will issue a WARNING and do its best
to yield a reasonable solution. However, the updater may calculate edge lengths inaccurately. Of course, this
situation is actually unphysical if the <Conductor>s have different voltages; if they have the same voltage, it’s
usually best to replace them with a single <Conductor>.

• It is okay to have two conductors get very close to each other (e.g., much closer than a grid cell size). In general
(of course) the simulation cannot be expected to resolve features smaller than a grid cell; however, cases like
two large spheres (or parallel plates) that almost touch should be handled correctly if the spheres (or plates) are
different <Conductor>s.

• For performing repeated poisson solves with non-zero space charge, setting convergenceMetric=rhs in
the iterativeSolver may reduce the solve time if the previous solution is similiar to the next solution. (Using rhs
with zero space charge is not recommended, because the right-hand-side will be zero except near conducting
boundaries with non-zero voltage, making it a poor choice for normalizing the residual error.)

cutCellPoisson Advanced Parameters

The following parameters have default values that are appropriate for the majority of simulations.

exactRestart (default false)
If true, then restarting a simulation should produce exactly the same results as if the simulation hadn’t been
halted and restarted. If false, then (at each timestep) the previous solution will be used as a guess for the
next solution – this reduces the time to solution (if convergenceMetric=rhs in the iterativeSolver), but
prevents the restart from being exact (although the previous solution is nearly reconstructed, it cannot always be
exactly reconstructed). Restarting with exactRestart=false still yields an equally valid solution – but a
solution that differs (by machine-precision levels, or by the solver tolerance) from the non-restarted solution.

Important: to work, this option must be set to true in the original run and also in the restarted simulation.

shiftNodesNearMetalToMetal (optional boolean, default true)
This option specifies how to deal with the difficult case of tiny edges, when the boundary surface cuts through
a cell edge extremely close to the cell node (i.e., almost all of the edge is in metal). An edge is tiny (in this
sense) if its fraction in dielectric is less than minEdgeFrac, which is by default the square root of the machine
precision. Tiny fractional edges are a problem because the potential difference across them is inevitably tiny,
so that subtracting the potentials (e.g., to find the electric field) can result in extreme precision loss, yielding an
essentially random value for the potential difference (hence for the electric field).

If true, then tiny edges are replaced with all-metal edges, effectively shifting the metal boundary slightly so that
it goes through the node. This is the recommended option; it’s usually the most robust and convenient option.
However, it does change the metallicity of some nodes and edges: i.e., some nodes that are technically (but just
barely) in dielectric will be considered to be in metal.

If false, then the metal boundary will be shifted slightly away from the node until all edge fractions are greater
than minEdgeFrac. This option should be used when it’s important not to change the metallicity of any node.

The effect of shifting the metal boundary introduces some error to the solution, but that error (especially in
double precision) will typically be orders of magnitude lower than the finite difference error due to finite cell
size.

minEdgeFrac (optional float, default: square root of machine
precision)

the minimum edge fraction allowed in dielectric. Any edges with smaller non-zero fractions in dielectric will
either be reduced to zero, or increased to at least this value, depending on the samp:shiftNodesNearMetalToMetal
attribute.

messagePotentialField (optional float, default true)
whether to message the potential field (the first writeField) across MPI ranks, setting guard cell values. If true,
then the UpdateStep containing this updater does not need to mention the potential field, though it won’t hurt to

122 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

do it twice. If this is false, then the accuracy test (cf. accuracyTestStepSlice) may give incorrectly high
values on domain boundaries.

asymmetryWarningLevel (optional float, default 0.005)
When using floating potentials, capacitance and conductance matrices must be formed; they should be symmet-
ric, but sometimes can be asymmetric, either due to finite precision truncation or to input file mistakes (e.g.,
letting conductors overlap). In these cases, a warning will be issued if the asymmetry (relative to the maximum
element of the matrix) surpasses this level; in any case, the matrix will be symmetrized. Small asymmetries
arise naturally from finite precision arithmetic; however, large asymmetries may indicate a problem interpreting
the given geometry correctly (e.g., due to overlapping conductors).

accuracyTestStepSlice (optional vector of integers, default
[20, 2147483647, 1000])

a python-like ‘slice’ specifying the timesteps [start, stop, step] at which the accuracy of “-
Laplacian.phi=rho/epsilon_0” will be tested and printed out (search output for “cutCellPoissonSolver [updater]
accuracy”). This is a relatively time-consuming operation, so it should be done infrequently. The default will
test accuracy at steps 20, 1020, 2020, 3020, etc.

This is sometimes useful because Trilinos solves a transformed matrix with a transformed right-hand side vector;
this error estimate shows the error of the solution in a more natural basis. Also, sometimes Trilinos thinks that it
hasn’t done a good enough job minimizing the residual (sometimes this happens, e.g., at t=0 when the potential
is zero everywhere), and this usually clarifies whether the solve has actually succeeded or not.

For this to work, messagePotentialField must be true.

detailedAccuracyEstimate (optional boolean, default: false)
If false, a basic error estimate is printed out at steps determined by accuracyTestStepSlice. If true, the
estimate will include a comma-separated-value table listing various norms and ways of measuring error (for
each individual MPI rank, in the appropriate comms file, as well as over all ranks). These quantities described
in terms of:

• rho: the charge density (at a node), in C

• phi: the potential (at a node), in V

• laplPhi: the laplacian of the potential (at a node), in V per square m; in finite difference, the divergence
involves the nodal volume V and dual face areas A; and the gradient uses edge lengths L, so we write
laplPhi = - V^{-1} div A L^{-1} grad phi.

• max_nn|phi A/Vdx|: for a given node, the maximum value, over the node and its nearest neighbors, of the
magnitude of phi times A/(V L), where A, V, and L are the geometric factors involved in calculating the
finite difference Laplacian.

• avg|x|: the average value of the magnitude of x over all nodes

• max|x|: the maximum value of the magnitude of x over all nodes

Norms and errors are reported for all interior grid nodes, as well as the subset of nodes that don’t touch any cell
edges cut by a conducting boundary; norms and errors for individual ranks are written to the appropriate comms
file along with the norms and errors for the entire simulation.

timingStepSlice (optional vector of integers, default
[10, 2147483647, 100])

a python-like ‘slice’ specifying the timesteps [start, stop, step] at which the timing for this updater will be printed
out (search output for “cutCellPoissonUpdater timing” and “time per Trilinos matrix solve”).

printEdgeLengths (optional string, default 'none')
whether to print (selected) cell edge lengths to the per-rank comms file: can be ‘none’, ‘modifiedOnly’, ‘fraction-
alOnly’, or ‘all’. If ‘modifiedOnly’, only edge lengths that were modified (usually because they were extremely
small; cf. samp:minEdgeFrac) will be printed.

3.7. Multifield 123

VSim Reference Manual, Release 11.0.1-r3016

printMatrices (optional vector of strings, default empty)
a list of Trilinos matrices/vectors to write to file in Matrix Market format: can be ‘M’ (interior Laplacian),
‘sqrtLminV’, ‘sqrtLminOverV’, ‘PMPbar’ (laplacian operating on boundary values), ‘phi1V_0’, ‘phi1V_1’, . . . ,
‘epsEdotdA_0’, ‘epsEdotdA_1’, where ‘_0’ and ‘_1’ (etc.) refer to the first and second (etc.) <Conductor>s
or <ConductorShape>s. Note that in the Matrix Market format that Trilinos outputs, indices are one-based,
although Trilinos uses zero-based indices.

rhsDumpSteps (optional vector of integers, default empty)
a list of timesteps at which the right-hand side of the (transformed) Poisson equation should be written to disk.

indexField (optional string)
the name of a vector <Field> into which to put the Trilinos vector index at each field location.

Example cutCellPoisson Blocks

This updater sets the voltage on one conductor to a function of time, while the other conductor floats—with a prescribed
current, as well as current from electrons and ions. Thus it uses <Conductor> blocks.

<FieldUpdater poisson>
kind = cutCellPoisson
lowerBounds = [0 0 0]
upperBounds = [40 80 40]
writeFields = [phi]
readFields = [rho]

Best practice: do not give the same name to the <Conductor> and
the gridBoundary.

<Conductor sphereC>
kind = setVoltage
calculateCharge = true
<ConductorShape shape>

kind = gridBoundary
gridBoundary = sphere

</ConductorShape>
<Expression voltage>

expression = 10. * sin(628*t)
</Expression>

</Conductor>

<Conductor smallSphereC>
kind = floating
initialCharge = -6e-11
ptclAbsorbers = [electrons.smallSphereAbsorber, ions.smallSphereAbsorber]
ptclSources = [electrons.smallSphereAbsorber, ions.emitSmallSphere]
<ConductorShape shape>

kind = gridBoundary
gridBoundary = smallSphere

</ConductorShape>
<Expression current>

expression should be a string, so if it looks like a number,
it should be surrounded by quotes. This value is in Amps.
expression = "-6e-11"

</Expression>
</Conductor>

<LinearSolver mySolver>
kind = iterativeSolver

(continues on next page)

124 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

convergenceMetric = rhs
<BaseSolver myBS>

kind = cg
</BaseSolver>
<Preconditioner precond>

kind = multigrid
mgDefaults = SA
numPdeEquations = 1

</Preconditioner>
tolerance = 1e-12
maxIterations = 10000

</LinearSolver>

</FieldUpdater>

This updater sets the boundary potential to the values given by the phi field (which must be previously set with some
other updater. . . being very careful to set values at every boundary node). Thus it uses <ConductorShape> blocks, not
<Conductor> blocks. It solves for the potential and writes it to the same phi field; however, in principle, different phi
fields could have been used for reading and writing.

<FieldUpdater poisson>
kind = cutCellPoisson
lowerBounds = [0 0 0]
upperBounds = [40 80 40]
writeFields = [phi]
readFields = [rho phi]

<ConductorShape sphereC>
kind = gridBoundary
gridBoundary = sphere

</ConductorShape>

<ConductorShape smallSphereC>
kind = gridBoundary
gridBoundary = smallSphere

</ConductorShape>

<LinearSolver mySolver>
kind = iterativeSolver
convergenceMetric = rhs
<BaseSolver myBS>

kind = cg
</BaseSolver>
<Preconditioner precond>

kind = multigrid
mgDefaults = SA
numPdeEquations = 1

</Preconditioner>
tolerance = 1e-12
maxIterations = 10000

</LinearSolver>
</FieldUpdater>

cylEdgeToNodeVec

3.7. Multifield 125

VSim Reference Manual, Release 11.0.1-r3016

cylEdgeToNodeVec

Works with VSimMD and VSimPD licenses.

This updater interpolates all components of a vector field between grid nodes and edges in cylindrical coordinates. It
should be used in conjucntion with the linPlasDielcUpdater in cylindrical coordinates, it is not necessary for standard
edge to node updates.

cylEdgeToNodeVec Parameters

The cylEdgeToNodeVec takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

readFields (required string vector)
A single element, specifying the field to interpolate.

writeFields (required string vector)
A single element, specifying the field to update with the interpolated values.

nodeToEdge (optional integer, default = 0 (false))
Whether to interpolate from nodes to edges instead of the default edges to nodes.

Example cylEdgeToNodeVec block

<FieldUpdater edgeToNodes>
kind = cylEdgeToNodeVec
lowerBounds = [0 0 0]
upperBounds = [NZ1 NR1 NPHI1]
readFields = [deltaelecField]
writeFields = [deltaNodalE]

</FieldUpdater>

MultiFiled-deyMittraConstrainUpdater

deyMittraConstrainUpdater

Works with VSimEM and VSimMD licenses.

Multifield updater that sets the electric field on the edges fully inside the conductor in a cut cell. This
is done such that the interpolated value of the electric field at the center of the cut segment obeys the
condition that the electric field parallel to the surface is 0. For cuts with two unknown edges, it also uses
the constraint that the derivative of the normal electric field at the center of the cut segment is 0. By
constraining the electric fields on the edges in this manner the interpolated fields will better match the
correct behavior as they approach the conducting surface represented by the cut segment.

deyMittraConstrainUpdater is designed purely to provide better field interpolation in the cut cells and is
not meant to do any dynamics. It should be used in conjugation with a deyMittraUpdater.

deyMittraConstrainUpdater Parameters

The deyMittraConstrainUpdater kind takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the following parameters:

126 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

readFields
(required string vector) A vector containing a single element, the electric field with an offset of edge.

writeFields
(required string vector): The same vector as in readFields.

gridBoundary
(required string): The boundary at which to modify the field.

Example deyMittraConstrainUpdater Block

<FieldUpdater deyMittraConstrain>
kind = deyMittraConstrainUpdater
lowerBounds = [0 0 0]
upperBounds = [$XSIZE+1$ $YSIZE+1$ $ZSIZE+1$]
readFields = [ElecMultiField]
writeFields = [ElecMultiField]
gridBoundary = cylinder

</FieldUpdater>

deyMittraUpdater

deyMittraUpdater

Works with VSimEM and VSimMD licenses.

MultiField updater that does the Yee Faraday update for Dey-Mittra (cut) cells. It updates those compo-
nents of the magnetic field whose faces are cut by the specified gridBoundary, and not ignored by the
Dey-Mittra algorithm given the dmFrac parameter of the boundary.

deyMittraUpdater Parameters

The deyMittraUpdater kind takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (required string vector)
A vector containing a single element, the electric field with an offset of edge.

writeFields (required string vector)
A vector containing a single element, the magnetic field to update with an offset of face.

gridBoundary (required string)
The boundary at which to update the field.

subtractYeeFaraday (optional integer, default = 0 (false))
If true, the change in magnetic field given by the standard Yee update is subtracted from any components updated
by this updater.

Example deyMittraUpdater Block

<FieldUpdater deyMittraFaraday>
kind = deyMittraUpdater
lowerBounds = [0 0 0]

(continues on next page)

3.7. Multifield 127

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

upperBounds = [XSIZE YSIZE ZSIZE]
readFields = [ElecMultiField]
writeFields = [MagMultiField]
gridBoundary = cylinder

</FieldUpdater>

Multifield-divUpdater

divUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that takes the divergence of the of a field, and writes the result into another field.

divUpdater Parameters

The divUpdater kind takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the fol-
lowing parameters:

readFields (required string vector)
A vector containing a single element, the name of a vector field of which to take the divergence.

writeFields (required string vector)
A vector containing a single element, the name of a scalar field to update.

differencing (optional string, default = backward)
One of forward or backward, specifying the direction in which to take the finite difference. The default,
backward, is generally used for taking the divergence of an edge field to update a node field; the forward
value is used for the divergence of a face field to update a cell-centered field.

skipFirst (optional integer, default = 0 (false))
Set this flag to 1 (true) to skip the first component of the vector field, i.e. to use components 1–3 in the divergence
rather than 0–2. This should be used when taking the divergence of J in a SumRhoJ charge-current field. A
SumRhoJ field has four components, the first of which is 𝜌; therefore the first component of this field must be
skipped to get to the J components.

factor (optional float, default = 1)
A factor that multiplies the end result after taking the divergence.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters. If this parameter is provided, then the field
specified in writeFields must have offset = none or offset = center.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the offset specified in the updated Field. One of:

• cellcenter: If offset = none, then a cell is considered interior if its node is adjacent to at least
one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

• deymittra: If offset = none, then a cell is considered interior if all nodes adjacent to (i.e. dis-
placed by a single edge from) its node are inside the boundary.

This interiorness option cannot be specified with offset = center.

128 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example divUpdater Block

<FieldUpdater divergence>
kind = divUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [ElecMultiField]
writeFields = [divE]
skipFirst = false

</FieldUpdater>

divUpdaterCoordProd

divUpdaterCoordProd

Works with VSimPD and VSimMD licenses.

MultiField updater that takes the divergence of the of a field, and writes the result into another field, on a
non-uniform or non-Cartesian grid.

divUpdaterCoordProd Parameters

The divUpdaterCoordProd kind takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

readFields (required string vector)
A vector containing a single element, the name of a vector field of which to take the divergence.

writeFields (required string vector)
A vector containing a single element, the name of a scalar field to update.

skipFirst (optional integer, default = 0 (false))
Set this flag to 1 (true) to skip the first component of the vector field, i.e. to use components 1–3 in the divergence
rather than 0–2. This should be used when taking the divergence of J in a SumRhoJ charge-current field. A
SumRhoJ field has four components, the first of which is 𝜌; therefore the first component of this field must be
skipped to get to the J components.

factor (optional float, default = 1)
A factor that multiplies the end result after taking the divergence.

includeCylAxis (optional integer, default = 0 (false))
Set this to true (1) if the cylindrical axis (𝑟 = 0) is included in this update. In 3D simulations, it is necessary
to specify two separate updaters; one with just the axis and one without. In 2D simulations that will have
divergence on the cylindrical axis it is also necessary to have this second updater for the cylindrical axis.

Example divUpdaterCoordProd Block

<FieldUpdater Div_k_Grad_T>
kind=divUpdaterCoordProd
lowerBounds=[0 1 0]
upperBounds=[NZ NR NPHI]
readFields=[HeatFlux]
writeFields=[dTemp]

(continues on next page)

3.7. Multifield 129

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<FieldUpdater>
<FieldUpdater Div_k_Grad_T_axis>

kind=divUpdaterCoordProd
includeCylAxis=1
lowerBounds=[0 0 0]
upperBounds=[NZ 1 NPHI]
readFields=[HeatFlux]
writeFields=[dTemp]

</FieldUpdater>

dummyUpdater

dummyUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that does not update values. Use of dummyUpdater may be helpful if you require
specific timing and messaging of fields. In the update step, you can specify a toDtFrac such that during
that update step, nothing is done to the field except for modifying its time.

dummyUpdater Parameters

The dummyUpdater kind requires the lowerBounds and upperBounds parameters of FieldUpdater, though they
are ignored. It also takes the following parameter:

writeFields (optional string vector, default = [])
A vector containing the names of any number of fields. The updater will modify the times of these fields.

Example dummyUpdater Block

<FieldUpdater dummy>
kind = dummyUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
writeFields = [activeEnvFld]

</FieldUpdater>

edgeToNodeVec

edgeToNodeVec

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that interpolates field components between grid edges and nodes.

nodeToEdge Parameters

The edgeToNodeVec updater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

130 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

readFields (required string vector)
A vector containing a single element, the name of the field to interpolate.

writeFields (required string vector)
A vector containing a single element, the name of field to update with the interpolated values.

nodeToEdge (optional integer, default = 0 (false))
If true, the updater interpolates from nodes to edges. By default, the updater interpolates from edges to nodes.

Example edgeToNodeVec Block

<FieldUpdater nodalEupdate>
kind = edgeToNodeVec
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
readFields = [elecField]
writeFields = [nodalE]

</FieldUpdater>

faceToNodeVec

faceToNodeVec

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that interpolates field components between grid faces and nodes.

faceToNodeVec Parameters

The faceToNodeVec updater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

readFields (required string vector)
A vector containing a single element, the name of the field to interpolate.

writeFields (required string vector)
A vector containing a single element, the name of field to update with the interpolated values.

nodeToFace (optional integer, default = 0 (false))
If true, the updater interpolates from nodes to faces. By default, the updater interpolates from faces to nodes.

Example faceToNodeVec Block

<FieldUpdater nodalBupdate>
kind = faceToNodeVec
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
readFields = [magField]
writeFields = [nodalB]

</FieldUpdater>

fieldBinOpUpdater

3.7. Multifield 131

VSim Reference Manual, Release 11.0.1-r3016

fieldBinOpUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that applies a mathematical operation on two fields (F and G) specified through the
readFields parameter, and writes the result to the writeFields parameter.

fieldBinOpUpdater Parameters

The fieldBinOpUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

readFields (required string vector)
A vector of the names of the two fields on which to operate.

writeFields (required string vector)
A vector containing a single element, the name of field to update.

binOp (required string)
Operation to apply to the field; one of add, subtract, multiply or divide. Operations are:

add: (aCoeff*Fj)+(bCoeff*Gj)
subtract: (aCoeff*Fj)-(bCoeff*Gj)
multiply: (aCoeff+Fj)*(bCoeff+Gj)
divide: (aCoeff+Fj)/(bCoeff+Gj)

readComponents (optional integer vector)
The components to use in the operand fields.

writeComponent (optional integer)
The component to update.

Note: The readComponents and writeComponent parameters work together, and if one is specified, the other
must be as well. If neither are specified, then all the components are updated. In that case, both of the readFields
and the writeFields must all have the same number of components.

aCoeff (optional float)
Coefficient for first field (F, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0.

bCoeff (optional float)
Coefficient for second field (G, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0.

132 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example fieldBinOpUpdater Block

<FieldUpdater addUpdate> # aA + bB
kind = fieldBinOpUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
binOp = add
aCoeff = 1.0
bCoeff = 1.0
readFields = [F1 F2]
writeFields = [addField]

</FieldUpdater>

geometryUpdater

geometryUpdater

works with VSimEM and VSimMD licenses.

MultiField updater that evaluates a geometric quantity (pertaining to the individual cell) and sets (or adds
or multiplies) the field component to that geometric quantity.

geometryUpdater Parameters

The geometryUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

operation (required string)
One of:

set: Fj=g

add: Fj+=g

multiply: Fj*=g

geometricQuantity (required string)
geometric quantity g (see operation) to be evaluated; one of:

volumeFraction: Fraction of the volume in the cell that is inside the specified
gridBoundary.

surfaceOutwardNormal: Outward normal to the surface of the gridBoundary in a cell.

surfaceArea The surface area of the queryGridBoundary within the cell.

faceAreaFraction The fraction of the cell face (normal to queryComponent) that is inside
the queryGridBoundary

edgeLineFraction The fraction of the cell edge (parallel to the queryComponent direction)
that is inside the queryGridBoundary.

octantVolumeFraction The fraction of the cell octant that is inside the
queryGridBoundary.

3.7. Multifield 133

VSim Reference Manual, Release 11.0.1-r3016

queryGridBoundary (required string)
Name of the gridBoundary to be used to calculate the geometricQuantity (as opposed to the gridBoundary
all updaters have, which determines which cells are updated by that updater).

queryComponent (optional integer, default = 0)
Component of the data to be read for the surfaceOutwardNormal, edgeLineFraction, and
faceAreaFraction quantities.

writeFields (required string vector)
A vector containing a single element, the name of field to update with the geometric data.

writeComponents (required integer vector)
The components of 𝐹 to update. The geometric quantity will be evaluated for each component.

Example geometryUpdater Block

<FieldUpdater calcVolPlane>
kind = geometryUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
operation = set
geometricQuantity = volumeFraction

update cell volume using queryGridBndry
queryGridBoundary = plane
writeFields = [VolFracPlane]
writeComponents = [0]

</FieldUpdater>

gradBndryUpdater

gradBndryUpdater

Works with VSimPD license.

The FieldUpdater of kind=gradBndryUpdater is a MultiField FieldUpdater that calculates the gra-
dient of a field (only) on fractional cell edges (i.e., on cell edges that are cut by a GridBoundary surface)
– taking into account the fractional edge lengths.

It can be used, for example, to find the static electric field (on cut cell edges) from a scalar electric potential
(on cell nodes). Most commonly, the potential comes from a cutCellPoisson updater, which solves for the
potential taking into account fractional edge lengths.

Another updater must be used to calculate the gradient on full (uncut) edges: cf. gradVecUpdater or
gradVecUpdaterCoordProd.

gradBndryUpdater Parameters

The gradBndryUpdater kind takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

writeFields (required string vector: [E])
A list containing a single 3-component vector Field, i.e., the electric field at cell edges. This updater will update
all 3 components.

readFields (required string vector: [phi])
A list containing a single scalar Field, i.e., the electric potential at cell nodes.

134 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

cutCellPoissonUpdater (optional string)
the name of a cutCellPoisson updater. The fractional edge lengths used to calculate the gradient will be identical
to those used by the cutCellPoissonUpdater updater, ensuring consistency. NOTE: gradBndryUpdater
must be placed after cutCellPoissonUpdater in the input file.

If this option is not specified, then metalGridBoundaries must be specified.

metalGridBoundaries (optional string vector)
a list of GridBoundary names; each GridBoundary represents an shape outside of which is all metal. The fraction
edge lengths will be obtained from the GridBoundaries. For calculating the electric field, it is recommended to
specify the cutCellPoissonUpdater instead of metalGridboundaries.

Each edge length will be the GridBoundary-interior fraction of the edge (not the exterior fraction). If two or more
of the metalGridBoundaries cut the same edge, the result will be one of the two – it is strongly recommended
that the metalGridBoundaries be separated by at least a full cell to avoid this situation.

factor (optional float, default: 1)
An arbitrary factor by which to multiply the field gradient. For calculating the electric field from a potential,
this should be set to -1 (negative one).

differencing (optional string, default: forward)
Currently, only forward differencing is allowed for this updater. (gradVecUpdater and gradVecUpdaterCoord-
Prod updaters allow the backward option as well.) This is appropriate for calculating the gradient of a field
located at cell nodes (with the gradient located at cell edges), as when calculating the electric field.

gradBndryUpdater Advanced Parameters

printMatrices (optional boolean, default: false)
If true, the elements of the sparse matrix representing this updater will be printed out.

Example gradBndryUpdater Blocks

The gradBndryUpdater sets the field value only on cut edges; another update (gradVecUpdater or gradVecUpdaterCo-
ordProd) must be used to set field values on full edges.

Unless the interiorness option is used (wisely) for the full-edge grad updater, the full-edge updater must perform
its update before the gradBndryUpdater so that the latter can overwrite the gradient on cut edges (cf. UpdateStep and
InitialUpdateStep).

<FieldUpdater setBulkE> # set E everywhere, ignoring the cut/exterior edges
kind = gradVecUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [phi]
writeFields = [E]
differencing = forward
factor = -1.

</FieldUpdater>
<FieldUpdater setBndryE>

kind = gradBndryUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [phi]
writeFields = [E]
differencing = forward
factor = -1.

(continues on next page)

3.7. Multifield 135

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

cutCellPoissonUpdater = poissonUpdater
</FieldUpdater>

<FieldUpdateStep step4>
toDtFrac = 1.
updaters = [poissonUpdater]
messageFields = [phi]

</FieldUpdateStep>
<FieldUpdateStep step5>

toDtFrac = 1.
updaters = [setBulkE setBndryE] # setBndryE must be done after setBulkE
messageFields = [E]

</FieldUpdateStep>

gradVecUpdater

gradVecUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that computes the gradient of a scalar field given by the readFields parameter and
writes the resulting vector field to writeFields.

gradVecUpdater Parameters

The gradVecUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (required string vector)
A single element, the name of the scalar field for which to compute the gradient.

writeFields (required string vector)
A single element, the vector field to update with the computed gradient.

factor (optional float, default = 1)
Factor by which to multiply the field.

differencing (optional string, default = forward)
The direction in which to take the finite differences, one of:

• forward: Performs a gradient of a nodal field to compute the gradient on grid edges.

• backward: Performs a gradient of a cell-centered field to compute the gradient on grid faces.

Example gradVecUpdater Block

<FieldUpdater grad_T>
kind = gradVecUpdater
lowerBounds = [0 0 0]
upperBounds = [$NX+1$ $NY+1$ $NZ+1$]
readFields = [Temperature]
writeFields = [HeatFlux]

</FieldUpdater>

gradVecUpdaterCoordProd

136 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

gradVecUpdaterCoordProd

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that computes the gradient of a scalar field given by the readFields parameter and writes the
resulting vector field to writeFields, on a non-uniform or non-Cartesian grid.

gradVecUpdaterCoordProd Parameters

The gradVecUpdaterCoordProd takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readFields (required, string, vector)
A single element, the name of the scalar field for which to compute the gradient.

writeFields (required, string, vector)
A single element, the vector field to update with the computed gradient.

factor (optional float, default = 1)
Factor by which to multiply the field.

includeCylAxis (optional integer, default = 0 (false))
Set this to true (1) if the cylindrical axis (𝑟 = 0) is included in this update. In 3D simulations, it is necessary
to specify two separate updaters; one with just the axis and one without. In 2D simulations that will have
divergence on the cylindrical axis it is also necessary to have this second updater for the cylindrical axis.

Example gradVecUpdaterCoordProd Block

<FieldUpdater gradPhi>
kind=gradVecUpdaterCoordProd
lowerBounds=[0 1]
upperBounds=[NZ NR]
readFields=[phi]
writeFields=[edgeE]
factor = 1.0

</FieldUpdater>
<FieldUpdater gradPhi_axis>

kind=gradVecUpdaterCoordProd
includeCylAxis=1
lowerBounds=[0 0]
upperBounds=[NZ 1]
readFields=[phi]
writeFields=[edgeE]
factor = 1.0

</FieldUpdater>

importFromFileUpdater

importFromFileUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Updates a field from a file (e.g,. an hdf5 file). This updater sets the values of a field from a dataset in an appropriate
file (e.g., a Vorpal field dump file).

3.7. Multifield 137

VSim Reference Manual, Release 11.0.1-r3016

importFromFileUpdater Parameters

The importFromFileUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the following parameters:

writeFields (required string vector)
A single element, the field to update with the imported data.

fileName (required string)
Name of the HDF5 file containing the data to read.

dataset (required string)
Name of the HDF5 dataset to read from the file.

component (optional integer, default = 0)
The component to read, if reading a single component. Either this parameter or writeComponents must be
given, but not both.

writeComponents (optional integer vector)
The components of the writeField to be set from the file. If given, the vector must have at least one element, and
elements must be in sequence, e.g., [0 1 2] or [2 3], not [0 2], not [3 2]. If writeComponents is not given,
the updater will update only the component corresponding to the component parameter. Either component
or writeComponents must be given, but not both.

datasetLowerBounds (optional integer vector)
See datasetUpperBounds.

datasetUpperBounds (optional integer vector)
With datasetLowerBounds, the bounds describing the subset of the file’s dataset (array) to be copied
to the field; the region of cells includes the lower bound, but excludes the upper (as usual for lowerBounds
and upperBounds in Vorpal). These bounds are specified by grid index, and must be of the same size as the
upper/lowerBounds provided. So for example to import the first 10 cells of a 3 component field

lowerBounds = [0 0 0] upperBounds = [10 10 10] dataSetLowerBounds = [0 0 0 0] datasetUpperBounds = [10
10 10 3]

If you wanted to import the first 10 cells of a 3 component field into cells 10-20 of the destination field it would
look like lowerBounds = [10 10 10] upperBounds = [20 20 20] dataSetLowerBounds = [0 0 0 0] datasetUpper-
Bounds = [10 10 10 3]

The length in each dimension must correspond to the length in a spatial dimension (of the volume described by
lower/upperBounds), in order. For example, if the updater updates a box in space of size 10 × 12 × 20, then
then the subset of the file’s dataset may be 10× 1× 12× 20 or 1× 10× 1× 12× 1× 12× 1, but it may not be
12 × 10 × 20 or 12 × 12 × 20.

(In a serial simulation, the above correspondence is relaxed if the allowDatasetReshapeInSerial op-
tion is true.)

The compatibility of bounds is slightly altered if copyUniformInDir is set; in this case, the length of the dataset
dimension corresponding to the direction specified by copyUniformInDir must be one, rather than the same as
the length of the updater’s bounds in that direction.

Default: include entire simulation domain + 1 in each dimension, and all components of the writeField (because
that corresponds to Vorpal’s field dump-files)

copyUniformInDir (optional integer)
Allows a (lower-dimensional) file dataset to be copied to a field slice, after which those values are copied
into adjacent field slices. For example, if a file contains a 2D dataset representing a function 𝑓(𝑥, 𝑦), set-
ting copyUniformDir = 2 would allow setting a 3D field 𝐹 (𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦) for every 𝑧. When
copyUniformInDir is specified, the dataset dimensions must correspond to the updater’s bounds after the
updater’s bounds have been modified to have length 1 in the direction of copyUniformDir.

138 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

For example, suppose we have a 1D dataset with length 4 and values [10,20,30,40], and a 2+1-
dimensional field with dimensions 4 × 3 × 1 (a 4 × 3 scalar field in 2D). If the dataset bounds
are dataSetLowerBounds=[0] and datasetUpperBounds=[4], and the field bounds are
lowerBounds=[0,1] and upperBounds=[4,2] (and writeComponents=[0], the only choice for
this scalar field), then the field will be set to:

0 0 0 0
10 20 30 40
0 0 0 0

(where the first dimension is horizontal, and the second vertical) but if field bounds are [0,1] and [4,3] and
copyUniformDir = 1, then the field will be set to:

0 0 0 0
10 20 30 40
10 20 30 40

allowDatasetReshapeInSerial (optional integer, default = 0 (false))
This option, available only for serial simulations, allows the datasetBounds to be reshaped to match the updater’s
bounds; for example, a 1D dataset with 12 elements might be used to update a 4× 3 sub-array of the writeField.
Use of this option is discouraged.

Example importFromFileUpdater Block

<FieldUpdater readB>
kind = importFromFileUpdater
fileName = sourceSim_B_5.h5
dataset = "B"
writeFields = [B]
writeComponents = [0 1 2]
lowerBounds = [0 0 0]
upperBounds = [$NX+1$ $NY+1$ $NZ+1$]

</FieldUpdater>

lightFrameEnvelopeUpdater

lightFrameEnvelopeUpdater

Works with VSimPA license.

Multifield updater that updates the envelope fields in the laser envelope model. To use it effectively, you must use
it with the lightFrameEnvelopeMultiField kind of MultiField. When using the envelope model with particles, the
species should be of kind envBoris Species Kind.

lightFrameEnvelope Updater Parameters

The lightFrameEnvelopeUpdater takes the lowerBounds and upperBounds parameters of FieldUp-
dater, as well as the following parameters:

readFields (required string vector)
Three field names: the active envelope field, the alternate field, and the susceptibility field. The envelope fields
are complex scalars, with the real part in component 0 and the imaginary part in component 1.

3.7. Multifield 139

VSim Reference Manual, Release 11.0.1-r3016

writeFields (required string vector)
Two field names: the active and alternate envelope fields.

omega (required float)
Angular frequency of the laser, in Hz.

Solver (required parameter block)
The lightFrameEnvelopeUpdater requires a block of type Solver of any name. This block provides
parameters for the linear solver used in the update.

In general, the possible values of solver block parameters correspond to the values of parameters of the AztecOO
library used by Vorpal. String parameters are case insensitive and need not have the AZ_ prefix. Not all AztecOO
parameters can be set from the input file, and the parameters in the example file have been found to work well.
However, solver parameters that you may want to adjust include:

kind (optional string): Specifies the iterative solver available in Aztec to use for the linear system of equations
of the envelope model. Please refer to the Trilinos documentation for further details. One of:

• cg

• gmres

• cgs

• tfgmr

• bicgstab

precond (optional string): Please refer to the Trilinos documentation for details regarding Trilinos precon-
ditioners. The precond parameter specifies a Trilinos preconditioner; one of:

• ml

• dom_decomp_ilu

• dom_decomp_ilut

• neumann

• ls

• jacobi

output (optional string): specifies information to be printed. Possible values to specify level of output in-
clude:

• all

• none: suppress residual data

• warnings

• last

• summary

tolerance (optional float): Tolerance for solver convergence.

Example lightFrameEnvelopeUpdater Block

<FieldUpdater envUpdater>
kind = lightFrameEnvelopeUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]

(continues on next page)

140 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

readFields = [activeEnvFld altEnvFld chi]
writeFields = [activeEnvFld altEnvFld]

omega = OMEGA

<Solver mySolver>
kind = gmres
precond = dom_decomp
output = all
tolerance = 1.e-08

</Solver>
</FieldUpdater>

lightFrameEnvForceUpdater

lightFrameEnvForceUpdater

Works with VSimPA license.

MultiField updater that computes the ponderomotive force from an envelope field in the Laser Envelope Model; see
lightFrameEnvelopeMultiField for details.

lightFrameEnvForceUpdater Parameters

The lightFrameEnvForceUpdater takes the lowerBounds and upperBounds parameters of FieldUp-
dater, as well as the following parameters:

readFields (required string vector)
A single element, the name of the envelope field.

writeFields (required string vector)
A single element, the name of the resulting force field.

Example lightFrameEnvForceUpdater Block

<FieldUpdater forceUpdater>
kind = lightFrameEnvForceUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [activeEnvFld]
writeFields = [forceFld]

</FieldUpdater>

linearApplyUpdater

linearApplyUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

3.7. Multifield 141

VSim Reference Manual, Release 11.0.1-r3016

Multifield updater that works by defining a matrix relationship, 𝐴𝑥 = 𝑏, between two vectors, 𝑥 and 𝑏, and the matrix
𝐴, e.g., [︂

𝐴00 𝐴01

𝐴10 𝐴11

]︂ [︂
𝐹1

𝐺1

]︂
=

[︂
𝐹2

𝐺2

]︂
.

linearApplyUpdater Parameters

The linearApplyUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

readFields (required string vector)
A vector containing the names of fields to read. If multiple components of a field are read, then the field name
must be repeated once for each component.

readComponents (required integer vector)
For each readField, a component; references to the jth readField will use the component specified in the
jth element of this vector.

writeFields (required string vector)
A vector containing the names of fields to update. If multiple components of a field are written, then the field
name must be repeated once for each component.

writeComponents (required integer vector)
For each writeField, a component; references to the jth writeField will use the component specified in
the jth element of this vector.

writeEquationToFile (optional integer, default = 0 (false))
The matrix 𝐴, left-hand side vector 𝑥, and (after solution) unknown vector 𝑏, will be written out in MatrixMarket
format when set to true.

matrixfiller (required parameter block)
To define the matrix A, you must use a MatrixFiller block. At least one MatrixFiller block is required for the
linearApplyUpdater.

vectorwriter (required parameter block)
To define the left-hand side vector x, you must use a VectorWriter block. At least one VectorWriter block is
required for the linearApplyUpdater.

vectorreader (required parameter block)
To access the unknown vector b, you must use a VectorReader block. At least one VectorReader block is
required for the linearApplyUpdater.

Example linearApplyUpdater Block

<FieldUpdater eyUpdate>

kind = linearApplyUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [edgeElec faceMag faceMag]
readComponents = [1 2 0] # 0 = Ey, 1 = Bz, 2 = Bx
writeFields = [edgeElec]

(continues on next page)

142 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

writeComponents = [1]

<MatrixFiller eyupmat>
kind = interior
<StencilElement eyey>

value = 1.
minDim = 0
cellOffset = [0 0 0]
rowFieldIndex = 0
columnFieldIndex = 0

</StencilElement>
<StencilElement eybxup>
...
</StencilElement>
...

</MatrixFiller>

<VectorWriter eyuplhs>
kind = fieldVectorWriter
minDim = 0
readField = faceMag
readComponent = 2
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
component = 1

</VectorWriter>

<VectorReader eyupunk>
kind = fieldVectorReader
minDim = 0
writeField = edgeElec
writeComponent = 1
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]

</VectorReader>

</FieldUpdater>

linearSolveUpdater

linearSolveUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that works by defining a matrix relationship, 𝐴𝑥 = 𝑏, between two vectors, 𝑥 and 𝑏, and the matrix
𝐴, e.g., [︂

𝐴00 𝐴01

𝐴10 𝐴11

]︂ [︂
𝐹1

𝐺1

]︂
=

[︂
𝐹2

𝐺2

]︂
.

linearSolveUpdater Parameters

The linearSolveUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

3.7. Multifield 143

VSim Reference Manual, Release 11.0.1-r3016

readFields (required string vector)
A vector containing the names of fields to read. If multiple components of a field are read, then the field name
must be repeated once for each component.

readComponents (required integer vector)
For each readField, a component; references to the jth readField will use the component specified in the
jth element of this vector.

writeFields (required string vector)
A vector containing the names of fields to update. If multiple components of a field are written, then the field
name must be repeated once for each component.

writeComponents (required integer vector)
For each writeField, a component; references to the jth writeField will use the component specified in
the jth element of this vector.

writeEquationToFile (optional integer, default = 0 (false))
The matrix 𝐴, right-hand side vector 𝑏, and (after solution) unknown vector 𝑥, will be written out in MatrixMar-
ket format when set to true.

MatrixFiller (required parameter block):

To define the matrix A, you must use a matrixFiller block. At least one matrixFiller block is required for
the linearSolveUpdater.

VectorWriter (required parameter block):

To define the right-hand side vector b, you must use a VectorWriter block. At least one VectorWriter
block is required for the linearSolveUpdater.

VectorReader (required parameter block):

To access the unknown vector x, you must use a VectorReader block. At least one VectorReader block is
required for the linearSolveUpdater.

LinearSolver (required parameter block):

To solve the equation, you must use a LinearSolver block.

Example linearSolveUpdater Block

<FieldUpdater eyUpdate>

kind = linearSolveUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [edgeElec faceMag faceMag]
readComponents = [1 2 0] # 0 = Ey, 1 = Bz, 2 = Bx
writeFields = [edgeElec]
writeComponents = [1]

<MatrixFiller eyupmat>
kind = interior
<StencilElement eyey>

value = 1.
minDim = 0
cellOffset = [0 0 0]
rowFieldIndex = 0
columnFieldIndex = 0

(continues on next page)

144 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</StencilElement>
<StencilElement eybxup>
...
</StencilElement>
...

</MatrixFiller>

<VectorWriter eyuprhs>
kind = fieldVectorWriter
minDim = 0
readField = faceMag
readComponent = 2
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
component = 1

</VectorWriter>

<VectorReader eyupunk>
kind = fieldVectorReader
minDim = 0
writeField = edgeElec
writeComponent = 1
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]

</VectorReader>

<LinearSolver mySolver>
kind = iterativeSolver
<BaseSolver>

kind = gmres
</BaseSolver>
<Preconditioner>

kind = multigrid
mgDefaults = SA

</Preconditioner>
tolerance = 1.e-10
maxIterations = 1000
output = 1

</LinearSolver>

</FieldUpdater>

linIterUpdater

linIterUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

General translation-invariant linear Multifield updater. Depending on the specified parameter operation, linIterUpdater
can perform the following updates for multiple fields: E1, ...,EN simultaneously, where:

𝐸𝑖
𝑏𝑖(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) =

∑︁
𝑗

𝐴𝑖𝑗𝐹
𝑗
𝑏′𝑗

(𝑥 + 𝑚𝑗∆𝑥, 𝑦 + 𝑛𝑗∆𝑦, 𝑧 + 𝑝𝑗∆𝑧, 𝑡)

𝐸𝑖
𝑏𝑖(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝐸𝑖

𝑏𝑖(𝑥, 𝑦, 𝑧, 𝑡) +
∑︁
𝑗

𝐴𝑖𝑗𝐹
𝑗
𝑏′𝑗

(𝑥 + 𝑚𝑗∆𝑥, 𝑦 + 𝑛𝑗∆𝑦, 𝑧 + 𝑝𝑗∆𝑧, 𝑡)

3.7. Multifield 145

VSim Reference Manual, Release 11.0.1-r3016

𝐸𝑖
𝑏𝑖(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝐸𝑖

𝑏𝑖(𝑥, 𝑦, 𝑧, 𝑡)
∑︁
𝑗

𝐴𝑖𝑗𝐹
𝑗
𝑏′𝑗

(𝑥 + 𝑚𝑗∆𝑥, 𝑦 + 𝑛𝑗∆𝑦, 𝑧 + 𝑝𝑗∆𝑧, 𝑡)

𝐸𝑖
𝑏𝑖(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) =

𝐸𝑖
𝑏𝑖

(𝑥, 𝑦, 𝑧, 𝑡)∑︀
𝑗 𝐴𝑖𝑗𝐹

𝑗
𝑏′𝑗

(𝑥 + 𝑚𝑗∆𝑥, 𝑦 + 𝑛𝑗∆𝑦, 𝑧 + 𝑝𝑗∆𝑧, 𝑡)

In each case, 𝑏𝑖 is the user-chosen component of the field Ei, 𝑏′𝑗 is the user-chosen component of the field Fj, 𝑚𝑗 , 𝑛𝑗 ,
and 𝑝𝑗 correspond to the cellOffset StencilElement parameter (see StencilElement), and ∆𝑥, ∆𝑦, and ∆𝑧 are the
dimensions of the cell.

linIterUpdater updates cell-by-cell, based on an internal iterator approach (hence the name iter). linIterUpdater eval-
uates the right-hand-side of the equation (as shown above) for a cell, applies the updates to the left-hand-side of the
equation for a cell, and then proceeds to the next cell. This is important to remember if a field is both a readFields
and a writeFields.

The matrix A is described in the input file in such a way as to be compatible with other matrix solvers in Vorpal. There
are a few differences, however, because with the linIterUpdater, the full matrix is never created, so the linIterUpdater
can perform some extra operations to modify matrix elements at each time-step with negligible computation. Vorpal
performs multiplication and division cell-by-cell, not using matrix multiplication.

You can choose to modify the matrix coefficients at each time-step. In many updates, for instance, you may prefer to
multiply the coefficients by the time-step at each time-step, allowing for (usually only very slightly) varying time-steps.
You are likely to find that this operation is too costly to implement in matrix updaters that construct the entire matrix.
(Of course, such updaters can use matrices that are not translationally invariant, while the linIterUpdater cannot.)

linIterUpdater cannot perform matrix solves, so rowFieldIndex always refers to writeFieldIndex, but
you must use the rowFieldIndex attribute. .columnFieldIndex refers to .readFieldIndex, meaning
the index of fields in the writeFields and readFields lists. For example, if readFields = [elecField
elecField elecField SumRhoJ SumRhoJ SumRhoJ] and readComponents = [0 1 2 0 1
2] then columnFieldIndex = 3 refers to SumRhoJ_0.

linIterUpdater Parameters

The linIterUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

operation (required string)
One of:

• set: See Equation 1.

• add: See Equation 2.

• multiply: See Equation 3.

• divide: See Equation 4.

readFields (required string vector)
A vector containing the names of fields to read. If multiple components of a field are read, then the field name
must be repeated once for each component.

readComponents (required integer vector)
For each readFields, a component; the jth component of this vector is used for the jth readFields
specified.

writeFields (required string vector)
A vector containing the names of fields to update. If multiple components of a field are written, then the field
name must be repeated once for each component.

146 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

writeComponents (required integer vector)
For each writeFields, a component; the jth component of this vector is used for the jth writeFields
specified.

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [𝑐0 𝑐1]. The matrix coefficients will be multiplied by (𝑐0 + 𝑐1∆𝑡) where ∆𝑡 is the current time
step. If 𝑐1 is not specified it is assumed to be zero.

FieldMatrix (required parameter block)
Describes matrix A. It must contain only StencilElement code blocks, each of which is used to describe an
element of matrix A.

Example linIterUpdater Block

<FieldUpdater ampereLinIterVec>
kind = linIterUpdater
operation = add
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
dtCoefficients = [0. 1.]
readFields = [Binit Binit Binit SumRhoJ SumRhoJ SumRhoJ]
readComponents = [0 1 2 1 2 3]
writeFields = [EcalcLinIterVec EcalcLinIterVec EcalcLinIterVec]
writeComponents = [0 1 2]
<FieldMatrix dEdt>
dEx / dt
<StencilElement ExBz0>

minDim = 2
value = $LIGHTSPEED**2/DY$
cellOffset = [0 0 0]
columnFieldIndex = 2
rowFieldIndex = 0

</StencilElement>
...

</FieldMatrix>
</FieldUpdater>

linPlasDielcUpdater

linPlasDielcUpdater

Works with VSimEM and VSimMD licenses.

Multifield updater that is used to describe linear plasma dielectric model for cold plasma. To use this updater,
readFields should always have a background magnetic field defined in the MultiField block. Also, if damping
is used the damping fields need to be added to readFields. In the update step, the nodal electric field must be
specified in the messageFields parameter.

linPlasDielcUpdater Parameters

The linPlasDielcUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

nspecies (required integer)
An integer value that defines the number of species (e.g., 2 might refer to Krypton ions and electrons).

3.7. Multifield 147

VSim Reference Manual, Release 11.0.1-r3016

massNumbers (required float vector)
A vector of floating point values that defines the mass of the species. See the example block for common mass
numbers.

chargeNumbers (required float vector)
A vector of floating point values that defines the charge of the species.

includeDamping (optional integer, default = 0 (false))
Defines whether damping on the simulation will be used.

readFields (required string vector)
The names of the fields to use in this update: The background magnetic field, of offset none, a particle density
field for each species, also of offset none, and if damping is included, a damping coefficient for each species.

writeFields (required string vector)
The fields to update: An electric field, of offset none, and a three-component current field for each species, also
of offset none.

Example linPlasDielcUpdater Block

<FieldUpdater plasmaDielectric>
kind = linPlasDielcUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
nspecies = 2
common mass numbers: e=0.5486e-3, He=4.00, N=14.00, Ne=20.18, Ar=39.95, Kr=83.80
massNumbers = [83.80 0.5486e-3]
chargeNumbers = [1.0 -1.0]
includeDamping = 0
readFields = [B0 density0ion1 density0electron]
writeFields = [nodalE linearJion1 linearJelectron]

</FieldUpdater>

Multifield-malUpdater

malUpdater

Works with VSimEM, VSimPA, and VSimMD licenses.

The malUpdater is a MultiField updater that uses isotropic electric and magnetic damping profiles to
absorb an incident wave in a slab. These Matched Absoring Layers (MALs) are more stable than Perfectly
Matched Layers (PMLs), which use the same electric and magnetic damping profiles, but are anisotropic.

malUpdater Parameters

The malUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the following
parameters:

upperOrLower (required string)
A string specifying whether the damping increases (upper) or decreases (lower) as the coordinate increases.

numOrDenom (required string)
A string, specifying whether this updater damps field by (1 - xi^pwr) (num) or 1/(1 + xi^pwr) (denom)

writeField (required string)
A string indicating field to damp. (E) or (B).

148 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

dir (required integer)
An integer, 0-ndim, in which damping coefficient should vary. (0), (1), or (2).

frac (optional float)
The peak damping amplitude: 0.5 is suggested, typical range is 0.125 to 2.0.

power (optional float)
The damping profile goes as frac*x^power: 3.0 is suggested, typical range is 1.0 to 4.0.

Example malUpdater Block

<FieldUpdater malexlow>
kind = malUpdater
lowerBounds = [0 0 0]
upperBounds = [MAL_THICKNESS NY NZ]
upperOrLower = lower
numOrDenom = denom
writeField = E
dir = 0
frac = 0.5
power = 3.0

</FieldUpdater>

multiDielectricUpdater

Works with VSimEM license.

This FieldUpdater sets the inverse permittivity to multiple gridBoundary shapes.

multiDielectricUpdater Parameters

The multiDielectricUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the following parameters:

permittivityField (required string)
The name of the vector field to write the inverse permittivity to.

backgroundPermittivity (required float)
The value of the permittivity for all other space that is not given in a DielectricShape block.

DielectricShape (optional block)
Any number of DielectricShape blocks may be included. These blocks allow for setting the permittivity inside a
pre-defined GridBoundary. If GridBoundaries specified in multiple DielectricShape blocks overlap, the permit-
tivity in the last such block is used; thus later blocks overwrite earlier ones. The parameters of a DielectricShape
block are described in DielectricShape Block.

multiDielectricUpdater Example

<FieldUpdater setInvEps>
kind = multiDielectricUpdater
lowerBounds = [0 0 0]
upperBounds = [46 51 51]

(continues on next page)

3.7. Multifield 149

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

permittivityField = invEps

<DielectricShape cylinder0Unionsphere0Shape>
boundary = cylinder0Unionsphere0
permittivity = 9.9

</DielectricShape>

<DielectricShape cube0Minuscylinder00Shape>
boundary = cube0Minuscylinder00
permittivity = 9.0

</DielectricShape>

backgroundPermittivity = 1.0
</FieldUpdater>

neutralBoltzmannUpdater

neutralBoltzmannUpdater

Works with VSimPD license.

MultiField updater that computes the electrostatic potential satisfying the Boltzmann relation. It reads a
charge density field 𝜌 and updates a potential field.

𝜑 = −𝑇0 𝑙𝑛
(︁ 𝜌

𝑛0𝑞0

)︁
− 𝜑0

neutralBoltzmannUpdater Parameters

The neutralBoltzmannUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readFields (required string vector)
A single element, the name of the field containing the charge density in component 0.

writeFields (required string vector)
A single element, the name of field to update. Component 0 of this field will be updated with the electrostatic
potential.

n0 (required float)
Background density in #/m3.

T0 (required float)
Temperature (in eV).

q0 (required float)
Charge of electron.

phi0 (required float)
Constant offset to electrostatic potential.

mion (required float)
(not used).

mindensity (required float)
Lowest density allowed.

150 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example neutralBoltzmannUpdater Block

<FieldUpdater esSolve>
kind = neutralBoltzmannUpdater

n0 = ELECDENS
T0 = ELECTEMPERATURE
q0 = ELECCHARGE
phi0 = 4.6
mindensity = NP2C

lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [rhoJ]
writeFields = [phi]

</FieldUpdater>

open

open

Works with VSimEM, VSimPD, and VSimMD licenses.

Allows for outgoing waves on a Yee grid. This is only allowable as a boundary condition on the domain
boundary.

open Parameters

The open MultiField updater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the local region modification parameters. In addition, open takes the following parameters:

readFields (required string vector)
A vector containing a single element, the name of the magnetic field to use in the open boundary comdition.

writeFields (required string vector)
A vector containing a single element, the name of the electric field to update with appropriate values for an open
boundary.

component (required integer)
The component of the electric field to update.

velOverC (required float)
Ratio of the wave velocity to the speed of light. velOverC can be negative to specify direction of propagation.

normalDir (optional integer)
Propagation axis of the outgoing wave. If normalDir is not specified, Vorpal assumes that the axis will be the
first simulated direction with an upper bound 1 greater than the lower bound.

STFunc (required parameter block)
A parameter block of type STFunc (with any name) must be specified. This describes the anticipated functional
form of the outgoing wave.

3.7. Multifield 151

VSim Reference Manual, Release 11.0.1-r3016

Example open Block

<FieldMultiUpdater leftOpenBC>
kind=open
lowerBounds = [0 -1 -1]
upperBounds = [1 $YSIZE+1$ $ZSIZE+1$]
readFields = [MagMultiField]
writeFields = [ElecMultiField]
components = [1 2]
velOverC = -1.0
<STFunc function>
kind = expression
expression = AMP * sin(OMEGA * t)

</STFunc>
</FieldMultiUpdater>

permittivityUpdater

permittivityUpdater

Works with a VSimEM license.

This is a MultiField updater that computes the effective tensor permittivity on the computational grid in the presence
of a material interface. One specifies a region and the relative permittivities inside and outside the region, and the
updater will compute the inverse physical permittivity tensor everywhere within lowerBounds and upperBounds,
including the effective tensor at the interface.

permittivityUpdater Parameters

The permittivityUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

region (required string)
The name of the STRgn block describing the dielectric geometry.

invPermittivityField (required string)
The name of the inverse permittivity tensor field to update. It must have 6 components.

The permittivities can be specified as either scalars or tensors. To use scalars, use the following parameters:

insidePermittivity (required float)
The relative dielectric permittivity inside the volume given in the region parameter.

outsidePermittivity (required float)
The relative dielectric permittivity outside the volume given in the region parameter.

To use tensor permittivities, use the following parameters:

insidePermittivityDiag (required float vector)
The diagonal components of the relative permittivity inside the volume given in the region pa-
rameter. This vector must have 3 elements, which correspond to [𝜖𝑥𝑥, 𝜖𝑦𝑦, 𝜖𝑧𝑧].

insidePermittivityOffDiag (optional float vector, default = [0. 0. 0.])
The off-diagonal components of the relative permittivity inside the volume given in the region
parameter. This vector must have 3 elements, which correspond to [𝜖𝑦𝑧, 𝜖𝑧𝑥, 𝜖𝑥𝑦]. This updater
enforces a symmetric permittivity tensor, i.e. 𝜖𝑗𝑖 = 𝜖𝑖𝑗 .

152 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

outsidePermittivityDiag (required float vector)
The diagonal components of the relative permittivity outside the volume given in the region pa-
rameter. This vector must have 3 elements, which correspond to [𝜖𝑥𝑥, 𝜖𝑦𝑦, 𝜖𝑧𝑧].

outsidePermittivityOffDiag (optional float vector, default = [0. 0. 0.])
The off-diagonal components of the relative permittivity outside the volume given in the region
parameter. This vector must have 3 elements, which correspond to [𝜖𝑦𝑧, 𝜖𝑧𝑥, 𝜖𝑥𝑦]. This updater
enforces a symmetric permittivity tensor, i.e. 𝜖𝑗𝑖 = 𝜖𝑖𝑗 .

Example permittivityUpdater Block

<FieldUpdater setEpsilon>
kind = permittivityUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
region = sphere
invPermittivityField = invEpsilon
insidePermittivityDiag = [REL_EPS_XX REL_EPS_YY REL_EPS_ZZ]
insidePermittivityOffDiag = [REL_EPS_YZ REL_EPS_XZ REL_EPS_XY]
outsidePermittivityDiag = [1.0 1.0 1.0]

</FieldUpdater>

phaseShiftVecUpdater

phaseShiftVecUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

A phaseShiftVecUpdater is a MultiField updater that treats the two specified fields as the real and imaginary
components of a single complex field, and applies a phase shift. Thus, if F and G are the fields and 𝜑 is the phase
shift, the operation is

[︂
F
G

]︂
↦→
[︂
F cos𝜑−G sin𝜑
F sin𝜑 + G cos𝜑

]︂
.

Therefore, if E = F + 𝑖G, then the operation is E ↦→ 𝑒𝑖𝜑E.

This updater is useful for applying a phase shift across a periodic boundary to enforce a specific Bloch
wavevector in a system with a periodic geometry.

phaseShiftVecUpdater Parameters

The phaseShiftVecUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the local region modification parameters. In addition, phaseShiftVecUpdater takes the following pa-
rameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

writeFields (required string vector)
The two fields to update. The first is the real part of the complex field (corresponding to F above) and the second
is the imaginary part (G).

3.7. Multifield 153

VSim Reference Manual, Release 11.0.1-r3016

phase (required float)
The phase to use in the phase shift transformation, corresponding to 𝜑 in the description above.

Example phaseShiftVecUpdater Block

<FieldUpdater leftPhaseShift_E>
kind = phaseShiftVecUpdater
lowerBounds = [-1 0 0]
upperBounds = [0 NY NZ]
cellsToUpdateBelowDomain = [1 1 1]
cellsToUpdateAboveDomain = [1 1 1]
writeFields = [elecField elecFieldI]
phase = -X_PHASE

</FieldUpdater>

potentialUpdater

potentialUpdater

Works with VSimEM, VSimPD, and VSimMD licenses.

An updater that calculates the potential due to a charge distribution field.

potentialUpdater Parameters

The potentialUpdater MultiField updater takes the lowerBounds and upperBounds parameters of Field-
Updater. In addition, potentialUpdater takes the following parameters:

sourceLowerBounds (required int vector)
The lower bounds of the region containing sources.

sourceUpperBounds (required int vector)
The upper bounds of the region containing sources.

direction (required integer)
The direction associated with the update region.

factor (required float)
Multiplicative factor for scaling of potential.

readField (required string vector)
A vector containing a single element, the name of the field to use in the potentialUpdater.

writeField (required string vector)
A vector containing a single element, the name of the field to update with appropriate values for a potentialUp-
dater.

readComponent (optional integer)
The component of the read field to be used.

writeComponent (optional integer)
The component of the write field to write to.

gammaVec (optional float vector)
Relativistic gamma used for scaling of lengths.

154 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

minDim (optional integer)
The minimum dimensionality for which to apply the updater.

Example potentialUpdater Block

<FieldUpdater psiZHiBoundaryCalculation>
kind = potentialUpdater
lowerBounds = [0 0 176]
upperBounds = [129 177 177]
minDim = 3
readField = kappa
readComponent = 0
writeField = psi
writeComponent = 0
direction = 2
sourceLowerBounds = [0 0 0]
sourceUpperBounds = [129 177 177]
restoreTimeFromField = phi
factor = 112940906675.81473
gammaVec = [490.2367906066536 1.0 1.0]

</FieldUpdater>

setEpsilonUpdater

setEpsilonUpdater

Works with VSimEM and VSimMD licenses.

Fills the symmetric inverseEpsilon field (6 components, xx, yy, zz, xy=yx, yz=zy, zx=xz) from the given dielectric
functions.

When a cell is partially filled (as determined by subsampling the functions over the cell), the dielectric is averaged
appropriately over the cell. The number of samples per cell should increase as the simulation resolution increases, to
maintain accuracy.

The setEpsilonUpdater requires one writeFields (the invEpsilon field with six (6) components) and no (0)
readFields.

To define the dielectric constant, use STFunc blocks with the name dielectricConstNM where N and M repre-
sent the components [X Y Z]. A total of 6 blocks (components) are needed. Vorpal will first look for XY, YZ, and ZX,
and use these values if they are present. However, if, XY is missing, Vorpal will use YX instead. If both XY and YX
are present, Vorpal will use XY and ignore YX.

To define the surface normals (the vector normal to the dielectric interface at any location (x,y,z) that is within a cell
length of the interface), use an STFunc block with a name surfNormalN where N represents the component [X Y
Z].

setEpsilonUpdater Parameters

The setEpsilonUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as
the following parameters:

writeFields (required string vector)
A single element, the name of the 6-component inverse permittivity tensor field to update.

3.7. Multifield 155

VSim Reference Manual, Release 11.0.1-r3016

samplesPerCell (optional integer vector, default = [1 1 1])
Number of locations (in each direction, 𝑥, 𝑦, and 𝑧) at which the dielectric is sampled in each cell. Although the
default is [1 1 1], usually [7 7 7] or higher would be a better choice.

dielectricConstXX (required parameter block)
This parameter block, which must be of type STFunc, specifies a function describing the 𝑥𝑥 component of the
relative permittivity.

dielectricConstYY (required parameter block)
Similar to dielectricConstXX, but describing the 𝑦𝑦 component.

dielectricConstZZ (required parameter block)
Similar to dielectricConstXX, but describing the 𝑧𝑧 component.

dielectricConstXY (required parameter block)

and

dielectricConstYX (required parameter block)
This parameter block, which must be of type STFunc, specifies a function describing the 𝑥𝑦 compo-
nent of the relative permittivity. At least one of these parameter blocks must be specified; if both are,
dielectricConstXY is used and dielectricConstYX is ignored.

dielectricConstYZ (required parameter block)

and

dielectricConstZY (required parameter block)
Similar to dielectricConstXY and dielectricConstYX, but describing the 𝑦𝑧 component. If both
are specified, dielectricConstYZ is used and dielectricConstZY is ignored.

dielectricConstZX (required parameter block)

and

dielectricConstXZ (required parameter block)
Similar to dielectricConstXY and dielectricConstYX, but describing the 𝑧𝑥 component. If both
are specified, dielectricConstZX is used and dielectricConstXZ is ignored.

surfNormalX (required parameter block)
This parameter block, which must be of type STFunc, specifies a function describing the 𝑥 component of the
unit vector normal to the dielectric interface at the point on the interface closest to the position of the function
argument. This value must be valid for any position argument within one grid cell of the interface.

surfNormalY (required parameter block)
Similar to surfNormalX, but describing the 𝑦 component of the surface normal unit vector.

surfNormalZ (required parameter block)
Similar to surfNormalX, but describing the 𝑧 component of the surface normal unit vector.

Example dielectricConst STFunc Block

<STFunc dielectricConstXZ>
kind = expression
expression = 1.+H(R^2-(x-X0)^2-(y-Y0)^2-(z-Z0)^2)*(REL_EPS_ZZ-1)

</STFunc>

156 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example surfNormal STFunc Block

<STFunc surfNormalX>
kind = expression
expression = x-X_SPHERE

</STFunc>

smooth1D

smooth1D

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Updater applies a multiplicative 1D digital filter of the form
[︀
𝑎 𝑏 𝑎

]︀
across a 1D grid for the specified

component of a specified field. smooth1D is typically used for a single pass smoothing of the current.
Only one field component can be smoothed. This updater can be applied to a 1D, 2D or 3D grid for which
smoothDir will give the specific axis on which to apply smooth1D in a 1D fashion.

smooth1D Parameters

The smooth1D updater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (required string vector)
A single element, the name of the field to smooth.

writeFields (required string vector)
A single element, the name of the field to update with the smoothed values.

aFac (optional float, default = 0.25)
The off-center stencil element value.

bFac (optional float, default = 0.5)
The center stencil element value.

smoothDir (optional integer, default = 0)
The direction over which to smooth.

smoothComp (optional integer, default = 0)
The field component to smooth.

Example smooth1D Block

<FieldUpdater smthPhiTau>
kind = smooth1D
lowerBounds = [1 0 0]
upperBounds = [NX NY NZ]
readFields = [phiTauFld]
writeFields = [phiTauFldSmth]
aFac = 0.25
bFac = 0.5
smoothDir = 0
smoothComp = 0

</FieldUpdater>

3.7. Multifield 157

VSim Reference Manual, Release 11.0.1-r3016

STFuncUpdater

STFuncUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that performs one of the following operations on a field F and an STFunc 𝑓 :

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) (3.6)

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡) + 𝑓(𝑥, 𝑦, 𝑧, 𝑡) (3.7)

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡)𝑓(𝑥, 𝑦, 𝑧, 𝑡) (3.8)

For updating a single component of F, the updater is straightforward; the operation is specified by the operation
parameter.

However, for updating multiple components of F, if different components of F are located at different places
(e.g., for a Yee electric field, 𝐸𝑥 and 𝐸𝑦 are located at different places within a mesh cell), STFunc is evaluated
only once for all components; STFunc is evaluated at the position of the component given by the component
parameter of the updater and the field offset of field F. In this case, the components of F that are updated are
those given by the parameter writeComponents.

If you want to have 𝑓 evaluated at the location of each component then you must use a sep-
arate STFuncUpdater definition for each component (or otherwise update all components using
FieldMultiUpdater).

STFuncUpdater Parameters

The STFuncUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

operation (required string)
One of:

• Set: See (3.6).

• Add: See (3.7).

• Multiply: See (3.8).

writeFields (required string vector)
A single element, the name of the field to update.

component (optional integer, default = 0)
Component 𝑗 of F to be updated. However, if writeComponents is not [0], the component, along with the
field offset of F, determines the location in each cell where the function f will be evaluated.

writeComponents (optional integer vector, default = [0])
List of components of F that will be updated.

Note: The STFunc 𝑓 will be evaluated only once per cell for all components, and the location within each cell at
which 𝑓 is evaluated is determined by the component parameter.

158 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [𝑐0 𝑐1]: the function will be multiplied by (𝑐0 + 𝑐1∆𝑡), where ∆𝑡 is the current time step. If
𝑐1 is not specified it is assumed to be zero.

STFunc (required parameter block)
A parameter block of type STFunc (with any name) must be specified. This describes 𝑓 .

Example STFuncUpdater block

<FieldUpdater initialPulse>
kind = STFuncUpdater
lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]
operation = set
writeFields = [elecField]
component = 2
<STFunc unimportantName> # a gaussian
kind = expression
expression = E_AMP * exp(-0.5 * ((x-X_INIT)^2 + (y-Y_INIT)^2 \

+ (z-Z_INIT)^2) / WIDTH_INIT^2)
</STFunc>

</FieldUpdater>

unaryFieldOpUpdater

unaryFieldOpUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Multifield updater that performs one of the following operations on a field F, another field G, and a STFunc 𝑓 :

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝑓(𝑥, 𝑦, 𝑧, 𝑡)𝐺𝑗(𝑥, 𝑦, 𝑧, 𝑡) (3.9)

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡) + 𝑓(𝑥, 𝑦, 𝑧, 𝑡)𝐺𝑗(𝑥, 𝑦, 𝑧, 𝑡) (3.10)

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) = 𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡)𝑓(𝑥, 𝑦, 𝑧, 𝑡)𝐺𝑗(𝑥, 𝑦, 𝑧, 𝑡) (3.11)

𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) =
𝐹𝑗(𝑥, 𝑦, 𝑧, 𝑡)

𝑓(𝑥, 𝑦, 𝑧, 𝑡)𝐺𝑗(𝑥, 𝑦, 𝑧, 𝑡)
(3.12)

For updating a single component of F, the updater is straightforward; the operation is specified by the operation
parameter.

However, for updating multiple components of F, if different components of F are located at different places (e.g., for
a Yee electric field, 𝐸𝑥 and 𝐸𝑦 are located at different places within a mesh cell), STFunc is evaluated only once for all
components; STFunc is evaluated at the position of the component given by the component parameter of the updater
and the field offset of field F. In this case, the components of F that are updated are those given by the parameter
writeComponents.

If you want to have 𝑓 evaluated at the location of each component, you must use a separate STFuncUpdater
definition for each component (or otherwise update all components using FieldMultiUpdater).

3.7. Multifield 159

VSim Reference Manual, Release 11.0.1-r3016

unaryFieldOpUpdater Parameters

The unaryFieldOpUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

operation (required string)
One of:

• Set: See (3.9).

• Add: See (3.10).

• Multiply: See (3.11).

• Divide: See (3.12).

readFields (required string vector)
A single element, the name of the field to use in the operation (G, above).

writeFields (required string vector)
A single element, the name of the field to update (F, above).

component (optional integer, default = 0)
Component 𝑗 of F to be updated. However, if writeComponents is not [0], the component, along with the
field offset of F, determines the location in each cell where the function f will be evaluated.

readComponents (optional integer vector)
List of components of G used to update F, e.g., if writeComponents = [0 1 3] and readComponents
= [2 1 3], then 𝐹0 = 𝑓𝐺2, 𝐹1 = 𝑓𝐺1, and 𝐹3 = 𝑓𝐺3, where 𝑓 is evaluated at the location of component. If
this is not specified, it defaults to the value of writeComponents.

writeComponents (optional integer vector, default = [0])
List of components 𝑗 of F that will be updated.

Note: The STFunc 𝑓 will be evaluated only once per cell for all components, and the location within each cell at
which 𝑓 is evaluated is determined by the component parameter.

bumpReadIter (integer vector, default = [0 0 0])
Number of cells in each simulated dimension to offset the location where 𝐺 is written from the location where
𝐹 is read.

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [𝑐0 𝑐1]: the function 𝑓 will be multiplied by (𝑐0 + 𝑐1∆𝑡), where ∆𝑡 is the current time step. If
𝑐1 is not specified it is assumed to be zero.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters. If this parameter is provided, then the field
specified in writeFields must have offset = none or offset = center.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the .offset specified in the updated Field.

One of:

cellcenter: If offset = none, then a cell is considered interior if its node is adjacent to at least one cell
with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

160 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

deymittra: If offset = none, then a cell is considered interior if all nodes adjacent to (i.e. displaced by
a single edge from) its node are inside the boundary.

This interiorness option cannot be specified with offset = center.

STFunc (required parameter block)

A parameter block of type STFunc (with any name) must be specified. This describes 𝑓 .

userFuncUpdater

userFuncUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Sets field values to the result of a user-given function.

The FieldUpdater of kind = userFuncUpdater is a very flexible updater that sets a field to the result of a user-
given <Expression> (see expression). The expression takes as arguments field values and spatial positions, as well as
time and time step.

The userFuncUpdater can be used to do many different things; to understand how it works in some simple cases, it
may be easier to skip to the examples at the end of this section.

The userFuncUpdater places iterators at the first cell of each read/writeField. The iterators are then moved from cell
to cell; each iterator keeps track of its position and the field value at that position. As the iterators are collectively
moved from cell to cell, an update is performed at each cell. An iterator knows its cell index, as well as the exact
spatial location of the field value corresponding to that cell index (taking into account the field offset; e.g., the Yee
electric field is usually located at the center-edges of a cell).

A userFuncUpdater has one iterator for every writeField, and one for every readField. The userFuncUpdater sets
the field-values through the iterators on its writeFields according to a function of, among other things, the iterator
positions, and the values of the readFields at their iterators. It then moves all the iterators by one cell and does the
same thing, etc.

A userFuncUpdater can also has one or more readScalars. These scalars are read only. They can be used as vari-
ables in the function expression. userFuncUpdater can not update any scalars. To updater a scalar, one should use
userFuncScalarUpdater.

A userFuncUpdater specifies a function (an Expression) that takes as arguments the values of the read fields, the
positions of the read- and write-Field iterators, as well as the time and time step; and the function returns a vector with
one value for each writeField (at each cell, each writeField is set to the corresponding value).

userFuncUpdater Parameters

The userFuncUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well as the
following parameters:

readFields (optional string vector, default = [])
The names of the fields to read. A field name can be repeated if multiple iterators are used from a single field.

readScalars (optional string vector, default = [])
The names of the scalars to read. A scalar name can be directly used as a variable in a userFunc expression.

writeFields (required string vector)
The names of the fields to write. A field name can be repeated if multiple iterators are used from a single field.

3.7. Multifield 161

VSim Reference Manual, Release 11.0.1-r3016

readComponents (optional integer vector)
The component used for each readField. If any readFields are specified, this must be as well, and have the
same number of elements as readFields.

writeComponents (required integer vector)
The component used for each writeField. This must have the same length as writeFields.

readItersShiftInX (optional integer vector)
This has the same length as readFields; by default it is all zeros. With this specified, each readFields it-
erator is shifted by the corresponding number of cells in the 𝑥 direction. For example, readItersShiftInX
= [1 0] will shift the iterators on the first readFields by one cell in the +𝑥 direction, and won’t shift the
iterators on the second readFields in 𝑥.

readItersShiftInY (optional integer vector)
Similar to readItersShiftInX, but shifts iterators in 𝑦. If the 𝑦 direction is not simulated, this is ignored.

readItersShiftInZ (optional integer vector)
Similar to readItersShiftInX, but shifts iterators in 𝑧. If the 𝑧 direction is not simulated, this is ignored.

readFieldVarNames (optional string vector)
The variable names given to the value of each field–this is how the field values will be referenced in the Ex-
pression. If any readFields are specified, this must be as well, and have the same number of elements as
readFields. Each name must be unique; some names are forbidden, such as t and dt and n.

readFieldPosVariables (optional string vector)
The names given to the variables representing the position of the corresponding readField value; each such
variable is an 𝑁 -dimensional vector, where 𝑁 is the dimension of the simulation. However, notUsed means
that the corresponding field position is not used in the Expression; ignoring a position in this way can speed
up computation. If pos is the variable name given to a certain readField, then the variable pos (that appears
in the Expression) will be an 𝑁 -dimensional vector. For example, in an expression, the 𝑥 position would be
accessed by select(pos, 0) and the 𝑦 position (in 2D or 3D simulation) by select(pos, 1). If given,
this parameter must be a vector with the same length as readFields. If not given, all elements are set to
notUsed.

writeFieldPosVariables (optional string vector)
Analogous to readFieldPosVariables, but for writeFields.

updateFunction (required parameter block)
A parameter block of type Expression and name updateFunction is required to define the function used
to update the writeFields. This block takes the same parameters as an expression UserFunc, except for
Input blocks and the inputOrder parameter. The input variables for the expression are defined by the
above parameters, so they are not to be specified in the updateFunction block. In addition, the expression
can take the following input valiables:

t: The simulation time (actually, the time to which the updater been told to update its writeFields; c.f. toDtFrac
in a MultiField UpdateStep).

dt: The most recent time step (∆𝑡).

n: The current simulation step (an integer).

(These names are reserved—they cannot be used as variable names in readFieldVarNames,
readFieldPosVariables, or writeFieldPosVariables.)

The Expression must return a vector with the same length as the number of writeFields—each writeField value
will be set to the corresponding component of the return vector.

162 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

userFuncUpdater Examples

Here is a userFuncUpdater to set a scalar field 𝐹 to a function 𝑓(𝑥, 𝑦, 𝑧, 𝑡):

<FieldUpdater setF>
kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
writeFields = [F]
writeComponents = [0]
writeFieldPosVariables = [Fpos] # just a choice of name
maxNumEvals = 64
<Expression updateFunction>
$ X = select(Fpos, 0) # makes the function more readable
$ Y = select(Fpos, 1)
expression = sin(kx * X + ky * Y + kz * select(Fpos, 2) - omega * t)
<Term kx>

kind = constant
value = [10.]

</Term>
<Term ky>

kind = constant
value = [20.]

</Term>
<Term kz>

kind = constant
value = [3.]

</Term>
<Term omega>

kind = constant
value = [$ LIGHTSPEED * math.sqrt(10^2 + 20^2 + 3^2) $]

</Term>
</Expression>

</FieldUpdater>

The above could be done equally well with a STFuncUpdater. However, setting a vector field F to a field can be done
better with a userFuncUpdater, since it can evaluate the function at a different position for each component:

<FieldUpdater setF>
kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
writeFields = [F F F]
writeComponents = [0 1 2]
writeFieldPosVariables = [FxPos FyPos FzPos]
maxNumEvals = 64
<Expression updateFunction>
kind = expression
$ XPHASE = kx * select(FxPos,0) + ky * select(FxPos, 1) + kz * select(FxPos, 2)
$ YPHASE = kx * select(FyPos,0) + ky * select(FyPos, 1) + kz * select(FyPos, 2)
$ ZPHASE = kx * select(FzPos,0) + ky * select(FzPos, 1) + kz * select(FzPos, 2)
expression = sin(vector(XPHASE, YPHASE, ZPHASE) - omega * t)
<Term kx>

kind = constant
value = [10.]

</Term>
<Term ky>

(continues on next page)

3.7. Multifield 163

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = constant
value = [20.]

</Term>
<Term kz>

kind = constant
value = [3.]

</Term>
<Term omega>

kind = constant
value = [$ LIGHTSPEED * math.sqrt(10^2 + 20^2 + 3^2) $]

</Term>
</Expression>

</FieldUpdater>

Here is a userFuncUpdater that multiplies a 3-vector field G by ∆𝑡 and adds it to a 3-vector field F (i.e., F ↦→
F + G∆𝑡):

<FieldUpdater addGdtToF>
kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
readFields = [F F F G G G]
readComponents = [0 1 2 0 1 2]
readFieldVarNames = [Fx Fy Fz Gx Gy Gz]
writeFields = [F F F]
writeComponents = [0 1 2]
maxNumEvals = 64
<Expression updateFunction>
expression = vector(Fx, Fy, Fz) + dt * vector(Gx, Gy, Gz)

</Expression>
</FieldUpdater>

Here is an example of a userFuncUpdater that uses the values of a History to perform its update (see historyFunc):

A field updater that sets field values to the x-index of the cell
with the (most recent) maximum value of a field, by using a History
that finds that x-index. Of course, one could also use a History
that calculates voltage to use as feedback.
<FieldUpdater setFieldToIndexOfMax>

kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [2 2 2]
writeFields = [G]
writeComponents = [0]
<Expression updateFunction>
Presumably the input file defines a <History max> that records
the location of the maximum field value;
This HistoryFunc gets the x-value of that location.
<UserFunc iOfLastMax>

kind = historyFunc
index = [0] # x-index of cell
history = max

</UserFunc>
get (1000*) x-index of cell with most recent maximum value of field F
expression = 1000 * iOfLastMax(0)

</Expression>
</FieldUpdater>

164 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

yeeAmpereDielVecUpdater

yeeAmpereDielVecUpdater

Works with VSimEM license.

Multifield updater that updates all three (3) components of the electric field according to Ampere’s Law,
but takes into account the inverse dielectric tensor given by a 6-component inverse permittivity field. You
can set this inverse permittivity field with a permittivityUpdater or setEpsilonUpdater.

yeeAmpereDielVecUpdater Parameters

The yeeAmpereDielVecUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readFields (required string vector)
The names of the three fields to use in the update. These are given, for instance, as readFields = [yeeB
source invEpsilon], where:

yeeB: Name of the Yee magnetic field.

source: This is the name of a field containing the current source. This can either be a 3-component field
contining just the current, or a 4-component field containing the current in its last three components.

invEpsilon: 6-component symmetric inverse permittivity field, with components.

(︀
(𝜖−1)𝑥𝑥, (𝜖

−1)𝑦𝑦, (𝜖
−1)𝑧𝑧, (𝜖

−1)𝑦𝑧, (𝜖
−1)𝑧𝑥, (𝜖

−1)𝑥𝑦
)︀
.

This can be created with permittivityUpdater or setEpsilonUpdater.

writeFields (required string vector)
A single element, the name of the electric field to update.

dtCoefficients (optional float vector, default = [1. 0.])
Two components [𝑐0 𝑐1] as defined in the equation above. The result of the updater will be multiplied by (𝑐0 +
𝑐1∆𝑡), where ∆𝑡 is the current time step.

yeeAmpereDielVecUpdater Example

<FieldUpdater yeeAmpere>
kind = yeeAmpereDielVecUpdater
lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]
readFields = [magField J invEpsilon]
writeFields = [elecField]

</FieldUpdater>

yeeAmpereUpdater

3.7. Multifield 165

VSim Reference Manual, Release 11.0.1-r3016

yeeAmpereUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that updates an electric field, defined on grid edges, according to the standard second-order Yee
leapfrog algorithm, using a magnetic field (on faces), and optionally a current field. This current field can be a 3-vector
or the last three components of a 4-vector.

yeeAmpereUpdater Parameters

The yeeAmpereUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the global region modification parameters and local region modification parameters. In addition,
yeeAmpereUpdater takes the following parameters:

readFields (required string vector)
A vector of either one or two strings. The first string is the name of magnetic field, and if provided, the second
is the name of the current field to add to the result (multiplied by the specified factors).

writeFields (required string vector)
A vector contining a single element, the name of the electric field to update.

useVecUpdater (optional integer, default = false)
If true, the updater will update all three components of the electric field, beginning with the specified
component. The updated field must therefore have at least component + 3 components.

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is true, the first field component to update.

readFieldCompShifts (optional integer vector, default = [0 1])
This vector must have the same number of elements as readFields. It specifies the amount by which to
increment the component indices of the first field and the (optional) second field. For example, if a magnetic
field is represented by components 3–5 of the field EandB, then to calculate the curl of that magnetic field, one
would specify readFields = [EandB] and readFieldCompShifts = [3]. If the second (current)
field is not a 4-vector, then it is proper to set readFieldCompShifts = [0 0].

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the offset specified in the updated Field. One of:

• cellcenter: If offset = none, or offset = edge4v and component = 0, then a cell is
considered interior if its node is adjacent to at least one cell with center inside the boundary.

If offset = edge, or offset = edge4v and component is not 0, then a cell is considered
interior if the edge specified by component is adjacent to at least one cell with center inside the
boundary.

If offset = face, then a cell is considered interior if the face specified by component is adja-
cent to at least one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

• deymittra If offset = none, or offset = edge4v and component = 0, then a cell is con-
sidered interior if all nodes adjacent to (i.e. displaced by a single edge from) its node are inside the
boundary.

166 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

If offset = edge, or offset = edge4v and component is not 0, then a cell is considered
interior if the edge specified by component has at least one adjacent node inside the boundary, and
that edge is not ignored by the Dey-Mittra algorithm given the dmFrac parameter specified in the
gridBoundary.

If offset = face, then a cell is considered interior if all nodes adjacent to the face specified by
component are inside the boundary.

This interiorness option cannot be specified with offset = center.

• .dmnodal This interiorness option is identical to deymittra.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example yeeAmpereUpdater Block

<FieldUpdater yeeAmpere>
kind = yeeAmpereUpdater
lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]
readFields = [yeeB]
writeFields = [yeeE]
useVecUpdater = true

</FieldUpdater>

yeeFaradayUpdater

yeeFaradayUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Updates a magnetic field, defined on grid faces, according to the standard second-order Yee leapfrog
algorithm, using an electric field defined on grid edges.

yeeFaradayUpdater Parameters

The yeeFaradayUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as
well as the global region modification parameters and local region modification parameters. In addition,
yeeFaradayUpdater takes the following parameters:

readFields (required string vector)
A single element, the electric field to use in performing the update.

writeFields (required string vector)
A vector contining a single element, the name of the magnetic field to update.

useVecUpdater (optional integer, default = 0 (false))
If true, the updater will update all three components of the magnetic field, beginning with the specified
component. The updated field must therefore have at least component + 3 components.

3.7. Multifield 167

VSim Reference Manual, Release 11.0.1-r3016

component (optional integer, default = 0)
The field component to update, or if useVecUpdater is true, the first field component to update.

gridBoundary (optional string)
If provided, only components on the interior of the specified GridBoundary will be updated. The method to
define the interior is given in the interiorness parameters.

interiorness (optional string, default = cellcenter)
If the gridBoundary parameter is specified, this is the method the used to determine whether a component is
interior to the boundary. The behavior depends on the offset specified in the updated Field. One of:

• cellcenter:

If offset = none, or offset = edge4v and component = 0, then a cell is consid-
ered interior if its node is adjacent to at least one cell with center inside the boundary.

If offset = edge, or offset = edge4v and component is not 0, then a cell is con-
sidered interior if the edge specified by component is adjacent to at least one cell with center
inside the boundary.

If offset = face, then a cell is considered interior if the face specified by component is
adjacent to at least one cell with center inside the boundary.

If offset = center, then a cell is considered interior if its center is inside the boundary.

• deymittra

If offset = none, or offset = edge4v and component = 0, then a cell is consid-
ered interior if all nodes adjacent to (i.e. displaced by a single edge from) its node are inside the
boundary.

If offset = edge, or offset = edge4v and component is not 0, then a cell is con-
sidered interior if the edge specified by component has at least one adjacent node inside the
boundary, and that edge is not ignored by the Dey-Mittra algorithm given the dmFrac parameter
specified in the gridBoundary.

If offset = face, then a cell is considered interior if all nodes adjacent to the face specified
by component are inside the boundary.

This interiorness option cannot be specified with offset = center.

• dmnodal

This interiorness option is identical to deymittra.

lowerSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the lower end of the local domain. The cells in the skin
are updated before the fields specified as messageFields in the UpdateStep or InitialUpdateStep block are
messaged. If not specified, the skin depth will be determined automatically.

upperSkinDepth (optional integer vector)
Specifies the number of skin cells, in each direction, on the upper end of the local domain. If not specified, the
skin depth will be determined automatically.

Example yeeFaradayUpdater Block

<FieldUpdater yeeFaraday>
kind = yeeFaradayUpdater
lowerBounds = [NX_BEGIN NY_BEGIN NZ_BEGIN]
upperBounds = [NX_END NY_END NZ_END]

(continues on next page)

168 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

readFields = [yeeE]
writeFields = [yeeB]
useVecUpdater = true

</FieldUpdater>

3.7.4 FieldMultiUpdater Block

FieldMultiUpdater

FieldMultiUpdater

A FieldMultiUpdater block is similar to a FieldUpdater block, but always specifies multiple components
of a field to update using the components parameter.

In some cases, the FieldMultiUpdater parameters correspond to the FieldUpdater block of the same
kind, but with the components integer parameter replaced by the integer vector components. In that case,
the FieldMultiUpdater creates as many occurances of the corresponding FieldUpdater as elements in the
components parameter. For example, a FieldMultiUpdater with components equal to [0 1 2] creates
three occurrences of the corresponding FieldUpdater. There will therefore be three update passes through the
updated cells, one for each specified component. The cells updated in each pass may differ due to any global region
modification parameters, or, if the updater has a region specification, depending on how that region is treated for each
component.

The updater kind with corresponding FieldMultiUpdater blocks are:

• curlUpdater

• curlUpdaterCoordProd

• open

• STFuncUpdater

• unaryFieldOpUpdater

• yeeAmpereUpdater

• yeeFaradayUpdater

There are also updates that can only be specified using FieldMultiUpdater. They are:

• amperePmlUpdater

• fieldSqrDiagUpdater

• perfDispPmlUpdater

• yeeConductorUpdater

FieldMultiUpdater Parameters

All FieldMultiUpdater blocks take the lowerBounds and upperBounds parameters of FieldUpdater, as
well as:

kind (required string)
Type of updater; one of:

• amperePmlUpdater

3.7. Multifield 169

VSim Reference Manual, Release 11.0.1-r3016

• curlUpdater

• curlUpdaterCoordProd

• fieldSqrDiagUpdater

• open

• perfDispPmlUpdater

• STFuncUpdater

• unaryFieldOpUpdater

• yeeAmpereUpdater

• yeeConductorUpdater

• yeeFaradayUpdater

components (required integer vector)
The components that should be updated.

FieldMultiUpdater Kinds

amperePmlUpdater

amperePmlUpdater

This implements the standard (as in Taflove) PML algorithm for an Ampere-type Maxwell update.

amperePmlUpdater Parameters

The amperePmlUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater and the
components parameter of FieldMultiUpdater, as well as the following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

readFields (required string vector)
A vector containing a single element, the magnetic field to use in the update.

writeFields (required string vector)
A vector contining a two elements, the electric field and auxiliary displacement fields to update.

sigmaX (optional parameter block)
An STFunc block specifying the functional form of the conductivity for absorbtion of waves propagating in the
𝑥 direction.

sigmaY (optional parameter block)
An STFunc block specifying the functional form of the conductivity for absorbtion of waves propagating in the
𝑦 direction.

sigmaZ (optional parameter block)
An STFunc block specifying the functional form of the conductivity for absorbtion of waves propagating in the
𝑧 direction.

170 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Note: At least one of sigmaX, sigmaY, or sigmaZ must be specified. A .sigma function should be specified for
every direction in which the PML region borders the edge of the simulation domain, e.g. if the region for this updater
is along the 𝑦 direction, then sigmaY should be specified.

kappaX (optional parameter block)
Effective dielectric constant for the PML absorption in the 𝑥 direction. Making this greater than 1 can improve
absorption of oblique-incidence waves without disturbing the analytically perfect matching. However, the best
parameters to use are problem-dependent and users are encouraged to experiment.

kappaY (optional parameter block)
Effective dielectric constant for the PML absorption in the 𝑦 direction. Making this greater than 1 can improve
absorption of oblique-incidence waves without disturbing the analytically perfect matching. However, the best
parameters to use are problem-dependent and users are encouraged to experiment.

kappaZ (optional parameter block)
Effective dielectric constant for the PML absorption in the 𝑧 direction. Making this greater than 1 can improve
absorption of oblique-incidence waves without disturbing the analytically perfect matching. However, the best
parameters to use are problem-dependent and users are encouraged to experiment.

Example amperePmlUpdater block

<FieldMultiUpdater frontPMLE>
kind = amperePmlUpdater
lowerBounds = [0 0 NZ_BEGIN]
upperBounds = [NX NY_BEGIN NZ_END]
readFields = [magField]
writeFields = [elecField pmlAuxE]
components = [0 1 2]
minDim = 2
<STFunc sigmaY>
kind = expression
expression = SIGMA_MAX * ((LY_BEGIN - y) / LY_PML)^PML_EXP

</STFunc>
<STFunc kappaY>
kind = expression
expression = 1. + (KAPPA_MAX - 1) * ((LY_BEGIN - y) / LY_PML)^PML_EXP

</STFunc>
</FieldMultiUpdater>

fieldSqrDiagUpdater

fieldSqrDiagUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

FieldMultiUpdater that computes an integral over the sum of the squares of the specified fields, for each speci-
fied component; i.e., for each component 𝑖,

𝐹𝑖 = 𝑎

∫︁ [︁
𝑓
(1)
𝑖 (x)2 + 𝑓

(2)
𝑖 (x)2 + 𝑓

(3)
𝑖 (x)2 + . . . + 𝑓

(𝑛)
𝑖 (x)2

]︁
𝑑x.

The fields f (1), f (2), f (3), . . . , f (𝑛) used in the integral are given by the readFields parameter. The calculation is
written to the standard output of the run. fieldSqrDiagUpdater is useful for measuring field energy and reflected
components.

3.7. Multifield 171

VSim Reference Manual, Release 11.0.1-r3016

fieldSqrDiagUpdater Parameters

The fieldSqrDiagUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater and the
.components parameter of FieldMultiUpdater, as well as the following parameters:

readFields (required string vector)
The names of the fields for which to compute the integral.

factor (optional float, default = 1.0)
Factor a by which to multiply the integral.

writePeriod (optional integer, default = 0)
Frequency which to write out the calculation. A writePeriod of 1 will write out the calculation at each time
step.

Example fieldSqrDiagUpdater Block

<FieldMultiUpdater E_energy>
kind = fieldSqrDiagUpdater
writePeriod = 20
factor = E_ENERGY_FACTOR
components = [0 1 2]
contractFromBottomInNonComponentDir = 1
lowerBounds = [0 0 0]
upperBounds = [NX_TOT NY_TOT NZ_TOT]
readFields = [elecField]

</FieldMultiUpdater>

perfDispPmlUpdater

perfDispPmlUpdater

implements the standard (as in Taflove) PML algorithm for an Faraday-type Maxwell update, using the
controlled dispersion operators.

perfDispPmlUpdater Parameters

The perfDispPmlUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater and the
.components parameter of FieldMultiUpdater, as well as the following parameters:

minDim (optional integer, default = 1)
If the dimension of the simulation is less than minDim, this updater will not be applied.

readFields (required string vector)
A vector containing a single element, the electric field to use in the update.

writeFields (required string vector)
A vector contining a two elements, the magnetic field and auxiliary magnetic fields to update.

sigmaX (optional parameter block)
An STFunc block specifying the functional form of the magnetic conductivity for absorbtion of waves propa-
gating in the 𝑥 direction.

172 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sigmaY (optional parameter block)
An STFunc block specifying the functional form of the magnetic conductivity for absorbtion of waves propa-
gating in the 𝑦 direction.

sigmaZ (optional parameter block)
An STFunc block specifying the functional form of the magnetic conductivity for absorbtion of waves propa-
gating in the 𝑧 direction.

Note: At least one of sigmaX, sigmaY, or sigmaZ must be specified. A .sigma function should be specified for
every direction in which the PML region borders the edge of the simulation domain, e.g. if the region for this updater
is along the 𝑦 direction, then sigmaY should be specified.

kappaX (optional parameter block)
Effective permeability constant for the PML absorption in the 𝑥 direction. Making this greater than 1 can
improve absorption of oblique-incidence waves without disturbing the analytically perfect matching. However,
the best parameters to use are problem-dependent and users are encouraged to experiment.

kappaY (optional parameter block)
Effective permeability constant for the PML absorption in the 𝑦 direction. Making this greater than 1 can
improve absorption of oblique-incidence waves without disturbing the analytically perfect matching. However,
the best parameters to use are problem-dependent and users are encouraged to experiment.

kappaZ (optional parameter block)
Effective permeability constant for the PML absorption in the 𝑧 direction. Making this greater than 1 can
improve absorption of oblique-incidence waves without disturbing the analytically perfect matching. However,
the best parameters to use are problem-dependent and users are encouraged to experiment.

Example perfDispPmlUpdater block

<FieldMultiUpdater frontPMLB>
kind = perfDispPmlUpdater
lowerBounds = [0 0 NZ_BEGIN]
upperBounds = [NX NY_BEGIN NZ_END]
readFields = [elecField]
writeFields = [magField pmlAuxB]
components = [0 1 2]
minDim = 2
Delta = DELTA
<STFunc sigmaY>
kind = expression
expression = SIGMA_MAX * ((LY_BEGIN - y) / LY_PML)^PML_EXP

</STFunc>
<STFunc kappaY>
kind = expression
expression = 1. + (KAPPA_MAX - 1) * ((LY_BEGIN - y) / LY_PML)^PML_EXP

</STFunc>
</FieldMultiUpdater>

yeeConductorUpdater

yeeConductorUpdater

Works with VSimEM and VSimMD licenses.

3.7. Multifield 173

VSim Reference Manual, Release 11.0.1-r3016

Multifield updater that solves the following versions of the Ampere and Faraday equations, in which 𝑖 is
one of 𝑥, 𝑦, or 𝑧, 𝜎𝑒,𝑖 is the electric conductivity in the 𝑖 direction divided by 𝜖0, 𝜎𝑚,𝑖 is the magnetic
conductivity in the 𝑖 direction divided by 𝜇0. Both 𝜎𝑒,𝑖 and 𝜎𝑚,𝑖 have units of frequency. Also, 𝐽𝑒,𝑖 and
𝐽𝑚,𝑖 are the electric and magnetic currents in the 𝑖 direction, respectively.

yeeConductorUpdater Ampere equation:

𝜖0
𝜕𝐸𝑖

𝜕𝑡
=

1

𝜇0
(∇×B)𝑖 − 𝐽𝑒,𝑖 − 𝜎𝑒,𝑖𝐸𝑖 (3.13)

yeeConductorUpdater Faraday equation:

𝜇0
𝜕𝐵𝑖

𝜕𝑡
= −𝜇0 (∇×E)𝑖 − 𝐽𝑚,𝑖 − 𝜎𝑚,𝑖𝐵𝑖 (3.14)

yeeConductorUpdater Parameters

The yeeConductorUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, the
global region modification parameters, and the .components parameter of FieldMultiUpdater. In addition,
curlUpdater takes the following parameters:

emType (required string)
One of:

ampere: Expects writeFields to be the yee electric field and readFields to be the yee magnetic field.
readFields can also contain an optional 4-component electric charge/current field.

faraday: Reverses E and B, and if specified, the optional 4-component field represents magnetic
charge/current.

readFields (required string vector)
A vector of either one or two strings. The first string is the name of the field to take the curl of, and if provided,
the second is the name of the charge/current field.

writeFields (required string vector)
A vector containing a single element, which is the name of the field to update.

sigma (optional float)
The uniform, isotropic conductivity.

sigma (optional parameter block)
A parameter block of type STFunc specifying the local isotropic conductivity.

sigmaX (optional float)
The uniform conductivity in the 𝑥 direction.

sigmaX (optional parameter block)
A parameter block of type STFunc specifying the local conductivity in the 𝑥 direction.

sigmaY (optional float)
The uniform conductivity in the 𝑦 direction.

sigmaY (optional parameter block)
A parameter block of type STFunc specifying the local conductivity in the 𝑦 direction.

sigmaZ (optional float)
The uniform conductivity in the 𝑧 direction.

sigmaZ (optional parameter block)
A parameter block of type STFunc specifying the local conductivity in the 𝑧 direction.

174 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Note: For each conductivity parameter above, either the scalar parameter for the uniform conductivity, or the STFunc
block for the local conductivity can be specified, but not both. If an isotropic conductivity is not specified, a com-
ponentwise sigma parameter must be specified for each updated component. If both an isotropic conductivity and
componentwise conductivities are specified, the componentwise conductivities will be used for any components for
which they are specified, and the isotropic conductivity will be used for components for which they are not.

Example yeeConductorUpdater Block

<FieldMultiUpdater waterAmpere>
gridBoundary = universe
kind = yeeConductorUpdater
emType = ampere
components = [0 1 2]
contractFromBottomInNonComponentDir = 1
lowerBounds = [NX_WATER_L 0 0]
upperBounds = [NX_WATER_H NY NZ]
readFields = [magField SumRhoJ]
writeFields = [elecField]
sigma = SIGMA_WATER # conductivity/epsilon_0

</FieldMultiUpdater>

3.7.5 MatrixFiller Block

MatrixFiller

MatrixFiller: A block used to fill a matrix.

MatrixFiller Kinds

kind (required string) – one of:

• stencilFiller

• nodeStencilFiller

• stFuncStencilFiller

• coordProdSTFuncStencilFiller

<MatrixFiller interior>
kind = nodeStencilFiller
minDim = 0
lowerBounds = [0 0 0]
upperBounds = [NXP NYP NZP]
componentBounds = [0 1]
gridBoundary = sphere
rowInteriorosity = [insideBoundary]
colInteriorosity = [insideBoundary]
StencilElementMacro(error_dd, 1.0, 0, [0 0 0], 0, 0)

</MatrixFiller>

3.7. Multifield 175

VSim Reference Manual, Release 11.0.1-r3016

MatrixFiller Kinds

stencilFiller

stencilFiller

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill matrix elements using StencilElement blocks.

stencilFiller Parameters

minDim (integer, required)
If NDIM < minDim, the filler will not be used to fill the matrix.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this filler operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this filler operates. The number of components is set by the updater, and valid
component indices are in the range [0, numberUpdaterComponents).

StencilElement (code block, required)
StencilElement block. StencilElement defines the non-zero values in a row of the matrix.

nodeStencilFiller

nodeStencilFiller

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill matrix elements for node-centered fields when a grid boundary is present.

StencilElement Parameters

minDim (integer, required)
If NDIM < minDim, the filler will not be used to fill the matrix.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this filler operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this filler operates. The number of components is set by the updater, and valid
component indices are in the range [0, numberUpdaterComponents).

StencilElement (code block, required)
The StencilFiller block must contain at least one StencilElement block. StencilElement de-
fines the non-zero values in a row of the matrix.

gridBoundary (string, default = universe)
Name of the GridBoundary specifying the geometry.

176 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

rowInteriorosity (string vector, required if grid boundary is not universe)
Which node locations are valid for filling matrix rows. Options are any combination of insideBoundary,
cutByBoundary, and outsideBoundary.

columnInteriorosity (string vector, required if grid boundary is not universe)
Which node locations are valid for columns within matrix rows. Options are any combination of
insideBoundary, cutByBoundary, and outsideBoundary.

stFuncStencilFiller

stFuncStencilFiller

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill matrix elements using stfuncstencilelement blocks.

stFuncStencilFiller Parameters

minDim (integer, required)
If NDIM < minDim, the filler will not be used to fill the matrix.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this filler operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this filler operates. The number of components is set by the updater, and valid
component indices are in the range [0, numberUpdaterComponents).

STFunc (code block, required)

The STFunc that will be calculated at the .functionOffset in each STFuncStencilElement,
and multiplied by the .value in that STFuncStencilElement.

STFuncStencilElement (code block, required)

The stFuncStencilFiller block must contain at least one STFuncStencilElement block. STFunc-
StencilElement defines the non-zero values in a row of the matrix.

coordProdSTFuncStencilFiller

coordProdSTFuncStencilFiller

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill matrix elements using CoordProdSTFuncStencilElement blocks.

coordProdSTFuncStencilFiller Parameters

minDim (integer, required)
If NDIM < minDim, the filler will not be used to fill the matrix.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this filler operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

3.7. Multifield 177

VSim Reference Manual, Release 11.0.1-r3016

componentBounds (integer vector, required if component not specified)
The component range over which this filler operates. The number of components is set by the updater, and valid
component indices are in the range [0, numberUpdaterComponents).

STFunc (code block, required)
The STFunc that will be calculated at the functionOffset in each CoordProdSTFuncStencilElement, and
multiplied by the value in that CoordProdSTFuncStencilElement.

CoordProdSTFuncStencilElement (code block, required)
The coordProdSTFuncStencilFiller block must contain at least one CoordProdSTFuncStencilEle-
ment block. CoordProdSTFuncStencilElement defines the non-zero values in a row of the matrix.

3.7.6 [CoordProd]STFuncStencilElement Block

STFuncStencilElement

STFuncStencilElement

For use with stFuncStencilFiller class in filling matrix entries.

STFuncStencilElement Parameters

minDim (integer, default = 1)
If NDIM < minDim, the element will not be inserted into the matrix.

rowFieldIndex (integer, required)
Row index of this element (always the writeFieldIndex in linIterUpdater).

columnFieldIndex (integer, required)
Column index of this element (always the readFieldIndex in linIterUpdater).

cellOffset (integer vector, required)
[𝑚𝑗 𝑛𝑗 𝑝𝑗], as described in the equations in linIterUpdater.

functionOffset (real vector, required)
The offsets, in fractions of the grid spacing, at which the STFunc of the containing stFuncStencilFiller will be
evaluated. So, for example, [0.5 0.0 0.0] corresponds to evaluation at a point half a grid-cell in the x-direction
from the point being considered.

value (real, required)
Value to be multiplied by the value of the STFunc of the containing stFuncStencilFiller.

CoordProdSTFuncStencilElement

CoordProdSTFuncStencilElement

For use with coordProdSTFuncStencilFiller class in filling matrix entries.

CoordProdSTFuncStencilElement Parameters

minDim (integer, default = 1)
If NDIM < minDim, the element will not be inserted into the matrix.

178 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

rowFieldIndex (integer, required)
Row index of this element (always the writeFieldIndex in linIterUpdater).

columnFieldIndex (integer, required)
Column index of this element (always the readFieldIndex in linIterUpdater).

cellOffset (integer vector, required)
[𝑚𝑗 𝑛𝑗 𝑝𝑗], as described in the equations in linIterUpdater.

functionOffset (real vector, required)
The offsets, in fractions of the grid spacing, at which the STFunc of the containing coordProdSTFuncStencil-
Filler will be evaluated. So, for example, [0.5 0.0 0.0] corresponds to evaluation at a point half a grid-cell in the
x-direction from the point being considered.

gridDirection (integer, required)
The direction for the (dual) grid parameters, such as grid spacing and face area, to be used in calculating the
matrix entry. Each entry is multiplied by the area specified by gridDirection and gridOffset, and
divided by the corresponding grid spacing and cell volume.

gridOffset (integer vector, required)
The offset for the (dual) grid parameters, such as grid spacing and face area, to be used in calculating the matrix
entry. Each entry is multiplied by the area specified by gridDirection and gridOffset, and divided by
the corresponding grid spacing and cell volume.

value (real, required)
Value to be multiplied by the value of the STFunc of the containing coordProdSTFuncStencilFiller.

3.7.7 VectorReader Block

VectorReader

VectorReader: A block used to fill entries of a single Field from values in a vector.

VectorReader Kinds

kind (required string)
One of:

• fieldVectorReader

• nodeFieldVectorReader

<VectorReader phiReader>
kind = fieldVectorReader
minDim = 0
writeField = phi
writeComponent = 0
lowerBounds = [0 0 0]
upperBounds = [NXP NY NZ]
componentBounds = [0 1]

</VectorReader>

VectorReader Kinds

fieldVectorReader

3.7. Multifield 179

VSim Reference Manual, Release 11.0.1-r3016

fieldVectorReader

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill entries of a single Field from values in a vector. A range of component indices from that field may be
filled from the vector.

fieldVectorReader Parameters

minDim (integer, required)
If NDIM < minDim, the reader will not be used to fill the field.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this reader operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this reader operates. The number of components is set by the updater, and
valid component indices are in the range [0, numberUpdaterComponents).

writeFields (string, required)
The names of the fields whose values will be filled from the vector. If multiple fields are given, only the first is
used.

writeComponent (integer, required if writeComponentBounds not specified)
The component index of the field being written.

writeComponentBounds (integer vector, required if writeComponent not specified)
The range of component indices of the field being written.

scaling (real, default = 1.0)
A factor for scaling all vector values that are written to the field.

nodeFieldVectorReader

nodeFieldVectorReader

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill entries of a single Field vector entries from values in a vector, taking into account the geometry
specified by a GridBoundary.

nodeFieldVectorReader Parameters

minDim (integer, required)
If NDIM < minDim, the reader will not be used to fill the field.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this reader operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this reader operates. The number of components is set by the updater, and
valid component indices are in the range [0, numberUpdaterComponents).

180 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

writeFields (string, required)
The names of the fields whose values will be written into from the vector. If multiple fields are given, only the
first is used.

writeComponent (integer, required if writeComponentBounds not specified)
The component index of the field being written.

writeComponentBounds (integer vector, required if writeComponent not specified)
The range of component indices of the field being written.

gridBoundary (string, required)
Name of the GridBoundary specifying the geometry.

interiorosity (string vector, required)
Which node locations are valid for reading vector values. Options are any combination of insideBoundary,
cutByBoundary, and outsideBoundary.

scaling (real, default = 1.0)
A factor for scaling all vector values that are written to the field.

3.7.8 VectorWriter Block

VectorWriter

A block used to fill vector entries from values in a single Field.

VectorWriter Kinds

kind (required string)
One of:

• fieldVectorWriter

• nodeFieldVectorWriter

• stFuncVectorWriter

• stFuncNodeVectorWriter

<VectorWriter loXInteriorRhoWriter>
kind = fieldVectorWriter
minDim = 0
readField = rho
readComponent = 0
lowerBounds = [1 1 0]
upperBounds = [NXSC NYM NZ]
componentBounds = [0 1]

</VectorWriter>

VectorWriter Kinds

fieldVectorWriter

3.7. Multifield 181

VSim Reference Manual, Release 11.0.1-r3016

fieldVectorWriter

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill vector entries from values in a single Field. A range of component indices from that field may be read into the
vector.

fieldVectorWriter Parameters

minDim (integer, required)
If NDIM < minDim, the writer will not be used to fill the vector.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this writer operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this writer operates. The number of components is set by the updater, and
valid component indices are in the range [0, numberUpdaterComponents).

readFields (string, required)
The names of the fields whose values will be written to the vector. If multiple fields are given, only the first is
used.

readComponent (integer, required if readComponentBounds not specified)
The component index of the field being read.

readComponentBounds (integer vector, required if readComponent not specified)
The range of component indices of the field being read.

scaling (real, default = 1.0)
A factor for scaling all field values that are written to the vector.

nodeFieldVectorWriter

nodeFieldVectorWriter

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill vector entries from values in a single Field, taking into account the geometry specified by a GridBoundary.

nodeFieldVectorWriter Parameters

minDim (integer, required)
If NDIM < minDim, the writer will not be used to fill the vector.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this writer operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this writer operates. The number of components is set by the updater, and
valid component indices are in the range [0, numberUpdaterComponents).

readFields (string, required)
The names of the fields whose values will be written to the vector. If multiple fields are given, only the first is
used.

182 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

readComponent (integer, required if readComponentBounds not specified)
The component index of the field being read.

readComponentBounds (integer vector, required if readComponent not specified)
The range of component indices of the field being read.

gridBoundary (string, required)
Name of the GridBoundary specifying the geometry.

interiorosity (string vector, required)
Which node locations are valid for writing vector entries. Options are any combination of insideBoundary,
cutByBoundary, and outsideBoundary.

scaling (real, default = 1.0)
A factor for scaling all field values that are written to the vector.

stFuncNodeVectorWriter

stFuncNodeVectorWriter

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill vector entries via evaluation of a STFunc Block, taking into account the geometry specified by a
GridBoundary.

stFuncNodeVectorWriter Parameters

minDim (integer, required)
If NDIM < minDim, the writer will not be used to fill the vector.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this writer operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this writer operates. The number of components is set by the updater, and
valid component indices are in the range [0, numberUpdaterComponents).

STFunc (code block, required)
The STFunc Block whose value at each point in space will be entered into the vector.

gridBoundary (string, required)
Name of the GridBoundary specifying the geometry.

interiorosity (string vector, required)
Which node locations are valid for writing vector entries. Options are any combination of insideBoundary,
cutByBoundary, and outsideBoundary.

scaling (real, default = 1.0)
A factor for scaling all function values that are written to the vector.

stFuncVectorWriter

stFuncVectorWriter

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Fill vector entries via evaluation of a STFunc Block.

3.7. Multifield 183

VSim Reference Manual, Release 11.0.1-r3016

stFuncVectorWriter Parameters

minDim(integer, required)
If NDIM < minDim, the writer will not be used to fill the vector.

component (integer, required if componentBounds not specified)
If a single-component fill, the component over which this writer operates. The number of components is set by
the updater, and valid component indices are in the range [0, numberUpdaterComponents).

componentBounds (integer vector, required if component not specified)
The component range over which this writer operates. The number of components is set by the updater, and
valid component indices are in the range [0, numberUpdaterComponents).

STFunc (code block, required)
The STFunc Block whose value at each point in space will be entered into the vector.

scaling (real, default = 1.0)
A factor for scaling all function values that are written to the vector.

3.7.9 LinearSolver Block

LinearSolver

A block used to solve a linear equation.

Note: When running in parallel we suggest avoiding the direct solver.

LinearSolver Kinds

kind (required string)
One of:

• iterativeSolver

• directSolver

<LinearSolver mySolver>
kind = iterativeSolver
<BaseSolver myBS>
kind = gmres

</BaseSolver>
<Preconditioner precond>
kind = multigrid
mgDefaults = SA

</Preconditioner>
tolerance = 1.e-8
maxIterations = 1000

</LinearSolver>

LinearSolver Kinds

iterativeSolver

184 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

iterativeSolver

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Solve a linear equation using iterative methods.

Since VSim uses the Aztec library for iterative solvers, many of these options are identical to options
described in the AztecOO User Guide, which may be consulted for additional information.

iterativeSolver Parameters

BaseSolver (code block, required)
BaseSolver parameters include:

kind (required)
One of the following options. Keep in mind that every problem will respond differently to these solvers
and preconditioner options, so experimentation is encouraged to find the most efficient and accurate set of
options:

• gmres

Generalized minimal residual (GMRES) method. GMRES is an all-purpose solver that works
for problems where convergence to a solution may be an issue. The method works by seek-
ing a vector 𝑥𝑛 ∈ 𝐾𝑛(𝐴, 𝑏) = span(𝑏, 𝐴𝑏,𝐴2𝑏, . . . , 𝐴𝑛−1𝑏) such that 𝑟𝑛 = 𝐴𝑥𝑛 − 𝑏 is
minimized at each iteration. Thus, the following two attributes are also required with this
option:

– kspace (integer, default = 30): The size of the basis for the Krylov vector space
𝐾𝑛(𝐴, 𝑏).

– orthog (string, one of classic or modified): The type of Gram-Schmidt orthog-
onalization used in forming the basis of 𝐾𝑛(𝐴, 𝑏). If roundoff errors occur with
classic, switch to modified.

• cg

Conjugate gradient (CG) method. This is a powerful, scalable, and effecient method for
symmetric positive-definite matrices, but it should not be used for any other non-SPD matri-
ces. CG exploits the fact that the (exact) solution to the system 𝑥* uniquely minimizes the
quadratic function 𝑓(𝑥) = 1

2𝑥
𝑇𝐴𝑥− 𝑥𝑇 𝑏, and approximates it by searching in the direction

of the function gradient.

• cgs

Conjugate gradient squared (CGS) method. Similar to BiCGSTAB and works best when
computation of 𝐴𝑇 is impractical. However, the method is more susceptible to round-off
errors and exhibits erratic convergence as a result.

• tfqmr

Transpose free quasi-minimal residual (TFQMR) method. Aims to reduce 𝐴 to a tridiagonal
matrix and solve the resultant system by way of least-squares solvers. Uses look-ahead algo-
rithms to avoid breakdowns in the underlying iterative processes BiCGSTAB uses. Slightly
more expensive than BiCGSTAB but sidesteps some of the stability issues.

• bicgstab

Biconjugate gradient stabilized (BiCGSTAB) method. Another all-purpose solver, good for
when the system requires a large number of iterations to converge. Requires less storage than
GMRES in that BiCGSTAB stores sequences of the residual and search vectors (which are

3.7. Multifield 185

VSim Reference Manual, Release 11.0.1-r3016

mutually orthogonal) instead of orthogonalized residual vectors and the data associated with
them. BiCGSTAB is not recommended for SPD systems, as CG will prove to be roughly
twice as fast in that case. If the user is experiencing a breakdown with CGS, switching to
BiCGSTAB may be advisable.

Preconditioner (code block, required)
Preconditioner parameters include:

kind (required) - one of

• none No preconditioner.

• jacobi Jacobi preconditioner 𝑃 = diag(𝐴). Works best with diagonally dominant matrices.

• neumann Neumann preconditioner 𝑃 = (2𝐼 − 𝑃−1
𝐽 𝐴)𝑃−1

𝐽 where 𝑃𝐽 = diag(𝐴). Slightly more expen-
sive than Jacobi but handles parallelization much more elegantly.

• leastSquares Least-squares preconditioner 𝑃 = 𝐴𝑇 . Transforms the system into the normal equations
𝐴𝑇𝐴𝑥 = 𝐴𝑇 𝑏 and will return a precise solution if the original system 𝐴𝑥 = 𝑏 is consistent. Works
best if the original system is known to be inconsistent or overconstrained (i.e. 𝐴 has more rows than
columns).

• symmetricGaussSeidel Symmetric Gauss-Seidel preconditioner 𝑃 = (𝐿+𝐷)𝐷−1(𝐿+𝐷)𝑇 where 𝐿 is
the lower triangular part of 𝐴 and 𝐷 = diag(𝐴). This preconditioner is scalable since it only requires
one storage vector, however its elements cannot be computed in parallel.

• multigrid

Multigrid preconditioner. This is the most powerful preconditioner option and works well
with large problems. Requires the following parameters to be specified:

– mgDefaults (string): Choose from DD (domain decomposition), SA, DD-ML, or
DD-Maxwell. The SA option is strongly recommended for symmetric matricies.

– maxLevels (integer): Maximum number of levels of smoother application before at-
tempting a direct solve on the smaller problem. This parameter incurs the most communication
overhead for parallel problems, so decreasing it to 3 or 4 may be advisible if the application is
highly parallelized.

– smootherType (string): The type of smoother to use at each multigrid level.
GaussSeidel works well in general, but other options may increase the speed of the simu-
lation. Other selections include Jacobi, Chebyshev, and SymBlockGaussSeidel. If
mgDefaults is set to either DD or DD-ML, the Aztec option is also available.

– smootherSweeps (integer): Number of times to smooth at each multigrid level. Three
is usually sufficient but depending on the matrix properties fewer passes may be necessary.

– smootherPrePost (string): The multigrid solving algorithm calls for smoothing steps
both before and after the solve, which is computationally wise in most cases. If the user would
like to perform only one of these steps and possibly accelerate the solve, they can specify the step
to perform here (choose from before, after, or both).

– coarseType (string): The solver to use at the coarsest level of the preconditioner. Select
from a Jacobi solver (good for diagonally dominant matrices) or KLU (an LU direct solver that
works well with sparse matrices).

– dampingFactor (double): The damping factor for smoothed aggregation. Tech-X recom-
mends 1.333 as a good choice for most applications, but this can be adjusted up or down to
speed up the solves.

– threshold (integer): Multigrid aggregation at each level. Setting this to 0 should be
sufficient for most applicaitons.

186 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

– increaseDecrease (string): Choose from increase or decrease If increase,
the finest convergence level will be at level 0. If decrease, the finest convergence level will be
at level maxLevels - 1. This option should not affect the convergence rate of the solver in
either case.

tolerance (real, default = 1e-8)
Tolerance to be used in determining convergence.

maxIterations (integer, default = 1000)
Maximum number of iterations to reach convergence.

output (string, default = none)
Level of Aztec output for viewing convergence. last prints the number of iterations required for convergence,
the final residual, and the time elapsed computing the accepted solution. summary is similar but also prints
information about the solve that is being done.

convergenceMetric (string, default = r0)
The residual measure used for determining convergence. One of

• r0: ‖𝑟‖2/‖𝑟0‖2
• rhs: ‖𝑟‖2/‖𝑏‖2
• Anorm: ‖𝑟‖2/‖𝐴‖∞
• noscaled: ‖𝑟‖2
• sol: ‖𝑟‖∞/(‖𝐴‖∞‖𝑥‖1 + ‖𝑏‖∞)

This specifies the measure that will be compared to tolerance to determine whether iteration is sufficient.
r0 reduces the error of the initial guess by the tolerance. rhs reduces the error (𝐴𝑥 − 𝑏) until it is less than
tolerance times 𝑏 (the right-hand side).

r0 is the safest metric for most applications. However, for repeated similar solves where the iterative solutions
do not vary greatly over time (e.g. slowly-varying simulations), the rhs metric may accelerate the solve, if the
previous solution is similar to the next solution. This is not recommended if the right-hand-side of the equation
is zero (i.e. the system is homogeneous). The noscaled option will also have a similar effect, but this requires
setting the tolerance to the absolute unscaled error, rather than the relative error.

Currently, the sol option does not work.

Example iterativeSolver Block

<LinearSolver mySolver>
kind = iterativeSolver
<BaseSolver>
kind = gmres

</BaseSolver>
<Preconditioner>
kind = multigrid
mgDefaults = SA

</Preconditioner>
tolerance = 1.e-10
maxIterations = 1000

</LinearSolver>

3.7. Multifield 187

VSim Reference Manual, Release 11.0.1-r3016

directSolver

directSolver: Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Solve a linear equation using direct methods.

directSolver Parameters

solverType (string)
Solver type to use. Currently, the only option is superLU, which solves the system by decomposing the matrix
𝐴 into its LU factorization 𝐴 = 𝐿𝑈 with lower triangular 𝐿 and upper triangular 𝑈 . The system is then readily
solved with a pass of forward and back substitution. Generally, the direct solver is more algorithmically complex
than the iterative solvers (and hence it is not as scalable in comparison), but is also more robust and does not
have the possibility of nonconvergence. The direct solver works best with sparse matrices (i.e. 𝐴 has many zero
elements).

Example directSolver Block

<LinearSolver mySolver>
kind = directSolver
solverType = superLU

</LinearSolver>

3.7.10 Scalar Block

Scalar

Scalar

A scalar is a grid independent quantity that can be updated in each time step. One scalar carries one value that is
advanced in time. Binary operations between scalars, scalar and field, as well as unary operations, are defined via
different updaters. A scalar is initialized to 0 unless an initial value is used to set its initial value. Scalars can be
recorded via History, or dumped into a MultiField file. External circuit models and ODE solvers can be implemented
with scalars in MultiFields.

The synchronization of scalars across ranks is different from fields. For a scalar, its value on the head node is broadcast
to all other ranks by setting ‘messageScalars’ in <UpdateStep>. When recorded by History, it is also the head node
value that is saved into history file.

Scalar object code block contained between the tags:

<Scalar *nameOfThisScalar*>

</Scalar>

Scalar Parameters

kind (string, default = default)
Type of field, one of: regular. This is the only available option for scalar kind. It defines a scalar with a
single value.

188 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Scalar Blocks

initialValue (optional)
A property that is used as an initial condition for the scalar. This value is evaluated at spatial origin (0,0,0)
and time t=0. The result is used as the inital value of the scalar. If this property is not provided, the scalar is
initialized to 0.

Example scalar Block

<Scalar A1>
initialValue = 5.0

</Scalar>

<Scalar A2>
kind = regular

</Scalar>

3.7.11 Updater Blocks for Scalars

Updater Kinds for Scalars

field2ScalarUpdater

field2ScalarUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Scalar updater that applies a contraction operation on one field, and writes the result to scalars.

field2ScalarUpdater Parameters

The field2ScalarUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater, as well
as the following parameters:

readField (required string)
The name of the single field on which to operate.

reduceMethod (required string)
Contraction operation to apply to the field. sum is the only one option available now. It sums over a given
components of a field and write the total sum result to a scalar.

readComponents (required integer vector)
The components to use in the operand fields.

writeScalars (required string vector)
The scalars where results are written into. There shoul be same number of scalars as number of components in
readComponents. As each scalar corresponds to operation on one component of a field.

3.7. Multifield 189

VSim Reference Manual, Release 11.0.1-r3016

Example field2ScalarUpdater Block

A7 = sum(F1_x), A8 = sum(F1_z)
<Updater fieldSum>

kind = field2ScalarUpdater
reduceMethod = sum
readField = F1
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
readComponents = [0 2]
writeScalars = [A7 A8]

</Updater>

scalarBinOpUpdater

scalarBinOpUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that applies a mathematical operation on two scalars (A1 and A2) specified through the
readScalars parameter, and writes the result to the writeScalars parameter.

scalarBinOpUpdater Parameters

The scalarBinOpUpdater takes the following parameters:

readScalars (required string vector)
A vector of the names of the two scalars on which to operate.

writeScalars (required string vector)
A vector containing a single element, the name of scalar to update.

binOp (required string)
Operation to apply to the scalars; one of add, subtract, multiply or divide. Operations are:

add: (aCoeff*A1)+(bCoeff*A2)
subtract: (aCoeff*A1)-(bCoeff*A2)
multiply: (aCoeff+A1)*(bCoeff+A2)
divide: (aCoeff+A1)/(bCoeff+A2)

aCoeff (optional float)
Coefficient for first scalar (A1, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0

bCoeff (optional float)
Coefficient for second scalar (A2, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0

190 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example scalarBinOpUpdater Block

<Updater scalarAdd>
kind = scalarBinOpUpdater
binOp = add
readScalars = [A1 A2]
writeScalars = [A2]
aCoeff = 1.5
bCoeff = 0.5

</Updater>

scalarFieldBinOpUpdater

scalarFieldBinOpUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

MultiField updater that applies a mathematical operation on scalars and one field, and writes the result to a field.

scalarFieldBinOpUpdater Parameters

The scalarFieldBinOpUpdater takes the lowerBounds and upperBounds parameters of FieldUpdater,
as well as the following parameters:

readScalars (required string vector)
A vector of the names of the scalars on which to operate. There should be at least one scalar. The number of
components to updated (NUM) depends on the setting of readComponents and writeComponent. If the
number of readScalars is less than NUM, the last scalar is paded to NUM. If the number of readScalars is more
than NUM, any scalars above NUM are disregarded. The binary operation happens between one scalar and one
component of the field

readField (required string)
A vector of the name of the single field on which to operate.

writeField (required string)
A vector containing a single element, the name of field to update.

binOp (required string)
Operation to apply to the field and scalars; one of add, subtract, multiply or divide. Those operations
take place between one scalar and one component of the readField. Operations are:

add: (aCoeff*A)+(bCoeff*Fj)
subtract: (aCoeff*A)-(bCoeff*Fj)
multiply: (aCoeff+A)*(bCoeff+Fj)
divide: (aCoeff+A)/(bCoeff+Fj)

readComponents (optional integer vector)
The components to use in the operand fields.

writeComponent (optional integer)
The component to update.

Note: The readComponents and writeComponent parameters work together, and if one is specified, the other
must be as well. If neither are specified, then all the components are updated. In that case, both of the readField

3.7. Multifield 191

VSim Reference Manual, Release 11.0.1-r3016

and the writeField must all have the same number of components.

aCoeff (optional float)
Coefficient for the scalar (A, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0

bCoeff (optional float)
Coefficient for the field (F, as described above). Default values:

add: 1.0
subtract: 1.0
multiply: 0.0
divide: 0.0

Example scalarFieldBinOpUpdater Block

<FieldUpdater scalarFieldAdd>
kind = scalarFieldBinOpUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]
binOp = add
readScalars = [A1 A2]
readField = F1
writeField = F2
readComponents = [0 1 2]
writeComponents = [0 1 2]
aCoeff = 2.0
bCoeff = 3.0

</FieldUpdater>

unaryScalarOpUpdater

unaryScalarOpUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Scalar updater that performs one of the following operations on a scalar A, another scalar B, and an STFunc 𝑓 :

𝐵 = 𝑓(0, 0, 0, 𝐴) (3.15)

𝐵 = 𝑓(0, 0, 0, 𝑡) *𝐴 (3.16)

𝐵 = 𝐵 + 𝑓(0, 0, 0, 𝑡) *𝐴 (3.17)

𝐵 = 𝐵 * 𝑓(0, 0, 0, 𝑡) *𝐴 (3.18)

𝐵 =
𝐵

𝑓(0, 0, 0, 𝑡) *𝐴 (3.19)

The above scalar A is the readScalars, and scalar B is the writeScalars.

192 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

unaryScalarOpUpdater Parameters

The unaryScalarOpUpdater takes the following parameters:

readScalars (optional string vector)
A single element, the name of the scalar to use in the operation (A, above). There can be either zero or one read
scalar. If there is no read scalar specified, a scalar with default value 1 will be used.

writeScalars (required string vector)
A single element, the name of the scalar to update (B, above). There must be exactly one write scalar.

STFunc (required parameter block)
A parameter block of type STFunc (with any name) must be specified. This describes 𝑓 . This function is
always evaluated at spatial origin (0,0,0) for this updater. So it is perfered a function that only depends on time
t.

operation (required string)
One of:

• apply: See (3.15).

• set: See (3.16).

• add: See (3.17).

• multiply: See (3.18).

• divide: See (3.19).

dtCoefficients (optional float vector, default = [1.0 0.0])
Two components [𝑐0 𝑐1]: the function 𝑓 will be multiplied by (𝑐0 + 𝑐1∆𝑡), where ∆𝑡 is the current time step. If
𝑐1 is not specified it is assumed to be zero.

Example unaryScalarOpUpdater Block

<Updater scalarSet>
kind = unaryScalarOpUpdater
operation = set
writeScalars = [A3]
dtCoefficients = [1.0 0.0]
<STFunc phiFunc>

kind = historySTFunc
feedback = phiHist
expression = 1.0

</STFunc>
</Updater>

<Updater scalarApply>
kind = unaryScalarOpUpdater
operation = apply
readScalars = [A5]
writeScalars = [A5]
dtCoefficients = [1.0 0.0]
<STFunc phiFunc>

kind = expression
expression = sin(TWOPI*t/30)

</STFunc>
</Updater>

3.7. Multifield 193

VSim Reference Manual, Release 11.0.1-r3016

userFuncScalarUpdater

userFuncScalarUpdater

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Sets scalar values to the result of a user-given function.

The Updater of kind = userFuncScalarUpdater is a very flexible updater on scalars based on the result of a
user-given <Expression> (see expression). The expression takes as arguments scalars values, as well as time and time
step. This updater is basically the scalar version of the field updater userFuncUpdater. See it for more details
about possible applications.

userFuncScalarUpdater Parameters

The userFuncScalarUpdater takes the following parameters:

readScalars (optional string vector, default = [])
The names of the scalars to read. A read scalar name can be used as a variable in the definition of
updateFunction.

writeScalars (required string vector)
The names of the scalars to write.

updateFunction (required parameter block)
A parameter block of type Expression and name updateFunction is required to define the function
used to update the scalars. This block takes the same parameters as a expression UserFunc, except for input
blocks and the inputOrder parameter. The input variables for the expression are defined by the above
parameters, so they are not to be specified in the updateFunction block. In addition, the expression can
take the following input valiables:

t: The time to which the updater been told to update its writeFields; c.f. toDtFrac in a MultiField UpdateStep).

dt: The most recent time step (∆𝑡).

n: The current simulation step (an integer).

(These names are reserved—they cannot be used as scalar names.)

The Expression must return a vector with the same length as the number of writeScalars—each write scalar
value will be set to the corresponding component of the return vector.

userFuncScalarUpdater Example

Here is a userFuncUpdater to set two scalars A4 and A5

<Updater userfuncUp>
kind = userFuncScalarUpdater
readScalars = [A1 A2 A3]
writeScalars = [A4 A5]
<Expression updateFunction>
expression = vector(A1 + 3.0*A2 + A3/5.0 + t + n/10 + 2.0*dt, n)

</Expression>
</Updater>

194 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

3.7.12 UpdateStep and InitialUpdateStep Block

UpdateStep and InitialUpdateStep

UpdateStep and InitialUpdateStep: Blocks to define how fields are updated in a MultiField block.

InitialUpdateStep: Used to define an update step to be performed at time = 0; Vorpal will also run Ini-
tialUpdateStep after a restore if the alsoAfterRestore flag is set to true.

UpdateStep: For every subsequent update after InitialUpdateStep, use an UpdateStep block.

Steps to be performed at every time step are indicated between the tags:

<UpdateStep *nameOfThisStep*>

</UpdateStep>

Note: By default, steps are ordered as they appear in the input file. However, you may overrule the order by setting
the parameter updateStepOrder = [step1 step2 . . .].

InitalUpdateSteps does not use toDtFrac; these are updated with time 0 at initialization; and after restore (if
alsoAfterRestore = true), they are updated with the current MultiField time.

Regarding toDtFrac, when MultiField is at 𝑡𝑛−1 and is told to update itself to time 𝑡𝑛 by calling update (𝑡𝑛), MultiField
will call update (𝑡′) for all updaters in the update step, where

𝑡′ = 𝑡𝑛˘1(1˘toDtFrac) + 𝑡𝑛 · toDtFrac.

In other words, toDtFrac = 1 tells MultiField to update the updaters (in the update step) to its same time; whereas,
toDtFrac = 0.5 updates the updaters to the half-way time.

Note: The parameter toDtFrac does not refer to a time step, but to an absolute time.

For example, suppose that an updater is in only one update step, with toDtFrac = 0.5. During the first update,
that updater will be updated by only a half-time step; however, all subsequent updates will be updated by a whole time
step.

Note: Field updaters may appear in more than one update step. It is common in EM simulations with
particles to perform the B-update with toDtFrac = 0.5 then the E-update with toDtFrac = 1,
and then the B-update with toDtFrac = 1.

Field-particle-overlap

Update steps are divided into two groups:

First group: Contains all the update steps before the first update step with an updater that
requires the field rhoJ (here the name must be rhoJ exactly).

Second group: Remaining updaters after the first update step.

Note: The update order for updaters within the same update step is sometimes difficult to
predict, because of skin/body separation. The skin updates will all be done in the order in

3.7. Multifield 195

VSim Reference Manual, Release 11.0.1-r3016

which the updaters are listed, and the same is true for the body updates. However, some
of the regions covered by the skin and body updates may differ for different updaters. For
example, some updaters cannot be separated: consider a skinnable updater u1 and a non-
skinnable updater u2. If updaters = [u1 u2] then u1 will be done before u2 on the skin cells of
u1, while u2 will be done before u1 on the body cells of u1 (because the entire u2 update is
treated as a skin update). Two updaters can both be skinnable but have different skin and body
regions.

When two updaters are of the same kind, and read and write the same fields then updates should be
performed in the listed order.

UpdateStep and InitialUpdateStep Parameters

updaters (string vector, required)
Names of updaters to be executed during this step.

messageFields (string vector)
Name of the field to be messaged. Parallel processing often requires that domain boundary fields be messaged
between processors. Only one field can be specified. Typically it is one of the updater’s writeFields.
The dummyUpdater can be used if more than one writeField should be messaged. Periodic boundary
conditions will also be applied to only this field.

toDtFrac (float, required)
Updates the updaters to either the same time, or to the half-way time.

alsoAfterRestore (optional, default = false)
Specifies whether to perform this update step when restoring from a dump. This is handy, for example, for nodal
fields, which can be easily computed from the Yee fields. One of:

• true

• false

Example Update Step Block Using the nodalE field in the MessageFields Parameter

<UpdateStep step08>
toDtFrac = 1.0
messageFields = [nodalE]
updaters = [plasmaDielectric]

</UpdateStep>

3.7.13 PmlRegion Block

PmlRegion

PmlRegion

Used to describe where (if any) PMLs exist in the simulation. For every PmlRegion, the region will be divided
into slabs; for each slab two FieldMultiUpdaters will be created, a Faraday PML updater, and an Ampere PML
updater (each with three components). The lowerBounds and upperBounds will be given to the occurrences of
FieldMultiUpdater, as well as the PML sigma functions.

196 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Vorpal first looks for an STFunc sigmaX (this is what the PML updater wants in the end). If there isn’t one in the
PmlRegion input block, Vorpal looks for an STFunc sigmaX1. If Vorpal doesn’t find an STFunc sigmaX1, it looks
for a sigmaFormX, from which it can create sigmaX1, using sigmaFactorX if present. Otherwise, Vorpal looks for
a sigmaForm, from which it can create sigmaX1, using sigmaFactorX at present. You can mix all three methods.
The resulting sigmaX1 is renamed sigmaX and put in the resulting PML MultiUpdater.

As a rule of thumb, you should make the outer region the outer boundary of the PMLs, and the inner region the
normal Maxwell update area; generally this will give the correct result. In typical simulations, the inner region may
be specified to be the normal Yee update region, and the outer region to be the outer boundary of the PML. This rule
applies also when the PML is only a single slab, or is only slabs on the right and left. Before setting itself up, the
PML considers the inner region to be the intersection of the outer region with the input-file-specified inner region.
Specifying the inner slab might seem a bit tricky in some cases. In Vorpal a PML slab can have a direction; and the
simulation gets this direction from the relation between the inner and outer slabs. In the above, for instance, the slab
from [105 10] to [110 210], on the right side of the simulation, attenuates waves only in the x direction; the PML
algorithm can be computed more efficiently for it than for the upper-right corner [105 0] to [110 10]. Because of this,
you must be careful while specifying the inner region when a PML does not surround it completely.

In the end, Vorpal will give an error if a PML updater does not have the sigmaWn STFuncs that it needs.

Note: instantiations of UniPmlUpdater are created for the side slabs, and instantiations of PMLUpdater are
created for the corner regions.

The slabs specified in PmlRegion will be expanded and contracted to and from the simulation boundary, depending on
the component and emType (Faraday or Ampere).

Note: PMLs fail to be reflectionless for some materials, including photonic crystals. It is recommended to use the
Matched Absorbing Layer (MAL) instead. PMLs may also fail when combined with other active boundary conditions,
including but not limited to; ports, particles at the boundary, or structures that are not normal to the boundary. See
Perfectly Matched Layer in VsimReference.

PmlRegion Parameters

faradayUpdaterName (string, required)
Name of the Yee Faraday updater. (The PML Faraday updater will be put in the same update step.)

ampereUpdaterName (string, required)
Name of the Yee Ampere updater.

eFieldName (string, required)
Name of the Yee E field.

bFieldName (string, required)
Name of the Yee B field.

eAuxFieldName (string, default = pmlEAuxField)
Name of the PML auxiliary E field. The Field attribute will be created automatically if it needed.

bAuxFieldName (string, default = pmlBAuxField)
Name of the PML auxiliary B field. The Field attribute will be created automatically if it needed.

rhoJFieldName (string)
Name of the density-current field (current at components 1, 2, 3, density at 0).

rhoJmagFieldName (string)
Name of the density-current field associated with “magnetic” current (untested).

3.7. Multifield 197

VSim Reference Manual, Release 11.0.1-r3016

useUniPml (optional, default = true)
Indicates whether to use the more efficient uniaxial PML algorithm, for which only one sigmaW is non-zero,
when possible.

sigmaForm (string)
Function of w, meant to be a form for producing sigmaWn, the conductivity profile. w is replaced by x, y, or z,
depending on W given by sigmaFactorW. It is multiplied by sigmaFactorW.

sigmaFormW (string)
Function of w, meant to be a form for producing sigmaWn, the conductivity profile. w is replaced by x, y, or z,
depending on W given by sigmaFactorW. A string that is multiplied by sigmaFactorW. (W is one of {X,Y,Z}).

sigmaFactorW (float vector, default = [1.0 1.0])
(W is one of {X,Y,Z}). – components of sigmaFactor [sigmaFactorX1 sigmaFactorX2] are used to multiply the
expressions of sigmaFormX or sigmaForm for the X1 and X2 slabs.

STFunc

Block can be used to specify the sigma function directly. The name of the block must correspond to
sigmaW or sigmaWn where W is X,Y,Z and n is 0 or 1 (lower or upper). See below for examples.

Sigma may be specified through a combination of sigmaForm, sigmaFormW and STFunc blocks.

Region (code blocks)
PmlRegion requires the use of two Region blocks to give the inner and out bounds of the PML region. The inner
region describes the region inside PML (usually the region describing the normal Maxwell update; can/may
extend beyond the outer region). The outer region describes the region bounding PML (which will be slightly
altered for each component).

Region block parameters include:

lowerBounds (integer vector, required)

Lower bounds of the region.

upperBounds (integer vector, required)

Upper bounds of the region.

energyWritePeriod (integer, default = 0)
If non-zero, the energy absorbed by the PML every energyWritePeriod steps to the comms text file. If zero, the
PML region does not keep track of absorbed energy.

MPML

The basic PML has an increasing conductivity, or imaginary part of the dielectric constant (uniaxial PML, see [?]).
While the PML is good at absorbing propagating waves, it is not very good at absorbing evanescent waves. The MPML
(Modified PML, see [?]) increases the real part of the dielectric constant along with the conductivity (imaginary part).
This yields better absorption of evanescent waves; for example, it is a better absorber at the end of a waveguide.

For an MPML, choose kind=mpml in the <PmlRegion>. Then there is an additional option to set:

relPermForm (string, required)
Like relSigmaForm, but specifies the relative permeability (real part of the dielectric constant), which typi-
cally should increase from 1 at the MPML interface to some maximum (perhaps 2 to 10) as a power law.

useSmallSigmaApproximation (boolean, default = false)
Whether to use a time-advance algorithm that assumes 𝜎∆𝑡 ≪ 1. An option for experts only.

addSigmaForm (string)
Should be set to 0 (this is an experimental option).

198 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example PMLslab Block

This example demonstrates a two-dimensional block specifying a PML 5 cells thick on the left and right sides of
the inner region, and 10 cells thick above and below the inner region. (The region will be divided into several slabs
(rectangular regions) and updaters will be created for each region.)

<Region outer>
lowerBounds = [0 0]
upperbounds = [110 220]

</Region>
<Region inner>

lowerBounds = [5 10]
upperbounds = [105 210]

</Region>

Example PMLslab Block

This example demonstrates describing a slab on only the right hand side.

<Region outer>
lowerBounds = [105 0]
upperbounds = [110 220]

</Region>
<Region inner>

lowerBounds = [105 0]
upperbounds = [105 220]

</Region>
inner slab is degenerate in the x direction,
and on the left side of the outer slab,
indicating that the wave will enter the PML from the left side

Example PML slab Block

This is another example that demonstrates describing a slab on only the right hand side.

<Region outer>
lowerBounds = [105 0]
upperbounds = [110 220]

</Region>
<Region inner>

lowerBounds = [0 0]
upperbounds = [105 220]

</Region>

Example Block Describing a Conductivity Function for Each Direction

Function is 0 zero at x-grid number 105,
and increases as x increases.
c is the speed of light and DX the cell-length
in the x # direction.
<STFunc sigmaX2>

(continues on next page)

3.7. Multifield 199

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = expression
expression = 1.0 * c / DX * ((x - 105*DX)/(5*DX))\^{ }2

</STFunc>
Conductivity for each slab is specified by
an STFunc block
Conductivity for each slab is specified by
an STFunc block:
sigmaX1 -x (left slab)
sigmaX2 +x (the right slab)
sigmaY1 -y (bottom slab)
sigmaY2 +y (top slab)
sigmaZ1 -z (back slab)
sigmaZ2 +z (top slab)

Example Block for Specifying When There is a Bottom Slab

<STFunc sigmaY1>
kind = expression
expression = 1.5 * c / DY * ((210*DX - y)/(10*DX))\^{ }2

</STFunc>
You only need the above when there is a bottom slab.
sigmaXn should depend only on x, and likewise for other
directions.
Not recommended - sigmaXn may be allowed to depend
on x, y, z, and t

Example sigmaForm Block Reuse Conductivity Profile for Different Directions

specifying sigmaForm
sigmaForm = 1.5 * c/DX * w\^{ }2
sigmaFactorX = [2.0 0.5]
from which Vorpal can make a sigmaWn by using:
<STFunc sigmaX1>

kind = expression
expression = 2.0 * (1.5 * c/ DX * ((5*DX - x)/(5*DX))\^{ }2)

</STFunc>
<STFunc sigmaX2>

kind = expression
expression = 0.5 * (1.5 * c/ DX * ((x - 105*DX)/(5*DX))\^{ }2)

</STFunc>
Vorpal calculates the real coordinates of PML edge and PML
thickness and replaces w with a linear function of x (or normal
direction)that goes from 0 at the edge to 1 at the end
then multiplies replacement value by factor paramVec
sigmaFactorX.
#
#
To have different functional forms in the X, Y, and Z
directions specify a sigmaFormW where W is X, Y, or Z.
Again, make sigmaFormX (e.g.) a function of the dummy
variable w (w is recognized as the dummy variable if it is
neither preceded followed by another letter, number, or

(continues on next page)

200 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

underscore).
Again, sigmaFactorX is used to allow different factors for
sigmaX1 and sigmaX2.

3.7.14 Region Indices in Multifield Updaters

Understanding Region Indices Used With the MultiField Updater

The region alteration flags facilitate description of the possibly different regions of the three components of an updater
(such as a Yee Faraday updater). So far, Vorpal protocol has been to compute the magnetic field on simulation
boundary faces, but not to compute the electric field on those boundaries (instead setting the electric field by a boundary
condition). If the simulation has 10 x 10 x 10 cells, with lower and upper bounds [0 0 0] and [10 10 10] then typically
the bounds of updaters for the various field components (in the Yee scheme) are:

• 𝐸𝑥: [0 1 1] and [10 10 10]

• 𝐸𝑦: [1 0 1] and [10 10 10]

• 𝐸𝑧: [1 1 0] and [10 10 10]

• 𝐵𝑥: [0 0 0] and [11 10 10]

• 𝐵𝑦: [0 0 0] and [10 11 10]

• 𝐵𝑧: [0 0 0] and [10 10 11]

The actual field components that are in the simulation volume (including the boundary) are:

• 𝐸𝑥: [0 0 0] and [10 11 11]

• 𝐸𝑦: [0 0 0] and [11 10 11]

• 𝐸𝑧: [0 0 0] and [11 11 10]

• 𝐵𝑥: [0 0 0] and [11 10 10]

• 𝐵𝑦: [0 0 0] and [10 11 10]

• 𝐵𝑧: [0 0 0] and [10 10 11]

To specify the update regions above, you can specify the bounds [0 0 0] and [10 10 10] for all updaters, and add the flag
expandToTopInComponentDir = true for the magnetic field updaters, and contractFromBottomInNonComponentDir
for the electric field updaters. If the region does not touch the global boundary of the simulation, no changes are made.

Note: Regarding updating beyond the domain, the options cellsToUpdateBelow/AboveDomain allow the updater to
update beyond the domainRgn. The domainRgn is the region for which a particular processor is responsible (the
main simulation region if running serial on one processor). However, in many cases a processor stores guard cells for
a field – cells that technically belong to another processor; the main simulation region usually also has guard cells.
Usually the guard cells are updated by that other processor, and the values sent (messaged) to other processors that
need those values. Sometimes, when possible, it’s more efficient to calculate guard cell quantities than to receive the
values from another processor. This option facilitates such transactions. To understand how to use the cellsToUpdate-
Below/AboveDomain options, it helps to understand how an updater figures out which cells to update.

• The updater finds the largest region which it is allowed to update; usually this is the local DomainRgn (for
example, lowerBounds = [4 6 7], upperBounds = [10 12 14]), but it will be expanded according to the following
rules:

– If the DomainRgn is at the bottom of the simulation in direction d (and d is not a periodic direction), the
updater will be allowed to write as far below the DomainRgn in direction d as it can without going beyond
field data (Vorpal may incorrectly estimate how far this is). The top of the simulation is treated similarly.

3.7. Multifield 201

VSim Reference Manual, Release 11.0.1-r3016

.. note:: Boundary conditions often update field values beyond the global DomainRgn; this feature allows
that.

– If the DomainRgn is not at the bottom of the simulation in direction d (or d is periodic), then the updater
will be allowed to write below the DomainRgn by the number of cells given by (the dth element of)
cellsToUpdateBelowDomain. For example, if cellsToUpdateBelowDomain = [1 2 2], the lowerBounds
will be adjusted to [3 4 5] (that is, the largest allowed region will have lowerBounds = [3 4 5]).

• The updater takes the intersection of the region specified in the input file with the largest allowed region for the
particular processor, found in the previous step; this is the updater’s update region.

– Note: In the case that direction d is periodic, the region specified in the input file is considered to include
translations of itself in direction d. For example, consider a 1D simulation with N cells. If the updater
bounds are specified in the input file as 0 to N, and cellsToUpdateBelowDomain = [1], then the allowed
region will be -1 to N, and the updater will update cell -1 because cell -1 is equivalent to cell N-1, and
cell N-1 is included in the updater bounds. In other words, the intersection of [-1,N] and [0,N] is [-1,].
However, if the update region had been [0,N-5], excluding cell N-1, then the updater would not update cell
-1. Because this might be confounding, and Vorpal’s logic may not be perfect, this notion is implemented
when the updater region (specified in the input file) is altered, before the updater is created. Vorpal will try
to extend the updater bounds in periodic directions as it sees fit. In other words, [0,N] would be extended to
[-1,N], and this would be the region that appears in MultiField’s attribute set, which it writes to the standard
output, as well as to the per-rank streams. However, [0,N-5] would be unchanged. Then, a straightforward
intersection is applied.

The updater then tries to make sure that the updater only needs field data that it can get (so that it doesn’t try to go past
the array, causing a segfault).

• The component/direction-specific options, such as cellsToExtendBelowDomainInComponentDir, alter the up-
dater attribute set, before the updater is created, and add, say, cellsToExtendBelowDomain, as appropriate.

3.7.15 DielectricShape Block

DielectricShape Block

DielectricShape:

Works with VSimEM license.

This block is required when using a multiDielectricUpdater. The block sets the permittivity to a specified
GridBoundary.

DielectricShape Parameters

gridBoundary (required string)
The name of the GridBoundary to which to set the permittivity to.

relPermittivity (optional float, default = 1.0)
The value of the permittivity within the specified gridBoundary.

isFlipped (optional int, default = true)
Whether the gridBoundary interior is flipped.

202 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

DielectricShape Example

<FieldUpdater setInvEps>
kind = multiDielectricUpdater
lowerBounds = [0 0 0]
upperBounds = [46 51 51]
permittivityField = invEps

<DielectricShape cylinder0Unionsphere0Shape>
gridBoundary = cylinder0Unionsphere0
relPermittivity = 9.9

</DielectricShape>

<DielectricShape cube0Minuscylinder00Shape>
gridBoundary = cube0Minuscylinder00
relPermittivity = 9.0

</DielectricShape>

backgroundPermittivity = 1.0
</FieldUpdater>

3.7.16 ConductorShape Block

ConductorShape Block

ConductorShape:

Works with VSimPD license.

The block describes the shape of an electrical conductor. It is used inside a cutCellPoisson Updater (or
inside a Conductor Block inside a cutCellPoisson Updater).

There are currently two ways to specify a Conductor shape: for a grid-conforming slab,
use kind=slabCndctrShape. For an arbitrary shape described by a GridBoundary, use
kind=gridBndryCndctrShape.

ConductorShape kind = slabCndctrShape

A slabCndctrShape is a conductor that fills a slab a cells with metal.

Detailed descriptions of attributes are below. Most cases, however, will be covered by a couple examples. For these
examples, consider a simulation with [NX, NY, NZ] cells.

Example 1 (most common case). To surround the simulation box with metal walls, use lowerBounds = [0,0,0],
upperBounds = [NX+1, NY+1, NZ+1], and cellsInBoundsAreMetal=false.

Example 2. To surround the simulation with metal walls, except in the y-direction (one might want to do this, e.g.,
if the simulation is periodic in y) use lowerBounds = [0,-1,0], upperBounds = [NX+1, NY+2, NZ+1], and
cellsInBoundsAreMetal=false.

Example 3. To put a metal box into the simulation, filling cells from [4,3,2] through [10,11,12] with
metal – i.e., including cell [10,11,12], use lowerBounds = [4,3,2], upperBounds = [11,12,13], and
cellsInBoundsAreMetal=true.

lowerBounds (required vector of integers, length NDIM)
The lowerBounds (in cell indices) of the cells in the slab.

3.7. Multifield 203

VSim Reference Manual, Release 11.0.1-r3016

E.g., if lowerBounds = [0, 0, 0], then grid cell node [0, 0, 0] will be in metal; if
cellsInBoundsAreMetal=true then cell [0, 0, 0] will be metal-filled, and if false, cell [0, 0, 0] will
be vacuum/dielectric.

Note: with periodic boundary conditions, it is sometimes desirable to avoid setting the lower boundary to
be in metal. This can be accomplished by setting the lowerBound to -1; e.g., if the simulation is periodic
in x, setting lowerBounds = [-1, 0, 0] will ensure that the lower x boundary is not in metal (assuming
cellsInBoundsAreMetal=false).

Note: a line conductor (e.g., a thin wire) can be set with a zero-volume slab, e.g., lowerBounds = [0, 0, 0]
and upperBounds = [NX, 0, 0], with cellsInBoundsAreMetal=true.

upperBounds (required vector of integers, length NDIM)
The upperBounds (in cell indices) of the cells in the slab. Grid cell nodes on the boundary are always metal.

E.g., if upperBounds = [10, 11, 12], then grid cell node [10, 11, 12] is in metal; if ‘cellsInBound-
sAreMetal=true’ then node [9, 10, 11] will be in metal but node [11, 12, 13] will not, and if false, then node [11,
12, 13] will be in metal but [9, 10, 11] will not. (That’s assuming the lowerBounds are much lower, e.g., [4,
3, 2].)

Note: with periodic boundary conditions, it is sometimes desirable to avoid setting the upper boundary to be
in metal. This can be accomplished by setting the upperBound one above the global domain upper boundary
(assuming cellsInBoundsAreMetal=false).

cellsInBoundsAreMetal (optional boolean, default false)
If true, the cells within the bounds are metal-filled. If false, the cells outside the bounds are metal-filled.

ConductorShape kind = gridBndryCndctrShape

gridBoundary (required string)
The name of a GridBoundary object that describes the conductor.

insideIsMetal (optional boolean, default false)
If false, then metal conductor is outside the gridBoundary (the standard definition for deymittra electromagnet-
ics); if true, the metal conductor is inside the gridBoundary.

deymittraConforming (optional boolean, default false)
If true, a grid cell edge that is cut by the gridBoundary surface (hence is partly in vacuum and partly in metal)
will be considered to be entirely in metal if the Dey-Mittra electromagnetic algorithm neglects the edge because
it borders a cut cell face that is too small. Cf. the dmFrac option of GridBoundary.

This should usually be false unless it’s critical that the electrostatic field be a static solution of the electromag-
netic time-advance.

ConductorShape Examples

<ConductorShape block>
kind = slabCndctrShape
lowerBounds = [0 0 0]
upperBounds = [10 11 12]
cellsInBoundsAreMetal = false

</Conductor Shape>

N.B.: it is best not to give the ConductorShape the same
name as the gridBoundary -- it tends to make it confusing
to look up the object "sphere" if both the <GridBoundary>

(continues on next page)

204 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

and the <ConductorShape> are named "sphere".
<ConductorShape sphereC>

kind = gridBndryCndctrShape
gridBoundary = sphere
insideIsMetal = false
deymittraConforming = false

</Conductor Shape>

3.7.17 Conductor Block

Conductor Block

Conductor:

This block describes the shape of an electric conductor (i.e., an equipotential object) via a <Conductor-
Shape> block, and describes as well the properties of that conductor (i.e., its voltage or charge). This
block is used inside a cutCellPoisson Updater;

There are currently two kinds of Conductors: setVoltage and floating. The kind=setVoltage
conductor allows the conductor’s voltage to be set as a function of time. The kind=floating conduc-
tor allows the charge on the conductor to be set, and the voltage is subsequently determined by the charge.

Conductor parameters

<ConductorShape shape> a code block named 'shape'
This ConductorShape Block describes the shape/geometry of the metal-filled region.

calculateCharge (optional boolean, default false)
This option is irrevocably true for floating conductors. For setVoltage conductors, this determines whether the
field-induced charge (integral of epsilon E.dA) should be calculated if possible. It may be useful to calculate the
charge, e.g., to determine the current that needs to be supplied to the conductor to keep it at its set voltage.

fillVoltageInMetal (optional string, default: throughoutMetal)
If ‘throughoutMetal’, then the voltage will be set throughout the metal region of the conductor; this is typically
what is desired, because the conductor should be at a constant potential throughout – in addition, it ensures that
the gradient of the electric potential (i.e., the electric field) vanishes inside the conductor. if ‘onBoundaryNodes’
then the voltage will be set only on the metal boundary nodes (the minimum set of nodes necessary to specify
the Dirichlet boundary conditions) – this is mainly useful simply to see where the boundary nodes are. If
‘onCutCellNodes’ the voltage will be set on the nodes of any cells that are cut by the boundary (including the
boundary nodes).

initialCharge (optional float, default 0.)
The initial charge on the conductor (in Coulombs) at t=0. This is usually relevant only for floating conductors.

restartCharge (optional float, default: restore the value
from the MultiField dump file if present, or default to the initialCharge
if not present)

If this option is specified, it will override any value restored from the MultiField dump file; at restart time, the
charge on the conductor will be set to this value. Typically this option is used only when restarting from a dump
file that doesn’t have this information.

This is usually meaningful only for floating conductors.

3.7. Multifield 205

VSim Reference Manual, Release 11.0.1-r3016

Parameters for Conductor kind = setVoltage

<Expression voltage> a required UserFunc Expression block
This expression block describes the conductor’s electrostatic potential (in Volts), as a function of time t in
seconds (i.e., the expression can be written in terms of t).

Note that the use of local UserFunc blocks within the <Expression> can allow very powerful expressions. For
example, one could use a local historyFunc to set the voltage based on the value of an arbitrary Tensor<History>.

Parameters for Conductor kind = floating

<Expression current>, an optional UserFunc Expression block
This expression block describes the electric current (in Amperes) that flows into or is absorbed by the conductor.

This works with a VSimPD license.

For example, to simulate a proton beam hitting the conductor (without actually simulating the protons) the
current should be set to a positive value.

The expression can be a function of time t.

The expression can also be a function of the voltages of all the <Conductor>s in the same cutCellPoissonUp-
dater (including this Conductor’s own voltage). The variable for the voltage of <Conductor someName> is
“V_someName”.

Caution: Currents between floating conductors must be symmetric! For example, if there are two floating
conductors, C1 and C2, and C1 is given a current V_C2/R, then C2 must also be given a current V_C1/R
(among other possible currents). Typically the current to C1 will be (V_C2-V_C1)/R + other currents depending
on V_C1, while the current to C2 will be (V_C1-V_C2)/R + other currents depending on V_C2. This symmetry
does not apply to currents that depend on Conductors of kind=setVoltage – those conductors can supply
or absorb arbitrary currents self-consistently. If an asymmetric current is specified, a warning will be issued,
and the current will be forcibly symmetrized (which may not be the intent).

This is used to simulate currents in addition to currents from particles obtained from ptclAbsorbers and pt-
clSources.

Note that the use of local UserFunc blocks within the <Expression> can allow very powerful expressions. For
example, one could use a local historyFunc to set the current based on the value of some Tensor<History>.

ptclAbsorbers (optional list of strings)
A list of <ParticleSink>s; the charge from particles that get “sunk” by these <ParticleSink>s will be added to the
conductor. Typically this list will include all the particle absorbers that correspond to the conductor shape (i.e.,
that absorbe particles when they hit the metal conductor). Note that absorber names must often be qualified by
the species: e.g., electrons.sphereAbsorber.

ptclSources (optional list of strings)
A list of <ParticleSource>s; the charge from particles that are “emitted” from these <ParticleSource>s will
be subtracted from conductor. Typically this list will include all the <ParticleSource>s that correspond to the
conductor shape (i.e., that emit particles from the metal conductor, such as field emitters or secondary emitters).
Note that source names must often be qualified by the species: e.g., electrons.secondaryElectronEmitter.

ptclSourceSpecies (optional list of strings of the
same length as ptclSources)

Some <ParticleSource>s can emit multiple species. This is a list of species, one for element of ptclSources,
describing which species to count.

206 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Conductor Examples

This Conductor has a set voltage outside a sphere.

N.B.: it is best not to give the Conductor the same
name as the gridBoundary -- it tends to make it confusing
to look up the object "sphere" if both the <GridBoundary>
and the <ConductorShape> are named "sphere".
<Conductor sphereC>

kind = setVoltage
calculateCharge = true
<ConductorShape shape>
kind = gridBoundary
gridBoundary = sphere

</ConductorShape>
<Expression voltage>
expression = 12 * sin(100. * t) * exp(-t/0.1)

</Expression>
fillVoltageInMetal = throughoutMetal

</Conductor>

This conductor floats at a potentially determined by the charged
particles that it absorbs (and emits).
<Conductor smallSphereC>

kind = floating
ptclAbsorbers = [electrons.smallSphereAbsorber ions.smallSphereAbsorber]
ptclSources = [electrons.smallSphereSecondaryEmitter]
No need to specify ptclSourceSpecies if the source emits only one species
#ptclSourceSpecies = [electrons]
<ConductorShape shape>
kind = gridBoundary
gridBoundary = smallSphere

</ConductorShape>
fillVoltageInMetal = throughoutMetal

</Conductor>

This slab conductor has a set voltage of 0.
<Conductor groundC>

kind = setVoltage
calculateCharge = true
<ConductorShape shape>
kind = slab
cellsInBoundsAreMetal = true
lowerBounds = [0 0]
upperBounds = [10 1]

</ConductorShape>
<Expression voltage>
expression = "0."

</Expression>
</Conductor>

This conductor floats at a potential determined by a set current that
depends on the voltage difference between plate1C and plate2C.
<Conductor plate1C>

kind = floating
<ConductorShape shape>

(continues on next page)

3.7. Multifield 207

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = slab
cellsInBoundsAreMetal = true
lowerBounds = [0 7]
upperBounds = [10 8]

</ConductorShape>
<Expression current>
expression = (V_plate2C-V_plate1C)/R_12
Since this contains a term V_plate2C/R_12, conductor plate2C
must have a term V_plate1C/R_12.

</Expression>
</Conductor>

This conductor floats at a potential determined by a set current that
depends on the voltage difference between plate1C and plate2C,
as well as the voltage difference between plate2C and groundC.
<Conductor plate2C>

kind = floating
<ConductorShape shape>
kind = slab
cellsInBoundsAreMetal = true
lowerBounds = [0 2]
upperBounds = [10 3]

</ConductorShape>
<Expression current>
expression = (V_groundC-V_plate2C)/R_G2+(V_plate1C-V_plate2C)/R_12
Since this contains a term V_plate1C/R_12, conductor plate1C
must have a term V_plate2C/R_12.
However, groundC is not a floating conductor, so V_groundC can
be used however desired.

</Expression>
</Conductor>

3.8 ScalarDepositor and VectorDepositor

ScalarDepositor

3.8.1 ScalarDepositor

More flexible way of depositing charge from charged particles in a simulation into depFields than the classical
way of depositing charge into the zeroth component of a SumRhoJ field.

Note: The ScalarDepositor should not be used in a MultiField block of kind = emMultiField, or errors
will occur in the simulation.

Note: Higher order particles are incompatible with the polar/cylindrical axis. If particles in the simulation pass near
the polar/cylindrical coordinate axis at r = 0, only areaWeightingCP or esirk1stOrderCP can be used.

208 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

ScalarDepositor Parameters

kind (string, default = areaWeighting)
Kind of deposition algorithm; choices are:

• areaWeighting Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

• esirk1stOrder Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

• esirk2ndOrder, . . . , esirk7thOrder Works with VSimPD and VSimPA licenses.

• areaWeightingCP (for coordProdGrid) Works with VSimBase, VSimEM, VSimPD, VSimPA,
and VSimMD licenses.

• esirk1stOrderCP (for coordProdGrid) Works with VSimBase, VSimEM, VSimPD, VSimPA,
and VSimMD licenses.

• esirk2ndOrderCP, . . . , esirk7thOrderCP (for coordProdGrid) Works with VSimPD and
VSimPA licenses.

depField (string)
Scalar defined in the MultiField block that will contain the deposited charge.

Note: When using higher order deposition (esirk2ndOrder, . . . , esirk7thOrder),
maxIntDepHalfWidth must be set accordingly in the Grid block (see Additional Attributes for
Particle Simulations).

Example ScalarDepositor Block

<ScalarDepositor chargeDep>
kind = areaWeighting
depField = myEmField.rho

</ScalarDepositor>

Example Reference to ScalarDepositor in a Species Block

<Species electrons>
kind = relBorisDF
chargeDeps = [chargeDep]
.
.
.

</Species>

VectorDepositor

3.8.2 VectorDepositor

Flexible way of depositing current from charged particles in a simulation into occurrences of depField,
instead of the classical way of depositing current into the last three components of a SumRhoJ field. With
a VectorDepositor you can simply employ a VectorDepositor and a three-vector J in an EM PIC simulation
instead of using the four-vector SumRhoJ, as has been classically used, thus saving on memory.

3.8. ScalarDepositor and VectorDepositor 209

VSim Reference Manual, Release 11.0.1-r3016

Note: The VectorDepositor should not be used in MultiField block of kind = emMultiField,
or errors will occur in the simulation.

Note: Higher order particles are incompatible with the polar/cylindrical axis. If particles in the simulation
pass near the polar/cylindrical coordinate axis at r=0, only areaWeightingCP or esirk1stOrderCP can be
used.

VectorDepositor Parameters

kind (string, default = areaWeighting)
Type of deposition algorithm; choices are:

• areaWeighting

• esirk1stOrder

• esirk2ndOrder

• esirk7thOrder

• areaWeightingCP (for coordProdGrid)

• esirk1stOrderCP (for coordProdGrid)

• esirk2ndOrderCP (for coordProdGrid)

• esirk7thOrderCP (for coordProdGrid)

depField (string)
Vector depfield defined in the MultiField block that will contain the deposited current.

Note: When using higher order deposition (esirk2ndOrder, . . . , esirk7thOrder),
maxIntDepHalfWidth must be set accordingly in the Grid block (see Additional Attributes for
Particle Simulations).

Example VectorDepositor Block

<VectorDepositor~currDep>
kind = areaWeighting
depField = myEmField.J

</VectorDepositor>

Example Reference to VectorDepositor in a Species Block

<Species electrons>
kind = relBorisDF
currDeps = [currDep]
.
.

(continues on next page)

210 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

.
</Species>

3.9 SumRhoJ

3.9.1 SumRhoJ

SumRhoJ (singleton) Block that contains the charges and currents generated by the charged particles and fluids in
the simulation. You can add to the charge and/or current density using an Initial and Boundary Conditions as
previously described. Recall that a BoundaryCondition can be applied throughout a region, which can be useful
for adding an external driving current to a simulation.

You do not need to use a SumRhoJ block unless you need to add a boundary condition or source.

SumRhoJ blocks include a Source block. In fact, a SumRhoJ block is most commonly used for adding a
Source block whose purpose is to add a current source to a simulation.

Example SumRhoJ Block

#
Drive cavity with current source
#
<SumRhoJ sumRhoJ>

<Source currentSource>
Apply everywhere
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
kind = varadd # Value added to current field
components = [3] # J_z, rho is 0

<STFunc component3>
kind = expression
expression = AMP*sin(CAVOMEGA*t)*exp(-0.5*(t-T_0)^2/T_SIG^2)*H(STOPTIME-

→˓t)*H(RADINIT^2 - x^2 - y^2)*J0(KAPPA*sqrt(x^2+y^2))
</STFunc>

</Source>
</SumRhoJ>

3.10 Fluid

Fluid

3.10.1 Fluid Block

Block used to add charged and neutral fluids to a simulation. A fluid in Vorpal obeys the same initial and boundary
conditions as a Field. As with a Field, initial and boundary condition blocks Initial and Boundary Conditions are
nested within the Fluid blocks.

3.9. SumRhoJ 211

VSim Reference Manual, Release 11.0.1-r3016

Fluid Kinds

• coldRelFluid

• eulerFluid

• neutralGas

3.10.2 coldRelFluid

Works with VSimPA license.

A charged, cold, relativistic fluid. The velocity is updated using an upwinding advection. The density is updated using
a finite volume approach with the velocity found from upwinding. In both cases, alternating direction is used.

coldRelFluid Parameters

charge (real, default -1.6e-19)
Charge of charge carrier for the fluid.

mass (real, default 9.1e-31)
Mass of the charge carrier for the fluid.

advectMomentum (integer, default = 1 (true))
Whether to advect the momentum.

accelerate (integer, default = 1 (true))
Whether to accelerate momentum.

convectDensity (integer, default = 1 (true))
Whether to convect density.

weightCurrents (integer, default = 1 (true))
Whether to weight currents.

correctDensity (integer, default = 0 (false))
Whether to apply second-order density corrections.

3.10.3 eulerFluid

eulerFluid

Works with VSimPD license:

A neutral, scalar-pressure fluid based on the algorithm described in pages 361 to 362 of Laney’s Computational
Gasdynamics [?].

eulerFluid Parameters

ratioSH (real)
Ratio of specific heats; affects the pressure calculation.

epsilon (real)
Value of epsilon for the fluid.

212 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

3.10.4 neutralGas

Works with VSimPA and VSimPD licenses.

(Non-dynamic) gas to be simulated.

neutralGas Parameters

gasKind (string, no default value)
Type of gas represented; used for interaction processes such as ionization, negative ion detachment, etc. The
available values for gasKind will vary depending on the type of interaction. For more information on available
gaskinds, please see Working with neutralGas Fluids and the gasKind Parameter.

dumpTrack (string, default = false)
Track the energy, momentum, and number of events for electron/gas interactions (including elastic, excitation,
and ionization interactions). The results are written into separate h5 files. For example, when tracking an ex-
citation interaction with dumpTrack, the additional output fields are *_ExcitationErgFld, *_ExcitationMomFld,
and *_ExcitationEvtFld, where * is the name of the neutralGas block. The units of the energy field are eV, the
units of the momentum field are MKS, and the units of the event field are the unitless number of events per cell.
This option requires a corresponding Monte Carlo collision block to describe the various interactions.

constantDensity (string, default = false)
This flag will determine whether or not the fluid density is depleted or augmented via reaction processes.

numMacroPPCRxns (integer, default = 1)
The effective number of macro particles per cell used when performing collisions using the Reaction framework.
This will only have an effect if kinetic species reacting with or produced by the reactions are variable weight. If
particles are constant weight then the fluid’s effective weight will be the same.

See Also

Initial and Boundary Conditions

3.11 Species

3.11.1 Species Blocks

Species

Species

One of several different methods for modeling particles in Vorpal. Each Species block is defined by a kind parameter
that corresponds to a particular Species algorithm, as well as parameters that describe characteristics of the Species
block. Available kinds for Species blocks are discussed in documentation sections following the list of general Species
Parameters. Vorpal represents macroparticles. See Macroparticles for more about macroparticles.

For some types of simulations, as discussed in the cellSpecies description, cellSpecies uses optimization algorithms
that can result in performance surpassing that can be achieved using other species. Tech-X recommends using cell-
Species whenever your simulation data characterization can conform to functionality supported by cellSpecies.

3.11. Species 213

VSim Reference Manual, Release 11.0.1-r3016

Note: Vorpal considers the velocities of any non-relativistic particle kind to be velocity. All other particle kinds are
𝛾𝑣.

Species Parameters

In addition to the name of the kind, which indicates the algorithm, Species parameters include:

kind (string)
Specifies the species algorithm to be used. See Species kinds in the sections following this list of general Species
parameters.

charge (double)
Value describing the charge of a particle in the species.

mass (double)
Positive value describing the mass of a particle in the species.

emField (string)
User-defined combo EmField with which the particle species will interact.

bgEmField (string)
User-defined combo bgEmField used for particles of relBorisDF type.

fields (string vector)
User-defined Fields from a MultiField block with which particle Species will interact. The vector is of the form:

[Electric_Field Magnetic_Field],

where vector items require a space for separation. The order of these vector components is significant. This
is used in a Multifields approach to define the electric and magnetic fields as an alternative to defining them
through the combo emField.

bgElecField (string)
User-defined Field that explicitly specifies the background electric field via a Multifields Field. Used with
particles of relBorisDF type and (in combination with bgMagField) as an alternative to bgEmField.

bgMagField (string)
User-defined Field that explicitly specifies the background magnetic field via Multifields Field. Used with
particles of relBorisDF type and (in combination with bgElecfield) as an alternative to bgEmField.

chargeDeps (string)
User-defined ScalarDepositor that deposits charge into a MultiField’s depField.

currDeps (string vector)
User-defined VectorDepositor that deposits current into a MultiField’s depField. Where a complex electric and
magnetic field has been used (see cmplxRelBorisDF) one would use currDeps to define both real and imaginary
current depositors as follows:

[Real_Current_Depositor Imag_Current_Depositor]

nominalDensity (double)
Positive value suggesting the nominal density for the particles.

nomPtclsPerCell (double)
Positive value suggesting the nominal macro particles per cell in the simulation.

numPtclsInMacro (double)
Positive value setting the number of particles in a macro particle.

214 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

depositCurrentThoughFieldsNotUsed (boolean, default = true)
Whether a species should deposit current (to SumRhoJ) even if the species does not use the electric or magnetic
fields. This option should be set to true with freeRel or freeRelVW species (which do not “see” EM fields) if
the particles should deposit current (hence generate fields). If this option is not set to true, freeRel particles will
have no effect on EM fields. Other (non-free) species will deposit current regardless of this option.

overwriteTag (boolean, default = false)
Whether to regenerate the tag when adding a particle. This option takes effect only with tagged species. When
this option is on, the tag is generated inside the species, rather than with the velocityGenerator. This allows
generation of a unique tag when several particle sources are present in the species or if particles of this species
can be generated by a MonteCarlo interaction. This option also guaranties that the tags are generated in a unique
way after restore. If overwriteTag is not set or set to false, we cannot guarantee that Vorpal will generate
unique tags after restore.

For example, the tag may be generated at the same time that a particle’s velocity is generated, but with over-
writeTag, that tag will be overwritten by the <Species>.

useSequentialTags (boolean, default = false)
Whether to generate sequential tags for particles (this option only applies if overwriteTag = true); e.g.,
if there are 10 tagged particles in the simulation, they will have tags 0 through 9. In parallel simulations,
communication between processors is required (at every time step that particles might be loaded or emitted) to
generate sequential tags; this may significantly slow a simulation.

If tagged particles are loaded or emitted at only a few time steps, it is recommended to use applyTimes (or
similar) within the <ParticleSource>; that will prevent any communication except during the valid applyTimes.

consolidatePtclGrps (integer)
An integer flag determining whether Vorpal should consolidate particle groups.

useSegmentedMove (integer, default = 1)
Used to speed up certain types of Vorpal simulations. useSegmentedMove can be set to 1 (default) or 0. This
parameter is designed to allow simulations that do NOT need the segmented move decomposition (i.e. lwfa
simulations (no gridBndry) with either absorbers or periodic boundaries) to accelerate. Those simulations that
use more complex boundaries like gridBndry, reflectors, etc. should use the segmented move, i.e. do not put
useSegmentedMove = 0 in your species blocks. If you choose not to use the segmented move, be aware
that higher order particles will probably not work very well for the current deposition though the interpolation
should be fine.

mode (integer)
Specifies a given mode number for which Vorpal should solve; mode number is from a specified mode expansion,
for example, fields are assumed to be expressed as: 𝐸(𝑥, 𝑦, 𝑧) = 𝑒𝑖𝑘𝑧𝐸(𝑥, 𝑦), given: 𝐸(𝑥, 𝑦) = 𝐸𝑟(𝑥, 𝑦) +
𝑖𝐸𝑖(𝑥, 𝑦). At present, this is only for the Species kind cmplxRelBorisDF.

maxcellxing (integer)
In particle simulations in which the particles could ordinarily cross more than one cell in a time step and cause
out-of-bounds memory access (such as can happen in electrostatic simulations with non-relativistic dynamics),
you can impose a velocity limit to prevent the out-of-bounds memory access from occurring by using the max-
cellxing variable. E.g., maxcellxing = 1 will limit the particle velocity so that the particle cannot cross
more than one cell per step. That is, if for any direction i, velocity_i * dt > dx_i, then the velocity is reduced
in magnitude so that velocity_i * dt<= dx_i for all i. Since imposing a velocity limit introduces error into the
simulation, for cases in which you must use the velocity limit for a significant number of particles, you should
lower the time step for the simulation.

labels (stringVector)
Specify labels for particle components. For example: labels = [x,y,z,Red,Green,Blue]. This is
useful whenever relBorisTagged Species Kind, relBorisVWTagged Species Kind, or relBorisVWScale Species
Kind is used, as these require special labeling for components 6-8 to display properly. See Velocities and
Internal Variables of Particles for a table of the correct labels for each species kind.

3.11. Species 215

VSim Reference Manual, Release 11.0.1-r3016

dumpPeriodicity (integer, optional)
How often to dump the data; indicates data is to be dumped whenever the time step has increased by this
amount. The command line parameter -d overrides this variable. Must have this defined in an input file or on
the command line.

For more dumping options, see the Dumping Fields, Particles, and GridBoundaries section in Output Data in
the VSim User Guide.

Macroparticles

Since simulating all of the physical particles in a simulation would be computationally prohibitive, Vorpal makes use
of the Particle-in-Cell (PIC) model which uses macroparticles to model a large group of physical particles. This allows
a particle simulation to be completed in a reasonable amount of time while still capturing any kinetic effects from the
particle distribution in space and time. Depending on the type of particle species used, the ratio of physical particles
to macroparticles will be fixed or it can vary from macroparticle to macroparticle. This method does not require
modification of the equations of motion since the charge-to-mass ratio of the macroparticles remains fixed.

The Vorpal macroparticle model is based on PIC algorithms from Hockney and Eastwood [?] and Birdsall and Langdon
[?].

Delta-F

Some of the particle species in Vorpal make use of the Delta-F algorithm. The approximate phase-space density in a
phase-space volume 𝑉𝑝𝑠 that can be found from the weights of delta-f particles using the formula

𝑓 = 𝑓0 +
𝑉𝑐𝑒𝑙𝑙 · nominalDensity

𝑉𝑐𝑒𝑙𝑙 · nomPtclsPerCell
,

where:

• nomPtclsPerCell are the parameters of the block <Species . . . >

• 𝑉𝑐𝑒𝑙𝑙 is cell volume as defined by parameters of the block <Grid> at the top level of the Vorpal input file

The Equilibrium phase-space density, 𝑓0, is defined in the block <SVTFunc equilibDist> inside of the block <Species
. . . > where in particular, the approximate density of the real particles in volume 𝑉 can be approximated using the
equation

𝜌 = 𝜌0 +
𝑉𝑐𝑒𝑙𝑙 · nominalDensity

𝑉𝑐𝑒𝑙𝑙 · nomPtclsPerCell
Σ𝑤𝑖,

where:

• the summation Σ𝑤𝑖 happens over all particles found in the volume

• 𝜌0 is the background density, which is the integral of 𝑓0 over all possible velocities

Velocities and Internal Variables of Particles

VelocityGenerator: Used by xvLoaderEmitter particle sources to determine the velocities (and all internal
variables) of particles when loaded or emitted into the simulation. All xvLoaderEmitter blocks must have
a VelocityGenerator block. See the documentation for each velocity generator for more details and parameters.

216 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Relativistic and Non-Relativistic Velocity

Vorpal uses either relativistic or non-relativistic velocity based on particle species:

non-relativistic
Simple velocity; applies to velocities for particle species:

• nonRelBoris

• nonRelES

relativistic`
Applies to all other particle species.

Internal Variables Associated with Particles

Internal variables associated with particles may include such quantities as particle-weight and tag. For variably-
weighted particles, Vorpal tracks the weight as an additional internal variable. The velocity vector component desig-
nations are:

• component0: x coordinate

• component1: y coordinate

• component2: z coordinate

• component3: x component of the velocity or the 𝛾𝑣.

• component4: y component of the velocity or the 𝛾𝑣.

• component5: z-components of the velocity or the 𝛾𝑣.

• component6-8: component**n**: Consult table below.

Velocity Vector Component Designations for component:

Particle Species component6 component7 component8
freeRel N/A N/A N/A
nonRelBoris N/A N/A N/A
nonRelES N/A N/A N/A
relBoris N/A N/A N/A
relBorisVW w N/A N/A
relBorisDF w N/A N/A
relBorisBallisticVW w N/A N/A
relBorisTagged tag N/A N/A
relBorisVWTagged tag w N/A
relBorisVWScale tag scale w
relBorisEffMassExtd valleyIndex w N/A
nonRelEsEffMassExtd valleyIndex w N/A

Legend:

symbol value
v velocity
𝛾𝑣 gamma*v
w weight
tag particle tag
scale particle scale factor

3.11. Species 217

VSim Reference Manual, Release 11.0.1-r3016

Variable Weight Particles

For the particular case of variable weight particles, you must specify one or the other, never both, of the following:

• currentDensityFunc

• Behavior of component3 in the velocity generator

One should use currentDensityFunc to set the weight of the particles in an emission source, not component3. (If
you attempt to specify both a currentDensityFunc and a component3 inside a VelocityGenerator, then the value of
component3 in the VelocityGenerator will be overridden by the currentDensityFunc.)

When loading particles, component3 is required to determine the weight of the particles.

Species Kinds

Species Kinds

Basic Dynamic Species kinds include those kinds listed below. Other case-specific implementations of Basic Dynamic
Species kinds are discussed in Specialized Basic Dynamic Species Kinds.

Contents

• cmplxRelBorisCylDF Species Kind

• cmplxRelBorisDF Species Kind

– Example Species Kind cmplxRelBorisDF Block

• envBoris Species Kind

– envBoris Species Additional Parameters

• freeRel Species Kind

• freeRelVW Species Kind

• noMove Species Kind

• noMoveVW Species Kind

• nonRelBoris Species Kind

• nonRelES Species Kind

• nonRelESEffMassExtd Species Kind

– nonRelESEffMassExtd Species Additional Parameters

• nonRelESVW Species Kind

• relBoris Species Kind

• relBorisBallisticVW Species Kind

• relBorisCyl Species Kind

• relBorisCylVW Species Kind

• relBorisCylVWTagged Species Kind

• relBorisDF Species Kind

218 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• relBorisCylDF Species Kind

• relBorisEffMassExtd Species Kind

– relBorisEffMassExtd Species Additional Parameters

• relBorisFuncVW Species Kind

• relBorisTagged Species Kind

• relBorisVW Species Kind

• relBorisVWScale Species Kind

• relBorisVWTagged Species Kind

cmplxRelBorisCylDF Species Kind

cmplxRelBorisCylDF
Works with VSimPD license.

Should be used in lieu of the cmplxRelBorisDF species kinds whenever polar, cylindrical, or tubular grids are
used. An extension of the relBorisDF when one has made an expansion in either a single component direction in
Cartesian coordinates or in the phi direction for cylindrical coordinates and then is left solving for the coefficients
of that expansion. The coefficients are the real and imaginary field values.

Note: cmplxRelBorisCylDF is only permissible with doLinearDF = true and that it requires an under-
standing of setting up the proper fields in a MultiField block.

cmplxRelBorisDF Species Kind

cmplxRelBorisDF
Works with VSimPD license.

An extension of the relBorisDF when one has made an expansion in either a single component direction in
Cartesian coordinates or in the phi direction for cylindrical coordinates and then is left solving for the coefficients
of that expansion. The coefficients are the real and imaginary field values.

Note: cmplxRelBorisDF is only permissible with doLinearDF = true and that it requires an understand-
ing of setting up the proper fields in a MultiField block.

Example Species Kind cmplxRelBorisDF Block

<Species electrons>
kind = cmplxRelBorisDF
charge = ELECCHARGE
mass = ELECMASS
Must specify mode number of problem
mode = K
Order matters in fields vector
fields = [emField.nodalER emField.nodalEI emField.nodalBR emField.nodalBI]

(continues on next page)

3.11. Species 219

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

Order matters in currDeps vector
currDeps = [JRDep JIDep]
bgEmField = B0
doLinearDf = true
.
.
.

</Species>

envBoris Species Kind

envBoris

Works with VSimPA license.

Describes particles that respond to both the Lorentz force and the ponderomotive force that arises in
response to an envelope field in the laser envelope model.

In addition to the usual species parameters, an envBoris species requires some unique parameters, listed
below.

Note: The envelope model is constructed for use with the MultiField input file architecture. See the
MultiField section for more details.

envBoris Species Additional Parameters

In addition to the parameters in the list of Species Parameters, the envBoris Species requires:

envelopeFields (string vector, required)
The names of the active and alternate envelope fields to be used for the particle phase space advancement.

susceptibilityDep (string, required)
The name of the ScalarDepositor to be used for the plasma susceptibility in the laser envelope model.

envelopeMultiField (string)
The name of the MultiField containing the envelope fields to be used for particle phase space advancement.

forceField (string)
The name of the ponderomotive force field to be used for particle advancement.

freeRel Species Kind

freeRel
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

A free streaming particle model, used to calculate free streaming of a relativistic species. This does not add any
extra parameters.

freeRelVW Species Kind

freeRelVW
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

220 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

A free streaming particle model, used to calculate free streaming of a variable-weight relativistic species. With
variable weight methods, each particle has independent ratio of macroparticles to real particles. This does not
add any extra parameters.

noMove Species Kind

noMove
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Supports non-moving species. noMove can be used in a simulation to create a new non-moving particle that
will always stay at the location defined by the particle source.

noMoveVW Species Kind

noMoveVW
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Supports non-moving species with variable weight method. noMoveVW can be used in a simulation to create a
new non-moving particle that will always stay at the location defined by the particle source.

nonRelBoris Species Kind

nonRelBoris`
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Non-relativistic push using the Boris algorithm, used to calculate an electromagnetic Boris update to the particle
velocities for non-relativistic particles.

nonRelES Species Kind

nonRelES
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Calculates electrostatic updates to the particle velocities for non-relativistic particles; no magnetic fields affect
the particles.

nonRelESEffMassExtd Species Kind

nonRelESEffMassExtd
Works with VSimSD licence.

Particle species that uses the electrostatic update to push electrons and holes in a diamond material. The es-
sential difference to regular relBoris species is that in diamond, electrons and holes have effective masses that
are different from their values in vacuum. Generally, the effective masses are represented by two-dimensional
tensors. However, for holes the tensor is diagonal with equal diagonal elements. For electrons, the tensor is
also diagonal but one of the components is different (longitudinal effective mass) from the other two (transverse
effective masses). Moreover, the position of the longitudinal effective mass component depends on the conduc-
tion band valley an electron is in. The model includes six band valleys along each of the main coordinate axes
in reciprocal space. The different effective masses are used both in the ballistic push and in the Monte Carlo
scattering processes. The longitudinal and transverse effective masses, together with the different conduction
band valleys lead to important effects when modeling electron emission with conservation of transverse electron
momentum.

3.11. Species 221

VSim Reference Manual, Release 11.0.1-r3016

nonRelESEffMassExtd Species Additional Parameters

In addition to the parameters in the list of Species Parameters, there are:

useEffectiveMasses (bool, optional)
If this flag is set, the particle pusher will use the effective masses when pushing particles (default is false). When
it is not set, a scalar mass will be used for the electrons (the provided for the species).

isHole (bool, optional)
The isHole flag is used to specify if the species should be treated as electrons or holes (for the purpose of
scattering and what effective masses to use). Default value is false (treat the species as electrons).

scatterFlag (bool, optional)
This flag is used to specify if the scattering should be turned on or not. Default value is 1 (which is to do
the scattering). This flag is used in the low energy regime (the high energy regime is the charge generation
regime while the low energy regime is the charge transport one when electrons and holes have energies in the
drift-diffusion transport phase of the order of 1 eV or less).

updateDebugType (int, optional)
In the charge generation phase, the particles are pushed with the regular particle ballistic push and the value of
the parameter updateDebugType is set to 0 which is its default value. A scalar mass should be used in the charge
generation phase and scattering is already taken care of via the ScatterRegion sink.

In the low energy phase, we want to use an update method that includes the various scattering processes imple-
mented. To do this, set updateDebugType to 2 (the value that should be used to enable a particle update with
low energy scattering processes).

nonRelESVW Species Kind

nonRelESVW
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Calculates electrostatic updates to the particle velocities for non-relativistic particles; no magnetic fields af-
fect the particles. With variable weight methods, each particle has independent ratio of macroparticles to real
particles. This does not add any extra parameters.

relBoris Species Kind

relBoris
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Calculates an electromagnetic Boris update to the particle velocities.

relBorisBallisticVW Species Kind

relBorisBallisticVW
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Creates ballistic particles. Particles are ballistic if they do not undergo acceleration. Using this kind re-
quires the additional parameter moveDimVec, which specifies the directions in which the particle is allowed
to move. For example, moveDimVec = [1 0 0] will allow movement only along the x direction, whereas
moveDimVec = [0 1 1] will allow movement along the y and z directions. If moveDimVec is not speci-
fied, three-dimensional movement is the default.

222 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

relBorisCyl Species Kind

relBorisCyl
Works with VSimPD and VSimMD licenses.

Should be used in lieu of the relBoris species kinds whenever polar, cylindrical, or tubular grids are used.
Provides a Boris pusher for these coordinate systems.

relBorisCylVW Species Kind

relBorisCylVW
Works with VSimPD and VSimMD licenses.

Should be used in lieu of the relBorisVW species kinds whenever polar, cylindrical, or tubular grids are used.
Provides a Boris pusher with variable-weight particles for these coordinate systems.

relBorisCylVWTagged Species Kind

relBorisCylVWTagged
Works with VSimPD and VSimMD licenses.

Should be used in lieu of the relBorisVWTagged species kinds whenever polar, cylindrical, or tubular grids are
used. Provides a Boris pusher with variable-weight particles for these coordinate systems. This species also
allows for assigning a unique tag identifier to each macroparticle for trajectory tracking.

relBorisDF Species Kind

relBorisDF
Works with VSimPD license.

Relativistic Boris delta-F. A particle species that solves for the perturbation of the equilibrium distribution, ∆𝑓 ,
given that 𝑓 = 𝑓0 + ∆𝑓 . Removes a significant amount of noise from the particle-in-cell simulations. Requires
vmin and vmax parameters and includes an optional doLinearDF flag that allows use of either linear DF or
nonlinear DF.

relBorisCylDF Species Kind

relBorisCylDF
Works with VSimPD license.

Should be used in lieu of the relBorisDF species kinds whenever polar, cylindrical, or tubular grids are used.
A relativistic Boris delta-F. A particle species that solves for the perturbation of the equilibrium distribution,
∆𝑓 , given that 𝑓 = 𝑓0 + ∆𝑓 . Removes a significant amount of noise from the particle-in-cell simulations.
Requires vmin and vmax parameters and includes an optional doLinearDF flag that allows use of either linear
DF or nonlinear DF.

relBorisEffMassExtd Species Kind

relBorisEffMassExtd
Works with VSimSD licence.

3.11. Species 223

VSim Reference Manual, Release 11.0.1-r3016

Particle species that uses the electromagnetic Boris update to push electrons and holes in a diamond mate-
rial. The essential difference to regular relBoris species is that in diamond, electrons and holes have effective
masses that are different from their values in vacuum. Generally, the effective masses are represented by two-
dimensional tensors. However, for holes the tensor is diagonal with equal diagonal elements. For electrons,
the tensor is also diagonal but one of the components is different (longitudinal effective mass) from the other
two (transverse effective masses). Moreover, the position of the longitudinal effective mass component depends
on the conduction band valley an electron is in. The model includes six band valleys along each of the main
coordinate axes in reciprocal space. The different effective masses are used both in the ballistic push and in
the Monte Carlo scattering processes. The longitudinal and transverse effective masses, together with the dif-
ferent conduction band valleys lead to important effects when modeling electron emission with conservation of
transverse electron momentum.

relBorisEffMassExtd Species Additional Parameters

In addition to the parameters in the list of Species Parameters, there are:

useEffectiveMasses (bool, optional)
If this flag is set, the particle pusher will use the effective masses when pushing particles (default is false). When
it is not set, a scalar mass will be used for the electrons (the provided for the species).

isHole (bool, optional)
The isHole flag is used to specify if the species should be treated as electrons or holes (for the purpose of
scattering and what effective masses to use). Default value is false (treat the species as electrons).

scatterFlag (bool, optional)
This flag is used to specify if the scattering should be turned on or not. Default value is 1 (which is to do
the scattering). This flag is used in the low energy regime (the high energy regime is the charge generation
regime while the low energy regime is the charge transport one when electrons and holes have energies in the
drift-diffusion transport phase of the order of 1 eV or less).

updateDebugType (int, optional)
In the charge generation phase, the particles are pushed with the regular particle ballistic push and the value of
the parameter updateDebugType is set to 0 which is its default value. A scalar mass should be used in the charge
generation phase and scattering is already taken care of via the ScatterRegion sink.

In the low energy phase, we want to use an update method that includes the various scattering processes imple-
mented. To do this, set updateDebugType to 2 (the value that should be used to enable a particle update with
low energy scattering processes)

relBorisFuncVW Species Kind

relBorisFuncVW
Works with VSimPD and VSimMD licenses.

Particle species that uses the electromagnetic Boris update to the particle velocities where the macroparticle to
real particle ratio is controlled by a user-specified STFunc. Results using this species are only valid when the
particle positions are displaced by a small amount from a equilibrium position by the electromagnetic fields.
Useful for modeling the appearance of a plasma whose general time and density dependence are known. Re-
quires STFunc block of arbitrary name that sets the weight of the particles; this one required block is unique to
the species.

224 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

relBorisTagged Species Kind

relBorisTagged
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Applies an electromagnetic Boris update to the particle velocities. This species assigns a unique tag identifier to
each macroparticle for trajectory tracking.

Note: A Species of kind = relBorisTagged should include the argument labels = [x,y,z,ux,uy,
uz,tags] in order to correctly label all components in the output.

relBorisVW Species Kind

relBorisVW
Works with VSimPD and VSimMD licenses.

Implementation of the relBoris update includes updates specific to variable weight algorithms. With variable
weight methods, each particle has independent ratio of macroparticles to real particles.

relBorisVWScale Species Kind

relBorisVWScale
Works with VSimPD and VSimMD licenses.

Used to scan multiple power levels searching for multipacting resonances. Each particle has a scaling parameter
that multiplies the electromagnetic field, allowing multiple power or voltage levels to exist in a simulation
simultaneously. The use of multiple coexisting power or voltage levels is only consistent with small amounts of
charge and current which have little to no effect on the applied fields. Thus, generally speaking, this species is
not expected to use or require charge and/or current depositors. This species assigns a unique tag identifier to
each macroparticle for trajectory tracking.

Note: The currDeps and chargeDeps arguments may be neglected if kind = relBorisVWScale.

Note: A Species of kind = relBorisVWTagged should include the argument labels = [x,y,z,ux,uy,
uz,tags,scale,weight] in order to correctly label all components in the output.

relBorisVWTagged Species Kind

relBorisVWTagged
Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Implementation of the relBoris updater that includes updates specific to variable weight algorithms. In variable
weight methods, each particle has an independent ratio of macroparticles to real particles. This species also
allows for assigning a unique tag identifier to each macroparticle for trajectory tracking.

Note: A Species of kind = relBorisVWTagged should include the argument labels = [x,y,z,ux,uy,
uz,tags,weight] in order to correctly label all components in the output.

3.11. Species 225

VSim Reference Manual, Release 11.0.1-r3016

cellSpecies

cellSpecies (deprecated in 8.0)

Along with interpolation, acceleration, and deposition implementations, cellSpecies provides another par-
ticle data structure that improves performance of particle-dominated plasma simulations. Simulations that
feature regions with high particles-per-cell counts will benefit from using cellSpecies.

By maximizing data reuse on a per-cell basis, cellSpecies simulation performance improves on that of
simulations using analogous Basic Dynamic Species with the standard particle data infrastructure. When
used under the conditions listed below, cellSpecies implementation-specific kinds accelerate simulations.
For example, the performance benefit of using the cellSpecies kind = cell instead of the Basic Dy-
namic Species kind = relBoris can be significant.

For electrostatic simulations, Tech-X recommends setting the value of .maxcellxing to 1. Defining
maxcellxing = 1 ensures that particle velocities will always be less than the velocity required to
cross more than one cell boundary at a time. Use of cellSpecies in electrostatic simulations without
maxcellxing is allowed, but may cause undesirable results – the program may encounter an error if a
particle gains sufficient velocity such that it moves more than one cell in any direction in a single time
step.

When to Use cellSpecies Kinds

The use of cellSpecies kinds to achieve improved performance depends on the types of other features also used in the
simulation. cellSpecies supports:

• All particle sinks described in ParticleSink

• All Monte Carlo interactions described in MonteCarloInteractions

• Moving window simulations (available via the top-level simulation parameter downShiftDir)

cellSpecies does not support:

• comboEmFields

• Segmented moves

Note: Because cellSpecies does not have a sorting function, it is a good idea to disable particle sorting
(for example, by using the -ns flag on the command line). Otherwise, use of the ptclSort flag will cause
MPI-related program crashes on some systems.

Using the cell kind, parameters specific to cellSpecies

A new input file syntax can be used with cellSpecies where the kind of the species block is always cell. Different
options for the species are determined by additional parameters:

kind (string)
This parameter is set to cell (as opposed to sortSpecies).

pusher (string)
Determines the kind of pusher to use to advance the particle positions and velocities.

relBoris

226 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Relativistic Boris push.

nonRelBoris

Non-relativistic Boris push.

nonRelEs

Non-relativistic electrostatic push.

freeRel

Free streaming particles with relativistic velocities.

ballisticX

Push particles in the x direction only, with no acceleration.

pulseLaunch

Use this pusher to launch a laser pulse from a moving plane. The particles must be set up on a plane
perpendicular to the direction of propagation of the laser pulse. The shape of the laser pulse is set by
a functional field which is referred to in the fields parameter. Two additional parameters must be
used with this pusher:

vmax

Maximum velocity reached by the particle, typically a small fraction of the speed of light

Emax

Maximum amplitude of the electric field applied to the species

stencil (string)
Interpolation method to use in charge density and current deposition.

spline1stOrder

Use linear interpolation.

spline2ndOrder

Use piecewise parabolic interpolation.

variableWeightParticle (integer)
Whether to use variable weight particles (as opposed to constant weight).

taggedParticle (integer)
Whether to use tagged particles.

ptclSubGroupCapacity
Represents the size (in number of particles) of the fundamental particle data structure per cell. The default value
is 64. Although this parameter is strongly simulation-dependent, the basic rule for determining the value for
this parameter is to set ptclSubGroupCapacity equal to 150% of the typical value of particles-per-cell. This
flag can have a large impact on the performance of the cellSpecies algorithms; unless the simulation domain is
exceedingly large, using too large a value for ptclSubGroupCapacity is preferable to using too small a value.
The default value 64 is well-suited to plasmas with an average number of macroparticles per cell on the order
of 40.

Example cellSpecies Block

3.11. Species 227

VSim Reference Manual, Release 11.0.1-r3016

<Species electrons>

kind = cell
pusher = nonRelES
stencil = spline1stOrder
charge = -1.6022e-1
mass = 9.109e-31
emField = myEmField
ptclSubGroupCapacity = 64

maxcellxing=1

nominalDensity = 3e+22
nomPtclsPerCell = 40.

...

</Species>

See also

• EmField

• EmField Parameters

3.11.2 ParticleSink Blocks

ParticleSink

ParticleSink

Nested block to create particle boundary for a Species. Typically, ParticleSinks removes particles in a
boundary region although other behaviors are possible.

Multiple types of particle sinks may be specified in the input file, and you can specify the locations of
these sinks within multiple input blocks. If you specify multiple particle sinks for the same grid cell, only
one of them will be created. In the case of overlapping physical sinks, the one specified in the last sink
input block within the corresponding species block is the one that Vorpal creates. Vorpal issues a warning
when it detects overlapping particle sinks.

Any grid cell may contain both a messaging sink and a physical sink. The messaging sinks are auto-
generated by Vorpal during simulation setup, and they are used to enforce periodic boundary conditions
on particles, to communicate particles between processors in parallel runs, etc. The physical sinks are
used to absorb particles that strike a boundary, leave a specified region of the grid, or for more specialized
purposes. In most cases, you have complete control over the type and location of physical sinks. Vorpal
checks physical sinks first in each cell, after which the messaging sinks are applied.

You must set up the particle boundary conditions so that they completely surround the space in which
particles are loaded. Otherwise, particles will drift out of the simulation and try to reference fields that do
not exist. This leads to a segmentation fault when Vorpal runs the simulation. The most common cause
of Vorpal crashes is improperly set up particle boundary conditions.

If you do not explicitly specify all particle boundary conditions with ParticleSink input blocks, you must
specify periodic boundary conditions with the periodicDirs parameter in the Decomp input block,
allowing particles to “wrap around” to the opposite side of the simulation.

228 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Note: The interplay of messaging sinks and physical sinks is important to understand when you create
a species input block that includes the specification of particle absorbers around the domain (typically
in the guard cells). When specifying periodic boundary conditions with the syntax periodicDirs =
[1 1 1] in the Decomp block, be aware that Vorpal implements this directive for all particle species by
auto-generating messaging sinks around the simulation domain (in the guard cells). Hence, this requested
boundary condition will be overridden for any species that explicitly specifies absorbers in these same
guard cells.

ParticleSink parameters

recordParticleSumStats (boolean, optional, default = true)
If true, then at each time step, simple statistics will be recorded for all sourced particles (summed over the
entire simulation): including the number of macroparticles sourced, their total weight, and the weighted sum
of position coordinates as well as the weighted sum of internal variables (the latter can be divided by the total
weight to get average positions and velocities of sourced particles). The total energy is currently not recorded
(because of the computational time it takes—if desired, one can set recordParticleData to record individ-
ual particle data, and then History to sum the particle energies); however, the total (hence average) momentum
can be obtained. This data can be accessed via ptclSumData Histories; it is also used by Conductor Block to
record charge emitted from conductors. The record is cleared after each time step.

ParticleSink Kinds

absAndSav

AbsAndSav

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle sink removes particles at boundary, but stores them for use by other code components such
as History.

AbsAndSav Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

saveDuringPtclEmissionStage (bool, optional, default = false)
(This applies only if recordParticleData=true or recordParticleSumData=true.) Whether particles should be
saved (i.e., recorded) if they are absorbed immediately after being emitted. If this option is true, a simulation
may become mired in an infinite loop or possibly even crash if, e.g., secondary emission occurs for absorbed
particles. This option should generally be false unless it is important to record every absorbed particle and
absorbing particles has no effect on an species (e.g., such as causing secondary emission).

3.11. Species 229

VSim Reference Manual, Release 11.0.1-r3016

ptclNotSavedWarnMode (string, optional, default = never)
If saveDuringPtclEmissionStage is false, then particles absorbed/sunk during the emission
stage will not be saved/recorded. Depending on this attribute, warnings can be issued when that hap-
pens. Detailed warnings can be emitted for individual events, as well as warning summaries that re-
port the number of warnings issued. See also the attributes ptclNotSavedWarnPeriodicity and
ptclNotSavedWarnMaxDetails. The following values are valid (in order from least to most verbose).

never: Never emit warnings.

final: Warn summarily at end of simulation.

periodic: Emit warning summaries periodically (usually periodic in the timestep). These sum-
maries require communication among all global MPI ranks, so issuing them every timestep might
hurt performance (though it’s unlikely in most simulations). Issuing them every tenth or hundredth
timestep is very unlikely to impact performance.

firstThenPeriodic: Emit a warning summary at the first opportunity (usually after the first
timestep), and thereafter periodically.

immediateThenPeriodic: Emit individual detailed warnings immediately as
they occur (without synchronizing among MPI ranks), but cease doing so after
ptclNotSavedWarnMaxDetails warnings are emitted (per rank). Warning summaries
will be issued periodically.

immediate: Emit individual detailed warnings immediately as they occur (without synchronizing
among MPI ranks); each rank will write warnings to its comms file, with only rank 0 outputting to
the standard output. Warning summaries will be issued periodically. If there are many warnings, this
option can degrade performance and result in significant disk usage (assuming the output is written
to files). This option should be used only if it’s important to see every warning; it may especially
useful if a simulation crashes before it has the opportunity to emit a warning summary.

immediateToStdout: All MPI ranks should emit individual warnings immediately to the stan-
dard output (if many ranks emit warnings, the output may be a mess). This should be used only in
rare circumstances, and it should be with caution in large parallel simulations.

ptclNotSavedWarnPeriodicity (integer, optional, default = 10)
If ptclNotSavedWarnMode is set to issue warning summaries periodically, then this option specifies the
period (usually in timesteps). If this is 0, then a summary will only be issued at the end of the simulation.

ptclNotSavedWarnMaxDetails (integer, optional, default = 1)
If ptclNotSavedWarnMode is set to issue warning summaries, this attribute specifies how many warnings
to describe in detail (for each summary). Each MPI rank will always write details for warnings that occurred on
that rank to its own comms file, with only rank 0 writing to the standard output. However, if rank 0 did not have
any warnings (but other ranks did), details from other ranks will be written to the standard output.

AbsAndSav Example Block

<ParticleSink keeperSideWallXeDblIons>
kind = absAndSav
lowerBounds = [CK2_ZMIN_INDX CK2_RMIN_INDX]
upperBounds = [CK2_ZMAX_INDX CK2_RMAX_INDX]

</ParticleSink>

absCutCell

230 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

AbsCutCell

Works with VSimPD and VSimMD licenses.

This particle sink removes particles at cut-cell (conformal) boundary, deleting them from the simulation.

AbsCutCell Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

gridBoundary (string)
Name of the gridBoundary in the simulation.

useCornerMove (string, default = true)
Set to true to specify corner move dynamics when removing the particle at a cut cell. If false, uses the
parallel move from 1 cell deep. Using true, e.g., corner move, is more robust in some circumstances.

AbsCutCell Example Block

<ParticleSink absorber>
kind = absCutCell
minDim = 3
gridBoundary = diodecavity
lowerBounds = [0 1 0]
upperBounds = [NX_TOT 2 NZ_TOT]

</ParticleSink>

ParticleSink

absorber

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle absorber kind absorbs particles at boundary, removing them from the simulation. They will not be saved.

absorber Parameters

minDim
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds
Gives lower bounds of the particle sink in cell indices.

upperBounds
Gives upper bounds of the particle sink in cell indices.

3.11. Species 231

VSim Reference Manual, Release 11.0.1-r3016

absorber Example Block

<ParticleSink rightAbsorber>
kind = absorber
minDim = 1
Bounds specified with physical indexing
lowerBounds = [NX -1 -1]
upperBounds = [NX1 NY1 NZ1]

</ParticleSink>

absSavCutCell

AbsSavCutCell

Works with VSimPD and VSimMD licenses.

This particle sink combines the functions of the absAndSav and absCutCell sinks. When using this
sink one should avoid having the grid boundary be inline exactly with the computational mesh as this may
prevent some removed particles from being available for use by other objects.

absSavCutCell Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

gridBoundary (string)
Name of the gridBoundary the absorber is applied to. When using, one should avoid having the grid boundary
be inline exactly with the computational mesh as this may prevent some removed particles from being available
for use by other objects.

useCornerMove (string, default = true)
Set to true to specify corner move dynamics when removing the particle at a cut cell. If false, uses the
parallel move from 1 cell deep. Using true, e.g., corner move, is more robust in some circumstances.

absSavCutCell Example Block

<ParticleSink leftAbsorber>
kind = absSavCutCell
Bounds specified with physical indexing
lowerBounds = [0 -1 -1]
upperBounds = [2 NY1 NZ1]
gridBoundary = mybndry

</ParticleSink>

absSavTriCutCell

232 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

absSavTriCutCell

Works with VSimPD and VSimMD licenses.

This particle sink removes particles at a cut-cell (conformal) boundary, deleting them from the simulation,
and (if requested) recording them. This sink absorbs particles on the triangulated surface (a set of triangles
approximating the surface).

When possible (see below), this cut-cell sink calculates and records the exact time that particles cross the
boundary, as well as the surface normal and grid cell. (Other cut-cell sinks currently do not do this.) This
makes it possible, e.g., for secondaryEmitter to emit a secondary particle with the exact remaining time
in the timestep. Thus a secondaryEmitter that preserves particle properties (but perhaps switches species)
will not change a particle’s trajectory.

In principle, this sink removes particles that cross the surface into the absorber (specified by the
gridBoundary and absorberIsInGridBoundary options). However, in some cases, the be-
havior is more complicated. If a particle is initially emitted inside the absorber, it typically gets one time
step to escape the absorber; if it doesn’t escape, then the particle is absorbed at its initial location (which
may not be near the absorber’s surface).

When recording absorbed particles, be aware that particles that are immediately absorbed after being
secondary-emitted (based on previously-absorbed primary particles) may not be recorded as absorbed
(hence further secondaries won’t be emitted). If this is a problem, it is in cases possible to fix it by making
the secondary particles a different species.

absSavTriCutCell Parameters

minDim (integer, optional, default = 1)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

gridBoundary (string)
Name of the gridBoundary that the describes the surface of absorption.

absorberIsInGridBoundary (boolean, optional, default = false)
Whether the absorbing material is the interior of the gridBoundary (if true), or in the exterior (if false).

depositCurrentToCorner (boolean, optional, default = true)
This option should generally be true in electromagnetic simulations, especially for absorption at metallic
(conducting) surfaces; it avoids the creation of artificial stationary charges. In electromagnetic simulation,
absorbing a charge in the middle of a cell automatically leaves (or rather, leads to electromagnetic fields that act
as if there were) a charge that remains at the emission location forever. If this option is true, then electrical
current will be deposited from the absorption location to the nearest cell-corner that is inside the absorber.

recordParticleData (boolean, optional, default = true)
Whether absorbed particles should be recorded (either for use in Histories or for secondary emission). The
record is cleared after each time step.

absorbLocation (string, optional, default = justOutsideAbsorber)
Where particles should be absorbed, when they are absorbed “at” the surface: justOutsideAbsorber,
justInsideAbsorber, or nearestTheSurface (i.e., either inside or outside the absorber). In patho-
logical cases, this request may not be honored.

3.11. Species 233

VSim Reference Manual, Release 11.0.1-r3016

recordAnomalous (bool, optional, default = true)
(This applies only if recordParticleData=true or recordParticleSumData=true.) Because of improper particle
loading or (occasionally) finite precision discrepancies, a particle will be determined to be inside the absorber
without have crossed the absorber surface. Such particles are removed from the simulation, but the absorp-
tion location may not be at the absorber surface, and therefore quantities such as the surface normal at the
point of absorbtion (as well as angle of incidence, etc.) may not be determined for those particles. In some
cases, it is desirable not to record these anomalously-absorbed particles; in these cases, one should set recor-
dAnomalous=false. For example, if secondary emission is triggered by absorption, this would prevent secondary
emission of particles within the absorber (away from the surface).

anomalousAbsorptionWarnMode (string, optional, default = never)
Anomalously absorbed particles are (usually pathological) particles that are detected in the sink/absorber (and
sunk/removed), but were not detected crossing the surface into the absorber. As a result, it may be unknown
exactly where the particle entered the absorber (hence what time it entered, what the surface normal was, etc.)

Depending on this attribute, warnings can be issued when that happens. Detailed warnings can be emitted for in-
dividual events, as well as warning summaries that report the number of warnings issued. See also the attributes
anomalousAbsorptionWarnPeriodicity and anomalousAbsorptionWarnMaxDetails. The
following values are valid (in order from least to most verbose).

never: Never emit warnings.

final: Warn summarily at end of simulation.

periodic: Emit warning summaries periodically (usually periodic in the timestep). These sum-
maries require communication among all global MPI ranks, so issuing them every timestep might
hurt performance (though it’s unlikely in most simulations). Issuing them every tenth or hundredth
timestep is very unlikely to impact performance.

firstThenPeriodic: Emit a warning summary at the first opportunity (usually after the first
timestep), and thereafter periodically.

immediateThenPeriodic: Emit individual detailed warnings immediately as
they occur (without synchronizing among MPI ranks), but cease doing so after
anomalousAbsorptionWarnMaxDetails warnings are emitted (per rank). Warning
summaries will be issued periodically.

immediate: Emit individual detailed warnings immediately as they occur (without synchronizing
among MPI ranks); each rank will write warnings to its comms file, with only rank 0 outputting to
the standard output. Warning summaries will be issued periodically. If there are many warnings, this
option can degrade performance and result in significant disk usage (assuming the output is written
to files). This option should be used only if it’s important to see every warning; it may especially
useful if a simulation crashes before it has the opportunity to emit a warning summary.

immediateToStdout: All MPI ranks should emit individual warnings immediately to the stan-
dard output (if many ranks emit warnings, the output may be a mess). This should be used only in
rare circumstances, and it should be with caution in large parallel simulations.

anomalousAbsorptionWarnPeriodicity (integer, optional, default = 10)
If anomalousAbsorptionWarnMode is set to issue warning summaries periodically, then this option spec-
ifies the period (usually in timesteps). If this is 0, then a summary will only be issued at the end of the simulation.

anomalousAbsorptionWarnMaxDetails (integer, optional, default = 1)
If anomalousAbsorptionWarnMode is set to issue warning summaries, this attribute specifies how many
warnings to describe in detail (for each summary). Each MPI rank will always write details for warnings that
occurred on that rank to its own comms file, with only rank 0 writing to the standard output. However, if rank 0
did not have any warnings (but other ranks did), details from other ranks will be written to the standard output.

saveDuringPtclEmissionStage (bool, optional, default = false)
(This applies only if recordParticleData=true or recordParticleSumData=true.) Whether particles should be

234 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

saved (i.e., recorded) if they are absorbed immediately after being emitted. If this option is true, a simulation
may become mired in an infinite loop or possibly even crash if, e.g., secondary emission occurs for absorbed
particles. This option should generally be false unless it is important to record every absorbed particle and
absorbing particles has no effect on an species (e.g., such as causing secondary emission).

ptclNotSavedWarnMode (string, optional, default = never)
If saveDuringPtclEmissionStage is false, then particles absorbed/sunk during the emission
stage will not be saved/recorded. Depending on this attribute, warnings can be issued when that hap-
pens. Detailed warnings can be emitted for individual events, as well as warning summaries that re-
port the number of warnings issued. See also the attributes ptclNotSavedWarnPeriodicity and
ptclNotSavedWarnMaxDetails. The following values are valid (in order from least to most verbose).

never:

Never emit warnings.

final: Warn summarily at end of simulation.

periodic: Emit warning summaries periodically (usually periodic in the timestep). These
summaries require communication among all global MPI ranks, so issuing them every timestep
might hurt performance (though it’s unlikely in most simulations). Issuing them every tenth or
hundredth timestep is very unlikely to impact performance.

firstThenPeriodic: Emit a warning summary at the first opportunity (usually after the
first timestep), and thereafter periodically.

immediateThenPeriodic: Emit individual detailed warnings immediately as
they occur (without synchronizing among MPI ranks), but cease doing so after
ptclNotSavedWarnMaxDetails warnings are emitted (per rank). Warning summaries
will be issued periodically.

immediate: Emit individual detailed warnings immediately as they occur (without synchro-
nizing among MPI ranks); each rank will write warnings to its comms file, with only rank 0
outputting to the standard output. Warning summaries will be issued periodically. If there are
many warnings, this option can degrade performance and result in significant disk usage (assum-
ing the output is written to files). This option should be used only if it’s important to see every
warning; it may especially useful if a simulation crashes before it has the opportunity to emit a
warning summary.

immediateToStdout: All MPI ranks should emit individual warnings immediately to the
standard output (if many ranks emit warnings, the output may be a mess). This should be used
only in rare circumstances, and it should be with caution in large parallel simulations.

ptclNotSavedWarnPeriodicity (integer, optional, default = 10)
If ptclNotSavedWarnMode is set to issue warning summaries periodically, then this option specifies the
period (usually in timesteps). If this is 0, then a summary will only be issued at the end of the simulation.

ptclNotSavedWarnMaxDetails (integer, optional, default = 1)
If ptclNotSavedWarnMode is set to issue warning summaries, this attribute specifies how many warnings
to describe in detail (for each summary). Each MPI rank will always write details for warnings that occurred on
that rank to its own comms file, with only rank 0 writing to the standard output. However, if rank 0 did not have
any warnings (but other ranks did), details from other ranks will be written to the standard output.

absSavTriCutCell Example Block

<ParticleSink coneSurfSink>
kind = absSavTriCutCell
recordParticleData = true

(continues on next page)

3.11. Species 235

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

gridBoundary = coneSurf
lowerBounds = [0 0 0]
upperBounds = [8 8 8]
depositCurrentToCorner = true

</ParticleSink>

absSaveDump

AbsSaveDump

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle sink creates a region similar to absAndSav, however the particles’ data are also written to
a file. The absSaveDump is useful for writing all the particle data into an array. However, if you really
want to output the values of a single coordinate (i.e. the x position, or the y-momentum) of the particles
that cross into a particle sink, you can use the History feature instead.

The absSaveDump particle sink has the additional feature that those particles are saved to a file.
The saved output file can then be used outside of VSim as input to another program. Originally
absSaveDump was used to make a file record of particles crossing a surface, so that those particles
could be used as input for a particle mapping program.

The saved particle information is, with one exception, in the standard VSim particle dump format: position
(or displacement), followed by momentum then other variables such as the weight. The exception is that
the displacement in the direction perpendicular to the sink surface is instead given as the time at which
the particle crossed into the sink region, for example: (t, x2, x3, p1, p2, p3, weight). All values are given
as differences relative to the first dumped particle, which acts as a reference particle.

Note: As in the case of the absAndSav particle sink, you can specify whether particles are actually
absorbed or just dumped by setting removePtclFlag = 0 in the input file.

AbsSaveDump Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

fluxSpeciesDumpName (string)
Sets the name of the HDF5 dataset which the flux emitter class will read in. Also sets part of the file name to be
read in. The default is the name of the species (given in the species block header) plus flux. The default value
serves for most purposes.

useRunNameAsPrefix (integer)
If 1, the flux files dumped by the sink will be of form <runName><fluxSpeciesDumpName>_<#>.h5. If 0, the
flux files dumped by the sink will be of form <fluxSpeciesDumpName>_<#>.h5

independentDumpIndicing (string, default = 0)
Determines whether to use the same dump index as the rest of Vorpal or set an independent dump index. Allowed
values are 0 or 1.The default value is 0, which causes the global Vorpal dump index to be used. Use a different

236 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

index if you want to sequence the resulting files separately for use by an external program. For example, if
the simulation dump name is test2, the default flux file dumped by an absSaveDump sink within a species
named electrons will be called test2_electronsFlux_0.h5.

absSaveDump Example Block

<ParticleSink redElecSwSwitchAbsorber>
kind = absSaveDump
Bounds specified
lowerBounds = [20 0 0]
upperBounds = [21 20 20]
minDim = 1
base name of dump files
fluxSpeciesDumpName = redElectronsFlux
Whether to use global Vorpal dump index
independentDumpIndicing = 1
Set whether particles should be removed (absorbed)
after being recorded
#doNotRemoveParticlesFlag = 1

</ParticleSink>

absStairStep

absStairStep

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle sink removes the particles once they cross the stair step boundary that corresponds to the conformal
boundary. It will work with a coordProdGrid.

absStairStep Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

gridBoundary (string)
The name of the stair-stepped grid boundary.

absStairStep Example Block

<ParticleSink stairStepBndry>
kind = absStairStep
gridBoundary = sphere
lowerBounds = [-1 -1 -1]
upperBounds = [NX1 NY1 NZ1]

</ParticleSink>

3.11. Species 237

VSim Reference Manual, Release 11.0.1-r3016

absSavStairStep

absSavStairStep

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle sink removes the particles once they cross the stair step boundary that corresponds to the
conformal boundary. It saves the particle information so it can be used in other blocks such as history
blocks. It will work with a coordProdGrid.

absStairStep Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

gridBoundary (string)
The name of the stair-stepped grid boundary.

absStairStep Example Block

<ParticleSink stairStepBndry>
kind = absSavStairStep
gridBoundary = sphere
lowerBounds = [-1 -1 -1]
upperBounds = [NX1 NY1 NZ1]

</ParticleSink>

diffuseBndry

DiffuseBndry

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle sink reflects particles with velocity taken from thermal distribution.

diffuseBndry Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

238 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

direction (double vector)
Inward normal from the reflecting surface.

surface (string)
Physical location of the reflecting surface.

vsig (double vector)
Thermal velocities at the boundary.

acc (float)
The thermal accommodation coefficient.

useObliqueReflection (integer)
A flag, if set sink will work with oblique boundaries.

diffuseBndry Example Block

<ParticleSink rightplate>
kind = diffuseBndry
direction = [1. 0. 0.]
surface = X_RIGHT_WALL
vsig = [VEL_373K VEL_373K VEL_373K]
lowerBounds = [$NX-NX_SINK$ -1 -1]
upperBounds = [$NX+1$ NY_P NZ_P]

</ParticleSink>

specularBndry

SpecularBndry

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle source specularly reflects particles at one or more planes defined by the user. Generally, one
defines either a single plane as a ‘plate’, two intersecting planes as a ‘rail’, and three intersecting planes
as a ‘corner’. To create a full reflecting box, you need six plates, eight rails and eight corners. It is best
practice to define the plates first, followed by the rails and finally the corners.

specularBndry Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

numSurfaces (integer; 1, 2 or 3)
Number of reflecting surfaces in the sink. One surface corresponds to a plate. Two surfaces correspond to a rail
and three surfaces correspond to a corner.

direction (double vector)
The direction of the outward normal for the reflecting plane in the case that numSurfaces = 1.

xdirection (double vector)

3.11. Species 239

VSim Reference Manual, Release 11.0.1-r3016

and

ydirection (double vector)

and

zdirection (double vector)
The direction of the outward normal for the reflecting plane in the x,y,z direction in the case that numSurfaces
= 2 or 3.

surface (double)
The location of the reflecting plane in the case that numSurfaces = 1.

xsurface (double vector)

and

ysurface (double vector)

and

zsurface (double vector)
The location of the reflecting plane in the x,y,z direction in the case that numSurfaces = 2 or 3.

specularBndry Example Block

<ParticleSink leftbottomrail>
kind=specularBndry
minDim=3
numSurfaces=2
xdirection=[-1. 0. 0.]
xsurface=0.
zdirection=[0. 0. -1.]
zsurface=0.
lowerBounds=[0 0 0]
upperBounds=[1 NY 1]

</ParticleSink>

transparentBndry

transparentBndry

Works with VSimPD, and VSimMD licenses.

In this particle sink, a portion particles are transferred through with the remainder either reflected or
absorbed at the boundaries. The fraction of particles that are either transferred or reflected through the
boundary is based on the transparency parameter which is expected to be between 0 and 1.0. For every
particle at the boundary, a random number is picked and compared with the given transparency parameter.

In absorb mode if the random number is below the transparency parameter, the particle is absorbed at the
boundary. For example, if transparency = 0.10, 90% of particles are transmitted through the boundary.
Absorb mode is enabled by setting the absTransparenPtclFlag parameter to True.

In reflect mode if the random number is above the transparency parameter, the particle is reflected at a
user specified velocity. For example, if transparency = 0.90, 90% of particles are transmitted through the
boundary. Reflect mode is enabled by setting the reflectPtcls parameter to True.

240 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

transparentBndry Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

direction (double vector)
The direction of the outward normal for the reflecting plane in the case that particle is reflected at the boundary.

surface (double, required)
The location of the reflecting plane in the case that particle is reflected at the boundary.

transparency (double, required)
The transparency parameter which is a value between 0 and 1.0. Particle at the boundary are transferred through
the boundary or reflected at the boundary based on the transparency parameter and operating mode.

E.g., if reflectPtcls=true and absTransparentPtclFlag=false, then transparency=0.01
will result in (on average) 1 percent of particles passing through the surface untouched (although that 1 percent
will be recorded if recPassThruPtclFlag=true), while 99 percent will be diffusely reflected

E.g., if reflectPtcls=false' and :samp:`absTransparentPtclFlag=true, then
transparency=0.01 will result in (on average) 99 percent of particles passing through untouched,
while 1 percent will be absorbed (and recorded). In this case, recPassThruPtclFlag has no effect.

E.g., if reflectPtcls=false' and :samp:`absTransparentPtclFlag=false, then all parti-
cles will pass through the surface unchanged. However, if recPassThruPtclFlag=true, then a fraction
transparency of particles crossing the surface will be recorded.

absTransparentPtclFlag (flag, optional, default = false)
A flag to enable absorb mode of the boundary. This cannot be set to true if reflectPtcls is true. If true, a fraction
of transparency of particles will be absorbed in the cell where they cross the boundary (and recorded) while
a fraction 1-transparency will pass through unchanged.

reflectPtcls (flag, optional, default = false)
A flag to enable reflect mode of the boundary. This cannot be set to true if absTransparentPtclFlag is also true.

If true, a fraction of transparency of particles will pass through unchanged, while a fraction
1-transparencywill be diffusively-reflected. The average and thermal velocities of the diffusively-reflected
particles are given by vbar and vsig respectively.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions. Only applied to reflected particles.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions. Only applied to reflected particles.

recPassThruPtclFlag (flag, optional, default = false)
If true, and reflectPtcls=true and absTransparentPtclFlag=false, then the non-reflected
(passing-through) particles will be recorded.

If true, and reflectPtcls=false and absTransparentPtclFlag=false, then all particles willl
cross the boundary unchanged, but a fraction transparency of them will be recorded.

If reflectPtcls=false and absTransparentPtclFlag=true, this option has no effect.

3.11. Species 241

VSim Reference Manual, Release 11.0.1-r3016

transparentBndry Example Block

In this example, 80 percent of particles crossing the boundary will be diffusively-reflected, and 20 percent will pass
through without any change. The 20 percent will not be recorded because recPassThruPtclFlag=false by
default.

<ParticleSink rightXeIonAbsorber>
kind = transparentBndry
Bounds specified with physical indexing
lowerBounds = [ABS_LOC_LB -1 -1]
upperBounds = [ABS_LOC_UB NY1 NZ1]
direction = [-1.0 0.0 0.0]
surface = $XMIDm1 + 0.25*DX$
this is the param that decides percentage transmitted, or absorbed
transparency = 0.8
CANNOT HAVE absTransparentPtclFlag and reflectPtcls = true.
if true this will absorb percentage particles = transparency
absTransparentPtclFlag = true
if true the percentage reflected particles = 1 - transparancey
reflectPtcls = true
thermal velocity of the reflected particles (so only applies if reflectPtcls =

→˓true)
vsig = [VTH_TRNS VTH_TRNS VTH_TRNS]
average velocity of the reflected particles (so only applies if reflectPtcls =

→˓true)
vbar = [-1.e6 0.0 0.0]

</ParticleSink>

zeroWgtAbsorber

zeroWgtAbsorber

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This particle sink is designed to be used in combination with Collision blocks. When variable
weight particles combine during a collision, some particles in the simulation have zero weight. The
zeroWgtAbsorber is used to remove these (non-physical) particles from the simulation.

zeroWgtAbsorber Parameters

minDim (integer)
Minimum dimensionality for which this sink is applicable (1, 2, or 3).

lowerBounds (integer vector)
Gives lower bounds of the particle sink in cell indices.

upperBounds (integer vector)
Gives upper bounds of the particle sink in cell indices.

zeroWgtAbsorber Example Block

<ParticleSink myZeroWgtAbsorber>
kind = zeroWgtAbsorber

(continues on next page)

242 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

minDim = 1
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]

</ParticleSink>

3.11.3 ParticleSource Blocks

ParticleSource

ParticleSource

ParticleSource:

ParticleSource blocks must be declared within a particle species block in order to load or emit particles of that species.
VSim has many allowable ParticleSource kinds:

xvLoaderEmitter
randDensSrc
bitRevDensSrc (deprecated in 8.0)
bitRevDensSrcVW (deprecated in 8.0)
gridDenSrcVW (deprecated in 8.0)
fileDensSrc
manualSrc
gaussSource
boostLoader
gridLoader
fluxPtclEmitter
switchSpeciesSrc
gaussDensSrc (deprecated in 8.0)
planarPtclEmitter (deprecated in 8.0)
secElec
secFieldEmitter
secondaryEmitter
simpleSec
sputter
userDefinedSecElec
userFuncSecElec

Using macroDensFunc or relMacroDenFunc

When macroDensFunc or relMacroDenFunc is used, please note that density indirectly specifies the total num-
ber of attempts to load a particle. If macroDensFunc determines that half of the particle load attempts will be successful
(as with y/LY over the domain {0,LY}), density should be double the number density one actually wishes to appear in
the simulation. If one uses a more complex function, for example Gaussian, this normalization factor may take a more
complex form.

3.11. Species 243

VSim Reference Manual, Release 11.0.1-r3016

Working in Cylindrical Coordinates

Care must be taken with 2D ZR cylindrical coordinate systems. The loading algorithm will attempt to load particles
almost uniformly in both of the dimensions. It does not take into account the larger volume/area represented at large
radius compared with lower radius, so if we allow the particles to uniformly fill this space and allow them to be equally
weighted, we end up with a high density of macro- and physical particles near the axis.

To compensate for this, we need to create a density profile via the use of a STFunc, e.g. expression = (y/MAXR).

Note that this is only required in the text based case. The loading of particles in a cylindrical volume is handled under
the hood in the visual setup.

ParticleSource parameters

recordParticleSumStats (boolean, optional, default = true)
If true, then at each time step, simple statistics will be recorded for all sourced particles (summed over the
entire simulation): including the number of macroparticles sourced, their total weight, and the weighted sum
of position coordinates as well as the weighted sum of internal variables (the latter can be divided by the total
weight to get average positions and velocities of sourced particles). The total energy is currently not recorded
(because of the computational time it takes—if desired, one can set recordParticleData to record individ-
ual particle data, and then History to sum the particle energies); however, the total (hence average) momentum
can be obtained. This data can be accessed via ptclSumData Histories; it is also used by Conductor Block to
record charge emitted from conductors. The record is cleared after each time step.

recordParticleData (boolean, optional, default = false)
If true, then at each time step all sourced particles will be recorded; they can be accessed via histories (e.g.,
speciesAbsPtclData2 or speciesBinning) or, e.g., for secondary emission (secondaryEmitter). The record is
cleared after each time step.

ParticleSource Kinds

Generalized Sources:

xvLoaderEmitter

A generic, flexible particle source designed to provide a wide variety of options for creating particles either by density-
loading in a volume and/or flux-emitting from a surface. This particle source requires the specification of at least two
sub-blocks; a position generator and a velocity generator.

This is the most commonly used particle source in VSim.

This particle source is available with any VSim license.

xvLoaderEmitter Sub-Blocks

PositionGenerator (block)

Is used to generate physical positions of particles when they are loaded or emitted.

VelocityGenerator (block)

Is used to generate velocities of a particle when loaded or emitted.

244 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

In addition to defining the PositionGenerator and VelocityGenerator blocks, you can also define Space-
Time functions to specify a non-Cartesian shape for loading and emission, respectively.

STFunc Block (optional block)

<STFunc relMacroDenFunc> (default = 1): The value for relMacroDenFunc should be a
number between 0 and 1, inclusive. A uniform random number is selected for each particle load
attempt, and if the random number is less than the value of relMacroDenFunc, then it is loaded,
otherwise it is not loaded. Use this to create a non-uniform loading density. This function is ignored
when only flux-emitting (load = false).

<STFunc relMacroFluxFunc> (default = 1): The value for relMacroFluxFunc should be a
number between 0 and 1, inclusive. A uniform random number is selected for each particle emis-
sion attempt, and if the random number is less than the value of relMacroFluxFunc, then it is
emitted, otherwise it is not emitted. Use this to create a non-uniform emission density. This function
is ignored when only density-loading (emit = false).

<STFunc currentDensityFunc>: This STFunc block determines the weight of variable weight
particles when emitting. Causes an exception if used with fixed-weight particles. If this STFunc is
omitted in variable-weight particles emission, then a default constant currentDensityFunc is set up
inside Vorpal based on the emission parameters, where the current density amplitude is calculated
as below:

𝐽0 = 𝑐ℎ𝑎𝑟𝑔𝑒 * 𝑛𝑢𝑚𝑃𝑡𝑙𝑐𝑠𝐼𝑛𝑀𝑎𝑐𝑟𝑜 * 𝑛𝑜𝑚𝑀𝑎𝑐𝑟𝑜𝑃𝑡𝑐𝑙𝑠𝑃𝑒𝑟𝐴𝑟𝑒𝑎𝑆𝑡𝑒𝑝/𝑑𝑡

Here charge is the charge value specified by the user in the Species block, nomMacroPtclsPer-
AreaStep is the nominal macro particles emitter per time step per emission area. For zero charge
neutral species type, equivalent charge value is used in above calculation. The nomMacroPtclsPer-
AreaStep is calculated in Vorpal based on the user emission parameter such as sweepRate or
nomMacroPtclsPerStep. See PositionGenerator for details. This ensures that the emit-
ted particle has a weight value of 1.0.

xvLoaderEmitter Parameters

load (string, default = true): Used to invoke density-loading features.

emit (string, default = true): Used to invoke flux-emitting features.

applyTimes: Interval over which particles are created.

loadOnShift (string, default = false): A string, true or false, used in shifting window simulations to insure
that particles are loaded into the new cells added when the simulation shifts. loadOnShift should be set to
true if a moving window is used in the simulation. If true, then must also have load = true.

loadAfterInit (string, default = false): Used to continue loading particles after the initialization, for example
a continuous bulk source ionization. loadAfterInit should be set to true only if more particles should be
loaded into the loadSlab with each time step. If true, then must also have load = true.

entranceMove (string, default = default): Set to corner to specify corner move dynamics on the initial step,
when emitting from cut cells. If not specified, or default, uses the parallel move from 1 cell deep. Set to
stairstep if moving particles from exactly on the emission surface.

emitBasedOnLocalForce (string, default = false): Set to true in order to prevent emission when the local
electric field has sign such that the force returns particles to the surface.

thermalLoad (string): Allows Vorpal to simulate a thermal, constant density plasma in a finite domain, without
using periodic boundary conditions. To invoke the loader on the left boundary of the x-axis, within a Particle-
Source block of kind = xvLoaderEmitter, specify the desired load region (e.g. the left-most layer of
cells) and set the flag thermalLoadXLeft = true. The other five flags are used in an analogous way,

3.11. Species 245

VSim Reference Manual, Release 11.0.1-r3016

each within a separate ParticleSource block. The thermalLoad flags are automatically consistent with any
spatial or velocity distribution that is supported by kind = xvLoaderEmitter. At the beginning of any
time step that falls within the applyTimes = [. . .] limits, particles will be loaded into the specified region as
though they had actually been loaded in the corresponding region that is one cell to the left (or right) along the
x (or y or z) axis, and then drifted into the simulation domain. Use restricted to electrostatic PIC simulations.
Flags include:

• thermalLoadXLeft

• thermalLoadXRight

• thermalLoadYLeft

• thermalLoadYRight

• thermalLoadZLeft

• thermalLoadZRight

includeCylVolElem (integer, default = 0): If 1, cylindrical volume scaling and normalization is handled
internally by Vorpal, allowing the user to write cleaner expressions for relMacroDensFunc and
relMacroFluxFunc for simulations in cylindrical coordinates.

Also See

See ParticleSink

randdenssrc

randDensSrc

This particle source is an emitter, which uses bit-reversal with a standard pseudo-random number gener-
ator. While this source was originally designed for Cartesian simulations, it may also be used in a ZR
cylindrical coordinate system.

This particle source is available with a VSimMD or VSimPD license.

randDensSrc Sub-Blocks

STFunc Block (optional block):

macroDensFunc (default = 1)
The value for <STFunc macroDensFunc> should be a number between 0 and 1, inclusive. A uniform
random number is selected for each particle load attempt, and if the random number is less than the value
of macroDensFunc, then it is loaded, otherwise it is not loaded. Use this to create a non-uniform loading
density.

NAFunc Block (optional block):

velocitySequence_0
The <NAFunc velocitySequence_0> block defines sequences of numbers to represent the physical char-
acteristics of particles defined by a ParticleSource. Initial particle velocities, for example, can be defined using
an NAFunc which samples values from an analytic velocity distribution. An NAFunc block can be named one
of:

• velocitySequence_0

• velocitySequence_1

246 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• velocitySequence_2

• velocitySequence_3

• velocitySequence_4

• velocitySequence_5

The velocitySequence_0, velocitySequence_1, and velocitySequence_2 blocks always de-
fine the initial 3-component velocities of individual particles in the particle velocity space.

The velocitySequence_3 block defines the next particle component, which will vary from one species
kind to another. See Velocities and Internal Variables of Particles for a table of internal variables by species
kind. For example, it may set initial values for particle weights. For fixed-weight particles these NAFunc
blocks can be set to a constant value using kind=constNAFunc. For variable-weight particles more general
distributions can be specified, as outlined in the NAFunc Block documentation.

randDensSrc Parameters

density (double)
Positive value describing the density of the particles. This value is typically equivalent to the specified nominal
density, however sometimes a scaling factor is used to load the particles more slowly, and prevent high frequency
oscillations.

applyPeriod (integer)
Positive value n, directing the simulation to apply the source at every nth time step.

applyTimes (double vector)
Bracketed times for when the source/emitter will generate particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

Example Particle Source of Kind randDensSrc

<ParticleSource InitElecDeposition>
kind = randDensSrc
lowerBounds = [$XSTART+DX$ YSTART]
upperBounds = [$XEND-DX$ YEND]
density = $NOMDEN/100.$ # used to prevent high frequency oscillations when loading

→˓particles
applyTimes = [0. LOADTIME]

Unit probability
<STFunc macroDensFunc>
kind = constantFunc
amplitude = 1.

</STFunc>
</ParticleSource>

3.11. Species 247

VSim Reference Manual, Release 11.0.1-r3016

Example Use of velocitySequence in a Particle Source

Species kind = relBorisVWTagged, which has components x,y,z,ux,uy,uz,tag,weight
<ParticleSource gridSrc>

kind = gridDenSrc
density = PTCL_DENSITY
numPerDir = [1 1 1]
lowerBounds = [XSTART YSTART ZSTART]
upperBounds = [XEND YEND ZEND]

Particle distribution uniform over initial phase space
<NAFunc velocitySequence_0> # ux
kind = bitRevNAFunc

</NAFunc>
<NAFunc velocitySequence_1> # uy
kind = randGamma
mean = MEAN_VEL
sigma = SIGMA_VEL

</NAFunc>
<NAFunc velocitySequence_2> # uz
kind = randKappa
sigmas = [$0.8*SIGMA_VEL$ SIGMA_VEL $1.2*SIGMA_VEL$]

</NAFunc>
<NAFunc velocitySequence_3> # tag
kind = randGaussLimit
mean = MEAN_VEL
sigma = SIGMA_VEL
lowerLimit = $2.*MEAN_VEL/3.$
upperLimit = $4.*MEAN_VEL/3.$

</NAFunc>
<NAFunc velocitySequence_4> # weight
kind = sysRandom

</NAFunc>

</ParticleSource>

bitRevDensSrc

bitRevDensSrc (deprecated in 8.0)

Note: This source has been deprecated. Please use the xvLoaderEmitter kind with the bitRevSlabPosGen Position-
Generator instead.

This particle source loads particles in a random distribution based on a bit-reversed algorithm. The number
of particles specified may not be what is obtained, as the random number generation process will only get
close to the right number on each processor.

This particle source works with all VSim licenses.

248 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

bitRevDensSrc Parameters

density (double)
Positive value describing the density of the particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

velocitySequence_0 (NAFunc)
A sequence of initial velocities for the particles must be specified, in up to three orthogonal directions in the
velocity space. Individual velocity sequences can be specified using an NAFunc; different methods for their
specification are described in the NAFunc Block documentation.

velocitySequence_1 (NAFunc)
A sequence of initial velocities for the particles must be specified, in up to three orthogonal directions in the
velocity space. Individual velocity sequences can be specified using an NAFunc; different methods for their
specification are described in the NAFunc Block documentation.

velocitySequence_2 (NAFunc)
A sequence of initial velocities for the particles must be specified, in up to three orthogonal directions in the
velocity space. Individual velocity sequences can be specified using an NAFunc; different methods for their
specification are described in the NAFunc Block documentation.

velocitySequence_3 (NAFunc)
If variable-weight particles are used, the initial distribution of particle weights can also be specified using an
NAFunc. See NAFunc Block for details.

Example bitRevDensSrc Block

<ParticleSource rampSrc>
kind = bitRevDensSrc
density = DENSITY
lowerBounds = [X_LEFT_WALL 0. 0.]
upperBounds = [X_RIGHT_WALL LY LZ]

Particle distribution uniform over initial phase space
<NAFunc velocitySequence_0>
kind = randGauss
mean = 0.
sigma = VEL_500K

</NAFunc>
<NAFunc velocitySequence_1>
kind = randGauss
mean = 0.
sigma = VEL_500K

</NAFunc>
<NAFunc velocitySequence_2>
kind = randGauss
mean = 0.
sigma = VEL_500K

</NAFunc>
<NAFunc velocitySequence_3>
kind = randExp
mean = 1.

(continues on next page)

3.11. Species 249

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</NAFunc>

</ParticleSource>

bitRevDensSrcVW

bitRevDensSrcVW (deprecated in 8.0)

Note: This source has been deprecated. Please use the xvLoaderEmitter kind with the bitRevSlabPosGen Position-
Generator instead.

This particle source loads particles in a random distribution based on a bit-reversed algorithm. The number
of particles specified may not be what is obtained,as the random number generation process will only get
close to the right number on each processor.

This particle source works with all VSim licenses.

bitRevDensSrcVW Parameters

density (double)
Positive value describing the density of the particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

doShiftLoad (integer, default = :samp:`0` (off))
For moving windows, move the particles with the windows.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

macroDensFunc (STFunc block)
STFunc block with the explicit name “macroDensFunc” of kind = expression is used to describe the probability
of loading a macroparticle as a function of space and time.

weightFunc (STFunc block)
STFunc block with the explicit name “weightFunc” of kind = expression is used to describe the particle weight-
ing as a function of space and time.

Example weightFunc Block

<STFunc weightFunc>
kind = expression
expression = 10.

</STFunc>

250 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example bitRevDensSrcVW Block

<ParticleSource channelSrc>
kind = bitRevDensSrcVW
density = DENSITY2 # Because we have only one loader
lowerBounds = [0.0 YBEG_LOAD ZBEG_LOAD]
upperBounds = [1. YEND_LOAD ZEND_LOAD]
doShiftLoad = 1
vbar = [0. 0. 0.]
vsig = [0. 0. 0.]

Product of ramp up and down plus channel
<STFunc macroDensFunc>
kind = multFunc

<STFunc cosRamp>
kind = cosineRamp
direction = [1. 0. 0.]
startPosition = STARTRAMP
endPosition = STARTFLAT
startAmplitude = 0.
endAmplitude = 1.

</STFunc>

<STFunc channel>
kind = radialCosChannel
direction = [1. 0. 0.]
channelPosition = [0. 0. 0.]
startRadius = 0.
endRadius = 4.e-5
startAmplitude = 0.5
endAmplitude = 1.

</STFunc>

</STFunc>

</ParticleSource>

gridDenSrcVW

gridDenSrcVW (deprecated in 8.0)

Note: This source has been deprecated. Please use the xvLoaderEmitter kind with the gridPosGen PositionGenerator
instead.

This particle source loads particles along the nodes of the grid. Unlike gridDenSrc this also includes a
function to set the particle weight for variable weight particles.

This particle source is available with all VSim licenses.

3.11. Species 251

VSim Reference Manual, Release 11.0.1-r3016

gridDenSrcVW Parameters

density (double)
Positive value describing the density of the particles.

applyPeriod (integer)
Positive value n, directing the simulation to apply the source at every nth time step. This option works only with
emitter algorithms.

applyTimes (double vector)
Bracketed times for when the source/emitter will generate particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

doShiftLoad (integer, default = 0 (off))
For moving windows, move the particles with the windows.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

numPerDir (integer vector)
Number of macro particles to load in each direction.

weightFunc (STFunc block)
A STFunc describing the particle weighting.

Example Particle Source of kind gridDenSrcVW

<ParticleSource constSrc>
kind = gridDenSrcVW
density = NOMDENS
doShiftLoad = 1

lowerBounds = [$.2*LX$ Y0 Z0]
upperBounds = [$10*LX$ YEND ZEND]

numPerDir=[2 2 2]

vbar = [0. 0. 0.]
vsig = [0. 0. 0.]

weight function
<STFunc weightFunc>

kind = multFunc

<STFunc cosFT>
kind = cosineFlattop
direction = [1. 0. 0.]
startPosition = $0.2*LX$
startFlattop = $0.2*LX + 0.2*LX$
endFlattop = $10.*LX - 0.2*LX$

(continues on next page)

252 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

endPosition = $10.*LX $
startAmplitude = 0.0
flattopAmplitude = 1.
endAmplitude = 0.0

</STFunc>
<STFunc channel>

kind = leakyChannel
direction = [1. 0. 0.]
channelPosition = [0. 0. 0.]
maxParabRadius = MAXPARABRADIUS
maxRadius = MAXRADIUS
centerAmplitude = DENSRAT
quadCoef = QUADCOEF

</STFunc>

</STFunc>

</ParticleSource>

Specialized Sources:

fileDensSrc

Loads particle phase space coordinates contained in a text file specified by “file” in the example block be-
low. Regardless of the dimension of the simulation, the imported file should have at least six columns, sep-
arated by spaces (no commas). For constant weight particles, the six columns specify 𝑥, 𝑦, 𝑧, 𝑃𝑥, 𝑃𝑦, 𝑃𝑧

, where 𝑃𝑖 = 𝛾𝑣𝑖. For variable weight particles, a 7th column needs to be included to specify the weight
of the particle.

In the file, each row corresponds to a single particle.

By default, the distribution of particles in the file will be loaded at the first time step. To repeat loading,
use the applyPeriod attribute.

fileDensSrc Parameters

file (string, required)
The text file containing the particle phase space data to be loaded.

fileNameBase (string, optional)
Base name for series of text files to be loaded over a series of time steps. If this parameter is used then file is
not needed.

fileExtension (string, optional)
File extension for series of text files to be loaded. Required if fileNameBase is used.

applyPeriod (integer, optional)
The time step intervals to load the particles. So, if this value is 2, particles will be loaded every other timestep.
If 3, particles will be loaded every third timestep, etc. If used with fileNameBase the files loaded will be
named fileNameBase_N.fileExtension where N is an integer multiple of the applyPeriod.

shiftPtclPosition (double vector, optional)
Allows the user to shift the position of the particles. The units of shift_i are meters. For example, to

3.11. Species 253

VSim Reference Manual, Release 11.0.1-r3016

shift each particle by the same random distance in x between 0 and 1 micron, one can define shift_x =
__import__("random").random()*1E-6.

Example fileDensSrc Block

<ParticleSource electronSrc>
kind = fileDensSrc
file = textFilePtclSource.dat
#applyPeriod = 3
#shiftPtclPosition = [shift_x shift_y shift_z]

</ParticleSource>

manualSrc

manualSrc

This particle source creates particles and adds them to a species. Each of the particles positions and
velocities must be specified manually in the particle source block.

This particle source is available with all VSim licenses.

ParticleSource kind used to set manual particle generation. By specifying parameters p1, p2, p3. . . , you
can describe exactly what particles are emitted and with what characteristics. These parameters should be
specified in order, though you can specify any number of particles.

Each particle entry is a vector containing the following data:

𝑥, 𝑦, 𝑧, 𝛾𝑣𝑥, 𝛾𝑣𝑦, 𝛾𝑣𝑧

Vorpal uses SI units, so positions have units of meters and velocities have units of m/s. For non-relativistic
particles, 𝛾 = 1, so the vector specifies position and velocity.

To control when particles are to be emitted, use applyPeriod in combination with the manualSrc
emitter. To emit particles only at the beginning of a simulation set applyPeriod = 0. To generate
particles every n time steps, set applyPeriod = n.

manualSrc Parameters

applyPeriod (integer)
Positive value n, directing the simulation to apply the source at every nth time step.

applyTimes (double vector, optional)
Bracketed times for when the emitter will generate particles.

file (string, optional)
Particle data may be attached in a separate text file, as with fileDensSrc.

Example manualSrc Blocks

<ParticleSource myManualSource>
kind = manualSrc
applyPeriod = 0
p1 = [1.e-3 -2.5e-4 0. 7.e+10 0.0 0.0]

(continues on next page)

254 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

p2 = [-1.e-3 2.5e-4 0. 7.e+10 0.0 0.0]
p3 = [1.e-3 2.5e-4 0. 7.e+10 0.0 0.0]

</ParticleSource>

<ParticleSource electronInitDist>
kind = manualSrc
file = electronDist.dat
applyPeriod = 0

</ParticleSource>

gaussSource

gaussSource

This particle source loads particles distributed according to a Gaussian probability in all variables, including spatial.
The number of particles specified may not be what is obtained, as the random number generation process will only get
close to the right number on each processor.

This particle source is available with all VSim licenses.

gaussSource Parameters

numPtcls (integer)
The number of particles in the Gaussian beam.

xbar (double vector)
Average x, y, and z positions of the particles.

xsig (double vector)
Sigma spread in the x, y, and z directions.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

GaussSource example block

<ParticleSource myGaussSource>
kind = gaussSource
numPtcls = 100
xbar = [0.0 0.0 0.0]
xsig = [LX_SIG LY_SIG LZ_SIG]
vbar = [VBAR 0.0 0.0 1.0]
vsig = [VTH VTH VTH 0.0]

</ParticleSource>

boostLoader

3.11. Species 255

VSim Reference Manual, Release 11.0.1-r3016

boostLoader

A loader specifically designed to load particles in a boosted frame simulation from a laboratory frame
distribution. The boostLoader reproduces some of the functionality of xvLoaderEmitter. It creates parti-
cles by density-loading in a volume, but is not capable of flux-emitting from a surface. In a boosted frame
simulation the reference frame of the simulation is moving with a Lorentz factor gamma_boost relative to
the laboratory (rest) frame. This loader allows the user to specify the properties of an electron beam in the
laboratory frame, which are then internally Lorentz transformed in the moving frame of the simulation.
When gamma_{boost} is set to 1, the boostLoader loads beam particles identically to xvLoaderEmitter.

This particle source is available with any VSimPA license.

boostLoader Sub-Blocks

PositionGenerator
PositionGenerator (block) Is used to generate physical positions of particles when they are loaded. The loadSlab
must be specified in the moving frame of the simulation (The loadSlab specify the region where the particles are
loaded in the frame of the simulation).

VelocityGenerator
VelocityGenerator (block) Is used to generate velocities of a particle when loaded. All velocities, including par-
ticle weight as a function of (x,y,z,t) must be specified in the laboratory frame. Particle positions and velocities
are transformed internally in the moving frame of the simulation.

boostLoader Parameters

applyTimes
Interval over which particles are created.

gammaBoost
Lorentz factor of the moving frame of the simulation.

loadOnShift (string, default = false)
A string, true or false, used in shifting window simulations to insure that particles are loaded into the new
cells added when the simulation shifts. loadOnShift should be set to true if a moving window is used in the
simulation. If true, then must also have load = true.

loadAfterInit (string, default = false)
Used to continue loading particles after the initialization, for example a continuous bulk source ionization.
loadAfterInit should be set to true only if more particles should be loaded into the loadSlab with each
time step. If true, then must also have load = true.

gridLoader

gridLoader

This particle source loads particles along the nodes of the simulation grid. It is a general loader that can
work with a moving window.

This particle source is available for all VSim licenses.

256 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

gridLoader Sub-Blocks

Slab
Slab (block) Is required to be named initLoadSlab and is the slab into which particles are loaded at t = 0. At
later times, the load slab is the initial load slab moved by the sweep rate times the time.

VelocityGenerator
VelocityGenerator (block) Is used to generate velocities of a particle when loaded. All velocities, including par-
ticle weight as a function of (x,y,z,t) must be specified in the laboratory frame. Particle positions and velocities
are transformed internally in the moving frame of the simulation.

gridLoader Parameters

applyTimes (double vector)
Times for when the source will generate particles.

macroPerDir (double vector)
The number of macro-particles in each direction. The product of these is the number of particles loaded per cell.

sweepVel (double vector)
Velocities at which the loading region is moving.

Example Particle Source Block of Kind gridLoader

<ParticleSource channelSrc>
kind = gridLoader
applytimes = [0. 1.]
<Slab initLoadSlab>
lowerBounds = [STARTRAMP_BOOST YSTART_LOAD ZSTART_LOAD]
upperBounds = [ENDPLASMA_BOOST YEND_LOAD ZEND_LOAD]

</Slab>
sweepVel = [$ -VX_BOOST $ 0. 0.]
macroPerDir = [NUM_PER_DX NUM_PER_DY NUM_PER_DZ]

All velocity components (0,1,2) default to zero, which is what we want.
Here, the particle weights (component 3) are set to create a short
density ramp.
<VelocityGenerator rampVelGen>
kind = funcVelGen
specify relativistic drift along x
<STFunc component0>

kind = constantFunc
amplitude = -UX_BOOST

</STFunc>
specify weight of the variably-weighted particles
<STFunc component3>

kind = multFunc
<STFunc cosFT>

kind = expression
expression = 0.5 * H(pp(t, x) - STARTRAMP_BOOST) \

* H(STARTFLAT_BOOST - pp(t, x)) \

* (1 + cos(PI * (STARTFLAT_BOOST - pp(t, x)) \
/ RAMPLEN_BOOST)) + H(pp(t, x) - STARTFLAT_BOOST) \

* H(ENDFLAT_BOOST - pp(t, x)) \
+ 0.5 * H(pp(t, x) - ENDFLAT_BOOST) \

(continues on next page)

3.11. Species 257

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

* H(ENDPLASMA_BOOST - pp(t, x)) \

* (1 + cos(PI * (pp(t, x) - ENDFLAT_BOOST) \
/ RAMPLEN_BOOST))

</STFunc>
<STFunc channel>

kind = leakyChannel
direction = [1. 0. 0.]
channelPosition = [0. 0. 0.]
maxParabRadius = MAXPARABRADIUS
maxRadius = MAXRADIUS
centerAmplitude = DENSRAT
quadCoef = QUADCOEF

</STFunc>
</STFunc>

</VelocityGenerator>
</ParticleSource>

fluxPtclEmitter

fluxPtclEmitter

This particle source reads in and emits particles for which one coordinate is given as a time of emission. It was
previously used in conjunction with an absSaveDump particle absorber.

This particle source kind can be used with any VSim license.

fluxPtclEmitter Parameters

fluxSpeciesDumpName (string, required)
Sets the name of the HDF5 dataset which the flux emitter class will read in. Also sets part of the read-file name.
Usually, this name will be the species name followed by the string Flux.

useRunNameAsPrefix (integer, default = 1 (true))
Denotes whether the standard Vorpal dump name, or run name, is expected to be prepended to the flux particle
file names. Useful if the flux particle files were created by a simulation with a different output name.

emitDim (integer, default = 0)
The direction of emission. One of 0, 1, 2

emitPlaneLocation (float, default = 0.)
The physical location of the emission plane.

initialDumpIndex (integer)
The index of the flux particle file to start reading from.

fluxFileReadPeriod (integer, default = 0)
The number of time steps between reads.

emitDistanceShift (float, default = 0.)
Shift all the particles by this distance before loading.

relativeValueFlag (boolean, default = 1)
Whether relative values are used in the flux particle file or not.

removeFluxFilesAfterReadFlag (boolean, default = 0)
Set whether to remove the data files after reading them.

258 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

delaySteps (integer, default = 0)
Allow for delaying the entry of particles by delaySteps steps.

density (double)
Positive value describing the density of the particles.

applyPeriod (integer)
Positive value n, directing the simulation to apply the source at every nth time step. This option works only with
emitter algorithms.

applyTimes (double vector)
Bracketed times for when the source/emitter will generate particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

doShiftLoad (integer, default = 0 (off))
For moving windows, move the particles with the windows.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

nomMacroPtclsPerStep (double)
A reference (nominal) number of macroparticles emitted from the entire emitter each time step.

seed (integer)
Specifies the seed for the random number generator. seed must be a positive integer.

Example fluxPtclEmitter Code Block

<ParticleSource leftYellowFluxEmitter>
kind = fluxPtclEmitter
fluxSpeciesDumpName = yellowElectronsFlux
useRunNameAsPrefix = 0

#initialDumpIndex = 0
#fluxFileReadPeriod = 10
removeFluxFilesAfterReadFlag = 0

##emitDistanceShift =-$NX_PML * DX$
dataSetName = redElectronsFluxData
#relativeValueFlag = 0

emitDim = 0
emitPlaneLocation = -0.15

applyTimes = [0. 100000000000000.]

</ParticleSource>

3.11. Species 259

VSim Reference Manual, Release 11.0.1-r3016

Notes on fluxPtclEmitter Particle Source

Use of a Vorpal simulation with the output base name test2 would result in Vorpal looking for a dump file whose name
is prefixed by that base name such as:

test2_Globals_1.h5

If the base name is set and you set the fluxSpeciesDumpName parameter to a text string such as:

electronsFlux

then, by default, Vorpal will look for a file whose name is prefixed by the concatenated base name and the string you
have specified, such as:

test2_electronsFlux_0.h5

However, if you set:

useRunNameAsPrefix = 0

then Vorpal will use only the fluxSpeciesDumpName parameter string as the filename prefix like this:

electronsFlux_0.h5

switchSpeciesSrc

switchSpeciesSrc

This is a particle source that will emit already existing particles as a different particle species. Must be
coupled with a particle absorber from the source species.

This kind of particle source is available with a VSimPA license.

switchSpeciesSrc Parameters

switchSpecies (string)
Species to which the particles will be switched.

ptclAbsorber (string)
Name of the particle absorber from the source species. Particles that impact this absorber will be switched to
the species defined in switchSpecies.

minDim (integer)
Bracketed times for when the source/emitter will generate particles.

Example Particle Source of Kind switchSpeciesSrc

<ParticleSource beamElectronsSwitchEmitter>
kind = switchSpeciesSrc
switchSpecies = ElectronBeam
ptclAbsorber = beamElectronsSwitchAbsorber
minDim = 1

</ParticleSource>

260 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

gaussDensSrc

gaussDensSrc (deprecated in 8.0)

Note: This source has been deprecated. Please use the xvLoaderEmitter kind with the gridPosGen PositionGenerator
and the beamVelocityGen VelocityGenerator instead.

This particle source emits particles based on a Gaussian profile.

gaussDensSrc Parameters

density (double)
Positive value describing the density of the particles.

applyPeriod (integer)
Positive value n, directing the simulation to apply the source at every nth time step. This option works only with
emitter algorithms.

applyTimes (double vector)
Bracketed times for when the source/emitter will generate particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

doShiftLoad (integer, default = 0 (off))
For moving windows, move the particles with the windows.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

nomMacroPtclsPerStep (double)
A reference (nominal) number of macroparticles emitted from the entire emitter each time step.

seed (integer)
Specifies the seed for the random number generator. seed must be a positive integer.

Example gaussDensSrc Particle Source Block

<ParticleSource gaussSrc>
kind = gaussDensSrc
density = DENSITY
lowerBounds = [0.0 0.0 0.0]
upperBounds = [LX LY LZ]
vbar = [0.0 0.0 0.0]
vsig = [ELECTHERMSPEED ELECTHERMSPEED ELECTHERMSPEED]
<STFunc macroDensFunc>
kind = expression
expression = 0.99999-5.5263e7*FIELD/DENSITY*(-PERTHW2I*(x-.5*LX)*exp(-2.*(x-.

→˓5*LX)*(x-.5*LX)*PERTHW2I)) (continues on next page)

3.11. Species 261

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</STFunc>
</ParticleSource>

planarPtclEmitter

planarPtclEmitter (deprecated in 8.0)

Note: This source has been deprecated. Please use the xvLoaderEmitter kind with an emitSurface Slab in the
PositionGenerator instead.

This particle beam is emitted from flat surface. This kind adds an additional parameter, relativisticFlag.
This integer flag tells the emitter whether the particles are of relativistic type (i.e. using a relativistic
mover class such as relBoris for updating the particles) or not. The emitted particles’ velocities are
adjusted accordingly.

This particle source can be used with all VSim licenses.

planarPtclEmitter Parameters

density (double)
Positive value describing the density of the particles.

applyPeriod (integer)
Positive value n, directing the simulation to apply the source at every nth time step. This option works only with
emitter algorithms.

applyTimes (double vector)
Bracketed times for when the source/emitter will generate particles.

lowerBounds (double vector)
Lower bound (expressed in physical units, not grid units) of the physical extent of the source.

upperBounds (double vector)
Upper bound (expressed in physical units, not grid units) of the physical extent of the source.

doShiftLoad (integer, default = 0 (off))
For moving windows, move the particles with the windows.

vbar (double vector)
Average velocity of the particles in the x, y, and z directions.

vsig (double vector)
Positive value denoting the thermal velocity in the x, y, and z directions.

numMacroPtclsPerStep (double)
A reference (nominal) number of macroparticles emitted from the entire emitter each time step.

numMacroPtclsPerCellPerStep (double)
Number of macro particles to emit per cell per timestep.

current (double)
This switches from a current density profile to a current profile.

nonUniformMacroPtclsFlag (double)
If set allows for variation in macro particle density.

262 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

seed (integer)
Specifies the seed for the random number generator. seed must be a positive integer.

positionFunction (string, optional)
String to specify how particles are loaded. Available choices are random, bitReversed, lattice and equispaced.

usePositionFuncInEmitDir (integer, optional)
Flag for whether to use the normPositionFunc for time of emission.

weightMinimum (float, optional)
The lowest weight allowed if loadZeroWeights is false.

weightFunc (STFunc Block, optional)
Determines the relative density of the loaded particles by setting the probability that an individual is loaded.

macroFluxFunc (STFunc Block, optional)
The space time function that determines the macroparticle flux.

currentDensityFunc (STFunc Block, optional)
The space time function that determines the current.

fluxDensityFunc (STFunc Block, optional)
The space time function that determines the flux.

Example Particle Source of kind planarPtclEmitter

<ParticleSource leftBeamEmitter>
kind = planarPtclEmitter

specify the number of particles emitted from the entire emitter each time step
nomMacroPtclsPerStep = 5

current density function
<STFunc currentDensityFunc>

kind = expression
expression = t / DT / 10.

</STFunc>

specify a macroparticle position choosing function: bitreversed, random, or
→˓lattice
(default is bitreversed)
positionFunction = bitReversed

Bounds specified with physical coordinates, one dimension must have zero extent
lowerBounds = [STARTX $Y_CENTER - 1.5 * E_RMS_WIDTH_Y$ $Z_CENTER - 1.5 * E_RMS_

→˓WIDTH_Z$]
upperBounds = [STARTX $Y_CENTER + 1.5 * E_RMS_WIDTH_Y$ $Z_CENTER + 1.5 * E_RMS_

→˓WIDTH_Z$]

applyTimes = [0. $1.*DT$]

particle velocities
<NAFunc velocitySequence_0>

kind = randGauss
mean = $E_BEAM_GAMMA * E_BEAM_SPEED$
sigma = $E_BEAM_GAMMA * 1.e6$

</NAFunc>
<NAFunc velocitySequence_1>

(continues on next page)

3.11. Species 263

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = randGauss
mean = 0.
sigma =0.0

</NAFunc>
<NAFunc velocitySequence_2>

kind = randGauss
mean = 0.0
sigma = 0.0

</NAFunc>

some other optional parameters

specify the total current (constant, may later implement as a function of time)
#current = 6.0e-2

vary the macroparticle density (weights may still be variable if desired)
#nonUniformMacroPtclsFlag =1

can also give the macroparticle flux as a function
<STFunc macroFluxFunc>

kind = expression
expression = 1.

</STFunc>

can also give the weight as a function, otherwise it is 1
<STFunc weightFunc>
kind = expression
expression = 1.

</STFunc>

</ParticleSource> # end planarPtclEmitter

Secondary Sources:

secElec

secElec

This kind of ParticleSource algorithm allows Vorpal to model the generation of secondary electrons being
produced by impact with electrons or ions on metal surfaces.

For electrons, the determination of number, energy spectrum, and angular distribution of these secondary
electrons can be found in [?].

When the incident particles are ions, secondary electron emission and neutral desorption yields are cal-
culated due to ion-target interactions. The secondary electron yield for most models depends on the
projectile energy and angle of incidence, and the target material. Ion-induced secondary electron emis-
sion is proportional to electronic stopping, so stopping power 𝑑𝐸/𝑑𝑥 is calculated to compute secondary
electron yields. Similarly, neutral desorption depends on nuclear stopping powers. The stopping power
calculation is appropriate for both cold solids and dense plasmas, and is comprised of contributions from
bound electrons, free electrons, and nuclear collisions. Further details are provided in [?].

Note: When dealing with incident particles of electrons, to emit secondary electrons in a different species than the

264 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

primary impacting electrons, include the secElec ParticleSource block in the secondary species and reference the pt-
clAbsorber from the primary species. For example: ptclAbsorber = primaryElectrons.topAbsorber

Note: When dealing with incident particles of ions, there are two ways to emit secondary electrons in a different
species.

1) Include the secElec ParticleSource block in the secondary species and reference the ptclAbsorber from the primary
species. For example: ptclAbsorber = primaryIons.topAbsorber

2) Include the secElec ParticleSource block in the primary ion species and use the parameter secondarySpecies to
reference the secondary species. This parameter ONLY works for incident ions. For example: secondarySpecies
= electrons

This particle source is available with a VSimMD or VSimPD license.

secElec Parameters

ptclAbsorber (string, required)
Name of the absorber that absorbs the electrons and from which the secondaries will be emitted.

material (string, optional, default = copper)
When using elections as the incident particle, material choices are one of:

• copper

• stainless (stainless steel)

When the incident particle is an ion, the choices are:

• hydrogen

• helium

• carbon

• nitrogen

• oxygen

• sodium

• aluminum

• silicon

• phosphorus

• argon

• iron

• nickel

• copper

• silver

• gold

• uranium

• air

3.11. Species 265

VSim Reference Manual, Release 11.0.1-r3016

• water

• stainless (stainless steel)

direction (vector, optional)
Direction vector should point along the outward-facing normal of the ParticleSource.

emissionProb (real, optional)
Specifies the probability for emission of secondaries from a material surface. For the constant probability model,
a single electron is emitted with a given probability independent of all other factors, such as the incident energy,
material and primary ion properties, etc.

ptclCountType (string, optional, default = emitCounting)
Describes how the emission of multiple secondary electrons is handled. This parameter is optional, and defaults
to emitCounting. Valid types are:

• emitCounting (default)

Emit multiple macroparticles.

• noCounting

Emit single particle.

• vwCounting

Emit single variable-weight particle and increase its weight by the number of secondaries.

• taggedVwCounting

Emit single variable-weight, tagged particle and increase its weight by the number of secondaries.

emittingSurface (float, optional)
Physical position of the emitting surface in the direction of emission. If this parameter is not specified, it is
calculated to be the appropriate edge of the grid. It is ignored when emitting from a grid boundary.

secondarySpecies (string, optional)
This parameter is only valid for primary ions and will be ignored if primaries are electrons. secondarySpecies
sets the electron species to emit the secondaries into.

suppressEnergy
By default, emission does not occur if the electric field has sign that would immediately force the emitted
particle back into the surface (default value is suppressEnergy=0). This parameter can be used to control
this feature. If an emitted particle is desired, regardless of the sign of the electric field, then set this parameter
to a very large number, e.g., suppressEnergy=1.0e32.

More specifically, emission occurs when the particle charge, times the local field strength, times a characteristic
length based on the grid, e.g., q*E*dx, is less than the suppressEnergy. The local field strength is interpo-
lated on the emission surface. In higher dimensions, the characteristic length is the diagonal across the cell. The
units of the suppressEnergy are electronVolts.

ignoreProb (float, default = 0)
Float value representing probability to ignore an absorbed electron so it can be used for another process. This
should be a value between 0 and 1.

gridBoundary (string)
If the particle absorber is on a gridBoundary, the name of the gridBoundary used by that particle absorber must
also be specified in the ParticleSource block.

266 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example secElec Block

<ParticleSource leftSecondaryEmitter>
kind = secElec
minDim = 1
ptclAbsorber = primaries.leftAbsorber
direction = [-1. 0. 0.]
material = copper

</ParticleSource>

secFieldEmitter

secFieldEmitter

Secondary particle emitter where the SEY (secondary yield) and emitted particle spectrum are defined by
pair of Expressions (see Introduction to UserFuncs and Expressions). These Expressions are functions of
primary velocity components (vperp, vpara), a scalar field (phi) and time (t). The secondary particles can
be in the same species as the incoming electrons, or a separate species.

secFieldEmitter Parameters

ptclAbsorber (string)
Name of the absorber that absorbs the primaries and from which the secondaries will be emitted.

gridBoundary (string, optional)
Name of a gridBoundary absorber that absorbs the primaries and from which the secondaries will be emitted.

Expression (block, required)
An expression (see Introduction to UserFuncs and Expressions) that defines SEY. It must be named SEYFunc.
It can take four arguments vperp (primary velocity component along the surface normal, in m/s), vpara
(primary velocity component parallel to the surface, in m/s), phi (the value of the scalar field at the location
where the particle is absorbed) and t (time in second). Not all the arguments need to be used, but all arguments
must come from these four.

Expression (block, required)
An expression (see Introduction to UserFuncs and Expressions) that defines secondary velocity (beta) distribu-
tion. It must be named SpectrumFunc and return a 3 component vector. It can take four arguments vperp
(primary velocity component along the surface normal, in m/s), vpara (primary velocity component parallel
to the surface, in m/s), phi (the value of the scalar field at the location where the particle is absorbed) and t
(time in second). Not all the arguments need to be used, but all arguments must come from these four. The 3
component velocity vector returned is defined locally to the emitting surface. The first component is vnorm,
which is along the surface normal (nvec) direction. The second component is along the direction of tvec = v x
nvec, where v is the velocity vector of the incident primary particle. The third component is along the direction
of nvec x tvec.

secondarySpecies (string, optional)
Species name of the secondaries emitted. If this is not specified, the emitted particles are of the same species as
the incident particle.

emittingSurface (float, optional)
Physical position of the emitting surface in the direction of emission. If this parameter is not specified, it is
calculated to be the appropriate edge of the grid. It is ignored when emitting from a grid boundary

3.11. Species 267

VSim Reference Manual, Release 11.0.1-r3016

simpleSec

This particle source is an implementation of a simplified secondary electron emission model. This model emits exactly
zero or one electron macroparticle for each incident (primary) macroparticle that is absorbed. The primary particle
can be an electron species or an ion species.

If the primary macroparticle is constant weight, then a single secondary electron macroparticle with the same weight
is emitted with a probability p specified by the emissionProb attribute, and the primary is simply absorbed with
probabilty 1.0 - p.

If the primary macroparticle is variable weight, then a single (variable weight) secondary electron macroparticle is
always emitted, with a weight equal to the primary particle’s weight multiplied by emissionProb.

When the ptclAbsorber is a gridBoundary, the secondary electron macroparticle is emitted from the surface in the
direction such that it’s velocity tangential to the surface is unchanged, but the normal component is reversed (specular
emission). If the ptclAbsorber is defined on a slab instead of on a gridBoundary, then the emission direction is selected
by the setting of the direction attribute to be the outward-facing normal (eg. pointing out of the simulation domain)
and secondary electron emission will be along the negative of this direction.

The energy (in Joules) of an emitted secondary electron macroparticle is specified by the emittedEnergy attribute
if the attribute randomEnergy=0. If the attribute randomEnergy=1, then the emitted energy is uniformly dis-
tributed in the range [0, emittedEnergy]. The attribute randomEnergy defaults to 0.

Secondary electron emission may be suppressed by suppressEnergy, which may be set to an arbitrarily high
number if emission is always required regardless of local field.

Note: To emit particles in a different species than the primary impacting species, include the simpleSec ParticleSource
block in the secondary species and reference the ptclAborber from the primary species. For example: ptclAbsorber =
electrons.topAbsorber

This kind of particle source is available with a VSimMD or VSimPD license.

simpleSec Parameters

ptclAbsorber (string, required): Name of the particle absorber that absorbs the primary incident particles, and
from which the secondaries will be emitted. The absorber must be of kind = absAndSav.

emittedEnergy (float, required): The energy in Joules of the emitted electrons or the top of the range of energies
if randomEnergy is set to 1.

randomEnergy (boolean, optional): If randomEnergy is set to 1, the ParticleSource will emit the secondary
electrons with a uniformly distributed random energy between 0 and the energy given in the input file from the
emittedEnergy parameter.

suppressEnergy (float, optional): By default, emission does not occur if the electric field has sign that would
immediately force the emitted particle back into the surface (default value is suppressEnergy=0). This
parameter can be used to control this feature. If an emitted particle is desired, regardless of the sign of the
electric field, then set this parameter to a very large number, e.g., suppressEnergy=1.0e32.

More specifically, emission occurs when the particle charge, times the local field strength, times a characteristic
length based on the grid, e.g., q*E*dx, is less than the suppressEnergy. The local field strength is interpo-
lated on the emission surface. In higher dimensions, the characteristic length is the diagonal across the cell. The
units of the suppressEnergy are electronVolts.

emittingSurface (string, optional): The physical position of the emitting surface in the direction of emission

268 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

direction (float vector, optional): A vector denoting the normal pointing out of the simulation domain (eg
into the metal or domain edge), i.e., away from the direction of emission from the emittingSurface.
direction is ignored if the ptclAbsorber is a gridBoundary.

gridBoundary (string, optional): Only necessary if the ptclAbsorber is on a gridBoundary. The name of the
gridBoundary used in the ptclAbsorber must also be specified in the ParticleSource block.

emissionProb (float, required): The probability that a single secondary electron macroparticle is emitted for con-
stant weight primary particles. The fraction of the primary macroparticle weight that the emitted secondary
electron macroparticle will have for variable weight particles.

Example simpleSec Block to emit secondary electrons in the same Species as the primary electrons

<ParticleSource simpleSecondaryEmitter>
kind = simpleSec
emissionProb = 0.25
ptclAbsorber = cutcellBndry
gridBoundary = plane
emittedEnergy = EMIT_ENERGY

</ParticleSource>

Example simpleSec Block to emit secondary electrons in a different Species as the primary elec-
trons

<Species electrons>
.
.
.
.
<ParticleSink topAbsorber>

kind = absAndSav
minDim = 2
lowerBounds = [0 NY 0]
upperBounds = [NX NY1 NZ]

</ParticleSink>
.
.
.
</Species>

<Species secondaryElectrons>
.
.
.
.
<ParticleSource simpleSecondaryEmitter>

kind = simpleSec
emissionProb = 0.5
ptclAbsorber = electrons.topAbsorber
emittedEnergy = EMIT_ENERGY
direction= [0. 1. 0.]
emittingSurface = $YSTART + LY-0.5*DY$

</ParticleSource>

(continues on next page)

3.11. Species 269

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

.

.

.
</Species>

secondaryEmitter

secondaryEmitter

This general secondary emitter emits (secondary) particles based on the absorption or emission of other
(primary) particles. Typically, a secondary particle is emitted when a primary particle is absorbed by a
ParticleSink; however, to allow correlated emission of different secondary species, the primary particle
may be an emitted (rather than absorbed) particle. For example, suppose a primary ion incident upon an
insulating surface has a certain probability of secondary-emitting an electron, and, for charge conserva-
tion, it is important to secondary-emit an ion at the same time (the secondary ion may remain immobile
on the surface). A secondaryEmitter can be used to emit a secondary electron with appropriate probability
when the primary ion hits the surface; another secondaryEmitter can then be used to emit a (possibly im-
mobile) secondary ion whenever a secondary electron is produced, ensuring charge conservation (while
it is possible to emit a secondary ion based on the same primary ion, if the emission probability is not 1,
then there may be times when a secondary electron is emitted but not a secondary ion, and vice-versa).
This secondaryEmitter allows great flexibility in determining the parameters of the secondary particle;
hence it also requires a lengthy specification of the secondary particles’ properties.

While most other secondary emitters emit secondary particles at a randomly-chosen time within the given
timestep, this emitter emits particles at the recorded absorption time.

This emitter should only be used with a grid boundary and absSavTriCutCell absorbers.

This particle source is available with a VSimMD or VSimPD license.

secondaryEmitter Parameters

ptclAbsorber (string)
To emit secondaries from primary particles that are absorbed (or, more generally, that run into a ParticleSink),
this option should specify the name of the ParticleSink (which must be of a kind that stores absorbed particles).
When used with a gridBoundary the ptclAbsorber should probably always be of type absSavTriCutCell
(with recordParticleData=true), since that is currently the only cut-cell absorber that records the exact
time of absorption and the surface normal.

ptclSource (string)
(This option may be specified instead of ptclAbsorber.) To emit secondaries from primary particles that
are emitted from a ParticleSource, this option should specify the name of the particle source that emits the
primary particles whose emission triggers secondary emission. If the ParticleSource emits a species other than
the Species block that contains the ParticleSource, then sourceSpecies must also be specified. This is
typically used to allow secondary emission of a Species based on secondary emission of another Species. The
ParticleSource block must specify recordParticleData=true because secondaries will be emitted based
on the recorded particles.

sourceSpecies (string)
The name of the Species emitted by the ptclSource; this is required only if a ptclSource is specified that
emits a Species other than the Species block containing the ParticleSource.

lowerBounds (integer vector, optional, default = global simulation bounds)
The lower (global cell) bounds within which a primary particle can produce secondaries.

270 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

upperBounds (integer vector, optional, default = global simulation bounds)
The upper (global cell) bounds within which a primary particle can produce secondaries.

gridBoundary (string, optional)
A gridBoundary specifying the surface from which secondaries are emitted; it is strongly recommended that
this be the same gridBoundary at which primary particles are absorbed. The gridBoundary supplies the surface-
normal where secondary emission occurs. If, in pathological cases, there is no surface in the cell where emission
occurs, the normal will be taken to be opposite the primary particle’s velocity.

emissionDirection (vector, optional)
if no gridBoundary is specified, this gives the outward surface normal direction for secondary emission.

depositCurrentFromCorner (boolean, optional, default = true)
This option should generally be true in electromagnetic simulations, especially for emission from metallic
(conducting) surfaces; it avoids the creation of artificial stationary charges. In electromagnetic simulation,
emitting a charge from the middle of a cell automatically creates (or rather, leads to electromagnetic fields that
act as if there were) an opposite charge that remains at the emission location forever. If this option is true, then
electrical current will be deposited from a corner of the emission cell that is inside the absorber to the emission
location.

functionVariables (vector of strings, optional, default = empty vector)
a list of quantities describing the primary particle that can be used as variables in the Expressions sey,
velocityAndTag, and internVars. For example, if the sey depends on the the particle’s speed and/or
kinetic energy, velocityMagnitude and/or physKineticEnergy should be included in this list and
used in the sey expression.

There are many valid quantities that can be used; options are are the same as those listed under
ptclAttributes in speciesBinning.

sey (block, required)
The expression <Expression sey> (see Introduction to UserFuncs and Expressions) that defines
the secondary emission yield (SEY). It must be named sey, and can reference quantities listed in
functionVariables that describe the particular primary particle. It must return a scalar value which is
the (expected or average) number of physical secondary particles to be emitted for each physical primary par-
ticle. The interpretation of what to do if the SEY calls for a fractional secondary macroparticle, or multiple
secondary macroparticles, depends on the ptclCountType option.

emitIntoGridBoundaryInterior (boolean, optional, default = true)
Typically the gridBoundary interior is the physical domain in which particles move, while the exterior ab-
sorbs particles (and this option should be true); in case the gridBoundary interior is the absorbing material,
with particles moving in the region exterior to the gridBoundary, this option can be set to false so that sec-
ondary particles will be emitted into the exterior of gridBoundary. If false, the ptclAbsorber should
probably specify absorberIsInGridBoundary=true (currently, only ParticleSink absSavTriCutCell has
that option).

ptclCountType (string, optional, default = species dependent)
Describes how the emission of fractional or multiple secondary particles is handled. This parameter is optional;
the default value is emitCounting for constant-weight species, and and vwCounting for variable-weight
species. In the following, a primary macroparticle represents 𝑃 physical particles and the expected number of
secondary physical particles is 𝑆 = 𝑃 × 𝑆𝐸𝑌 . Valid options are:

• emitCounting (default for constant-weight secondaries)

Emit multiple secondary macroparticles with default weight. I.e., if 𝑀 is the default number of
physical particles per secondary macroparticle, then either floor(𝑆/𝑀) or ceil(𝑆/𝑀) secondary
macroparticles will be emitted, with a probability chosen so that on average 𝑆 physical secon-
daries are emitted.

• noCounting

3.11. Species 271

VSim Reference Manual, Release 11.0.1-r3016

This is the same as emitCounting except that at most 1 macroparticle is emitted (i.e., either
0 or 1 secondary macroparticles). This gives the wrong result if 𝑆 exceeds the default number of
physical particles per secondary macroparticle. However, it may be appropriate if that situation is
rare and one wants to avoid emitting a glut of secondary macroparticles on those rare occasions.

• vwCounting (default for variable-weight secondaries)

For variable-weight secondary species, emit a single macroparticle with weight set to represent
𝑆 secondary physical particles.

autoGenerateTag (boolean, optional, default = true)
Whether a tag will be automatically generated for each secondary; if false then the velocityAndTag
Expression must specify the tag.

<Expression velocityAndTag> (block, required)
An expression (see Introduction to UserFuncs and Expressions) that defines the velocity and (possibly)
tag of the secondary particle. It must be named velocityAndTag, and can take arguments listed in
functionVariables which depend on the particular primary particle. If autoGenerateTag is true
then this must return 3 velocity components; if false then this must return 4 components, three velocities plus
a tag for the secondary.

The tag is used only if the secondary Species is tagged.

The “velocity” components are actually the spatial four-velocity components in a coordinate system that depends
on the emission surface and the primary particle. The first coordinate 𝑢𝑛 is the component normal to the
surface (or in the direction of emissionDirection if gridBoundary is not specified); the second is
perpendicular to the first and in the plane of the primary particle’s velocity. The third coordinate is then normal
to the first two, and in right-hand-rule order. If the primary particle is incident along the normal, then the third
coordinate is the cardinal direction (e.g., +x, +y, or +z in cartesian systems) most perpendicular to the normal;
and the second is then chosen normal to the first and third in right-hand order. In 2D, the third coordinate is
always in the direction of the unsimulated direction, with its sign chosen so that the primary incident velocity
and the cross product of the third and first coordinates are in the same drection.

<Expression velocityAndTag> will determine the internal variables (e.g., velocity, tag, weight) of the secondary
particle. However, If <Expression internVars> is given, it will overwrite these internal variables.
However, velocityAndTag must still be given because its results can be referenced by <Expression
internVars> through the variables secInternVars_0, secInternVars_1, etc.

<Expression internVars> (block, optional)
An optional expression (see Introduction to UserFuncs and Expressions) that defines the final internal variables
(e.g., velocity, tag, weight, etc.) of each secondary particle (this is an advanced feature that is rarely needed). It
must be named internVars, and can reference any quantities listed in functionVariables.

In addition to quantities in functionVariables, the expression can reference the internal variables
that were calcluated from :samp:<Expression velocityAndTag>, through the terms secInternVars_0,
secInternVars_1, secInternVars_2, etc. (See the example below.) This can be useful because
the secondary species may have internal variables other than velocity and tag, and these can only be set via
<Expression internVars>, but setting the velocity directly can be painful, whereas <Expression
velocityAndTag> makes it easy to use a surface-based coordinate system. This way, one can copy the
results from velocityAndTag, and then modify any other internal variables.

This expression allows ultimate flexibility in setting the final internal variables of the secondary particle, but one
must be very careful to understand exactly what those internal variables are.

emitForPrimariesWithoutSurfaceNormal (boolean, default = false)
Absorption of particles, especially at curved surfaces, can be complicated with finite precision computations. In
pathological cases, particles may occasionally be absorbed in such a way that the surface normal (at absorption
location) is unknown; that is usually because the particles are not absorbed at a surface. For example, a particle
may be (intentionally or not) loaded inside an absorber, i.e., so that a particle may be absorbed without crossing

272 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

the surface of the absorber. If this option is true then secondaries will still be emitted even for primaries for
which no surface normal is known (in this case, the emission location is probably not the surface of the absorber,
but may be deep in the bulk absorber). Typically the only reason for this to be true is if the failure to emit a
secondary would result in a systematic conservation error.

suppressEnergy (float, optional, default = -1.)
If negative, this has no effect on emission. If this is zero, then emission does not occur if the electric force on the
particle (at emission location) points back toward the surface, regardless of the secondary particle’s energy. If
this is positive, then emission does not occur if the electric field forces the particle back toward the surface and
the electric force is sufficiently strong. Specifically, the electric force on the particle, projected onto the surface
normal, will be calculated; if the force is away from the surface, there is no effect (the secondary particle will be
emitted). If the force is back toward the surface, then secondary emission is suppressed if the (projected) force
times the cell diagonal (in Joules) exceeds (or equals) suppressEnergy. E.g., if suppressEnergy is zero, then
emission will be suppressed whenever the electric force points toward the emission surface. If suppressEnergy
is 1.6e-19, then emission will be suppressed (for an electron or singly-charged ion) if the electric field times
the cell-diagonal-length is greater than 1 V; i.e., an emitted electron with less than 1 eV could not travel a cell-
diagonal before being turned back toward the surface. If suppressEnergy is very large, then emission will not
be suppressed, just as if suppressEnergy is negative. Note that the calculation of whether secondary emission is
suppressed has nothing to do with the energy of primary or secondary particles, but depends only on the local
electric field at the location of the primary particle. If non-negative, suppressEnergy is typically set to zero to
emit only when the electric force points away from the surface, or it may set to a value on the order of typical
secondary particle energy, ensuring that emission will be suppressed only if the electric force would prevent
typical particles from traveling a cell-diagonal.

Example secondaryEmitter Blocks

The following secondaryEmitter emits a secondary particle with probability 1 (always), always normal to the surface
with a tenth the speed of light (roughly: the spatial part of the 4-velocity is one tenth the speed of light). It also
generates a tag for the secondary (applicable only if the secondary species is tagged) of 1.3.:

<ParticleSource coneSecEmitter>
kind = secondaryEmitter
recordParticleData = true
gridBoundary = coneSurf
ptclAbsorber = coneSurfSink
functionVariables = []

<Expression sey>
kind = expression
expression = 1.0

</Expression>

autoGenerateTag = false

<Expression velocityAndTag>
kind = expression
expression = vector(0.1*299792458.0,0.,0.,1.3)

</Expression>

ptclCountType = emitCounting
depositCurrentFromCorner = true

</ParticleSource>

The following secondaryEmitter emits a secondary particle, with 90 percent probability, that is specularly reflected
with respect to the incident primary particle. This sets the tag of each secondary to -1. Here the internVars expres-
sion is used just as a demonstration; it doesn’t change the secondary particle properties. (Note that the first velocity

3.11. Species 273

VSim Reference Manual, Release 11.0.1-r3016

component is the 4-velocity of the primary particle projected onto the surface normal pointing into the absorber; this
component represents the secondary’s 4-velocity projected onto the surface normal pointing out of the absorber—i.e.,
the secondary’s velocity is the primary’s reflected about the surface.):

<ParticleSource specSecEmitter>
kind = secondaryEmitter
gridBoundary = specSurf
ptclAbsorber = specSurfSink
functionVariables = ['gammaVelocity_0' 'gammaVelocity_1' \

'gammaVelocity_2' 'surfaceNormalIntoAbsorber_0' \
'surfaceNormalIntoAbsorber_1' 'surfaceNormalIntoAbsorber_2' \
'surfaceTangent1_0' 'surfaceTangent1_1' 'surfaceTangent1_2' \
'surfaceTangent2_0' 'surfaceTangent2_1' 'surfaceTangent2_2']

<Expression sey>
kind = expression
expression = 0.9

</Expression>

autoGenerateTag = false

<Expression velocityAndTag>
kind = expression
expression = vector(\
(gammaVelocity_0*surfaceNormalIntoAbsorber_0+ \
gammaVelocity_1*surfaceNormalIntoAbsorber_1+ \
gammaVelocity_2*surfaceNormalIntoAbsorber_2), \

(gammaVelocity_0*surfaceTangent1_0+ \
gammaVelocity_1*surfaceTangent1_1+ \
gammaVelocity_2*surfaceTangent1_2), \

(gammaVelocity_0*surfaceTangent2_0+ \
gammaVelocity_1*surfaceTangent2_1+ \
gammaVelocity_2*surfaceTangent2_2),\

-1.)
</Expression>

<Expression internVars>
kind = expression
expression = vector(\

secInternVars_0,secInternVars_1,secInternVars_2,secPtclWeight)
</Expression>

ptclCountType = vwCounting
depositCurrentFromCorner = true

</ParticleSource>

sputter

sputter

Ions impacting solid materials may eject atoms of the target material itself. This process is known as “physical
sputtering” or simply “sputtering”, and depends on the incident ion energy and angle of incidence, as well as the
projectile-target material combination. The sputtered neutral yield is ultimately determined from the nuclear stopping
power of the ion/target combination.

VSim provides a method of simulating this behavior using the sputter kind of ParticleSource. Using sputter, you can
simulate the emission of sputtered neutral atoms from solid materials when bombarded by energetic ions. If a flux

274 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

of ions is incident upon a wall on which a sputter emitter is defined, these incident ions deposit energy into the wall,
initiating neutral transport to the material surface and subsequent emission back into the simulation domain. The
incident ions are absorbed by the wall and will be removed from the simulation.

Only ions impacting a wall are used to calculate the source for sputtered neutrals; electrons cannot be used as im-
pactors. If the incident particles are electrons then new electrons are the only secondary particles that can be emitted.

The yield and angular dependence of emitted atoms is based on the Yamamura sputtering model [?]. The model
depends on the mass ratio and surface binding energy of target material. The implementation includes enhancements
to the yield due to angular dependence of the incoming projectile. The model includes two fit parameters which are
𝜃opt = 1.4486 and 𝑓 = 1.8.

The Yamamura model gives a non-integral yield based on the parameters provided. We provide routines that also
return an integer yield, chosen with probability such that the ensemble average of many identical trials produces the
desired expectation value. We provide implementations of the Yamamura model for both single incident ions, and for
an array of incident ions, each with its own energy and angle of incidence. These routines return the total sputtering
yield, the energy of each sputtered atom, and velocity components for each sputtered atom. Currently, velocities
are assigned as thermal, ie. Gaussian in each direction, but with a non-negative component in the (outward) normal
direction.

It is also possible to compute the sputtering yield for alloys using these routines, by specifying the different elemental
materials and the mass stoichiometry of the alloy target. Sputtering yields for each individual material element are
calculated and then weighted by the stoichiometry.

More details on sputtering can be found in the following papers:

• P. Sigmund, Phys. Rev. Vol 184, 2 “Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline
Targets” p383 (1969).

• Y. Yamamura Nuclear Instruments and Methods in Physics Research B2, “A Simple Analysis of the Angular
Dependence of Light-Ion Sputtering” p. 578-582 (1984).

This kind of particle source is available with a VSimPD license.

sputter Parameters

direction
Direction for the source of the outward-facing normal; the algorithm uses this to determine the direction in
which sputtered electrons are emitted. If this direction vector is incorrect, it may result in particles being emitted
outside the simulation domain, leading to crashes. Sputtered neutrals are always emitted with a positive normal
velocity component, i.e., moving away from the emitting surface.

ptclAbsorber
Specifies the absorber that will remove particles generated by this ParticleSource.

sputterAtomType (string)

Defines the material of which the source is composed. Material choices are:

• carbon (C)

• aluminium (Al)

• silicon (Si)

• chromium (Cr)

• iron (Fe)

• nickel (Ni)

3.11. Species 275

VSim Reference Manual, Release 11.0.1-r3016

• copper (Cu)

• germanium (Ge)

• silver (Ag)

• osmium (Os)

• platinum (Pt)

• gold (Au)

• uranium (U)

sputterAtomSpecies (string)
Name of the neutral atom species that will be sputtered.

secVSig (float)
value defining the velocity spread of the sputtered atoms.

ignoreProb (float)
The fraction of electrons that does not get absorbed. Default value is 0.

Example sputter Block

The sputter emitter
<ParticleSource rightSputterEmitter>

kind = sputter
minDim = 1
ptclAbsorber = rightAbsorber
The 'direction' vector should point along the
outward-facing normal...be sure to check this!
direction = [1. 0. 0.]
The material that makes up the wall
sputterAtomType = Cr
The species of neutral atoms that is being
sputtered off the wall
sputterAtomSpecies = chromiumAtoms
The velocity spread of the sputtered atoms
secVSig = CHROMIUMVSIG

</ParticleSource>

userDefinedSecElec

userDefinedSecElec

This particle source normally emits electrons based on the user defined secondary electron yield (SEY)
data. The number of secondaries will be determined based on the SEY data file given by the user. The
determination of energy spectrum and angular distribution of these secondary electrons can be found in
[?]. The secondary electrons can be in the same species as the incoming, or a separate species.

This particle source is available with a VSimMD or VSimPD license.

userDefinedSecElec Parameters

ptclAbsorber (string)
The name of the absorber that collects the impacting particles.

276 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

yieldDataFile (string)
Name of the SEY data file. The first line of the data file should be an integer number of the data points given
in the file. The subsequent lines consist of two columns, the first contains the incident electron energy values
(eV). The second column contains the corresponding SEY values. The actual yield is interpolated with weights
determined by interpolations from the incident energy.

secondarySpecies (string)
Name of the emitted secondary electrons.

direction (double vector)
Direction vector should point along the outward-facing normal of the particle absorber.

material (string)
The material being impacted by the incident particles. If the incident particle is an electron the material choices
are:

• copper

• stainless (stainless steel)

When the incident particle is an ion, the choices are:

• hydrogen

• helium

• carbon

• nitrogen

• oxygen

• sodium

• aluminum

• silicon

• phosphorus

• argon

• iron

• nickel

• copper

• silver

• gold

• uranium

• air

• water

• stainless (stainless steel)

Example userDefinedSecElec Block

3.11. Species 277

VSim Reference Manual, Release 11.0.1-r3016

<ParticleSource rightSecondaryEmitter>
kind = userDefinedSecElec
yieldDataFile = userIonIndSEY.dat
ptclAbsorber = rightAbsorber
direction = [1. 0. 0.]
material = copper
secondarySpecies = electrons

</ParticleSource>

userFuncSecElec

userFuncSecElec

A secondary electron emitter where the SEY (secondary electron yield) and emitted electron spectrum
are defined by a pair of Expressions (see Introduction to UserFuncs and Expressions). The secondary
electrons can be in the same species as the incoming electrons, or a separate species.

This particle source is available with a VSimMD or VSimPD license.

userFuncSecElec Parameters

direction (vector)
Direction vector should point along the outward-facing normal of the ParticleSource.

ptclAbsorber (string)
Name of the absorber that absorbs the electrons and from which the secondaries will be emitted.

Expression (block,required)
An expression (see Introduction to UserFuncs and Expressions) that defines SEY. It must be named SEYFunc
It can take three arguments eng (incident energy in eV), alpha (incident angle in rad) and t (time in second).
Not all the arguments need to be used but any argument must come from these three.

Expression (block,required)
An expression named SpectrumFunc (see Introduction to UserFuncs and Expressions) that defines secondary
velocity distribution in terms of a three component vector (bn, bt, bp). The name SpectrumFunc and a three-
component form of this vector are required. SpectrumFunc returns the velocity of a particle (bn, bt, bp) in
units of 𝑐 or 𝑐/𝛾, depending on how the flag emissionVelocityInUnitsOfC is set. The components (bn,bt,bp)
are all velocities written in these units. bn is the component normal to the surface, i.e., bn is the velocity in the
direction opposite to the outward surface normal (or opposite the direction attribute if no gridBoundary is
specified). bt is the component in the direction of any motion the incident particle had tangential to the surface,
i.e., bt is the velocity in the direction 𝑡 = 𝑣𝑖𝑛 × 𝑛 (a cross product between the incoming particle velocity and
the outward surface normal). bp is the velocity in the direction tangential to the surface in which the incident
particle had no velocity component, i.e., bp is the velocity in the direction of 𝑝 = 𝑛×𝑡. The particles are emitted
opposite the surface outward normal.

Here, 𝑣 is the 3-velocity; if SpectrumFunc specifies a value for 𝑣 with magnitude larger than 1 (velocity greater
than the speed of light), it will assume that for this particle the velocity is in units of 𝑐/𝛾. If this happens the
user should really set emissionVelocityInUnitsOfC to false (0).

SpectrumFunc can take two arguments eng (incident energy in eV) and t (time in seconds). Not all the
arguments need to be used but any argument must come from these two. The vector bases (bn, bt1, bt2) default
to (1,0,0).

In the future, this will likely be changed to return the 4-velocity components instead of 3-velocity components.

278 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

emissionVelocityInUnitsOfC (boolean, default = 0)
Whether emission velocities are in units of 𝑐 or in units of 𝑐/𝛾. For non-relativistic particles these options are
almost the same. For relativistic particles the differences can be significant, and setting this to 0 allows for
velocities with magnitude greater than 1.

emissionProb (real)
Specifies the probability for emission of secondaries from a material surface. For the constant probability model,
a single electron is emitted with a given probability independent of all other factors, such as the incident energy,
material and primary ion properties, etc.

ptclCountType (string, default = emitCounting)
Describes how the emission of multiple secondary electrons is handled. This parameter is optional, and defaults
to emitCounting. Valid types are:

• emitCounting (default)

Emit multiple macroparticles.

• noCounting

Emit single particle.

• vwCounting

Emit single variable-weight particle and increase its weight by the number of secondaries.

• taggedVwCounting

Emit single variable-weight, tagged particle and increase its weight by the number of secondaries.

secondarySpecies (string, required for ion primaries)
Electron species to emit the secondaries to for ion primaries.

emittingSurface (float, optional)
Physical position of the emitting surface in the direction of emission. If this parameter is not specified, it is
calculated to be the appropriate edge of the grid. It is ignored when emitting from a grid boundary.

suppressEnergy
By default, emission does not occur if the electric field has sign that would immediately force the emitted
particle back into the surface (default value is suppressEnergy=0). This parameter can be used to control
this feature. If an emitted particle is desired, regardless of the sign of the electric field, then set this parameter
to a very large number, e.g., suppressEnergy=1.0e32.

More specifically, emission occurs when the particle charge, times the local field strength, times a characteristic
length based on the grid, e.g., q*E*dx, is less than the suppressEnergy. The local field strength is interpo-
lated on the emission surface. In higher dimensions, the characteristic length is the diagonal across the cell. The
units of the suppressEnergy are electronVolts.

ignoreProb (float, default = 0)
Float value representing probability to ignore an absorbed electron so it can be used for another process. This
should be a value between 0 and 1.

Example userFuncSecElec Block

<ParticleSource secondaryEmitter>
kind = userFuncSecElec
minDim = 1
ptclAbsorber = primary.plateAbsorber
gridBoundary = absPlate

(continues on next page)

3.11. Species 279

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<Expression SEYFunc>
expression = vaughanSEY(eng, alpha)

</Expression>

<Expression SpectrumFunc>
$ betaGammaSqr = (2.0*eng*xDist()/ELECMASSEV)
$ betaGamma = sqrt(betaGammaSqr)
$ gamma = sqrt(1 + betaGammaSqr)
$ beta = betaGamma/gamma
expression = betaGamma * dirDist()

</Expression>

</ParticleSource>

3.11.4 PositionGenerator Block

PositionGenerator

Block provides the number of Particle emission attempts and Particle load attempts, and the location where they
attempt to be emitted or loaded. Whether or not the particle is actually loaded or emitted depends on the value of the
relMacroDenFunc or relMacroFluxFunc function at that position and time.

Note: The use of relMacroDenFunc modifies ptclsPerCell in bitRevSlabPosGen.

All xvLoaderEmitter and boostLoader blocks must have a PositionGenerator block. A PositionGenerator block is
contained within a ParticleSource block.

PositionGenerator is used by the xvLoaderEmitter and boostLoader particle sources to determine the positions of
particles when loaded or emitted into the simulation. The position generator loads and/or emits particles based on slab
objects, specifying the upper and lower bounds of a slab region. Particle loading occurs inside a volume (3D), while
particle emission occurs from a surface (2D).

Loading particles: the PositionGenerator location is the starting location of the particle at the beginning of the time-
step, and the particle experiences a normal dynamic push to get the location at the end of the time step.

Emitting particles: an additional uniform random number between 0 and 1 is generated, which provides the exact
time of emission within the time step, after which a fractional dynamic push is performed to obtain the location at the
end of the time step.

There are three possible kinds of PositionGenerator:

• bitRevSlabPosGen

• cutCellPosGen

• gridPosGen

See the documentation for each of these kinds for more details.

PositionGenerator Sub-Blocks

Slab (block)

280 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<Slab loadSlab> Particle loading volume: Nested block that defines the physical volume into
which particles will be loaded. loadSlab is defined by specifying the lowerBounds (lower-left-
back corner of the region) and the upperBounds (upper-right-front corner of the region) in physical
coordinates.

<Slab emitSurface> Particle emitting surface: Surface from which particles will be emitted. You
can define the emitSurface only if particles are to be emitted into the simulation, starting with zero
loaded particles. emitSurface is defined in a Slab block by specifying the lowerBounds (lower-left-
back corner of the region) and the upperBounds (upper-right-front corner of the region) in physical
coordinates. To define a surface, one of lowerBounds and upperBounds components must be equal
in the emitSurface.

If you do not define a slab block for either a loading or emitting operation, Vorpal will not try to perform
the operation that corresponds to the missing the slab.

Note: Use of the loadSlab or emitSurface parameter is mutually exclusive based on whether particles are
initially loaded or emitted, respectively.

PositionGenerator Parameters

Note: Input parameters differ for loading and emitting particles. See below for details.

kind: PositionGenerator algorithm to be used is one of:

• bitRevSlabPosGen: Loads and emits particles based on a slab object within which bitRevSlabPosGen generates
positions for particles based on the bit-reversed algorithm; can also emit particles from a surface that is
normal to one of the coordinate axes. See the bitRevSlabPosGen description for details and parameters.

• cutCellPosGen: As an emitter it generates particle positions on the surface of a grid boundary using a triangu-
lated approximation of that boundary and/or as a loader generates particles into a region defined by a grid
boundary.

cutCellPosGen only works with the xvLoaderEmitter and in combination with a velocity generator. See
the cutCellPosGen description for details and parameters. Use is enabled by VSim for Plasma Discharges
and VSim for Microwave Devices licenses.

• gridPosGen: Loads and emits particles based on slab objects, specifying the upper and lower bounds of a slab
region, laying the particles down on at the nodes of a uniform Cartesian grid different from the grid on
which fields are located. See the gridPosGen description for details and parameters.

ptclsPerCell
For Loading Particles - Indicates nominal number of macroparticles the source assumes will be in cell.

sweepRate (floating point, default = 0)
For Emitting Particles - Determines the width of the region (measured from the emitSurface in the direction
specified by emitSign) in which newly emitted particle positions are generated. The width of this region will
be equal to sweepRate multiplied by the size of the time step. sweepRate, together with the area of the emis-
sion surface and the time step, defines the volume into which Vorpal emits or loads particles. sweepRate is usu-
ally set to the average speed of the particles being emitted. If this value is set and nomMacroPtclsPerStep
or nomMacroPtclsPerCellStep (when using bitRevSlabPosGen) is set then it causes an exception
and it asks the user to choose only one option.

sweepRate is used in the following way to determine how many particles are emitter per step:

• nomMacroPtclsPerAreaStep = sweepRate * dt * nominalDensity / numPtclsInMacro

3.11. Species 281

VSim Reference Manual, Release 11.0.1-r3016

• nomMacroPtclsPerStep = nomMacroPtclsPerAreaStep * emissionArea

nomMacroPtclsPerStep (floating point, default = 0)
For Emitting Particles - Specifies the nominal macro particles to emit per time step. If this value is set and
sweepRate or nomMacroPtclsPerCellStep is set then it causes an exception. The user is advised to
choose only one option.

emitDirSign (integer, default = 1)
For Emitting Particles - Specifies the direction from which the particles are to be emitted from the emitSurface;
one of +1 or -1.

applyTimes ([float,float], default = [0,0])
Start and stop times for loading particles. Must specify loadAfterInit (see below).

loadAfterInit (boolean, default = 0)
Must be set with applyTimes. If set to 1, it enables loading after initialization.

loadOnShift (boolean, default = 0)
Applied for moving-window simulations.

emitBasedOnLocalForce (boolean, default = 0)
Set to true in order to prevent emission when the local electric field has sign such that the force returns particles
to the surface.

useCornerMove (boolean, default = 0)
Set to true to specify corner move dynamics on the initial step, when emitting from cut cells. If false, uses the
parallel move from 1 cell deep. Using true, e.g., corner move, is more robust in some circumstances. Ignored if
not using a kind = cutCellPosGen type of <Position-Generator>.

Note: If the user considers an emission source and does not set sweepRate or nomMacroPtclsPerStep or
nomMacroPtclsPerCellStep, then it causes an exception and the user is advised to specify one of these options.

PositionGenerator Kinds

bitRevSlabPosGen

bitRevSlabPosGen

Position generator that loads and emits particles based on a slab object. The slab object is defined by specifying the
upper and lower bounds of a rectangular slab region. Within this slab region, bitRevSlabPosGen generates positions
for particles based on the bit-reversed algorithm.

For loading particles into a volume (usually at initialization only), you must specify a slab block that has the name
loadSlab.

bitRevSlabPosGen can also emit particles from a surface that is normal to one of the coordinate axes. To specify this
surface, you must have a slab block with the name emitSurface and one (and only one) of the components of the upper
and lower bounds vectors must be equal to each other. The component of the upper and lower bounds that is equal
specifies the normal direction to the emitSurface, and the other components determine the area of the emitSurface.

To emit particles from the emitSurface, you must also specify the ptclsPerCell parameter for loading as well as the
emitDirSign and the sweepRate parameters.

282 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

bitRevSlabPosGen Parameters when Loading

ptclsPerCell (integer, default = 0)
Determines the number of macroparticles that will be loaded per cell inside the loadSlab. Loading particles also
requires that the user specify the ptclsPerCell parameter. The default (0) is that no particles are loaded.

numPhysPtclsPerStep (float, default = 0.0)
Determines the number of physical particles to load per time step. When this option is given it overrides the
ptclsPerCell parameter.

Example bitRevSlabPosGen Block in Loading Mode

<PositionGenerator bitRevSlab>
kind = bitRevSlabPosGen

<Slab loadSlab>
lowerBounds = [$XSTART +LX/2. - 1*DX$ $YSTART + LY/2. -DY$ $ZSTART + LZ/2. -DZ$]
upperBounds = [$XSTART + LX/2.$ $YSTART + LY/2.$ $ZSTART + LZ/2.$]

</Slab>

ptclsPerCell = NOMPPC
</PositionGenerator>

bitRevSlabPosGen Parameters when Emitting

nomMacroPtclsPerCellStep (floating point, default = 0)
Emitting only - Specifies the nominal macro particles to emit per cell per time step. If this value is set and
sweepRate or nomMacroPtclsPerStep set in positionGenerator, then it causes an exception and
the user is advised to choose only one option.

Note: If the user considers an emission source and does not set sweepRate or nomMacroPtclsPerStep (in
positionGenerator) or nomMacroPtclsPerCellStep, then it causes an exception and the user is advised
to specify one of these options.

emitDirSign (integer, default = 1)
Determines the direction of emission from the emitSurface.

Example bitRevSlabPosGen Block in Emitting Mode

<PositionGenerator emitSlab>
kind = bitRevSlabPosGen
<Slab emitSurface>
lowerBounds = [$XSTART$ $-NSIG*DY$ $-NSIG*DZ$]
upperBounds = [$XSTART$ $NSIG*DY$ $NSIG*DZ$]

</Slab>
nomMacroPtclsPerStep = 10.

</PositionGenerator>

cutCellPosGen

3.11. Species 283

VSim Reference Manual, Release 11.0.1-r3016

cutCellPosGen

As an emitter it generates particle positions on the surface of a grid boundary using a triangulated approx-
imation of that boundary and/or as a loader generates particles into a region defined by a grid boundary.

cutCellPosGen only works with the xvLoaderEmitter and in combination with a velocity generator. cut-
CellPosGen will actually work on problems when no cut cells exist provided in the grid boundary block
calculateVolume = true is used.

cutCellPosGen Parameters when Emitting

Use emit=true and load=false in the ParticleSource block

emitterBoundary (string, required)
defines the grid boundary that particles will be emitted from. Particles can be emitted from a subset of the
emitterBoundary by the use of a mask. In order for a grid boundary to be used as an emission boundary the
grid boundary must have calculateVolume = true within the grid boundary block, this allows for the
computation of triangulated surfaces which are required for emission.

nomMacroPtclsPerStep (float, required)
Defines the number of macro particles to be emitted per step.

emitterMask (string, optional)
Used to mask out parts of the emitterBoundary. The emitterMask is a gridBoundary where emission regions are
defined to be positive and non-emission regions are 0 or negative. The intersection of the positive regions of
the emitterMask with the surface of the emitterBoundary defines the region where particles can be placed on the
surface for emission. The emitterMask always points to a grid boundary and never to an STFunc Block or other
structure.

mask (block, optional)
A mask for the emitterBoundary can be specified using an STFunc Block <STFunc mask> with the explicit
name “mask” instead of the emitterMask. This allows the mask to be defined using an STFunc, which requires
no geometry data. The emission region is computed once at the beginning of the simulation so time dependence
of the STFunc is effectively ignored in the current implementation. Emission regions are defined to be positive
and non-emission regions are 0 or negative.

emissionOffset (float, optional)
Defines the distance that particles are offset from the desired emission location on a grid boundary surface.
The emissionOffset is measured as a fraction of the average cell edge length in each direction. So off-
set=emissionOffset*(dx+dy+dz)/3. The emission offset is often required to prevent particles from being im-
mediately absorbed since emitters and absorber frequently exist on the same grid boundary. Furthermore, when
the absCutCell absorber is used, the absorption boundary can be slightly ahead of the emission boundary result-
ing in patches of particles that are absorbed upon emission. emissionOffset should be a value between 0 and 1
with smaller values putting the particles closer to the true emission region. In many cases an emission offset of
0 will work.

positionFunction (string, optional, default = random)
Choose the type of loading, either bit reversed (quasi-uniform) or random, valid options random, Random,
bitReversed or bitreversed.

Note: In serial runs, the position generator will dump exactly nomMacroPtclsPerStep macroparticles per step. In
parallel runs, where the emitter is cut by block boundaries, only approximately this number of particles will be emitted.

284 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Note: If both an STFunc mask and an emitterMask are defined, then the emission region becomes the intersection of
the STFunc mask the emitterMask and the surface of the emitterBoundary.

Note: If you do not specify an emitterMask or <STFunc mask> then Vorpal emits particles from the entire emitter-
Boundary.

cutCellPosGen Parameters when Loading

Use emit=false and load=true in the ParticleSource block

gridBoundary (string, required)
Defines the grid boundary to be used for loading. Particles are loaded wherever this gridBoundary is positive.

ptclsPerCell (int, required)
Defines the number of particles to be distributed per cell on average.

positionFunction (string, optional, default = random)
Choose the type of loading, either bit reversed (quasi-uniform) or random, valid options random, Random,
bitReversed or bitreversed.

When you use cutCellPosGen to load particles, Vorpal loads the particles into a region defined by a grid boundary.
An alternative method to loading particles in a geometric region is by defining a loadSlab and then using <STFunc
relMacroDenFunc> to reject particles outside the region defined by the <STFunc relMacroDenFunc>. However, this
method is much less efficient since many particles may be rejected. In contrast, cutCellPosGen loads only particles
within the specified region, rejecting a small number of particles.

It is also possible to use an <STFunc relMacroDenFunc> in conjunction with the cutCellPosGen. First define the
loading region based on the gridBoundary and next use the relMacroDenFunc to either limit it further or give the
loading a spatially varied shape.

Note: gridBoundary and emitterBoundary are actually the same variable, so if both load = true and emit =
true only one of these grid boundaries needs to be defined as the other is redundant. Vorpal first checks for the
existence of emitterBoundary, if emitterBoundary is not found then Vorpal looks for gridBoundary.

Example cutCellPosGen Block in Emitter Mode

Note: The names cathode and theMask refer to a pre-defined grid boundary.

<PositionGenerator thisGen>
emit = true
load = false
kind = cutCellPosGen
nomMacroPtclsPerStep = 20.0
emitterBoundary = cathode
emitterMask = theMask
emissionOffset = 0.1
<STFunc mask>

kind=expression

(continues on next page)

3.11. Species 285

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

expression = x
</STFunc>

</PositionGenerator>

gridPosGen

gridPosGen

Position generator that loads and emits particles based on Slab objects, just as is done with the bitRevS-
labPosGen. In contrast to the bitRevSlabPosGen position generator, gridPosGen generates positions for
particles at the nodes of a user-defined uniform grid.

All but one of the parameters used to define the bitRevSlabosGen are used to identically define the
gridPosGen. The single difference is that the gridPosGen uses a macroPerDir vector instead of the
ptclsPerCell parameter. macroPerDir is a vector of integers with components that default to 1. Each
component of the macroPerDir vector determines the number of macroparticles generated per cell in that
coordinate direction. A macroPerDir vector equal to [2 3 1], in a 3-dimensional simulation, will gen-
erate positions for particles on a grid with 2 macroparticles per cell in the x-direction, 3 macroparticles
per cell in the y-direction, and 1 macroparticle per cell in the z-direction. Therefore, the total number of
macroparticles per cell will be equal to 2 multiplied by 3 multiplied by 1, or 6 macroparticles per cell.

gridPosGen Parameters

macroPerDir (integer vector, default = [1 1 1])
Components of the macroPerDir vector each determine the number of macroparticles generated per cell in the
corresponding coordinate direction. For example, a macroPerDir vector equal to [2 3 1], in a 3-dimensional
simulation, will generate positions for particles on a grid with 2 macroparticles per cell in the x-direction, 3
macroparticles per cell in the y-direction, and 1 macroparticle per cell in the z-direction. Therefore, the total
number of macroparticles per cell will be equal to 2 multiplied by 3 multiplied by 1, or 6 macroparticles per
cell.

emitSign (integer, default = 1)
Determines the direction of emission from the emitSurface.

Example gridPosGen Block

<PositionGenerator gridSlab>
kind = gridPosGen

The following gives the slab over which particles are loaded.
If it is not present or has zero volume, no particles are loaded.

<Slab loadSlab>
lowerBounds = [0.0 0.0 0.0]
upperBounds = [LX LY LZ]

</Slab>
macroPerDir = [1 1 1]

</PositionGenerator>

3.11.5 VelocityGenerator Block

286 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

VelocityGenerator

Used by xvLoaderEmitter, gridLoader and boostLoader particle sources to determine the velocities (and
all internal variables) of particles when loaded or emitted into the simulation. Each xvLoaderEmitter or
gridLoader or boostLoader block must have a VelocityGenerator block.

A VelocityGenerator block defines how the newly added (loaded or emitted particles) get their velocity.
VelocityGenerator is used to generate all internal variables associated with the ParticleSource species,
including particle weight for variable-weight species. Using VelocityGenerator features you could design
a 3D simulation with variable-weight particles that might define a beamVelocityGen with 4 components
for both vbar and vsig.

Note: Internal variables associated with particles, such as weights when using variably-weighted par-
ticles, are contained within the velocity vector. Therefore, the means (vbar) and the deviations (vsig)
should also be specified for these other velocity components. Otherwise, the default value for unspecified
velocity components is zero.

VelocityGenerator Parameters

kind
Type of VelocityGenerator; one of:

• funcVelGen: Determines the velocity components based on a user-specified space-time function for each com-
ponent. That is, the velocity is determined by where and when the particle is placed.

• userFuncVelGen: Determines the velocity components based on a user-specified UserFunc; this allows corre-
lations between components, as well as access to arbitrary random distributions.

• beamVelocityGen: Simplest kind of velocity generator; allows you to specify the mean (vbar) and standard
deviation (vsig) of a Gaussian distribution, from which particle velocities will be selected at load/emission
time.

• childLangmuirVelGen: Determines the weights of the particles (and therefore the current) based on the Child-
Langmuir Law.

• kappaVelGen: Beam velocity generator loads a beam of particles.

• fieldEmitterVelGen: Velocity generator that fixes the component of the velocity based values of a given set of
space-time.

• fieldScaleVelGen: Special velocity generator only for use with relBorisVWScale particles. The velocity
generator correctly sets the tags for the particles as well as creating several particles at each location each
with a different scale parameter that scales the electromagnetic fields the particle experience.

emitVelocityIsLocal
Specifies the orientation of the component references in the block. When false, components refer to the overall
coordinate system axes, and when true, components refer to local orientation of the emission surface, that is
to say, component0 = normal, component1 = parallel_1, and component2 = parallel_2, where the choice of the
two parallel directions are not available to the user. A setting of true is commonly used when emitting from a
cut-cell surface, in order to ensure normal emission. In this case, the normal direction is inward, towards the
surface, so that the sign of the component0 velocity is typically negative to ensure outward flow of particles.

seed (integer)
One can specify a seed or randomSeed input argument for Vorpal’s random number generator, so as to get
reproducible behavior.

3.11. Species 287

VSim Reference Manual, Release 11.0.1-r3016

randomSeed (integer)
One can specify a seed or randomSeed input argument for Vorpal’s random number generator, so as to get
reproducible behavior.

vsig (float)
vsig specifies the addition of a random velocity to whatever velocity is returned from the specific kind of velocity
generator. The random velocity is sampled from a Gaussian with standard deviations for each component given
by the value of vsig.

VelocityGenerator Kinds

beamVelocityGen

beamVelocityGen

Gaussian distribution velocity generator.

beamVelocityGen Parameters

vbar (vector, default = 0)
Specifies the addition of a constant velocity to whatever velocity is returned from the specific kind of velocity
generator. vbar can be specified for internal variables such as weight and tag, as well as the actual velocity
components.

vsig (vector, default = 0)
Specifies the addition of a random velocity to whatever velocity is returned from the specific kind of velocity
generator. The random velocity is sampled from a Gaussian with standard deviations for each component given
by the value of vsig. The seed of the sampling can also be provided with the seed attribute. vsig can be specified
for internal variables such as weight and tag, as well as the actual velocity components.

emissionQuad (integer, default = 0)
This defines the emission quadrant and thus the velocity directions based on which quadrant is selected. The
default for this option is zero, in which case no emissionQuad check is performed on the particle velocities. The
options are as follows:

• First quadrant (emissionQuad = 1) Velocities will be in the first quadrant, i.e. all positive.

• Second quadrant (emissionQuad = 2) Velocities will be in the second quadrant. The particle ve-
locities in the x and y directions (V_0 and V_1) are negative and positive, respectively.

• Third quadrant (emissionQuad = 3) Velocities will be in the third quadrant, so V_0 will be nega-
tive and V_1 will also be negative.

• Fourth quadrant (emissionQuad = 4) Velocities will be in the fourth quadrant, so V_0 and V_1
will both be positive.

beamVelocityGen Example Block

<VelocityGenerator VelGen>
kind = beamVelocityGen
vbar = [VELOCITY 0.0 0.0]
vsig = [0.0 0.0 0.0]
emissionQuad = 1

</VelocityGenerator>

288 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

childLangmuirVelGen

childLangmuirVelGen

Velocity generator that determines the weight of the particles (and therefore the current) based on the
Child-Langmuir Law. The current is simply calculated to vary linearly with the normal 𝐸 field. Ampere’s
law is solved, recognising that this represents the case where at the nearby virtual cathode surface 𝐸 = 0,
as this represents the potential minimum.

childLangmuirVelGen Parameters

reduction (option)
The factor by which emitted current is reduced. e.g. if reduction = 0.1 then you emit 1/10 the child-langmuir
current. Reduction = 1.0 is the full child-langmuir current

STFunc (block, option)
STFunc Block with function name specifying component#, where ‘#’ is the component number (0,1,2, . . .) for
each velocity component you wish to specify.

The component# space-time function blocks are specified like any other Vorpal space-time function block, and
the value of this function (depending on the position and time of the particle’s placement at load or emission
time) is used to determine the value of the specified component of the velocity.

useChildLangmuirLaw (option)
True/False option to allow for space charge limited emission. If false the emitted current will be
eps0*E_normal/dt, while if true the emitted current is 4/9*epsilon0*sqrt(2*q/m)*(E_normal*dx)^(3/2)/(dx^2)
where dx is the distance between the zeroth node and first node from the emitter. This limits space charge as if
the potential on each side of the cell were fixed, and will proivde a higher accuracy density, potential and current
density. Without this an oscillation can be seen in the emitted current

childLangmuirVelGen Example Block

<VelocityGenerator emitVelGen>
kind = childLangmuirVelGen
reduction = 0.1 #1.0e-3

Optionally set individual components of the velocity with STFunc blocks
<STFunc component0>
kind = expression
expression = -2.0e5

</STFunc>
</VelocityGenerator>

fieldEmitterVelGen

fieldEmitterVelGen

Velocity generator that fixes the components of the velocity-based values of a given set of space-time functions.

3.11. Species 289

VSim Reference Manual, Release 11.0.1-r3016

fieldEmitterVelGen Parameters

emitVelocityIsLocal (boolean)
Specifies the orientation of the component references in the block. When false, components refer to the overall
coordinate system axes, and when true, components refer to local orientation of the emission surface. A setting
of true is commonly used when emitting from a cut-cell surface, in order to insure normal emission. In this
case, the normal direction is inward, towards the surface, so that the sign of the component0 velocity is typically
negative to insure outward flow of particles. By default, emission velocity is zero, while the emission velocity
can be specified with <STFunc component0/1/2>

work_function (real)
Work function for the metal.

alpha (real)
Normalized offset distance where alpha = 1 corresponds to the length of the hypotenuse of one cell. If
alpha = 1 the electric field is sampled normal to the boundary a distance alpha*H from the emission point
(where H is the hypotenuse). This factor needed since the field at the boundary is smaller than the field just
inside the boundary. The field just inside the boundary is the correct field.

temperature (real)
Temperature of the metal.

multiplier (real)
Multiplication factor to enhance the current.

emitterType (string)
One of:

• Richardson-Dushman

• Fowler-Nordheim

• txemit

Richardson-Dushman Emitter

Emitter that evaluates the equation:

𝐽 = 𝑀
4𝜋𝑚𝑒

ℎ3
𝑇 2 exp

(︂
−𝑊

𝑇

)︂
, (3.20)

where:

𝐽 is the resulting magnitude of the current density, 𝑀 is the multiplier, 𝑚 is the electron mass, 𝑒 is the
electron charge, ℎ is Planck’s constant, 𝑇 is the temperature in appropriate units, and 𝑊 is given by

𝑊 = 𝑊0 −
𝑒

4𝜋𝜖0
|E𝑓 |, (3.21)

where:

E is the surface electric field, 𝑓 is the enhancement factor, and 𝑊0 is the work function.

Richardson-Dushman Emitter Parameters:

field_enhancement (double, default = 1)
Multiplies the measured electric field.

290 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

multiplier (double, default = 1)
Multiplies the resulting output current.

work_function (double, default = 4.5)
Minimum energy necessary to extract an electron from the surface; measured in electron volts.

temperature (double)
Temperature of the surface in Kelvin.

In the Richardson-Dushman emitter, the work function may be specified using an STFunc block named workFunction.
The work function defined in the STFunc block overwrites the value of the work_function keyword.

Syntax to Specify the Work Function as an STFunc Block:

<VelocityGenerator emitVelGen>
kind = fieldEmitterVelGen
emitVelocityIsLocal = false
work_function = 4.5
alpha = 0.1
temperature = 2000.0
field_enhancement = 1.0
multiplier = 1.0
emitterType = Richardson-Dushman

</VelocityGenerator>

Fowler-Nordheim Emitter

Field emission current density, 𝐽𝐹𝑁 , is determined by:

𝐽𝐹𝑁 =
𝐴𝐹𝑁 (𝛽𝐹𝑁𝐸𝑝)

2

𝜑𝑤
exp

(︃
−𝐵𝐹𝑁𝑣(𝑦)𝜑

3/2
𝑤

𝛽𝐹𝑁𝐸𝑝

)︃
, (3.22)

where:

𝐸𝑝 is the perpendicular component of the electric field in V/m, 𝛽𝐹𝑁 is the field enhancement factor, 𝜑𝑤

is the work function of the field-emitting material surface, 𝑣(𝑦) has the form

𝑣(𝑦) = 𝑃𝑓𝑛− 𝐶_𝑣_𝐹𝑁𝑦2 + (1/3)𝑦2 ln(𝑦) (3.23)

where:

𝑦 is given by:

𝑦 =
𝐶𝑦𝐸

1/2
𝑦

𝜑𝑤
, (3.24)

and:

𝐴𝐹𝑁 , 𝐵𝐹𝑁 , 𝐶𝑣 , and 𝐶𝑦 are coefficients of the Fowler-Nordheim field emission model.

and:

𝑃𝑓𝑛 is actually an input parameter that defaults to 0.95 (it’s described as the “Nordheim coefficient”),
and 𝐶_𝑣_𝐹𝑁 is a parameter described below.

3.11. Species 291

VSim Reference Manual, Release 11.0.1-r3016

Fowler-Nordheim Parameters

beta_FN (real, default = 1.0)
Field enhancement factor 𝛽𝐹𝑁 of the Fowler-Nordheim field emission model.

A_FN (real, default = 1.5414e-6)
Coefficient 𝐴𝐹𝑁 of the Fowler-Nordheim field emission model.

B_FN (real, default = 6.8308e9)
Coefficient 𝐵𝐹𝑁 of the Fowler-Nordheim field emission model.

C_v_FN (real, default = 0.0)
Coefficient 𝐶𝑣 of the Fowler-Nordheim field emission model.

C_y_FN (real, default value = 3.79e-5)
Coefficient 𝐶𝑦 of the Fowler-Nordheim field emission model.

Photo-emission Emitter

Field emitter using the txphysics txemit field-thermal and photo emission emitters.

txemit Photo-emission Parameters:

mu (real, default = 1.8)
Fermi Level of material.

laser (boolean, default = false)
True or false. Whether to use a laser for photo emission.

beta_FN (real, default = 1.0)
Field enhancement factor.

txemit Photo-emission Required Extra Parameters for laser=true:

laserPulseStartTime (float, default = 0.0)
Starting time for calculating intensity of pulse at the cathode. Required for use with photo-emission Laser pulse.

laserPulseStopTime (float)
Ending time for calculating intensity of pulse at the cathode. Required for use with photo-emission Laser pulse.

laserPulseOrigin (float vector)
Origin from which the pulse is launched. The origin is defined at the pulse maximum value at the startTime.
Required for use with photo-emission Laser pulse.

laserPulseIntensityEnvelopeWidths (float vector)
Specifies the laser pulse envelope widths. These are defined as twice the standard deviations of the laser pulse
intensity envelopes with the first value assigned to the longitudinal envelope length. Required for use with
photo-emission Laser pulse.

laserPulseIntensityMagnitude (floating point)
Specifies the magnitude of the laser intensity in W/cm2. Required for use with photo-emission Laser pulse.

laserPulsePropagationDirection (float vector)
Specifies the direction of propagation of the laser pulse. Make sure that the direction points into the surface of
the cathode. By specifying this direction, the incidence angle can be varied. This vector does not have to be
specified with a unit length. Required for use with photo-emission Laser pulse.

292 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

laserPulseWaveLength (float)
Specifies laser pulse wavelength in m. Required for use with photo-emission Laser pulse.

photonEnergy
Calculated variable to hold hbar*omega for the energy of photons in the laser pulse derived from
laserPulseWavelength.

omega
Calculated frequency of laser light derived from laserPulseWavelength.

reflectivity (default = 0.5)
Material reflectivity; specifies reflectivity of surface.

scattering
Specifies scattering (F_lambda) for surface material.

fieldEmitterVelGen Example

<VelocityGenerator emitVelGen>
kind = fieldEmitterVelGen
emitVelocityIsLocal = true
work_function = 4.5
field_enhancement = 1.0
multiplier = 1.0
#
Offset for sampling the electric field
alpha is the normalized offset distance where
alpha=1 corresponds to the length of the hypotenuse
of one cell. If alpha=1 the electric field is
sampled normal to the boundary a distance alpha*H
from the emission point
(where H is the hypotenuse). This factor is needed
since the field at
the boundary is smaller than the field just inside
the boundary... The field just inside the boundary
is the correct field. Try setting alpha=0 and
compare emission currents.
#

alpha = 0.1
temperature = 300.0

#
begin extra parameters needed for txemit emitterType
#

emitterType = txemit
mu = 7.0
laser = true

#
below are necessary subparameter is using laser for
photo-emission Laser pulse parameters. For now only a
pulse with Gaussian envelope shapes in all directions is
implemented. The laserPulseStartTime and
laserPulseStopTime are the times between which the
intensity of the pulse will be calculated at the cathode.
#

laserPulseStartTime = 0.0
laserPulseStopTime = pulseDuration

#

(continues on next page)

3.11. Species 293

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

Set the origin from which the pulse is launched. The
origin is defined at the pulse maximum value at the
startTime.
#

laserPulseOrigin = [0.0 $threeLRMS*5.0$ 0.0]
#
Specify the laser pulse envelope widths. These are
defined as twice the standard deviations of the laser
pulse intensity envelopes with the first value assigned
to the longitudinal envelope length.
#

laserPulseIntensityEnvelopeWidths = [twoLRMS twoTRMS1 twoTRMS2]
#
Specify the magnitude of the laser intensity in W/cm2.
#

laserPulseIntensityMagnitude = 1.0e+9

#
Set the laser pulse wavelength in m.
#

laserPulseWavelength = LASER_PULSE_WAVELENGTH
#

Specify the direction of propagation of the laser pulse.
Make sure that the direction points into the surface of
the cathode. By specifying this direction, the incidence
angle can be varied. This vector does not have to
be specified with a unit length.
#

laserPulsePropagationDirection = [0.0 1.0 0.0]
#
Specify Reflectivity of surface default set to 0.5

reflectivity = 0.5

Specify Scattering (F_lambda) for surface material
#

scattering = 0.043
#
end of extra parameters needed by txemit
#

beta_FN = 100.0 #field enhancment for txemit also
#

<STFunc component0>
kind = expression
expression = -1.0e6

</STFunc>
</VelocityGenerator>

fieldScaleVelGen

fieldScaleVelGen

Special velocity generator only for use with relBorisVWScale particles. The velocity generator cor-
rectly sets the tags for the particles as well as creating several particles at each location each with a
different scale parameter that scales the electromagnetic fields the particle experience.

294 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

fieldScaleVelGen Parameters

fieldScaleEndPoints (float vector)
The start and end point for the scaling parameters. This must be used with fieldScaleIncrement.

fieldScaleIncrement (float)
The spacing between scaling parameters. This must be used with fieldScaleEndPoints.

fieldScaleValues (float vector)
Explicit values for the scaling parameters.

fieldScaleVelGen Example Block

<VelocityGenerator velGen>
kind = fieldScaleVelGen
The field scale parameters set as a vector of values
fieldScaleValues = [0.2 0.4 0.6]

</VelocityGenerator>

funcVelGen

funcVelGen

Velocity generator that determines the velocity components based on a user-specified space-time function for each
component. That is, the velocity is determined by where and when the particle is placed.

The funcVelGen VelocityGenerator sub-block of the ParticleSource block contains an STFunc Block block named
component# (where ‘#’ is the component number: 0, 1, . . .) for each velocity component you can specify.

funcVelGen Parameters

kind
Type of VelocityGenerator (e.g., beamVelocityGen).

STFunc (block)
STFunc Block with function name specifying component#, where ‘#’ is the component number (0, 1,2, . . .) for
each velocity component you wish to specify.

The component# space-time function blocks are specified like any other Vorpal space-time function block, and
the value of this function (depending on the position and time of the particle’s placement at load or emission
time) is used to determine the value of the specified component of the velocity.

Note: For loading variable weight particles, a user may specify a component3 which will set the weight of the
particles. The weight is an additional modifier to macroparticles applied in addition to the nominal value of the
Number of Particles in a Macroparticle (NPIM). The NPIM is calculated according to the equation (nominal
particle density)*(cell volume)/(Particles Per Cell). For constant weight particles, do not specify a component3.

For emitting variable weight particles, a currentDensityFunc may override a setting of component3 in the
funcVelGen, or the component3 may be ignored entirely.

3.11. Species 295

VSim Reference Manual, Release 11.0.1-r3016

funcVelGen Example Block

<VelocityGenerator emitVelGen>
kind = funcVelGen
emitVelocityIsLocal = true
<STFunc component0>
kind = expression
expression = -1.0e7

</STFunc>

<STFunc component3>
kind = expression
expression = 1.0

</STFunc>
</VelocityGenerator>

kappaVelGen

kappaVelGen

Velocity generator to load a beam of particles.

kappaVelGen Parameters

seed (integer)
Sets the seed for the random number generator.

lowerLimit0 (float)
Lower limit of velocity in the x-direction.

upperLimit0 (float)
Upper limit of velocity in the x-direction.

lowerLimit1 (float)
Lower limit of velocity in the y-direction.

upperLimit1 (float)
Upper limit of velocity in the y-direction.

lowerLimit2 (float)
Lower limit of velocity in the z-direction.

upperLimit2 (float)
Upper limit of velocity in the z-direction.

vbar (vector, default = 0)
Specifies the addition of a constant velocity to whatever velocity is returned from the specific kind of velocity
generator. vbar can be specified for internal variables such as weight and tag, as well as the actual velocity
components.

vsig (vector, default = 0)
Specifies the addition of a random velocity to whatever velocity is returned from the specific kind of velocity
generator. The random velocity is sampled from a Gaussian with standard deviations for each component given
by the value of vsig. The seed of the sampling can also be provided with the seed attribute. vsig can be specified
for internal variables such as weight and tag, as well as the actual velocity components.

296 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

kappaVelGen Example Block

<VelocityGenerator positronVelGen>
kind = kappaVelGen
vbar = [VX_DRIFT VY_DRIFT VZ_DRIFT]
vsig = [VX_RMS VY_RMS VZ_RMS]

seed = VY_SEED

lowerLimit0 = $ -6. * VX_RMS $
upperLimit0 = $ 6. * VX_RMS $
lowerLimit1 = $ -6. * VY_RMS $
upperLimit1 = $ 6. * VY_RMS $
lowerLimit2 = $ -6. * VZ_RMS $
upperLimit2 = $ 6. * VZ_RMS $

</VelocityGenerator>

userFuncVelGen

userFuncVelGen

Velocity generator that determines the velocity components based on a user-specified UserFunc (as function of particle
position and time, as well as the surface normal for particle emission).

userFuncVelGen Parameters

velocityGenerator (block, required)
<UserFunc velocityGenerator> is a UserFunc that takes arguments (t, x, n) where t is a scalar (the
time, in seconds), x is an NDIM-dimensional vector of floats (position), and n is also an NDIM-dimensional
vector of floats (surface normal). The UserFunc should return as many floats as the <Species> has internal
variables: generally, this is 3 (velocities) plus 1 (if tagged) plus 1 (if variable weight). The return value sets the
particle’s internal variables.

However, if the last internal variable is particle weight, that can be omitted, in which case, the weight will be
determined via the PositionGenerator.

The surface normal is set to zero when a particle is “loaded”, but is set to the surface normal when a particle is
“emitted.”

userFuncVelGen Example Block

<VelocityGenerator velgen>
kind = userFuncVelGen
<Expression velocityGenerator>

kind = expression
don't forget the particle weight--the last element
the tag (penultimate element) will be overwritten by Species,
as we requested
expression = vector(\

boostInX(randRelMaxwellSpeed() * rand3dUnitVec(), BETA_DRIFT), 0, 1)
</Expression>

</VelocityGenerator>

3.11. Species 297

VSim Reference Manual, Release 11.0.1-r3016

3.12 Reactions

3.12.1 Reactions Introduction

The following pages of documentation provide details of setting up interactions between kinetically modeled particle
species, background fluids/gases, or any combination of particles and fluids in the “Reactions” framework. For a list of
supported interactions see RxnProductGenerator Sub-Block. A sample of a complete set of blocks that adds a electron
attachment process to a simulation is included at the end of this page. For a user-centric description of this set of
blocks see User Guide: Simulation Concepts: Collisions in the user guide.

Anisotropy

For some reactions the option is available to specify the anisotropy of the product distribution. This is specified in
the range [-1,1] where 0 is isotropic, -1 results in back scatter, and 1 results in forward scatter. Since anisotropy is
a collective behavior, each reaction will not necessarily satisfy this qualitative criteria, but overall the reactions will
result in scattering angles as shown in Fig. 3.2.

Fig. 3.2: Angular distribution for several choices of anisotropy

For a single reaction, the scattering angle is chosen using a random number 𝑟 ∈ [0, 1) and the following equation:

𝜃 = 2 arccos(𝑟𝑎)

where 𝑎 is

𝑎 =
(𝐴/|𝐴|)
|𝐴| − 2

where 𝐴 is the anisotropy value set by the user in a code block.

298 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

If 𝑎 is negative, we use the absolute value to calculate theta but then reverse the center of momentum velocity of the
particles during the calculation of the collision vector.

Reactions Algorithm

Consider a simulation cell with 𝑁 particles of one species interacting with 𝑀 particles of another. The total number
of combinations of possible reactions is then

𝑁𝑅 = 𝑁𝑀

A set of 𝑁𝑅 reaction pairs could then be generated, resulting in a total number of reactions occurring given by

𝑁𝑜𝑐𝑐 = 𝑁𝑅 ⟨𝑃𝑟𝑥𝑛⟩ = 𝑁𝑀 ⟨𝑃𝑟𝑥𝑛⟩

where 𝑃𝑟𝑥𝑛 is the individual probability of each reaction pair colliding, which is likely different for each pair. There-
fore, the average probability times the total possible reaction pairs gives the total number of reactions that will occur.
This requires calculating the reaction probability of 𝑁𝑀 reaction pairs, which is computationally expensive.

Null Probability

It would be nice to reduce the number of reaction pairs chosen to increase computational efficiency, while maintaining
accuracy. The null probability provides the answer here. It is calculated and used as a way to sub-sample the reaction
pairs, while proportionally increasing their reaction probability. This should result in the same overall number of
reactions as if the full, brute-force method were used. Null probability is defined as

𝑃𝑛𝑢𝑙𝑙 =
⟨𝜎𝑣⟩𝑚𝑎𝑥 𝑊𝑚𝑎𝑥∆𝑡

𝑉

where 𝜎 is the cross section of the reaction process, 𝑣 is the relative velocity of the particles involved, 𝑊 is the weight
of the particle (number of physical particles per macro particle), ∆𝑡 is the time step, and 𝑉 is the volume of the
simulation cell. This denotes the maximum probability in the cell and is used to normalize the reaction probability
such that the reaction pair with the highest probability will then have 100% chance to occur. The number of reaction
pairs chosen to potentially collide, then is

𝑁𝑝𝑎𝑖𝑟𝑠 = 𝑁𝑅𝑃𝑛𝑢𝑙𝑙

Thus, the reaction probability for each chosen reaction pair reaction is

𝑃𝑎𝑑𝑗 =
𝑃𝑟𝑥𝑛

𝑃𝑛𝑢𝑙𝑙
=

⟨𝜎𝑣⟩𝑊∆𝑡

𝑉 𝑃𝑛𝑢𝑙𝑙
=

⟨𝜎𝑣⟩
⟨𝜎𝑣⟩𝑚𝑎𝑥

Using this probability along with the number of reaction pairs, we can calculate how many reactions occur.

𝑁𝑜𝑐𝑐 = 𝑁𝑝𝑎𝑖𝑟𝑠 ⟨𝑃𝑎𝑑𝑗⟩ = 𝑁𝑀𝑃𝑛𝑢𝑙𝑙
⟨𝑃𝑟𝑥𝑛⟩
𝑃𝑛𝑢𝑙𝑙

= 𝑁𝑀 ⟨𝑃𝑟𝑥𝑛⟩

We see that, assuming the subset of particles we chose has the same average reaction probability as the full set, the
number of reactions that occur matches exactly what should occur in the full method which is calculated in the first
equation for 𝑁𝑜𝑐𝑐 above.

This has the desired effect, but there are some intricacies that need addressing.

Caveats

We have decided to only have each particle interact once per time step, so each particle can only interact with one other
particle. This can be accomplished in one of two ways, though only one will give the correct number of reactions.

In the case where 𝑁𝑝𝑎𝑖𝑟𝑠 is greater than the lesser of 𝑀 and 𝑁 , a single particle must appear more than once in the
list of reaction pairs. The question then, is what to do in this case.

3.12. Reactions 299

VSim Reference Manual, Release 11.0.1-r3016

Remove Duplicates After Reactions

The original implementation involved generating a full list of 𝑁𝑀𝑃𝑛𝑢𝑙𝑙 pairs, even if there a single particle appears
multiple times in this list. Then we go through and determine which reaction pairs actually collide. We then remove
any duplicates from the list of collision pairs that actually collide. The theoretical number of reactions that occur
should then be correct with 𝑁𝑜𝑐𝑐 = 𝑁𝑀 ⟨𝑃𝑟𝑥𝑛⟩. However, in the case where duplicates are removed, the number of
occurring reactions is artificially lowered from this true reaction rate.

Never Include Duplicates

If we instead generate a list of reaction pairs such that there are no duplicates, the number of pairs is given by

𝑁𝑝𝑎𝑖𝑟𝑠 = 𝑚𝑖𝑛 (𝑁𝑀𝑃𝑛𝑢𝑙𝑙,𝑚𝑖𝑛 (𝑁,𝑀))

We will assume that 𝑁 ≤ 𝑀 from this point on, reducing the above equation to

𝑁𝑝𝑎𝑖𝑟𝑠 = 𝑚𝑖𝑛 (𝑁𝑀𝑃𝑛𝑢𝑙𝑙, 𝑁)

This leaves two cases to explore. The case where 𝑁𝑝𝑎𝑖𝑟𝑠 = 𝑁𝑀𝑃𝑛𝑢𝑙𝑙 has already been described in section 2 as the
standard case for the use of null collision probability.

However, if 𝑁𝑝𝑎𝑖𝑟𝑠 = 𝑁 , we must then redefine the null probability to have the correct number of reactions occur.
This is because the null probability is the ratio of the number of reaction pairs chosen to the total number of possible
reaction pairs, as stated in the equation 𝑁𝑝𝑎𝑖𝑟𝑠 = 𝑁𝑅𝑃𝑛𝑢𝑙𝑙 (see equation above).

𝑃𝑛𝑢𝑙𝑙 =
𝑁𝑝𝑎𝑖𝑟𝑠

𝑁𝑅
=

𝑁

𝑁𝑀
= 𝑀−1

By adjusting the null probability to be the true number of reaction pairs chosen over the total possible, the number of
reactions that occurs remains accurate:

𝑁𝑜𝑐𝑐 =
𝑁𝑝𝑎𝑖𝑟𝑠 ⟨𝑃𝑟𝑥𝑛⟩

𝑃𝑛𝑢𝑙𝑙
=

𝑁 ⟨𝑃𝑟𝑥𝑛⟩
𝑀−1

= 𝑁𝑀 ⟨𝑃𝑟𝑥𝑛⟩

This second method of never including duplicates is thus more accurate than the first where duplicates are removed;
however, both have the same limitation. When 𝑁𝑜𝑐𝑐 > 𝑁 (ie. more reactions should occur than we have particles in
the cell), we find that 𝑃𝑟𝑥𝑛 > 𝑃𝑛𝑢𝑙𝑙, which can lead to an underestimation of the reaction rate. For such a situation,
the time step should be lowered to maintain 𝑁𝑜𝑐𝑐 ≤ 𝑁 .

Example of a “Fully-Assembled” Set of Reactions Code Blocks

<RxnProcessSettings RxnProcessSettings>
updateOrder = random
updatePeriod = [1]

</RxnProcessSettings>

<RxnProcess electronAttachmentParticlesRXN0>
kind = collisionProcess
reactants = [neutralArgon electrons]
products = [ArMinus]
rxnPhysics = electronAttachmentParticlesRXN0electronAttachment
verbosity = 127

</RxnProcess>

(continues on next page)

300 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<RxnPhysics electronAttachmentParticlesRXN0electronAttachment>
kind = generalCollision
<RxnRate rxnRate>
kind = twoColumnFile
crossSectionVariable = velocity
file = 2ColumnData.dat

</RxnRate>

<RxnProductGenerator productGenerator>
kind = electronAttachment
thresholdEnergy = 1.0

</RxnProductGenerator>
</RxnPhysics>

3.12.2 Reactions Blocks

RxnProcessSettings Block

This optional block is placed before all RxnProcess and RxnPhysics blocks and sets the order the reactions are carried
out and how frequently the reaction is updated by VSim. If this block is not included, the default values (indicated
below) will be used.

RxnProcess Attributes

updateOrder (string, optional, default = random)
Sets the order in which the reactions will be carried out at each timestep.

• random: reactions are carried out at a different random order at each timestep.

• constant: reactions are always carried out in the order of the RxnProcess Blocks in the .in file.

• rotate: reactions are carried out in the order they are written at the first timestep, then cyclically
permuted each subsequent timestep.

updatePeriod (vector of integers, required, default: vector of 1's)
This will set the interval (in timesteps) at which each interaction is updated. At the indicated interval, the reaction
will be performed assuming all particles currently in each cell were in the cell since the previous update, using
the entire time period since the previous update to determine the reaction probability as to ensure the total
number of particle interactions remains constant regardless of the value chosen for the updatePeriod.

Advanced users may want to manually set this parameter when running simulations which have a low reaction
rate compared to the timestep (due to a small PPC, low cross-section, etc); in such cases a lower sampling rate
for a reaction process may be desired. Increasing the update period will result in a small performance boost.

Each position in the vector will match with the position of a RxnProcess Block in a .pre file.

The RxnProcessSettings block below comes from a simulation with 5 RxnProcess blocks. The in-
teraction setup in the first, third, and fifth blocks will be carried out every timestep. The process set up in the
second RxnProcess block will be performed every 5th timestep, and the interaction in the fourth block will
be carried out every tenth timestep.

3.12. Reactions 301

VSim Reference Manual, Release 11.0.1-r3016

Example RxnProcessSettings Block

<RxnProcessSettings RxnProcessSettings>
updateOrder = random
updatePeriod = [1 5 1 10 1]

</RxnProcessSettings>

RxnProcess

RxnProcess Block

The RxnProcess block sets the reactants and products for a particular reaction. The reactants and products can be
any combination of Fluids or Kinetically Modeled Particle Species.

This block points to a RxnPhysics Block which will determine the physics of the reaction, i.e., whether the interaction
is an ionization, scattering, dissociation, or an other type of process. See RxnProductGenerator for a list of supported
processes.

Note: For some processes, the order that the reactants and products are written in the Reactants and Products
lists below is important. Check the documentation for the ProductGenerator to determine whether the reactants
and products need to be written in a particular order.

RxnProcess Attributes

kind (string, required)
The kind will always be collisionProcess

Reactants (list of strings, required)
A list, enclosed by square brackets, of the names of the reacting species. Can be any fluid or kinetically modeled
species. Order is important for some reactions. Find the reaction in RxnProductGenerator for information on
ordering.

Products (list of strings, required)
A list, enclosed by square brackets, of the names of the product species. Can be any fluid or kinetically modeled
species. Order is important for some reactions. Find the reaction in RxnProductGenerator for information on
ordering.

rxnPhysics (string, required)
This string points to a name of a RxnPhysics Block. The RxnPhysics block determines the physics properties
of the RxnProcess.

verbosity (int, optional)
A verbosity setting determines the level of output messaging provided by the engine. If no value is provided the
top level verbosity will be used (see Global Variables). If a value is provided in this block it will overwrite the
top level verbosity. A verbosity setting of 127 or lower will show the number of reactions that occur. A setting
of 128 or larger will suppress the number of reactions.

randomSeed (int, optional, default: random int)
Manually set the random seed used in the selection of reactant particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

302 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example RxnProcess Block

<RxnProcess impactElasticPrimaryElectrons>
kind = collisionProcess
reactants = [electrons neutralArgon]
products = [electrons neutralArgon]
rxnPhysics = impactElasticPrimaryElectronsbinaryElastic
#verbosity = 127
#randomSeed = 423

</RxnProcess>

RxnPhysics Block

The RxnPhysics Block only contains a kind and two sub-blocks: RxnRate Sub-Block and RxnProductGenerator Sub-
Block. The RxnPhysics block sets the physics of a particular interaction, and is pointed to in the rxnPhysics parameter
of a RxnProcess Block

kind (string, required)
The kind will always be generalCollision

RxnRate Sub-Block

kind
This block will be used to determine the likelihood of a collision based on a reaction rate or a cross-section.
There are several options for setting the reaction rate or cross-section:

• Constant Cross-Section

• Power Law Cross-Section

• Exponential Polynomial Cross-Section

• Two-Column File Format

• Field Ionization DCADK

• Field Ionization Average ADK

• Decay Rate

RxnProductGenerator Sub-Block

kind (string, required)
This will set the physical process. The options for kind are:

• Binary Elastic

• Electron Scatter

• Binary Excitation

• Charge Exchange

• Binary Reaction

• Electron Attachment

• Negative Ion Detachment

3.12. Reactions 303

VSim Reference Manual, Release 11.0.1-r3016

• Impact Ionization

• Electron Ionization

• Dissociative Ionization

• Field Ionization

• Decay

• Binary Recombination

• Three Body Recombination

• Dissociative Recombination

• Electron Impact Dissociation

Example

Below is an example of a complete RxnPhysics block

<RxnPhysics impactElasticPrimaryElectronsbinaryElastic>
kind = generalCollision
<RxnRate rxnRate>
kind = twoColumnFile
crossSectionVariable = energy
file = sampleElasticCrossSection.dat

</RxnRate>
<RxnProductGenerator productGenerator>
kind = binaryElastic
#anisotropy = 0
#randomSeed = 423

</RxnProductGenerator>
</RxnPhysics>

3.12.3 Rates and Cross-Sections

constantCrossSection

Constant Cross-Section

To model a cross-section that does not depend on any other variables, use this kind.

constantCrossSection Attributes

crossSection (float, required)
A constant, in square meters, for the cross section.

Example constantCrossSection Block

304 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<RxnRate rxnRate>
kind = constantCrossSection
crossSection = 1.25e-20

</RxnRate>

powerLawCrossSection

Power Law Cross-Section

Use kind = powerLawCrossSection to set a cross section [m^2] according to a power law:

𝜎(𝑥) = 𝐴𝑥𝐸

powerLawCrossSection Attributes

coefficient (float, required)
The coefficient, A, in the equation above.

exponent (float, required)
The exponent, E, in the equation above.

variable (string, required)
Set the dependent variable, x, in the equation above. Options are:

• velocity [m/s]

• energy [J]

This sets whether vorpal uses the velocity or energy of the reactant particles to calculate the probability of an
interaction.

Example powerLawCrossSection Block

<RxnRate rxnRate>
kind = powerLawCrossSection
coefficient = 1.0e-15
exponent = -1.0
variable = velocity

</RxnRate>

RxnRate-expPolyCrossSection

Exponential Polynomial Cross-Section

This is a fitting formula presented by [?] for electron-impact excitation and ionization interactions which fits well
from threshold to high energies (<10 keV). For relativistic energies a relativistic formula should be used. Resonant
structures are smoothed out. See [?] for more details, including suggested values for the fitting constants, A, B, C, D,
and I for some species. In the html version of the paper (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909190/)
there is a typo in table 1: C should be positive, which can be seen in the original pdf of the paper.

The cross-sections will take the functional from of the equation:

𝜎(𝑦) =
1

𝑦

(︂
𝐴 ln(𝑦) +

𝐵 ln(𝑦) + 𝐶 * (𝑦 − ”𝑡𝑜𝑍𝑒𝑟𝑜”)

𝑦 + 𝐷

)︂

3.12. Reactions 305

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909190/

VSim Reference Manual, Release 11.0.1-r3016

where

𝑦 = 𝑥/𝐼

The vanishAtThreshold attribute (see below), sets whether the cross-section goes to a zero or non-zero value at
the reaction threshold energy/velocity.

expPolyCrossSection Attributes

A (float, required)
The value for the fitting constant A in the formula above.

B (float, required)
The value for the fitting constant B in the formula above.

C (float, required)
The value for the fitting constant C in the formula above.

D (float, required)
The value for the fitting constant D in the formula above.

I (float, required)
The value for the fitting constant I in the formula above. A scaling factor for the independent variable, x, so must
have the same units [m/s or eV]. For reactions with energy/velocity thresholds, this should be that threshold.

toZero (int, required)
Sets the value for the toZero parameter in the formula above. Enter either “1” to have the cross-section go to
zero at threshold energy/velocity, or “0” to have the cross-section go to a non-zero value at this threshold.

variable (string, required)
Set the independent variable, x, in the equation above. Options are:

• velocity [m/s]

• energy [eV]

This sets whether vorpal uses the velocity or energy of the reactant particles to calculate the probability of an
interaction.

Example expPolyCrossSection Block

<RxnRate rxnRate>
kind = expPolyCrossSection
A = 0.7576
B = -5.521
C = 5.867
D = 2.948
I = 13.61
toZero = 1
variable = energy

</RxnRate>

twoColumnFile

306 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Two-Column File Format

Use this kind for the RxnRate sub-block to set the cross section using a two-column data file. The data file should
have no header.

The units for the dependent variable (first column in the data file) must be either m/s (meters per second) or eV
(electron volts). The user sets which with the crossSectionVariable parameter.

The units for the cross section (second column) must be in square meters (not barns). Beware, that the eedl dataset
is in units of MeV and barns and so requires conversion: 1 MeV = 1.e6 eV, and 1 barn = 1.e-28 square meters.
(https://www.oecd-nea.org/dbdata/data/manual-endf/nds_eval_eedl.pdf)

With reference to the table in the link above, one may find the impact ionization of Argon, by scanning down to the
dataset with top line starting 18000 9 0 (Z=18 for Argon, followed by A=000, Yi=9=electrons, Yo=0=no outgoing).

Second header line starts 81 0 91 0.00000e+00 1.10000e+01 where:

• C=81=ionization,

• I=0 for reaction property,

• S=91 for the reaction modifier,

• 0.00000e+00 is unused in this format in columns 9-21

• 11 in E11.4 format would be the appropriate M3 subshell designator.

The LxCat database (https://fr.lxcat.net/data/set_type.php) contains a wide range of cross sections which can be im-
ported into VSim.

Note: headers must be removed, and units must be correct before importing into VSim.

twoColumnFile Attributes

crossSectionVariable (string, required)
The unit of the values in the first column of the two column data file. There are two options:

• energy

• velocity

file (string, required)
The name of the data file containing the cross section as a function of the crossSectionVariable

Example twoColumnFile Block

<RxnRate rxnRate>
kind = twoColumnFile
crossSectionVariable = energy
file = ArArIonization.dat

</RxnRate>

fieldIonizationDCADK

3.12. Reactions 307

https://www.oecd-nea.org/dbdata/data/manual-endf/nds_eval_eedl.pdf
https://fr.lxcat.net/data/set_type.php

VSim Reference Manual, Release 11.0.1-r3016

Field Ionization DCADK

This cross-section models the tunneling ionization of a kinetically modeled species or background gas induced by an
electric field. The “DCADK” should be used when the time step taken in the simulation resolves the oscillations of
the fields.

The following formula for the ionization rate is used:

𝑅𝑖 = 4.13 × 1016
𝑍2

2𝑛2
eff

(︂
2𝑒

𝑛eff

)︂2𝑛eff 1

2𝜋𝑛eff

(︂
2
𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

)︂2𝑛eff−1

exp

[︂
−2

3

𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

]︂ (︀
s−1
)︀

where 𝑍 is the charge state of the ionized particle, 𝑛eff = 𝑍/
√︀
𝑈ion/13.6[eV], 𝑈ion is the ionization potential in eV,

𝐸ℎ = 5.13 × 1011V/m, and 𝐸𝐿 is the electric field strength at the particle position.

The modified ADK [?] formula, updated in [?] and first adapted to PIC by Penetrante and Bardsley [?] and later
corrected by Ilkov et al. [?], which gives the ionization rate for any type of atom, can also be used.

Subsequent validation work on the tunneling ionization models in VSim was conducted and is demonstrated in [?],
[?] and [?]. The model is valid up to approximately energy densities of 1023 − 1024 above which Barrier Suppression
Ionization is likely to be the dominant effect, and one way also want to consider vacuum pair-production in the
ionization cross-section.

The model assumes the background is a gas, that is to say that atoms are well separated with respect to their size. At
very high number density, the model may break down. See references to the Mott Transition for further information.

Note: Must be paired with a Field Ionization ProductGenerator in a RxnProcess Block

fieldIonizationDCADK Attributes

kind (string, required)
Use the string fieldIonizationDCADK

ionizationEnergy (float, optional)
The ionization energy of the species to be ionized. The species that will be ionized by this process is determined
by the Reactants parameter in the RxnProcess Block. By default, vorpal will take the ionization energy from
the block defining the ionized species or fluid. The value provided in this block will overwrite the default value.

charge (float, optional)
The charge of the species to be ionized. The species that will be ionized by this process is determined by the
Reactants parameter in the RxnProcess Block. By default, vorpal will take the charge from the block
defining the ionized species or fluid. A value provided in this block will overwrite the default value.

Example fieldIonizationDCADK Block

<RxnRate rxnRate>
kind = fieldIonizationDCADK
#ionizationEnergy = 4.0
#charge = 2.0

</RxnRate>

fieldIonizationAverageADK

308 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Field Ionization Average ADK

This cross-section models the tunneling ionization of a kinetically modeled species or background gas induced by an
electric field. The “Average ADK” uses a time-averaged formula (see below) for the ionization rate, and should only
be used when modeling a linearly polarized electric field and the time step is larger than the oscillation period (i.e., dt
is much larger than the period of the field in question). This might occur, for example, when using an envelope model
for the laser pulse.

𝑅𝑖 = 6.6 × 1016
𝑒

𝜋

𝑍2

𝑛4.5
eff

(︂
10.87 × 𝐸ℎ

𝐸𝐿

𝑍3

𝑛4
eff

)︂2𝑛eff−1.5

exp

[︂
−2

3

𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

]︂ (︀
s−1
)︀

where 𝑍 is the charge state of the ionized particle, 𝑛eff = 𝑍/
√︀
𝑈ion/13.6[eV], 𝑈ion is the ionization potential in eV,

𝐸ℎ = 5.13 × 1011V/m, and 𝐸𝐿 is the electric field strength at the particle position.

The modified ADK [?] (Ammosov, Delone, and Krainov) formula, updated in [?] and first adapted to PIC by Penetrante
and Bardsley [?] and later corrected by Ilkov et al. [?], which gives the ionization rate for any type of atom, can also
be used.

Subsequent validation work on the tunneling ionization models in VSim was conducted and is demonstrated in [?],
[?] and [?]. The model is valid up to approximately energy densities of 1023 − 1024 above which Barrier Suppression
Ionization is likely to be the dominant effect, and one way also want to consider vacuum pair-production in the
ionization cross-section.

The model assumes the background is a gas, that is to say that atoms are well separated with respect to their size. At
very high number density, the model may break down. See references to the Mott Transition for further information.

Note: Must be paired with a Field Ionization ProductGenerator in a RxnProcess Block.

fieldIonizationAverageADK Attributes

ionizationEnergy (float, optional)
The ionization energy of the species to be ionized. The species that will be ionized by this process is determined
by the Reactants parameter in the RxnProcess Block. By default, vorpal will take the ionization energy from
the block defining the ionized species or fluid. The value provided in this block will overwrite the default value.

charge (float, optional)
The charge of the species to be ionized. The species that will be ionized by this process is determined by the
Reactants parameter in the RxnProcess Block. By default, vorpal will take the charge from the block
defining the ionized species or fluid. A value provided in this block will overwrite the default value.

Example fieldIonizationAverageADK Block

<RxnRate rxnRate>
kind = fieldIonizationAverageADK
#ionizationEnergy = 4.0
#charge = 0.0

</RxnRate>

decayLifetime

3.12. Reactions 309

VSim Reference Manual, Release 11.0.1-r3016

Decay Rate

The RxnRate block to be used to set the lifetime of a species under going a decay. Must be paired with a Decay
ProductGenerator.

decayLifetime Attributes

lifetime (float, required)
the lifetime of the species, in seconds

Example decayLifetime Block

<RxnRate rxnRate>
kind = decayLifetime
lifetime = 0.0

</RxnRate>

3.12.4 Interactions (productGenerators)

binaryElastic

Binary Elastic

Works with a VSimPD license. Collision of the form

𝐴 + 𝐵 → 𝐴 + 𝐵

Scattering of two particles with a variable angular distribution (set with the anisotropy parameter below). Mo-
mentum is conserved, and energy is conserved if the energyLoss parameter is zero.

The binaryElastic algorithm conserves energy and momentum by shifting into the CoM frame, randomly picking two
scattering angles (polar and azimuthal angles from either an isotropic or anisotropic distribution, specified by the user
with the anisotropy parameter), and then exactly conserving momentum and energy. These can also be inelastic
by supplying a threshold energy that is subtracted from the initial energy to get the final energy. In all cases momentum
is conserved.

The binaryElastic can be used to model inelastic collisions by setting the energyLoss parameter to be non-
zero.

Any RxnProcess Block block which points to a productGenerator of kind = binaryElastic should have the
Reactants and Products in the order:

reactants = [speciesA speciesB]
products = [speciesA speciesB]

Note: The order is arbitrary, but the must be consistent between the Reactants and Products blocks.

Note: The Electron Scatter interaction is optimized for an inelastic scattering process involving an electron.

310 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

binaryElastic Attributes

energyLoss (float, optional, default = 0)
The maximum energy, in eV, lost during a single inelastic collision. A choice of 0 will give an elastic collision.

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example binaryElastic Block

<RxnProductGenerator productGenerator>
kind = binaryElastic
#energyLoss = .2
#anisotropy = 0
#randomSeed = 423

</RxnProductGenerator>

electronScatter

Electron Scatter

Works with a VSimPD license. Collision of the form

𝑒 + 𝐴 → 𝑒 + 𝐴

A scattering process similar to binaryElastic, but optimized for the specific case where one of the scattering
species is an electron. The electronScatter process is inelastic, for an elastic electron scattering process, use
Binary Elastic.

A generator of 2 product particles to model electron scattering off of a neutral/ion. Can be isotropic or anisotropic
following the Vahedi-Surendra algorithm [?].

In the Vahedi-Surendra algorithm, the incident electron loses small percentage of its energy and is scattered after the
collision. The scattered electron energy, 𝜖𝑠𝑐, is computed to be:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐

(︂
1 − 2𝑚𝑒𝑀0

(𝑚𝑒 + 𝑀0)2
(1.− cos𝜒)

)︂
where:

• 𝜖𝑖𝑛𝑐 is the incident electron energy,

• 𝑚𝑒 is the mass of the incident electron,

• 𝑀0 is the mass of the “A” species in the equation above,

• 𝜒 is the scattering angle given by:

3.12. Reactions 311

VSim Reference Manual, Release 11.0.1-r3016

cos𝜒 =
2 + 𝜖𝑖𝑛𝑐 − 2 (1 + 𝜖𝑖𝑛𝑐)

𝑅1

𝜖𝑖𝑛𝑐

The azimuthal scattering angle is given by:

𝜙 = 2𝜋𝑅2

In the above equations 𝑅1 and 𝑅2 are two random numbers uniformly distributed between 0 and 1.

Any RxnProcess Block block which points to a productGenerator of kind = electronScatter should have the
Reactants and Products in the order:

reactants = [electron speciesA]
products = [electron speciesA]

electronScatter Attributes

scatterType (string, required, default = VS)
The isotropy of the electron scatter. Can be isotropic or VS for a non-isotropic scattering following the
algorithm presented by Vahedi and Surendra (see above).

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example electronScatter Block

<RxnProductGenerator productGenerator>
kind = electronScatter
#scatterType = VS
#randomSeed = 423

</RxnProductGenerator>

binaryExcitation

Binary Excitation

Works with a VSimPD license. Collision of the form:

𝐴 + 𝐵 → 𝐴* + 𝐵

A generator of 2 product particles with an angular distribution set by the anisotropy attribute. Momentum is
conserved and energy is conserved minus the excitationEnergy attribute.

Any RxnProcess Block block which points to a productGenerator of kind = binaryExcitation should have the
Reactants and Products in the order:

reactants = [speciesA speciesB]
products = [excitedSpeciesA speciesB]

312 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

binaryExcitation Attributes

excitationEnergy (float, required)
The potential energy, in eV, gained by the excited species (a positive value for this attribute will result in an
energy loss from the simulation). This is also a threshold energy. The reaction will not occur between reactant
that have a center of mass energy less than this value.

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example binaryExcitation Block

<RxnProductGenerator productGenerator>
kind = binaryExcitation
excitationEnergy = 1.1828
#anisotropy = 0
#randomSeed = 423

</RxnProductGenerator>

chargeExchange

Charge Exchange

Works with a VSimPD license. Collision of the form

𝐴 + 𝐵+ → 𝐴+ + 𝐵

This process models the charge exchange between two particles, so “A” and “B” in the formula above can be the same
or different species. Momentum is conserved, and energy conserved less the energyLoss attribute which is set by
the user.

Any RxnProcess Block block which points to a productGenerator of kind = chargeExchange should have the
Reactants and Products in the order:

reactants = [Atom Ion]
products = [Ion Atom]

chargeExchange Attributes

energyLoss (float, optional, default = 0)
The maximum energy lost during a single inelastic collision in eV. A choice of 0 (default) will give an elastic
collision.

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

3.12. Reactions 313

VSim Reference Manual, Release 11.0.1-r3016

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example chargeExchange Block

<RxnProductGenerator productGenerator>
kind = chargeExchange
#energyLoss = 0.0
#anisotropy = 0.0
#randomSeed = 789

</RxnProductGenerator>

binaryReaction

Binary Reaction

Works with a VSimPD license. Collision of the form

𝐴 + 𝐵 → 𝐶 + 𝐷

This is a general reaction where the A, B, C, and D species can each be any fluid or particle species. For example, a
user could set up a an inelastic scattering collision between argon ions of the same species:

𝐴𝑟+ + 𝐴𝑟+ → 𝐴𝑟+ + 𝐴𝑟+

Or, a user could use this productGenerator to set up a collision between up to four different fluids and particles like the
following reaction which creates an an exotic hydrogen molecule:

𝐻2 + 𝐻+
2 → 𝐻+

3 + 𝐻

A generator of 2 product particles with an isotropic angular distribution, momentum conserved and energy conserved
minus the thresholdEnergy parameter (which could be the energy required for the reaction).

binaryReaction Attributes

thresholdEnergy (float, optional, default = 0)
The threshold energy for the reaction in eV. So, a pair of reactants will need at least this much relative energy
(i.e. energy in center of momentum frame) in order to react. If the reaction occurs then this much energy is lost
from the products to potential energy. If this is zero, then energy will not be lost. If negative, then the products
will gain kinetic energy.

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

314 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example binaryReaction Block

<RxnProductGenerator productGenerator>
kind = binaryReaction
#thresholdEnergy = 1.0
#anisotropy = 0.5
#randomSeed = 324

</RxnProductGenerator>

electronAttachment

Electron Attachment

Works with a VSimPD license. Collision of the form

𝐴 + 𝑒 → 𝐴−

An electron attachment generator of one product negative ion. This process conserves momentum, but is inelastic
(does not conserve energy).

Any RxnProcess Block block which points to a productGenerator of kind = electronAttachment should have
the Reactants and Products in the order

reactants = [Atom electron]
products = [negIon]

electronAttachment Attributes

thresholdEnergy (float, required)
The threshold energy for the reaction in eV. So, a pair of reactants will need at least this much relative energy
(ie energy in center of momentum frame) in order to react. If the reaction occurs then this much energy is lost.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example electronAttachment Block

<RxnProductGenerator productGenerator>
kind = electronAttachment
thresholdEnergy = 1.0
#randomSeed = 753

</RxnProductGenerator>

negativeIonDetachment

3.12. Reactions 315

VSim Reference Manual, Release 11.0.1-r3016

Negative Ion Detachment

Works with a VSimPD license. Collision of the form

𝐴− + 𝐵 → 𝐴 + 𝐵 + 𝑒

Any RxnProcess Block block which points to a productGenerator of kind = negativeIonDetachment should
have the Reactants and Products in the order

reactants = [speciesNegativeA speciesB]
products = [speciesA speciesB electron]

negativeIonDetachment Attributes

thresholdEnergy (float, optional, default = 0)
The threshold energy for the reaction in eV. So, a pair of reactants will need at least this much relative energy
(ie energy in center of momentum frame) in order to react. If the reaction occurs then this much energy is lost.

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example negativeIonDetachment Block

<RxnProductGenerator productGenerator>
kind = negativeIonDetachment
#thresholdEnergy = 1.0
#anisotropy = 0.0
#randomSeed = 477

</RxnProductGenerator>

impactIonization

Impact Ionization

Works with a VSimPD license. Collision of the form

𝐴 + 𝐵 → 𝐴+ + 𝐵 + 𝑒

Any RxnProcess Block block which points to a productGenerator of kind = impactIonization should have the
Reactants and Products in the order

reactants = [speciesLosingElectron scatteredSpecies]
products = [ionizedSpecies scatteredSpecies Electron]

316 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

impactIonization Attributes

ionizationEnergy (float, optional)
The ionization energy of the neutral species. By default, the value of this parameter is taken from the species
block of the first reactant in the RxnProcess block and does not need to be included.

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example impactIonization Block

<RxnProductGenerator productGenerator>
kind = impactIonization
#ionizationEnergy = 1.45
#anisotropy = 0
#randomSeed = 423

</RxnProductGenerator>

electonIonization

Electron Ionization

Works with a VSimPD license. Collision of the form

𝐴 + 𝑒 → 𝐴+ + 𝑒 + 𝑒

An ionization process similar to Impact Ionization, but optimized for the specific case where an electron ionizes a
second species.

In this collision, the energy of the scattered electron (that is, the final energy of the incident electron) is determined
from:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧 − 𝜖𝑠𝑒

where:

• 𝜖𝑖𝑛𝑐 the relative energy of the two reactants in center of mass frame

• 𝜖𝑖𝑧 the ionization energy threshold

• 𝜖𝑠𝑒 the secondary electron energy which is given by:

𝜖𝑠𝑒 = 𝜔 tan

[︂
𝑅3 tan−1

(︂
𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧

2𝜔

)︂]︂
where 𝜔 is a constant with a value of 15 eV and 𝑅3 is a random number with a uniform distribution between 0 and 1.

The trajectory of the scattered electron after the collision is determined by the scattering angle 𝜒 such that:

cos𝜒 =

(︂
𝜖𝑠𝑐

𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧

)︂0.5

3.12. Reactions 317

VSim Reference Manual, Release 11.0.1-r3016

and the azimuthal angle 𝜙 = 2𝜋𝑅1 , where 𝑅1 is a random number uniformly distributed between 0 and 1.

The scattering angle of the secondary electron (created in the interaction) is determined using:

cos𝜒𝑠𝑐 =

(︂
𝜖𝑠𝑒

𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧

)︂0.5

and the azimuthal angle is 𝜙𝑠𝑒 = 2𝜋𝑅2, where 𝑅2 is a random number uniformly distributed between 0 and 1.

The Visual Setup will automatically use this ProductGenerator for an ionization interaction if an electron species
is included in the reactants.

Any RxnProcess Block block which points to a productGenerator of kind = electonIonization should have the
Reactants and Products in the order

reactants = [Atom Electron]
products = [Ion Electron secElectron]

electronIonization Attributes

ionizationEnergy (float, optional)
The ionization energy, in eV, of the neutral species. By default, the value of this parameter is taken from the
species block of the first reactant in the RxnProcess block.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example electronIonization Block

<RxnProductGenerator productGenerator>
kind = electronIonization
#ionizationEnergy = 1.47
#randomSeed = 789

</RxnProductGenerator>

dissociativeIonization

Dissociative Ionization

Works with a VSimPD license. Collision of the form

𝐴𝐵 + 𝑒 → 𝐴+ + 𝐵 + 𝑒 + 𝑒

or

𝐴𝐵 + 𝑒 → 𝐴+ + 𝐵+ + 𝑒 + 𝑒 + 𝑒

A generator of 4 product particles, two atoms that have been dissociated and two electrons: one that impacted to cause
the ionization and other from the ionization caused the dissociation. Double ionization is achieved by including a third
electron product and a second ionized atom in a the Reactants and Product vectors in the RxnProcess Block

Any RxnProcess Block block which points to a productGenerator of kind = dissociativeIonization should
have the Reactants and Products in the order

318 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

reactants = [AB electron]
products = [ionizedA (ionized)B electron electron (electron)]

dissociativeIonization Attributes

dissociationEnergy(float, required)
The energy required to dissociate the molecule, in eV. This value also sets a threshold for whether or not the
reaction will occur. So a pair of particle will need at least this much relative energy (i.e. energy in center of
momentum frame) in order to react. This can be set as a negative value to have the products gain kinetic energy.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example dissociativeIonization Block

<RxnProductGenerator productGenerator>
kind = dissociativeIonization
dissociationEnergy = 1.0
#randomSeed = 499

</RxnProductGenerator>

fieldIonization

Field Ionization

Works with a VSimPA license. Interaction of the form

𝐴 + 𝐸⃗ → 𝑒 + 𝐴+

Any RxnProcess Block block which points to a productGenerator of kind = fieldIonization should have the
Reactants and Products in the order:

reactants = [speciesToBeIonized multiFieldName.ElectricFieldName]
products = [Ion electron]

This product generator can be linked to a RxnRate block that determines the ionization rate for a field that time-
resolved by the simulation time step, Field Ionization DCADK, or a block that determines the ionization rate when the
fields are NOT resloved by the time step, Field Ionization Average ADK. This product generator should not be linked
to any other type of RxnRate block.

Note: This process does not deplete EM field energy.

fieldIonization Attributes

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

3.12. Reactions 319

VSim Reference Manual, Release 11.0.1-r3016

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example fieldIonization Block

<RxnProductGenerator productGenerator>
kind = fieldIonization
#randomSeed = 423

</RxnProductGenerator>

decay

Decay

Works with a VSimPD license. Interaction of the form:

𝐴 → 𝐵 (+𝐶 + 𝛾)

A decay of a single particle into one or more products. The daughter particles can be a single species, a single species
and a photon, two species (without a photon), or two species and with a photon.

Should be paired with a decayLifetime RxnPhysics block in a RxnProcess Block.

Any RxnProcess Block block which points to a productGenerator of kind = decay should have the Reactants and
Products in the order:

reactants = [speciesA]
products = [speciesB (speciesC)]

decay Attributes

untrackedPhoton (boolean, required)
Whether or not energy is lost to an untracked photon.

VAtheory (boolean, optional, default = 0)
If there is an untracked photon, this flag determines how the lost energy is calculated. Options are:

• 1 Use VA theory to determine energy loss

• 0: The lost energy is uniformly distributed between none and all.

This parameter does nothing if untrackedPhoton = 0.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example decay Block

320 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<RxnProductGenerator productGenerator>
kind = decay
untrackedPhoton = 1
VAtheory = 1 #using VA theory to determine energy lost in decay
#randomSeed = 423

</RxnProductGenerator>

binaryRecombination

Binary Recombination

Works with a VSimPD license. Collision of the form

𝐴 + 𝐵 → 𝐴𝐵

This reaction will make one product particle out of two reactants. This process conserves momentum but is inelastic,
with the energy loss going into an un-modeled photon. Supports either electron-ion recombination or something more
exotic like

𝐻− + 𝐻+ → 𝐻2

binaryRecombination Attributes

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example binaryRecombination Block

<RxnProductGenerator productGenerator>
kind = binaryRecombination
#randomSeed = 456

</RxnProductGenerator>

threeBodyRecombination

Three Body Recombination

Works with a VSimPD license. Collision of the form

𝐴+ + 𝑒 + 𝐵 → 𝐴 + 𝐵

A three-body recombination generator with three reactants and two products.

Generally the bystander particle, B, in the formula above is an electron, but can be a particle of any mass or charge.

Any RxnProcess Block block which points to a productGenerator of kind = threeBodyRecombination should
have the Reactants and Products in the order:

3.12. Reactions 321

VSim Reference Manual, Release 11.0.1-r3016

reactants = [ion electron elec/atom/ion]
products = [neutralSpecies elec/atom/ion]

threeBodyRecombination Attributes

recombinationEnergy (float, optional)
The recombination energy in eV. By default, this value is taken from the ionizationEnergy attribute of
the species block of the product species “A” in the reaction above, unless overwritten here. This energy will be
given to the bystander species (B in the formula above).

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example threeBodyRecombination Block

<RxnProductGenerator productGenerator>
kind = threeBodyRecombination
recombinationEnergy = 2.33
randomSeed = 423

</RxnProductGenerator>

dissociativeRecombination

Dissociative Recombination

Works with a VSimPD license. Collision of the form

𝐴𝐵+ + 𝑒 → 𝐴 + 𝐵.

Any RxnProcess Block block which points to a productGenerator of kind = dissociativeRecombination
should have the Reactants in the order:

reactants = [speciesABplus electron]

Note: The second reactant is not required to be an electron. The order of the products can be arbitrary.

dissociativeRecombination Attributes

thresholdEnergy (float, required)
The threshold energy for the reaction in eV. So, a pair of reactants will need at least this much relative energy
(i.e. energy in center of momentum frame) in order to react. If the reaction occurs then this much energy is lost
from the products to potential energy. If this is zero, then energy will not be lost. If negative, then the products
will gain kinetic energy.

322 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

anisotropy (float, optional, default = 0)
A value between -1 and 1 to set the degree of anisotropy. An anisotropy of -1 is full backscatter, 0 is isotropic,
and +1 is full forward scatter.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

Example dissociativeRecombination Block

<RxnProductGenerator productGenerator>
kind = dissociativeRecombination
thresholdEnergy = 1.0
#anisotropy = 0
#randomSeed = 423

</RxnProductGenerator>

electronImpactDissociation

Electron Impact Dissociation

Works with a VSimPD license. An interaction of the form

𝑒 + 𝐴𝐵 → 𝐴 + 𝐵 + 𝑒

This reaction models an electron induced dissociation process. Three product particles are created.

The final speeds of each particle are determined by calculating the final total energy in the center of mass frame
(i.e. total final energy = total initial energy - dissociationEnergy). Then a loss fraction is calculated, f = finalEn-
ergy/initialEnergy. The energy of the AB particle is then multiplied by f and split between A and B. The initial energy
of the electron is multiplied by f to get the final electron energy. Two random angles are chosen to determine the
direction for the final momentum. One random angle sets the direction for the two atoms (the products’ final momen-
tum will be equal and opposite, i.e., back to back). A second random angle sets the direction of the product electron.
Finally,the particles’ velocities are transformed back to the simulation frame.

Any RxnProcess Block block which points to a productGenerator of kind = electronImpactDissociation
should have the Reactants and Products in the order:

reactants = [electron molecule]
products = [atom1 atom2 electron]

electronImpactDissociation Attributes

dissociationEnergy (float, required)
The energy required to dissociate the molecule in eV.

randomSeed (int, optional, default: random int)
Manually set a random seed used to determine the final velocities of the product particles.

The default is to choose a random seed at run time. To produce identical simulations, advanced users may want
to manually set a seed. It is recommended not to include this parameter so that a different random number will
be generated for each run.

3.12. Reactions 323

VSim Reference Manual, Release 11.0.1-r3016

Example electronImpactDissociation Block

<RxnProductGenerator productGenerator>
kind = electronImpactDissociation
dissociationEnergy = 4.77
#randomSeed = 754

</RxnProductGenerator>

radiationReaction

Radiation Reaction

This models the radiation reaction process where relativistic electrons spontaneously emit photons when moving in
large electric and/or magnetic fields. This process is similar to synchrotron radiation (and is often called nonlinear
Compton scattering), but includes a quantum correction since the classical model predicts emission of photons with
greater energy than the electron itself under these conditions of 𝛾 ≫ 1 and 𝐸/𝐸𝑠 = 𝑐𝐵/𝐸𝑠 ≪ 1 where 𝐸𝑠 =
𝑚2

𝑒𝑐
3/(𝑞𝑒~) ≈ 1.32 × 1018 V/m is the Schwinger field and 𝛾 is the Lorentz factor. This implementation is based on

the paper: C. Ridgers et al., J. Comp. Phys. 260 (2014).

The quantum parameter

𝜂 =
𝑒~

𝑚3
𝑒𝑐

4
|𝐹𝜇𝑣𝑝

𝑣| ≃ 𝛾

𝐸𝑠

√︁
(𝐸⃗ + 𝑣⃗ × 𝐵⃗)2

describes the magnitude of the quantum effects, including the electron momentum loss due to nonlinear Compton
scattering. The 𝐸⃗ and 𝐵⃗ here are local, instantaneous values at the electron position.

The reaction rate is determined by calculating the cumulative value of the optical depth, 𝜏 , through which the electron
has traversed since last emitting. This optical depth is given by

𝜏(𝑡) =

∫︁ 𝑡

0

𝜆(𝜂(𝑡′))𝑑𝑡′

where 𝜆 is the approximate rate of emission defined as

𝜆(𝜂) =
𝑑𝑁𝛾

𝑑𝑡
=

√
3𝛼𝑓𝑐

𝜆𝑐

𝜂

𝛾
ℎ(𝜂).

In the above equation, 𝛼𝑓 is the fine structure constant, 𝜆𝑐 is the Compton wavelength, 𝑐 is the speed of light, and ℎ(𝜂)
is the quantum synchrotron function 𝐹 (𝜂, 𝜒) integrated over chi. The quantum synchrotron function is defined as

𝐹 (𝜂, 𝜒) =
4𝜒2

𝜂
𝑦𝐾2/3(𝑦) + (1 − 2𝜒/𝜂)𝑦

∫︁ ∞

𝑦

𝑑𝑡𝐾5/3(𝑡)

where 𝑦 = 4𝜒/(3𝜂(𝜂 − 2𝜒)), 𝐾𝑛 are modified Bessel functions of the second kind, and 𝜒 is related to the resulting
photon energy by 𝐸𝜑 = ℎ𝜈 = 2𝑚𝑒𝑐

2𝜒𝛾/𝜂. The function, ℎ(𝜂), has been tabulated for 𝜂 ∈ [10−3, 103] where for
𝜒 ≥ 𝜂/2, 𝐹 (𝜂, 𝜒) = 0 and is shown in figure Fig. 3.3.

Therefore, in the Monte Carlo algorithm for this radiation reaction, we only need to calculate the 𝜂 and 𝛾 of the
electron, then use these to accumulate the optical depth using simple first order integration, 𝜏(𝑡+∆𝑡) = 𝜏(𝑡)+𝜆(𝑡)∆𝑡.
The probability of emission is given by 𝑝 = 1 − 𝑒−𝜏𝑒𝑚 , and so a threshold value for the optical depth is chosen by
inverting this equation and choosing a uniform random number for 𝑝 ∈ [0, 1). When 𝜏(𝑡) ≥ 𝜏𝑒𝑚 the emission occurs
and the momentum of the resulting photon is subtracted from the electron.

The probability of an electron with quantum parameter 𝜂 emitting a photon of energy 𝜒 is given by

𝑃 (𝜂, 𝜒) =

∫︁ 𝜒

0

𝐹 (𝜂, 𝜒′)

𝜒′ℎ(𝜂)
𝑑𝜒′

324 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Fig. 3.3: The function ℎ(𝜂) which determines the emission rate via optical depth calculation.

This probability distribution has been tabulated and then inverted to obtain 𝜒(𝜂, 𝑃) so that during the simulation a
uniformly random 𝑃 ∈ [0, 1) is chosen and then bilinear interpolation provides the photon energy 𝜒 for the given
electron 𝜂. These functions, 𝑃 (𝜂, 𝜒) and 𝜒(𝜂, 𝑃), are shown in figure Fig. 3.4.

Fig. 3.4: Plots of 𝑃 (𝜂, 𝜒) and the inverted ln𝜒(𝜂, 𝑃) used for sampling the emitted photon energy.

Note: Specific RxnRateCalculator and RxnProductGenerator must be paired for radiation reaction. Also, the species
must be relBorisRad, relBorisRadVW, relBorisRadCyl, or relBorisRadCylVW so that t he optical depth can be tracked
for each particle.

Any RxnProcess Block block which points to a productGenerator of kind = radiationReaction should have the
Reactants and Products in the order:

reactants = [electrons E B]
products = [electrons (photon)]

3.12. Reactions 325

VSim Reference Manual, Release 11.0.1-r3016

The optional photon in the product block allows the production of photons from this process. The photon must be
of kind=freeRelVW and it will store the energy of the photon as the weight, and the number of physical photons
represented by the emission as 100 times the relativistic gamma. One can place an AbsAndSave boundary over the
entire domain and the emitted photons will be immediately absorbed upon emission with their information saved and
accessible via the speciesAbsPtclData2. Alternatively, one can let these photons propagate freely through the domain,
but since this is more expensive it is only recommended if one cares about their trajectories.

Validation

Three test cases are given in the Ridgers (2014) paper, and we have validated our implementation for these same cases.
These are:

1. Electrons moving in large 𝐵 field with 𝛾0 = 1000 and 𝜂 = 1

2. Electrons moving in larger 𝐵 field with 𝛾0 = 1000 and 𝜂 = 9

3. Electrons counter-propagating in a circularly polarized EM wave with 𝛾0 = 4120 and 𝜂 = 1

These simple situations have analytic solutions, and we find agreement between the theory and our simulation results
as seen in the figures below:

reactionRate Attributes

kind (string, required)
Use the string radiationReaction

reactionProductGenerator Attributes

kind (string, required)
Use the string radiationReaction

326 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

3.12. Reactions 327

VSim Reference Manual, Release 11.0.1-r3016

Example radiationReaction Input File Blocks

<RxnProcess radRxn>
kind = collisionProcess
rxnPhysics = radRxnPhys
reactants = [electrons multiField.E multiField.B]
products = [electrons]
randomSeed = 1000

</RxnProcess>

<RxnPhysics radRxnPhys>
kind = generalCollision
<RxnRate rxnRate>
kind = radiationReaction

</RxnRate>
<RxnProductGenerator productGenerator>
kind = radiationReaction

</RxnProductGenerator>
</RxnPhysics>

3.13 ImpactCollider / ImpactCollision

3.13.1 ImpactCollider Block

ImpactCollider

An ImpactCollider block is used to model charged particle collisions with fluid or background neutral
gases, or fluid gas mixtures.

The ImpactCollider/ImpactCollisions feature handles electron and ion impact collisions with background fluid neutral
gas or fluid gas mixtures. ImpactCollider/ImpactCollisions uses the Monte Carlo Collision (MCC) technique. It
enables users to test a variety of charged particle impact collisions in plasma simulations with background gases or
gas mixtures. Details of the collision models and the collision cross-section options available are described below.

This feature allows modeling of charged particle collisions with either one gas kind or multiple gas mixtures. Also,
ImpactCollider allows users the flexibility to consider only one collision kind, more than one collision kind, or all
collision kinds in their VSim simulations.

In the case of electron-impact collisions, both elastic scattering and inelastic collisions such as excitation or ionization
processes are supported. For the ion-impact collisions case, both elastic scattering (momentum-exchange) and inelastic
charge-exchange collision processes are supported. In addition, ImpactCollider enables users to select impact collision
cross-section data from three different options.

Available options for impact cross-section selection data include:

• builtIn

• eedl

• userDefined

These cross-section options are described in detail in ImpactCollision blocks.

Users can use one or multiple ImpactCollider blocks in a VSim input file. Each ImpactCollider block can contain
one or multiple ImpactCollision blocks to define different kinds of electron/ion impact collisions with the fluid neutral
gases in the corresponding VSim input file.

328 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Note: ImpactCollider blocks should be used only with background fluid gases (i.e., the neutral gas is assumed to be
a fluid rather than a collection of kinetic neutral macroparticles). The gases listed under the ImpactCollider block’s
neutralGas parameter must be defined using the Fluid block, and the Fluid block’s gasKind should match the gas
names declared in the neutralGas parameter of the ImpactCollider block.

ImpactCollider Parameters

There is only one kind of ImpactCollider block, and therefore no kind attribute is needed.

The ImpactCollider block can contain one or more ImpactCollision blocks to specify which collisions will take place.

neutralGas (string vector) List of fluid gas or fluid gas mixture VSim objects that can be collided with the im-
pacting particle species. VSim checks to see if a neutralGas vector of strings is provided. The strings correspond
to the names of the ionizable objects. The names of the ionizable gas objects must be defined in the VSim input
file using Fluid blocks.

neutralGasTemp (float vector, optional) Temperature values for the gases listed under the neutralGas. The de-
fault gas temperature value is 300 K. The neutralGasTemp parameter is used in determining the energies of ions
produced in ionization reactions, and also in determining the ion energies during charge-exchange collisions.

impactSpecies (string vector) A list of particle species that can participate in impact collisions with the gas or
gas mixtures listed under the neutralGas. VSim checks whether an impactSpecies vector of strings is provided.
The strings should correspond to the names of the impact species objects, which must be defined in the VSim
input file using Species blocks. Both fixed-weight and variable-weight particles are supported.

Example ImpactCollider Block

<ImpactCollider electronHeGasCollisions>

neutralGas = [HeNeutralGas]
impactSpecies = [electrons]
neutralGasTemp = GAS_TEMP_IN_K
<ImpactCollision ElecImpElastic>
kind = impactElastic
crossSectionDataType = [userDefined]
crossSectionDataFile = [elasticCS.dat]
scatteringType = uniform

</ImpactCollision>

<ImpactCollision ElecImpExcitation1>
kind = impactExcitation
crossSectionDataType = [userDefined]
crossSectionDataFile = [excitation1CS.dat]
scatteringType = uniform

</ImpactCollision>

<ImpactCollision ElecImpExcitation2>
kind = impactExcitation
crossSectionDataType = [userDefined]
crossSectionDataFile = [excitation2CS.dat]
scatteringType = uniform

</ImpactCollision>

(continues on next page)

3.13. ImpactCollider / ImpactCollision 329

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<ImpactCollision elecImpIonization>
kind = impactIonization
crossSectionDataType = [userDefined]
crossSectionDataFile = [ionizationCS.dat]
ionizedElectronSpecies = [electrons]
ionSpecies = [He1]
depleteBackgroundGas = false
scatteringType = uniform

</ImpactCollision>

</ImpactCollider>

3.13.2 ImpactCollision Block

ImpactCollision

ImpactCollision:

ImpactCollider blocks require a block for each type of ImpactCollision. There are four possible kinds of
ImpactCollision blocks:

• ImpactElastic

• ImpactExcitation

• ImpactIonization

• ImpactIonCollision

Note:

BuiltIn The built-in cross sections that exist in VSim vary with the type of collision/interaction. Please see below to
learn which cross sections exist for each collision/interaction type.

EEDL Evaluated Electron Data Library (EEDL) data is available for elements from Z=1 to 100. These cross sections
can be downloaded from the International Atomic Energy Agency Nuclear Data Services website. Users can
download either the complete library or individual evaluations. VSim currently uses the eedl/endl format for the
libraries, so please be sure to download the right one.

userDefined There are too many interaction types and cross sections for us to list sources for each one. Outside of the
EEDL and LXcat databases, many reliable cross sections can be found through publications and other databases
online. Using the userDefined type users may import their own cross sections or ionization rates.

ImpactElastic

kind = impactElastic

Enables users to set up electron-impact elastic scattering collisions with the background neutral gas or gas mixtures.
In this collision event, the incident electron loses a small percentage of its energy and is scattered after the collision.
The scattered electron energy is computed from the formula given in [?]. It is given by:

𝜀𝑠𝑐 = 𝜀𝑖𝑛𝑐[1 − 2𝑚𝑒

𝑀0
𝑐𝑜𝑠(𝜒)]

where

330 Chapter 3. Text Setup

https://www-nds.iaea.org/epdl97/

VSim Reference Manual, Release 11.0.1-r3016

𝜀𝑖𝑛𝑐 is the incident electron energy

𝜀𝑠𝑐 is the incident electron energy

𝑚𝑒 is the mass of the electron

𝑀0 is the mass of the neutral gas atom

𝜒 is the scattering angle given by:

𝑐𝑜𝑠(𝜒) =
2 + 𝜀𝑖𝑛𝑐 − 2(1 + 𝜀𝑖𝑛𝑐)

𝑅1

𝜀𝑖𝑛𝑐

The azimuthal scattering angle is given by:

𝜑 = 2𝜋𝑅2

where in the above equations, 𝑅1 and 𝑅2 are random numbers between 0.0 and 1.0.

ImpactElastic Parameters

• crossSectionDataType Collision cross-section data type to be used in the handling of electron impact
elastic collisions with the background fluid gas or gas mixtures. The supported types are eedl and userDefined.

– eedl: Using the eedl cross-section option, users can utilize electron impact elastic scattering cross-section
EEDL data for gas elements from Z = 1 to Z = 100. EEDL data files compatible with VSim can be
downloaded from the link above.

– userDefined: Using this option, users may specify known elastic collision cross-section data for their
simulations. Gas types that are supported in the userDefined cross-section options are:

* monatomic gas elements from Z = 1 to Z = 100

* molecular gases: 𝐻2, 𝐶𝑂2, 𝐶𝑂, 𝑂2, 𝑁2

• crossSectionDataFileA list which defines the path or locations of the EEDL data file or the user-defined
cross section data files that contain the elastic scattering collision cross section data. For the case of userDefined,
please see userDefined crossSectionDataFile Format.

• scatteringType Supported options are VahediSurendra (see above) or uniform.

ImpactExcitation

kind = impactExcitation

Sets up electron-impact excitation collisions with background neutral gas. In this kind of collision, the incident electron
loses energy equal to the excitation threshold energy and is scattered after the collision.

The scattered electron energy is computed to be:

𝜀𝑠𝑐 = 𝜀𝑖𝑛𝑐 − 𝜀𝑒𝑥

where:

𝜀𝑖𝑛𝑐 is the incident electron energy

𝜀𝑒𝑥 is the excitation threshold energy

VSim uses the excitation threshold limit from either the EEDL data set or the user-defined cross-section data file.

3.13. ImpactCollider / ImpactCollision 331

VSim Reference Manual, Release 11.0.1-r3016

The trajectory for the scattered electron is given by the scattering angle 𝜒 and azimuthal angle, 𝜑. These angles are
determined as below:

𝑐𝑜𝑠(𝜒) =
2 + 𝜀𝑖𝑛𝑐 − 2(1 + 𝜀𝑖𝑛𝑐)

𝑅1

𝜀𝑖𝑛𝑐

and

𝜑 = 2𝜋𝑅2

where 𝑅1 and 𝑅2 are random numbers between 0.0 and 1.0.

ImpactExcitation Parameters

• crossSectionDataType Collision cross-section data type to be used in the handling of electron impact
exitation collisions with the background fluid gas or gas mixtures. The supported types are eedl and userDefined.

– eedl: Using the eedl cross-section option, users can utilize electron impact excitation cross-section EEDL
data for gas elements from Z = 1 to Z = 100. EEDL data files compatible with VSim can be downloaded
from the link above.

– userDefined: Using this option, users may specify known collision cross-section data for their simula-
tions. Gas types that are supported in the userDefined cross-section options are: monatomic gas elements
from Z = 1 to 100; molecular gases 𝐻2, 𝐶𝑂2, 𝐶𝑂, 𝑂2, 𝑁2

• crossSectionDataFileA list which defines the path or locations of the EEDL data file or the user-defined
cross-section data files that contain the electron impact excitation cross section data. In the case of userDefined,
please see userDefined crossSectionDataFile Format.

• scatteringType Supported options are VahediSurendra (see above) or uniform.

ImpactIonization

kind = impactIonization

The impactIonization kind enables users to set up electron-impact (and proton-impact) ionization collisions with back-
ground neutral gas. In this kind of collision, the incident particle loses both ionization threshold energy and the energy
value of the secondary electron created during this collision.

The final scattered electron energy is computed to be:

𝜀𝑠𝑐 = 𝜀𝑖𝑛𝑐 − 𝜀𝑖𝑧 − 𝜀𝑠𝑒

where:

𝜀𝑖𝑛𝑐 is the incident electron energy

𝜀𝑖𝑧 is the excitation threshold energy

𝜀𝑠𝑒 is the secondary electron energy

The secondary electron energy is determined by:

𝜀𝑠𝑒 = 𝜔 𝑡𝑎𝑛(𝑅3𝑎𝑡𝑎𝑛[
𝜀𝑖𝑛𝑐 − 𝜀𝑖𝑧

2𝜔
])

where:

𝜔 is a known function with a value of 15 eV

332 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

𝑅3 is a random value between 0.0 and 1.0.

The trajectory for the scattered electron is given by:

𝑐𝑜𝑠(𝜒) = (
𝜀𝑠𝑒

𝜀𝑖𝑛𝑐 − 𝜀𝑖𝑧
)0.5

where:

𝜒 is the scattering angle

𝜑 is the azimuthal angle given by:

𝜑 = 2𝜋𝑅2

where 𝑅2 is a random number that varies between 0.0 and 1.0.

The scattering angle for the new secondary electron is determined using:

𝑐𝑜𝑠𝜒𝑠𝑒 = (
𝜀𝑠𝑒

𝜀𝑖𝑛𝑐 − 𝜀𝑖𝑧
)0.5

where: 𝜒𝑠𝑒 is the scattering angle

𝜑 is the azimuthal angle given by:

𝜑 = 2𝜋𝑅2

where 𝑅2 is a random number that varies between 0.0 and 1.0.

The energy of the ion created during this reaction is determined from the neutral gas temperature. The background
neutral gas density is decremented appropriately at the ionization location based on the ion produced during the
reaction.

ImpactIonization Parameters

• crossSectionDataType Collision cross-section data types for handling electron-impact ionization or
proton-impact ionization with a background fluid gas or gas mixture. The supported types are builtIn, eedl,
and userDefined. The default type of crossSectionDataType is builtIn.

– builtIn (default): This option uses VSim’s existing internal collision cross-section data. Currently
VSim has builtIn cross-sections for electron-impact or proton-impact ionization reactions for the following
gas types:

* Electron-impact Ionization Gas Types: 𝐻2, 𝐻𝑒, 𝐶𝑂2, 𝐶𝑂, 𝑂2, 𝑁2, 𝐴𝑟, 𝑁𝑒

* Proton-impact Ionization Gas Types: 𝐻 , 𝐻2, 𝐻𝑒, 𝐶𝑂2, 𝐶𝑂, 𝑂2, 𝑁2

VSim determines whether to use electron or proton built-in cross-section data for handling impact ion-
ization based on the ratio of charge to mass. If this ratio is not that of an electron, VSim assumes that
the incident particle is a proton (regardless of whether or not this is actually the case). The default type
of background gas for electron-impact ionization is 𝐻2; the default for proton-impact ionization is 𝐻 . If
the user chooses a gas for ionization that is not on the lists above, VSim will use the default gas for that
ionization type. For example, if users choose 𝐻 for electron-impact ionization, VSim will use the default
𝐻2. Similarly, if users choose 𝐴𝑟 for protons, VSim will default to 𝐻 .

– eedl: Using the eedl cross-section option, users can utilize the electron impact ionization cross-section
EEDL data for gas elements Z = 1 to Z = 100. EEDL data files compatible with VSim can be downloaded
from the link above.

3.13. ImpactCollider / ImpactCollision 333

VSim Reference Manual, Release 11.0.1-r3016

– userDefined: Using this option, users may specify known collision cross-section data for their simula-
tions. Gas types that are supported in the userDefined cross-section options are: monatomic gas elements
from Z = 1 to Z = 100; molecular gases 𝐻2, 𝐶𝑂2, 𝐶𝑂, 𝑂2, and 𝑁2.

• crossSectionDataFileA list which defines the path or locations of the EEDL data file or the user-defined
cross-section data files that contain the electron impact ionization cross-section data. In the case of userDefined,
please see userDefined crossSectionDataFile Format.

• scatteringType Supported options are VahediSurendra (see above) or uniform.

• ionizedElectronSpecies A list of secondary electron species that can result from impact ionization
collisions of impactSpecies (electrons or protons) with the gas or gas mixtures listed under the neutralGas
attribute. VSim checks whether an ionizedElectronSpecies vector of strings is provided. The strings should
correspond to the names of the secondary electron Species objects, which must be defined in the VSim input file
using Species blocks.

• ionSpecies A list of ion Species that can result from impact ionization collisions of impactSpecies (elec-
trons or protons) with the gas or gas mixtures listed under the neutralGas attribute. VSim checks whether an
ionSpecies vector of strings is provided. The strings should correspond to the names of the ion species and these
must be defined using Species blocks in the VSim input file.

• depleteBackgroundGas Boolean specifying whether or not to deplete the background gas density when
ionization events occur.

ImpactIonCollision

kind = impactIonCollision

The impactIonCollision kind enables users to set up ion-impact collisions with the background neutral gas. In this kind
of collision, the incident ion is scattered (referred to as momentum exchange) or else undergoes a charge-exchange
collision with the background neutral gas. In the case of momentum exchange, the incident ion loses no energy. In
the charge-exchange collision event, the resulting ion energy value is determined based on the background neutral gas
temperature.

ImpactIonCollision Parameters

• crossSectionDataType A list of collision cross-section data types for handling impact collisions with the
background fluid gas or gas mixtures. The supported types are builtIn and userDefined.

– builtIn: This option uses VSim’s existing internal collision cross-section data. The builtIn ion impact
charge exchange cross-section data is based on the semi-empirical formula from Lindsay [?] for all gas
types except for Xe and Ar. For xenon and argon background neutral gases, the built-in cross-section data
comes from the data found in experiments by Miller [?].

– userDefined: Using this option, users may specify known collision cross-section data for their simula-
tions. Gas types that are supported in the userDefined cross-section options are: monatomic gas elements
from Z = 1 to Z = 100; molecular gases 𝐻2, 𝐶𝑂2, 𝐶𝑂, 𝑂2, and 𝑁2.

• crossSectionDataFile A list which defines the paths or locations of the userDefined cross-section data
files that contain the ion impact collision cross-section data. In the case of userDefined, please see userDefined
crossSectionDataFile Format.

• ionCollType Defines the type of ion-impact collision. Choices are:

– MomentumExchange

– ChargeExchange

334 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

userDefined crossSectionDataFile Format

When using userDefined crossSectionDataType functionality, the cross-section data file must contain the following (in
ASCII plain text):

• 1st Line: Atomic number of the neutral gas (integer).

• 2nd Line: Collision name (string)

– For impactElastic this is ELASTIC

– For impactExcitation this is EXCITATION

– For impactIonization this is IONIZATION

• 3rd Line: Collision threshold energy (float)

• 4th Line: Number of collision data points (integer).

• 5th Line and later: Collision cross-section information for the event. The data is supplied in two columns of
floating point values, separated by white space. The first column contains the incident electron energy values in
units of eV and the second column contains the respective electron-neutral cross-section values in units of 𝑚2.

For impactIonCollision, the format is slightly different:

• 1st Line: Atomic number of the neutral gas (integer).

• 2nd Line: Collision name (string)

– For impactIonCollision this is ION_ELASTIC (momentum exchange) or CHARGE_EXCHANGE (charge
exchange)

• 3rd Line: Number of collision data points (integer).

• 4th Line and later: Collision cross section information for the ion-neutral collision event. The data is supplied
in two columns of floating point values, separated by white space. The first column contains the incident ion
energy values in units of eV and the second column contains the respective ion-neutral cross-section values in
units of 𝑚2.

18
ELASTIC
0.0
10
2.0 3.5e-19
5.0 5.e-19
10.0 6.e-19
15.0 5.5e-19
17.0 4e-19
20.0 3.e-19
50.0 2.e-19
100.0 1.e-20
250.0 1.e-21
1000.0 1.e-22

54
CHARGE_EXCHANGE
10
0.5 5.19e-19
1.0 4.57e-19
2.0 3.95e-19
5.0 3.13e-19

(continues on next page)

3.13. ImpactCollider / ImpactCollision 335

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

10.0 2.52e-19
20.0 1.9e-19
40.0 1.29e-19
60.0 9.26e-20
100.0 4.71e-20
150.0 1.10e-20

Example ImpactCollision Block inside ImpactCollider

<ImpactCollider electronHeGasCollisions>

neutralGas = [HeNeutralGas]
impactSpecies = [electrons]
neutralGasTemp = GAS_TEMP_IN_K
<ImpactCollision ElecImpElastic>
kind = impactElastic
crossSectionDataType = [userDefined]
crossSectionDataFile = [elasticCS.dat]
scatteringType = uniform

</ImpactCollision>

<ImpactCollision ElecImpExcitation1>
kind = impactExcitation
crossSectionDataType = [userDefined]
crossSectionDataFile = [excitation1CS.dat]
scatteringType = uniform

</ImpactCollision>

<ImpactCollision ElecImpExcitation2>
kind = impactExcitation
crossSectionDataType = [userDefined]
crossSectionDataFile = [excitation2CS.dat]
scatteringType = uniform

</ImpactCollision>

<ImpactCollision elecImpIonization>
kind = impactIonization
crossSectionDataType = [userDefined]
crossSectionDataFile = [ionizationCS.dat]
ionizedElectronSpecies = [electrons]
ionSpecies = [He1]
depleteBackgroundGas = false
scatteringType = uniform

</ImpactCollision>

</ImpactCollider>

3.14 Monte Carlo Interactions (DEPRECATED)

Note: Collisions set up using the Monte Carlo Interactions frame work will still work in VSim 10 simulations, but
we recommend converting simulations to the new Reactions Framework

336 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

3.14.1 MonteCarloInteractions Block

MonteCarloInteractions

Blocks enable random processes in VSim, such as the modeling of random interactions between real particles or the
random production of particles due to processes like tunneling ionization. These interactions can be modeled in a
fully-kinetic fashion (i.e., with macroparticles colliding with other macroparticles) or in a partially- or non-kinetic
fashion with fluids.

The MonteCarloInteractions pages describe the kinds of IncidentSelector and the kinds of Interaction blocks that have
been implemented.

Note: With variable-weight particles, once it is determined that a reaction has occurred, the smaller of the two
initial-state particles weight*number-or-particles-in-macro-particle is used to compute the number of collision events
that occur. This number of “real” particles is subtracted from the initial state macroparticle (i.e. the weight is reduced)
and another particle of the lighter weight is produced. If the computed weight goes below 0, then it is deleted.

For example, e + H2 -> H2+ + 2e-

For e (of weight w_e) and H2 (of weight w_H2), after the reaction one has two electrons, each of weight w_e, one
H2+ of weight w_e, and one H2 of weight (w_H2 - w_e).

Note: Caution should be exercised when using binaryChargeExchange and binaryElastic reactions in the Monte
Carlo framework with variable-weight particles; the results may be unreliable. Consider using the newer Reactions
framework instead.

MonteCarloInteractions Parameters

There is only one kind of MonteCarloInteractions block, and therefore no kind attribute is needed.

The MonteCarloInteractions block must contain one (and only one) IncidentSelector block, which determines the
algorithm for selecting which random incidents in a given time step are performed and in which order.

The MonteCarloInteractions block can contain any number of NullInteraction and Interaction blocks. The NullInter-
action blocks pertain to non-kinetic interactions, where no macroparticles interact (though macroparticles may be
produced). The Interaction blocks pertain to full- or partially-kinetic interactions, where macroparticles interact with
other macroparticles or fluids.

Note:

BuiltIn The built in cross sections that exist vary with the type of collision/interaction. Please see the chart below to
learn which cross sections exist for each collision/interaction type.

EEDL Evaluated Electron Data Library (EEDL) data is available for Z=1 to 100 elements. These cross sections
can be downloaded from the International Atomic Energy Agency Nuclear Data Services website (https://www-
nds.iaea.org/epdl97/). You can download either the complete library or individual evaluations. Vorpal cur-
rently uses the eedl/endl format for the libraries, so please be sure to download the right one. Please see
:ref:‘montecarlointeractions-interactions-eedl for more information.

LXcat LXcat is an open-access website for collecting, displaying, and downloading electron and ion data. You can
download the data from the LXcat Website (http://fr.lxcat.net/home/). Please see LXcatFile OAFunc for more
information.

3.14. Monte Carlo Interactions (DEPRECATED) 337

http://fr.lxcat.net/home/

VSim Reference Manual, Release 11.0.1-r3016

ADK The modified ADK (Ammosov, Delone, and Krainov) formula for field ionization, first reported by Penetrante
and Bardsley [Penetrante] and later corrected by Ilkov et al. [Ilkov], gives the ionization rate for any type of
atom. Both time averaged (averagedADK) and time resolved (DCADK) formula are implemented. Please see
fieldIonization or nullFieldIonization for more information.

functionDefined There are too many interaction types and cross sections for us to list sources for each one. Outside
of the EEDL and LXcat databases, many reliable cross sections can be found through publications and other
databases online. Using the functionDefined (or userDefinedFunc for ionization) you may import your own
cross section or ionization rate. Please see OAFunc Cross-Section Interface for more information.

Types of collisions

338 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Cross Sections

Type of collision Reaction Type
vvvv

crossSection

builtIn eedl functionDefined
interpolated expression LXcatFile

impactElastic A + e → A + e
(scatter)

fluid or
species

Xe × × × ×

impactExcitation A + e → A + e
(excited)

fluid or
species

Xe × × × ×

impactIonCollisions A + A+ → A + A+

(momentum ex-
change)
A + A+ → A+ + A
(charge exchange)

fluid Ar, Xe [?] All
others [?]

× × ×

impactIonization A + e → A+ + 2e
(electron impact
ionization)
A + B+ → A+ +
B+ + e
(proton impact ion-
ization)
e + Xe+ → Xe++

+ 2e
(electon impact
double ionization)

fluid or
species

electron im-
pact:
H2, He, CO2,
O2, N2, Ar, Ne,
Xe, Xe+
proton impact:
H, H2, He,
CO2, CO, O2,
N2

× × × ×

negativeIonDetachment A + B− → A + B +
e

fluid H, H2 × × × ×

electronAttachment A + e → A− fluid or
species

All × ×

threeBodyRecombination e + A+ + e → A +
e
(scatter)

species All × ×

chargeExchange A+ + A → A + A+ species All × × ×
binaryChargeExchange A + A+ → A+ + A species All × × ×
binaryRecombination AB+ + e → A + B species All × × ×
binaryIonization A + e → A+ + 2e

(electron impact
ionization)

species All × × ×

binaryExcitation A + e → A + e
(excited)

species Xe, Xe+,
Xe++

× × ×

binaryElastic A + e → A + e
(scatter)
A + A → A + A
(scatter)

species Xe × × ×

binaryDissociation A + e → B + C + e
(excited)

species none × × ×

nullBgAbsorber fluid H, He, C, N,
O, Na, Al, Si,
P, Ar, Fe, Ni,
Cu, Ge, Ag,
Ba, Os, Pt, Au,
Pb, U, Air, Wa-
ter, Stainless

×

3.14. Monte Carlo Interactions (DEPRECATED) 339

VSim Reference Manual, Release 11.0.1-r3016

Ionization Rates

Type of colli-
sion

Background
Type

ionizationKind

builtIn averagedADK
DCADK

userDefinedFunc

interpolated-
FromFile

expres-
sion

LXcat-
File

fieldIoniza-
tion

species H, He, Li, Na,
Rb, Cs

× × ×

nullFieldIon-
ization

fluid H, He, Li, Na,
Rb, Cs

× × ×

Self Interactions

Type of interaction Interac-
tion

Background
Type

crossSection

builtIn eedl functionDefined
interpolated-
FromFile

expres-
sion

LXcat-
File

oneBodyDecay /
VADecay

species N/A N/A N/A N/A N/A

nullSelfCombination a + a →
A

species N/A N/A N/A N/A N/A

nullSelfSplit A → a +
a

species N/A N/A N/A N/A N/A

Example MonteCarloInteractions Block

<MonteCarloInteractions myInteractions>

<IncidentSelector mySelector>
kind=unbiasedSelector

</IncidentSelector>

<NullInteraction absorber>
kind = nullBgAbsorber
species = muons
fluid = hydrogen
specify the stopping power with an OAFunc
stoppingPower = mysp
<OAFunc mysp>

kind = interpolatedFromFile
filename = h2StoppingPower.dat
set bounds of the function from min and max x values in the file.
option specific to kind = interpolatedFromFile
setMinMaxFromFile = 1
f has to be >0.
fmin = 0.

</OAFunc>

(continues on next page)

340 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

charge of the particle for which the stopping power is given
refPtclCharge = ELEMCHARGE
mass of the particle for which the stopping power is given
refPtclMass = PROTMASS
multipleScattering = none
straggling = none

</NullInteraction>

<Interaction Decay>
kind = oneBodyDecay
unstableSpecies = muons
productSpecies = electrons
lifetime = $2.*DT$

</Interaction>

</MonteCarloInteractions>

3.14.2 IncidentSelector Block

IncidentSelector

IncidentSelector: Determines how random incidents are selected. The IncidentSelector block is defined at the
top level of the MonteCarloInteractions block.

IncidentSelector Parameters

Presently, the IncidentSelector can be of two different kinds:

nullOnlySelector:
Works with VSimPD and VSimPA licenses.

To be used if the MonteCarloInteractions‘ block contains only Null Interaction blocks, each interaction is per-
formed consecutively at each time step. If any Interaction blocks are present, they are ignored.

unbiasedSelector
Works with VSimPD and VSimPA licenses.

Selects incidents in an unbiased manner according to their probability only. This selector allows each macropar-
ticle to interact only once per time step.

3.14.3 Interaction/NullInteraction Blocks

Monte Carlo Interactions Introduction

Interaction: Any of the interactions handled by the MonteCarloInteractions block. These interactions
can be separated into two distinct phases. First, each interaction is assumed to have a random probability for
occurrence, which depends on the initial state of the interacting objects. Second, each interact is assumed to
have a randomly determined final state, which also can depend on the initial state of the interacting objects.
MonteCarloInteractions interactions are grouped into three main categories depending on the kind of initial
state modeled by the interaction. The three main categories of interactions are:

Null Interaction: any interaction that does NOT depend upon the full state (position and/or velocity) of
any particle in the initial state. The interaction is forced to occur at every time step (i.e., have a

3.14. Monte Carlo Interactions (DEPRECATED) 341

VSim Reference Manual, Release 11.0.1-r3016

probability of 1). For some null interactions, the initial state of the interaction does not depend upon
kinetically modeled particles, such as field ionization of a gas modeled as a fluid. Alternately, other
null interactions are random processes that always occur, such as the integrated effect of multiple
scattering and energy loss of a particle traveling through a moderating gas.

Unary Interaction: any interaction that depends upon the full state (position and velocity) of only one
particle in the initial state. The interaction is randomly occurring, and whose probability and final
state depend on only one kinetically modeled particle in the initial state. A common kind of unary
interaction is one that involves the ionization of a gas, modeled as a fluid, by an incident particle.

Binary Interaction: any interaction that depends upon the full state (position and velocity) of two distinct
particles in the initial state. The interaction is randomly occurring, and whose probability and final
state depend on two kinetically modeled particles in the initial state. The most common kind of
binary interaction involves the collision of two kinetically modeled particles.

Some interactions model the collision of one fundamental particle with another (though not necessarily
kinetically modeled). For these interactions, the probability for occurrence depends upon the cross section
for the associated scattering event. These cross-section-dependent interactions include:

• unary chargeExchange

• all of the unary impact collisions

• all of the binary interactions

Impact collisions

Impact collisions: Models the interaction of incident ions or electrons with a background fluid neutral gas.

It also models the interaction of incident ions or electrons with kinetic neutral particles. In this setup, the kinetic
neutral particles within each computational cell are assembled together to calculate the neutral particle density
results which will be used in handling the collision algorithm. This model is completely different from the
binary interactions model. In binary interactions, each pair of particles is checked for the possibility of collision
and then the collision is handled. This approach is computationally expensive when there are many particles per
cell in a simulation.

All impact collisions are cross section based. The user can either choose to use the builtIn cross section,
the eedl cross section, in which case an EEDL data file name must be specified, or the functionDefined
cross section, in which case the cross section is defined via an OAFunc function (examples below). The EEDL
(Electron Evaluated Data Library [?] contains electron collision cross section information for monatomic ele-
ments Z = 1 to 100 defined by the International Atomic Energy Agency (IAEA)’s Nuclear Data Services. Vorpal
has interfaces, via the TxPhysics library, that can parse this EEDL data library and obtain the necessary collision
cross section data for the collision handling.

Each impact collision interaction can be represented by an Interaction block, inside the
MonteCarloInteractions block, in the Vorpal input file. There are different kinds of impact collisions:

• impactElastic

• impactExcitation

• impactIonCollisions

• impactIonization

• negativeIonDetachment

• threeBodyRecombination

Electrons/Ions interactions with background fluid neutral gas: In this setup, all impact collisions model inter-
action between a Species (sortSpecies or cellSpecies) and a Fluid representing the neutral gas.

342 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

These two blocks must be defined in the input file and impactSpecies and neutralGas parameter values
must refer to the name of these two blocks respectively.

Electrons/Ions interactions with kinetic neutral gas: In this set up, all impact collisions model interaction be-
tween a incident electron/ion Species and a kinetic neutral particle species. The inNeutrals parameter
value must refer to the name of the Species block for kinetic neutral particle.

Note: These interactions replace the ImpactCollider/ImpactCollision blocks previously present in Vorpal.

Interaction

Interaction blocks pertain to fully-kinetic (binary) or partially-kinetic (unary) interactions, where macroparticles inter-
act with other macroparticles or fluids.

Unary interactions are defined as any interaction that depends upon the full state (position and velocity) of only one
particle in the initial state.

For example, kinetic electron scatter on a fluid, where both the position and velocity of kinetic species matter.

Binary interactions are defined as any interaction that depends upon the full state (position and velocity) of two distinct
particles in the initial state.

For example, two kinetic species collide.

Interaction Parameters

OAFunc: Block to define any cross-section function that the user wishes to use.

Note: The same species block can describe the two species participating in the interaction.

All binary interactions in Vorpal depend on a cross-section. The cross-section in binary interactions can be either
builtIn or user defined using an OAFunc block. Binary interactions‘ work with both basic dynamic species (also
referred to simply as species) and cellspecies and with both constant and variable weight particles.

Note: Although the binary interactions allow a mix of both constant and variable weight particles participating in the
interaction, it is preferable that all species type be either constant weight or variable weight.

NullInteraction

Null interactions are defined as any interaction that does NOT depend upon the full state (position and/or velocity) of
any particle in the initial state.

For example, in nullBgAbsorber, where only kinetic species energy (velocity) matters for the interaction.

NullInteraction Parameters

OAFunc
Block to define any cross-section function that the user wishes to use.

3.14. Monte Carlo Interactions (DEPRECATED) 343

VSim Reference Manual, Release 11.0.1-r3016

Interaction Kinds

Fully-Kinetic Interactions:

binaryChargeExchange

Works with VSimPD license.

Kind of MonteCarlo interaction that models the charge exchange of two particles of the same atomic element.

Note: This feature replaces the chargeExchange feature, which was previously implemented in the Vorpal Collision
feature.

Note: Caution should be exercised when using binaryChargeExchange reactions in the Monte Carlo framework with
variable-weight species kinds; the results may be unreliable. Consider using the newer Reactions framework instead.

binaryChargeExchange Parameters

crossSection (string)
Cross section to be used in the interaction. Possible values are builtIn or functionDefined. See below
for required parameters for each choice.

inSpeciesA (string)
Name of the first input species participating in the charge exchange interaction.

inSpeciesB (string)
Name of the second input species participating in the charge exchange interaction.

outSpeciesA (string)
Name of the output species resulting from particle inSpeciesA exchanging charge with inSpeciesB.

outSpeciesB (string)
Name of the output species resulting from particle inSpeciesB exchanging charge with inSpeciesA.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

The builtIn option is based on the semi-empirical formula from [?] for all gas types except Xe and Ar. For Xe and
Ar background neutral gases the builtIn cross section data is used from the data found in experiments by [?].

If the builtIn cross section type is used the following parameters must be set:

inSpeciesAtomicWeight (real)
Atomic weight of the incident species.

inSpeciesName (string)
Name of the element of the incident species.

344 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = velocity)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example binaryChargeExchange Block

<Interaction chargeXchange>
kind = binaryChargeExchange
inSpeciesA = oxygen0
inSpeciesB = oxygen1
outSpeciesA = oxygen1
outSpeciesB = oxygen0
inSpeciesAtomicWeight = 16.0
speciesName = oxygen
crossSection = builtIn

</Interaction>

binaryRecombination

binaryRecombination

Works with VSimPD license.

kind of MonteCarlo interaction that models the recombination of an electron with an ionized atom.

The builtIn recombination rate coefficient in Vorpal is:

𝐶𝑖 = 𝛼𝑟 + 𝛼𝑑

with:

𝛼𝑟 = 𝐴𝑟𝑎𝑑(𝑇/104)−𝑋𝑟𝑎𝑑

𝛼𝑑 = 𝐴𝑑𝑖𝑇
−3/2 exp(−𝑇0/𝑇) × [1 + 𝐵𝑑𝑖 exp (−𝑇1/𝑇)]

where 𝑇 = 0.5𝑚𝑣2 is the temperature in K, with 𝑣 the relative velocity of the two particles interacting.
The coefficients 𝐴𝑟𝑎𝑑, 𝑋𝑟𝑎𝑑, 𝐴𝑑𝑖, 𝐵𝑑𝑖, 𝑇0 and 𝑇1 are calculated in [?], and must be specified in the input
file.

3.14. Monte Carlo Interactions (DEPRECATED) 345

VSim Reference Manual, Release 11.0.1-r3016

Note: This feature replaces the recombination feature, which was previously implemented in the Vorpal
collisions.

binaryRecombination Parameters

crossSection (string)
Cross section to be used in the interaction. Possible values are builtIn or functionDefined. See below
for required parameters for each choice.

electrons (string)
Name of the species describing the electrons recombining with the ionized atom.

inSpecies (string)
Name of the species describing the ionized atom.

outSpecies (string)
Name of the recombination product species.

intElecMass (real, optional)
Mass of the interacting electron. Default value is the mass specified in the electrons species block.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

The builtIn option is based on the data from Shull and Van Steenberg [?].

If the builtIn cross section type is used the following parameters must be set:

Arad (real)
Coefficient used in the calculation of the recombination rate. This parameter can be found in tables in the paper
by [?].

Xrad (real)
Coefficient used in the calculation of the recombination rate. This parameter can be found in tables in the paper
by [?].

Adi (real)
Coefficient used in the calculation of the recombination rate. This parameter can be found in tables in the paper
by [?].

Bdi (real)
Coefficient used in the calculation of the recombination rate. This parameter can be found in tables in the paper
by [?].

T0 (real)
Coefficient used in the calculation of the recombination rate. This parameter can be found in tables in the paper
by [?].

T1 (real)
Coefficient used in the calculation of the recombination rate. This parameter can be found in tables in the paper
by [?].

346 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = velocity)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example binaryRecombination Block

<Interaction binary>
kind = binaryRecombination
electrons = electrons
intElecMass = 9.1093896999999993e-31
inSpecies = oxygen1
outSpecies = oxygen0
crossSection = builtIn
use parameters for crossSection calculation
Arad = 1.24e-6
Xrad = 6.78e-1
Adi = 4440.0
Bdi = 9.25e-2
T0 = 1.75e5
T1 = 1.45e5

</Interaction>

binaryIonization

binaryIonization

Works with VSimPD and VSimPA licenses.

Models the electron-impact ionization of a kinetically neutral gas species. In the process, the incident
electron is scattered and loses the energy of the secondary electron created.

The builtIn collisional ionization rate in Vorpal is [?]:

𝐶𝑖 = 𝐴𝑐𝑜𝑙𝑇
1/2 exp(−𝑇𝑐𝑜𝑙/𝑇) (1 + 0.1𝑇/𝑇𝑐𝑜𝑙)

−1

where 𝑇 = 0.5𝑚𝑣2 is the temperature in K, with 𝑣 the relative velocity of the two particles interacting.
The coefficients 𝐴𝑐𝑜𝑙 and 𝑇𝑐𝑜𝑙 are calculated in [?], and must be defined in the input file.

3.14. Monte Carlo Interactions (DEPRECATED) 347

VSim Reference Manual, Release 11.0.1-r3016

Note: This feature replaces the ionization feature, which was previously implemented in the Collision
feature.

binaryIonization Parameters

crossSection (string, optional, default = builtIn)
Cross-section to be used in the interaction. Possible values are builtIn or functionDefined. See below
for required parameters for each choice.

electrons (string)
Name of the impact electron species.

intElecMass (real, optional)
Mass of the interacting electron. Default value is the mass specified in the species block.

inSpecies (string)
Name of the background gas species to be ionized.

outSpecies (string)
Name of the ion species resulting from the ionization of inSpecies.

speciesName (string)
Name of the atomic element involved in the ionization process.

thresholdEnergy (real)
Ionization threshold energy used to calculate the energy of the secondary electron.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

The builtIn option is based on the data from [?]. For Xe ionization, the cross-section data is based off [?].

If the builtIn cross-section type is used the following parameters must be set:

Acol (real)
Coefficient used in the calculation of the ionization rate. This parameter can be found in tables in the paper by
[?].

Tcol (real)
Coefficient used in the calculation of the ionization rate. This parameter can be found in tables in the paper by
[?].

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

348 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

crossSectionVariable (string, optional, default = velocity)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example binaryIonization Block

<Interaction ionization>
kind = binaryIonization
electrons = electrons
intElecMass = 9.1093896999999993e-31
speciesName = oxygen
inSpecies = oxygen0
outSpecies= oxygen1
crossSection = builtIn
Acol = 0.000436
Tcol = 1.58e5

</Interaction>

binaryExcitation

binaryExcitation

Works with VSimPD license.

Models the electron-impact of a kinetically modeled species of neutral gas or ions. In the process, the
incident electron is scattered and loses the threshold energy. The scattered electron energy is given by:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐 − 𝜖𝑒𝑥

where 𝜖𝑖𝑛𝑐 and 𝜖𝑒𝑥 are the incident electron energy and the excitation threshold energy, respectively.

Note: Currently supports the electron-impact xenon neutral excitation, electron-impact singly charged
xenon ion excitation, and electron-impact doubly charged xenon ion excitation interaction when using the
builtIn cross-section type.

binaryExcitation Parameter

crossSection (string)
cross-section to be used in the interaction. Possible values are builtIn, eedl or functionDefined. See
below for required parameters for each choice.

inSpeciesA (string, required)
Name of the impact electron species.

inSpeciesB (string, required)
Name of the impact neutral gas or ions.

3.14. Monte Carlo Interactions (DEPRECATED) 349

VSim Reference Manual, Release 11.0.1-r3016

intElecMass (real, optional)
Mass of the impact electron species. If not specified its value is obtained from the mass specified in the
inSpecies species block.

thresholdEnergy (real, optional)
Excitation threshold energy. Default is set to 0.0.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

eedl Parameters

If the eedl cross-section type is used, the following parameters must be set:

crossSectionDataFile (string)
This parameter is necessary when crossSection = eedl is specified and points to the file containing the
EEDL data.

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example binaryExcitation Block

<Interaction excitation>
kind= binaryExcitation
crossSection = builtIn
thresholdEnergy = 19.10
inSpeciesA = electrons
inSpeciesB = xenon2

</Interaction>

binaryElastic

350 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

binaryElastic

Works with VSimPD license.

Models the electron/ion/neutral impact elastic scattering collision with a kinetically modeled gas species. In the
process, the incident particle is scattered and loses the threshold energy. The scattered particle energy is given by:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐 − 𝜖𝑒𝑙

where 𝜖𝑖𝑛𝑐 and 𝜖𝑒𝑙 are the incident particle energy and the elastic threshold energy, respectively.

Note: The builtIn model currently supports the electron-impact xenon neutral elastic scattering, ion-impact xenon
neutral elastic scattering, and xenon neutral-neutral elastic scattering interaction types.

Note: Caution should be exercised when using binaryElastic reactions in the Monte Carlo framework with variable-
weight species kinds; the results may be unreliable. Consider using the newer Reactions framework instead.

binaryElastic Parameters

crossSection (optional, default = builtIn)
Cross-section to be used in the interaction. Possible values are builtIn and functionDefined. See below
for required parameters for each choice.

inSpeciesA (string, required)
Name of the impact species.

inSpeciesB (string, required)
Name of the impact neutral gas.

intElecMass (real, optional)
Mass of the impact electron species. If not specified its value is obtained from the mass specified in the
inSpeciesA species block.

thresholdEnergy (real, optional)
Elastic threshold energy. Default is set to 0.0.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

3.14. Monte Carlo Interactions (DEPRECATED) 351

VSim Reference Manual, Release 11.0.1-r3016

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example binaryElastic Block

<Interaction elastic>
kind= binaryElastic
inSpeciesA = electrons
inSpeciesB = xenon

</Interaction>

binaryDissociation

binaryDissociation

Works with VSimPD license.

Kind of MonteCarlo interaction that models the electron-impact dissociation of a kinetically modeled gas
species.

e + A -> B + C + e

The outgoing species assume isotropic scatter. The outgoing species energy is set using the outSpeciesEn-
ergyRatio parameter that defines the ratio of the energies between the two output species.

binaryDissociation Parameters

electrons (string, required)
Name of the impact electron species.

inSpecies (string, required)
Name of the background species to be dissociated.

intElecMass (string)
Mass of the interacting electron. Default value is the mass specified in the electrons species block.

intSpecMass (string)
Mass of the interacting neutral species. Default value is the mass specified in the inSpecies species block.

outSpecies1 (string, required)
Name of the species product 1 of the dissociation on inSpecies.

outSpecies2 (string, required)
Name of the species product 2 of the dissociation on inSpecies.

outSpec1Mass (string)
Mass of the outgoing species 1. Default value is the mass specified in the outSpecies1 species block.

outSpec2Mass (string)
Mass of the outgoing species 2. Default value is the mass specified in the outSpecies2 species block.

352 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

speciesName (string, required)
Name of the molecular element involved in the dissociation process.

thresoldEnergy (float)
Dissociation threshold energy used to calculate the energy of the secondary electron.

outSpeciesEnergyRatio (float)
Ratio of energies between output species.

crossSection (string)
cross-section to be used in the interaction. Possible values are functionDefined. See below for required
parameters.

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = velocity)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example binaryDissociation Block

<MonteCarloInteractions main>
<IncidentSelector mySelector>
kind=unbiasedSelector

</IncidentSelector>
<Interaction ionization>
kind = binaryDissociation
electrons = electrons
intElecMass = 9.1093896999999993e-31
intSpecMass = 1.e-27
outSpec1Mass = 0.2e-27
outSpec2Mass = 0.8e-27
speciesName = oxygen
inSpecies = oxygen0
outSpecies1 = oxygen1
outSpecies2 = oxygen2
outSpeciesEnergyRatio = 1.
crossSection = functionDefined
crossSectionVariable = velocity
<OAFunc crossSectionFunc>

(continues on next page)

3.14. Monte Carlo Interactions (DEPRECATED) 353

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = interpolatedFromFile
filename = dissXSecVel.dat

</OAFunc>
thresholdEnergy = 15.76

</Interaction>
</MonteCarloInteractions>

Partially-Kinetic Interactions:

chargeExchange

chargeExchange

Works with VSimPD license.

Kind of MonteCarlo interaction that models ionic charge exchange of an ion with a background neutral
gas, based on the method described by Spicer, Wang, and Brieda [?]. The method assumes that the neutral
atoms are slow enough that their velocity is negligible (for the purposes of computing the relative ion-
neutral velocity), and that the ions are moving quickly through the background neutrals. The method also
assumes the charge-exchange is between a neutral atom and a singly-ionized atom.

Note: This feature replaces the cellChargeExchange kind previously implemented in the Vorpal colli-
sions.

chargeExchange Parameters

crossSection (string)
cross-section to be used in the interaction. Possible values are builtIn or functionDefined. See below
for required parameters for each choice.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

If the builtIn cross-section type is used, the following parameters must be set:

inIons (string)
Specifies the initial state ionized Species.

inNeutrals (string)
Specifies the initial state neutral background species.

outNeutrals (string)
Specifies the neutral ion species produced by the interaction.

outIons (string)
Specifies the ionized ion species produced by the interaction.

vthermNeutral (real)
This parameter specifies the thermal velocity, in meters per second, of the initial state neutral background

354 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

species. For the model to be valid, this value should be significantly less than the average velocity of the
initial state ion species.

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = velocity)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example chargeExchange Block

In this example, the builtIn cross-section is used by default. You can refer to impactCollisions interaction
examples to see how to use the cross-section with an OAFunc function.

<Interaction chargeXchange>
kind = chargeExchange
vthermNeutrals=16.0
inIons=oxygen1
inNeutrals=oxygen0
outNeutrals=oxygen0
outIons=oxygen1
crossSection = builtIn

</Interaction>

oneBodyDecay/oneBodyVADecay

oneBodyDecay / oneBodyVADecay: Works with VSimPD license.

Kinds of MonteCarlo interactions that model the decay of an unstable particle into a single final-state particle.

oneBodyVADecay choses the energy and momentum of the final-state particle is based on the V-A theory.
This is valid, for example, for describing the decay of muons into electrons, where the final-state neutrinos are
not kinetically modeled. The momentum of the final-state particle however takes into account that part of the
momentum of the unstable particle is carried away by one or several neutrinos.

Note: This feature replaces the oneBodyVADecay and oneBodyVADecayVW features previously imple-
mented in Vorpal collisions.

3.14. Monte Carlo Interactions (DEPRECATED) 355

VSim Reference Manual, Release 11.0.1-r3016

oneBodyDecay/oneBodyVADecay Parameters

unstableSpecies (string)
This specifies the name of the unstable (decaying) species.

lifetime (real)
This specifies the unstable species lifetime in seconds.

productSpecies (string)
This specifies the Species product of the decay of the unstable species.

isDissociation (boolean)
If true, the unstable species decays into two resultant productSpecies particles.

Example oneBodyDecay Block

<Interaction Decay>
kind = oneBodyDecay
unstableSpecies = muons
productSpecies = electrons
lifetime = 2.2e-6

<Interaction>

fieldIonization

fieldIonization

Works with VSimPA license.

Kind of MonteCarlo interaction that models the tunneling ionization of a kinetically modeled background
pre-ionized gas. This process is similar to the nullFieldIonization, except that the background
gas is described by a Species block, i.e. the background medium can be ionized.

Built-in models for field ionization of H, He, Li, Na, Rb and Cs exist, using Tech-X’s proprietary txphysics
library. This uses the analytical expressions derived by [?].

An OAFunc can be used to get the rate of this interaction. It must provide the effective ionization rate
from the initial state to the final state as a function of electric field E (V/m). This OAFunc can either be
an analytical expression or import from a two column data file. See OAFunc Block for details.

The modified ADK [?] (Ammosov, Delone, and Krainov) formula, updated in [?] and first adapted to
PIC by Penetrante and Bardsley [?] and later corrected by Ilkov et al. [?], which gives the ionization rate
for any type of atom, can also be used. The user must specify the ionization potential of each atom by
using the energy keyword. Both time averaged and time resolved formula are implemented. The time
averaged formula (ionizationKind = averagedADK) should be used when modeling a linearly
polarized electric field and the time step is larger than the oscillation period (i.e., dt is much larger than
the period of the field in question). This might occur, for example, when using an envelope model for the
laser pulse. The time resolved formula (ionizationKind = DCADK) is the correct choice in most
cases, i.e., any time the total electric field is fully time resolved.

The ionization rate for a time resolved field is given by:

𝑅𝑖 = 4.13 × 1016
𝑍2

2𝑛2
eff

(︂
2𝑒

𝑛eff

)︂2𝑛eff 1

2𝜋𝑛eff

(︂
2
𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

)︂2𝑛eff−1

exp

[︂
−2

3

𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

]︂ (︀
s−1
)︀

356 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

where 𝑍 is the charge state of the ionized particle, 𝑛eff = 𝑍/
√︀
𝑈ion/13.6[eV], 𝑈ion is the ionization

potential in eV, 𝐸ℎ = 5.13 × 1011V/m, and 𝐸𝐿 is the electric field strength at the particle position.

The time averaged modified ADK formula is given by:

𝑅𝑖 = 6.6 × 1016
𝑒

𝜋

𝑍2

𝑛4.5
eff

(︂
10.87 × 𝐸ℎ

𝐸𝐿

𝑍3

𝑛4
eff

)︂2𝑛eff−1.5

exp

[︂
−2

3

𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

]︂ (︀
s−1
)︀

Subsequent validation work on the tunneling ionization models in VSim was conducted and is demon-
strated in [?], [?] and [?]. The model is valid up to approximately energy densities of 1023 − 1024 above
which Barrier Suppression Ionization is likely to be the dominant effect, and one way also want to consider
vacuum pair-production in the ionization cross-section.

The model assumes the background is a gas, that is to say that atoms are well separated with respect to
their size. At very high number density, the model may break down. See references to the Mott Transition
for further information.

fieldIonization Parameters

ionizationKind (optional, default = builtIn)
The ionization rate to be used in the interaction. Possible values are builtIn, averagedADK, DCADK and
userDefinedFunc. See below for required parameters for each choice.

input (string)
The species that undergoes the tunneling ionization process.

charge (integer)
Charge of the input species (in unit of |e|).

atomicName (string)
Atomic name of the gas corresponding to the ionized species. Possible names are the fluid names listed in
the nullFieldIonization interaction.

electrons (string)
Name of the species representing the electrons product of the ionization process.

ions (string)
Name of the species representing the ionized particles after the ionization process has occurred.

polarizationFlag (integer)
When the electric field magnitude is approximately constant in a Vorpal time step, 1 is the correct choice; i.e.
any time the total electric field is fully time-resolved. 0 is used for the case where you are modeling a linearly
polarized electric field, but the time step is larger than the oscillation period. This might occur, for example,
when using an envelope model for the laser pulse. This should be applied when the dt of Vorpal is much larger
than the period of the field in question.

frequency (real)
Used in the initialization process; the frequency of a laser pulse if there is such a pulse (the default scenario
when using field ionization). If a static field is used, this parameter should be set to 0.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

3.14. Monte Carlo Interactions (DEPRECATED) 357

VSim Reference Manual, Release 11.0.1-r3016

userDefinedFunc Parameters

If the userDefinedFunc ionizationKind type is used, the following parameters must be set:

OAFunc (block,required)
Effective field ionization rate as a function of electric field E (V/m). If not provided, built in rates are used. The
kinds of OAFunc available for this interaction are interpolatedFromFile, or expression.

Please see OAFunc Block for more information on the OAFunc block.

averagedADK or DCADK Parameters

If the averagedADK or DCADK ionizationKind type is used, the following parameters must be set:

energy (real, required)
The ionization potential in eV.

fieldIonization Block

<Interaction FieldIonizationCs1>
kind = fieldIonization
input = Cs1
charge = 1
atomicName = Cs
electrons = electrons
ions = Cs2
polarizationFlag = 1
frequency = 1.e15

</Interaction>

threeBodyRecombination

threeBodyRecombination

Works with VSimPD license.

A unary interaction that models three-body recombination of electron-electron-ion collisions. In this one
electron is treated in kinetic fashion and the second electron is assumed to be the background electron
density and the ion also assumed as a background ion density.

threeBodyRecombination Parameters

impactSpecies (string, required)
Name of the impact species.

inIons (string, required)
Name of the species representing the input ions.

inElectrons (string, required)
Name of the species representing the input electrons.

outNeutrals (string, required)
Name of the neutral output species.

358 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

vthermNeutrals (float, required)
The thermal velocity of the neutral species.

alpha (float, optional)
Parameter used to calculate the three-body recombination probability.

tempExpFactor (string)
Parameter used to calculate the three-body recombination probability.

crossSection (optional, default = builtIn)
Cross section to be used in the interaction. Possible values are builtIn and functionDefined. See below
for required parameters for each choice.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

threeBodyRecombination Example Block

<Interaction chargeXchange>
kind=threeBodyRecombination
vthermNeutrals=16.0
inIons=XePlus
inElectrons = electrons
impactSpecies = electrons
outNeutrals=Xe0
alpha = 1.125e-39
tempExpFactor = -4.5
crossSection=builtIn

</Interaction>

3.14. Monte Carlo Interactions (DEPRECATED) 359

VSim Reference Manual, Release 11.0.1-r3016

Partially-Kinetic Interactions working with a neutral Fluid block:

impactElastic

impactElastic

Works with VSimPD license.

Kind of MonteCarlo interaction that models the elastic scattering collision of an electron with a back-
ground neutral gas or species. In this kind of collision, the incident electron loses small percentage of its
energy and is scattered after the collision. The scattered electron energy, 𝜖𝑠𝑐, is computed to be:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐

(︂
1 − 2𝑚𝑒𝑀0

(𝑚𝑒 + 𝑀0)2
(1.− cos𝜒)

)︂
where:

𝜖𝑖𝑛𝑐 is the incident electron energy,

𝑚𝑒 is the mass of the incident electron,

𝑀0 is the mass of the neutral gas atom,

𝜒 is the scattering angle given by:

cos𝜒 =
2 + 𝜖𝑖𝑛𝑐 − 2 (1 + 𝜖𝑖𝑛𝑐)

𝑅1

𝜖𝑖𝑛𝑐

The azimuthal scattering angle is given by:

𝜙 = 2𝜋𝑅2

In the above equations 𝑅1 and 𝑅2 are two random numbers uniformly distributed between 0 and 1.

Note: This feature replaces the impactElastic feature previously implemented in Vorpal ionization.

impactElastic Parameters

crossSection (string, required)
Cross section to be used in the interaction. Possible values are builtIn, eedl, and functionDefined.
See below for required parameters for each choice.

impactSpecies (string, required)
Name of the incident particles described by a species block in the input file.

neutralGas (string, required)
Name of the Fluid block describing the background neutral gas. For more information on the kinds of allowed
neutral Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

neutralGasTemp (real, optional, default = 300.)
Temperature of the background neutral gas in Kelvin. This parameter is used to determine the incident ion
velocity relative to the neutral gas atoms and the final ion velocity.

isNeutralGasFluid (string, optional, default = true)
Defines whether the neutral gas tracked is a fluid background or not. The default is true, i.e. the neutral gas is

360 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

fluid. When this option is false, the kinetic neutral species and its gas type must be defined using inNeutrals
and inNeutralsGasType.

inNeutrals (string)

Name of the impact kinetic neutral particle described by a species block in the input file. This
attribute is required when isNeutralGasFluid is set to false.

inNeutralsGasType (string)

Type of the impact kinetic neutral gas particle. This attribute is required when
isNeutralGasFluid is set to false.

depleteBackgroundGas (string, optional, default = true)
A flag to modify the background fluid gas density when performing the interaction.

leaveIncidentUnchanged (bool, optional, default = false)
When enabled, this parameter leaves the impact (incident) particle unchanged after the collision is processed.
This is helpful when the scattering effect of the incident particle is treated as a bulk effect, such as in the
nullBgAbsorber.

force1D (integer, optional, default = 0)
Force the interaction to occur in 1D.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

eedl Parameters

If the eedl cross section type is used, the following parameters must be set:

crossSectionDataFile (string)
Points to the file containing the EEDL data.

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

3.14. Monte Carlo Interactions (DEPRECATED) 361

VSim Reference Manual, Release 11.0.1-r3016

impactElastic Block

<Interaction ElecImpElastic>
kind = impactElastic
neutralGas = ArNeutralGas
impactSpecies = electrons
crossSection = eedl
crossSectionDataFile = eedlAr.dat

</Interaction>

impactExcitation

impactExcitation

Works with VSimPD license.

This kind MonteCarlo interaction models electron-impact excitation collisions with a background neutral
gas. In this collision, the incident electron first loses the energy corresponding to the excitation energy
threshold and is scattered after the collision. The scattered electron energy is given by:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐 − 𝜖𝑒𝑥

where 𝜖𝑖𝑛𝑐 and 𝜖𝑒𝑥 are the incident electron energy and the excitation threshold energy, respectively. For
a user defined cross section with an OAFunc function, the excitation threshold energy must be explicitly
specified in the input file through the excitationThreshold parameter, otherwise Vorpal uses the
threshold limit from the EEDL data set.

The final direction of the incident electron is given by the scattering angle X defined as:

cos𝜒 =
2 + 𝜖𝑠𝑐 − 2(1 + 𝜖𝑠𝑐)

𝑅1

𝜖𝑠𝑐

and the azimuthal angle 𝜙 = 2𝜋𝑅2. In the above equations 𝑅1 and 𝑅2 are two random numbers uniformly
distributed between 0 and 1.

Note: This feature replaces the impactExcitation feature previously implemented in Vorpal ionization.

impactExcitation Parameters

crossSection (string, required)
Cross section to be used in the interaction. Possible values are builtIn, eedl, and functionDefined.
See below for required parameters for each choice.

impactSpecies (string, required)
Name of the incident particles described by a species block in the input file.

neutralGas (string, required)
Name of the Fluid block describing the background neutral gas. For more information on the kinds of allowed
neutral Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

neutralGasTemp (real, optional, default = 300.)
Temperature of the background neutral gas in Kelvin. This parameter is used to determine the incident ion
velocity relative to the neutral gas atoms and the final ion velocity.

362 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

isNeutralGasFluid (string, optional, default = true)
Defines whether the neutral gas tracked is a fluid background or not. The default is true, i.e. the neutral gas is
fluid. When this option is false, the kinetic neutral species and its gas type must be defined using inNeutrals
and inNeutralsGasType.

inNeutrals (string)

Name of the impact kinetic neutral particle described by a species block in the input file. This
attribute is required when isNeutralGasFluid is set to false.

inNeutralsGasType (string)

Type of the impact kinetic neutral gas particle. This attribute is required when
isNeutralGasFluid is set to false.

depleteBackgroundGas (string, optional, default = true)
A flag to modify the background fluid gas density when performing the interaction.

leaveIncidentUnchanged (bool, optional, default = false)
When enabled, this parameter leaves the impact (incident) particle unchanged after the collision is processed.
This is helpful when the scattering effect of the incident particle is treated as a bulk effect, such as in the
nullBgAbsorber.

force1D (integer, optional, default = 0)
Force the interaction to occur in 1D, i.e. the scattered angle of the electron after the interaction is always 0.

excitationThreshold (real)
The excitation threshold energy (in eV). To be set in the case the cross section is user defined with an OAFunc
block. This value is used to determine the scattered electron energy in the excitation collision.

excAtomSpecies (string)
Name of the excited atom species, product of the excitation of an atom of the background neutral gas. To track
the excited atom as separate species, this string must be included in the Interaction block. By ignoring this
parameter makes the interaction not to track the excited atom in simulation.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

eedl Parameters

If the eedl cross section type is used, the following parameters must be set:

crossSectionDataFile (string)
Points to the file containing the EEDL data.

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross section in m2.

3.14. Monte Carlo Interactions (DEPRECATED) 363

VSim Reference Manual, Release 11.0.1-r3016

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example impactExcitation Block

<Interaction CuExcitation>
kind = impactExcitation
neutralGas = CuNeutralGas
impactSpecies = electrons
crossSection = eedl
crossSectionDataFile = eedlCu.dat

</Interaction>

impactIonCollisions

impactIonCollisions

Works with VSimPD license.

This kind of MonteCarlo interaction models ion impact collisions with a background neutral gas. In this
kind of collision the incident ion is scattered (referred to as momentum exchange) or else undergoes charge
exchange collision with the background neutral gas. In the momentum exchange collision, the incident
ion does not lose energy. In the charge exchange interaction, the resulting ion energy is determined based
on the background neutral gas temperature.

Note: This feature replaces the impactIonCollisions feature previously implemented in Vorpal ionization.

impactIonCollisions Parameters

crossSection (string, required)
Cross section to be used in the interaction. Possible values are builtIn, and functionDefined. See
below for required parameters for each choice.

ionCollType (string, required)
Type of ion impact collision, one of:

• MomentumExchange

• ChargeExchange.

impactSpecies (string, required)
Name of the incident particles described by a species block in the input file.

neutralGas (string, required)
Name of the Fluid block describing the background neutral gas. For more information on the kinds of allowed
neutral Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

364 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

neutralGasTemp (real, optional, default = 300.)
Temperature of the background neutral gas in Kelvin. This parameter is used to determine the incident ion
velocity relative to the neutral gas atoms and the final ion velocity.

depleteBackgroundGas (string, optional, default = true)
A flag to modify the background fluid gas density when performing the interaction.

leaveIncidentUnchanged (bool, optional, default = false)
When enabled, this parameter leaves the impact (incident) particle unchanged after the collision is processed.
This is helpful when the scattering effect of the incident particle is treated as a bulk effect, such as in the
nullBgAbsorber.

builtIn Parameters

The builtIn option is based on the semi-empirical formula from Lindsay [?] for all gas types except Xe and Ar.
For Xe and Ar background neutral gases the builtIn cross section data is used from the data found in experiments
by Miller [?].

Please see Types of collisions for the available builtIn gases.

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example impactIonCollisions Block

<MonteCarloInteraction ArIonCollider>

<IncidentSelector mySelector>
kind=unbiasedSelector

</IncidentSelector>

<Interaction ArIonElasticM>
kind = impactIonCollisions
neutralGas = ArNeutralGas
impactSpecies = Ar1

(continues on next page)

3.14. Monte Carlo Interactions (DEPRECATED) 365

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

neutralGasTemp = 300
ionCollType = MomentumExchange
crossSection = builtIn

</Interaction>

<Interaction ArIonCEX>
kind = impactIonCollisions
neutralGas = ArNeutralGas
impactSpecies = Ar1
neutralGasTemp = 300
ionCollType = ChargeExchange
crossSection = builtIn

</Interaction>

</MonteCarloInteractions>

impactIonization

impactIonization

Works with VSimPD and VSimPA licenses.

This kind of MonteCarlo interaction models electron or proton impact ionization of a background neutral
gas. In this kind of collision, the incident electron loses both ionization threshold energy and the energy
value of the secondary electron created during this collision. The scattered particle energy is then given
by:

𝜖𝑠𝑐 = 𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧 − 𝜖𝑠𝑒

where:

𝜖𝑖𝑛𝑐 the incident particle energy

𝜖𝑖𝑧 the ionization energy threshold

𝜖𝑠𝑒 the secondary electron energy which is given by:

𝜖𝑠𝑒 = 𝜔 tan

[︂
𝑅3 tan−1

(︂
𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧

2𝜔

)︂]︂

where 𝜔 is a know function with a value of 15 eV and 𝑅3 is a random number with a uniform distribution
between 0 and 1.

In the case of a functionDefined cross-section using an OAFunc function, the ionization energy
threshold must be explicitly specified in the input file using the ionizationThreshold parameter.
Otherwise, the ionization threshold is either determined from the TxPhysics database or from the EEDL
dataset.

The trajectory of the incident particle after the collision is determined by the scattering angle 𝜒 such that:

cos𝜒 =

(︂
𝜖𝑠𝑐

𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧

)︂0.5

and the azimuthal angle 𝜙 = 2𝜋𝑅2 , where 𝑅2 is a random number uniformly distributed between 0 and
1.

366 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

The scattering angle of the secondary electron is determined using:

cos𝜒𝑠𝑐 =

(︂
𝜖𝑠𝑒

𝜖𝑖𝑛𝑐 − 𝜖𝑖𝑧

)︂0.5

and the azimuthal angle is 𝜙𝑠𝑒 = 2𝜋𝑅2, where 𝑅2 is a random number uniformly distributed between 0
and 1.

The energy of the created ion during this interaction is determined based on the neutral gas temperature.
The neutral gas density is decremented appropriately at the ionization location based on the ion produced
during the reaction.

Note: This feature replaces the impactIonization feature previously implemented in Vorpal ionization.

impactIonization Parameters

crossSection (string, required)
cross-section to be used in the interaction. Possible values are builtIn, eedl, and functionDefined.
See below for required parameters for each choice.

impactSpecies (string, required)
Name of the incident particles described by a species block in the input file.

neutralGas (string, required)
Name of the Fluid block describing the background neutral gas. For more information on the kinds of allowed
neutral Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

neutralGasTemp (real, optional, default = 300.)
Temperature of the background neutral gas in Kelvin. This parameter is used to determine the incident ion
velocity relative to the neutral gas atoms and the final ion velocity.

isNeutralGasFluid (string, optional, default = true)
Defines whether the neutral gas tracked is a fluid background or not. The default is true, i.e. the neutral gas is
fluid. When this option is false, the kinetic neutral species and its gas type must be defined using inNeutrals
and inNeutralsGasType.

inNeutrals (string)
Name of the impact kinetic neutral particle described by a species block in the input file. This attribute is
required when isNeutralGasFluid is set to false.

inNeutralsGasType (string)
Type of the impact kinetic neutral gas particle. This attribute is required when isNeutralGasFluid is
set to false.

depleteBackgroundGas (string, optional, default = true)
A flag to modify the background fluid gas density when performing the interaction.

leaveIncidentUnchanged (bool, optional, default = false)
When enabled, this parameter leaves the impact (incident) particle unchanged after the collision is processed.
This is helpful when the scattering effect of the incident particle is treated as a bulk effect, such as in the
nullBgAbsorber.

force1D (integer, optional, default = 0)
Forces the interaction to occur in 1D.

ionizedElectronSpecies (string)
Name of the secondary electron species, product of the ionization.

3.14. Monte Carlo Interactions (DEPRECATED) 367

VSim Reference Manual, Release 11.0.1-r3016

ionSpecies (string)
Name of the ion species, product of the ionization of an atom of the background neutral gas.

builtIn Parameters

The builtIn cross-section uses data from the TxPhysics library, based on the formulas given in [?].

Please see Types of collisions for the available builtIn gases.

Vorpal determines whether to use electron or proton built-in cross-section data for handling impact ionization based
on the ratio of charge to mass. If the ratio is not that of an electron, Vorpal assumes that the incident particle is a proton
(regardless of whether or not this is actually the case).

The default type of background gas for electron-impact ionization is H2; the default for proton-impact ionization is H.
If you choose a gas for ionization that is not on the correct list, Vorpal will use the default gas for that ionization type.
For example, if you choose H for electron impact ionization, Vorpal will use the default H2. Similarly, if you choose
Ar for protons, Vorpal will default to H.

eedl Parameters

If the eedl cross-section type is used, the following parameters must be set:

crossSectionDataFile (string)
Points to the file containing the EEDL data.

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

ionizationThreshold (real)
The ionization threshold energy (in eV). Must be set if the cross-section is used defined with an OAFunc block.

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example impactIonization Block

368 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<Interaction ArIonizer>
kind = impactIonization
neutralGas = ArNeutralGas
impactSpecies = PrimaryElectrons
crossSection = functionDefined
<OAFunc crossSectionFunc>
kind = interpolatedFromFile
filename = electronCSection.dat

</OAFunc>
ionizedElectronSpecies = SecondaryElectrons
ionSpecies = Ar1
ionizationThreshold = 15.76

</Interaction>

negativeIonDetachment

negativeIonDetachment

Works with VSimPD license.

This kind of MonteCarlo interaction models electron detachment from a negative ion impact collision
with a background neutral gas. In this kind of collision, the incident negative ion loses the electron and
becomes a neutral particle. The detached electron’s energy is calculated with two options. Option 1 (the
default) uses the relation given in Reiser’s book [?]:

𝑇𝑒 =
2.

3.0

√︂
𝑇𝑖𝑛𝑐𝑇𝑡ℎ𝑟

𝑚𝑟𝑎𝑡𝑖𝑜

where:

𝑇𝑒 the detached electron energy in eV

𝑇𝑖𝑛𝑐 the incident negative ion energy in eV

𝑇𝑡ℎ𝑟 the threshold energy in eV (~15.0 eV rough estimate)

𝑚𝑟𝑎𝑡𝑖𝑜 the mass ratio of incident ion and electron which is given by:

𝑚𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑖𝑜𝑛

𝑚𝑒

In option 2, the detached electron energy is given by the energy specified by the user in the input block.
This option is enabled when the attribute useThermalDist is set to 1 in the Interaction block. The
detached electron velocity is set based on the mean velocity vbar and the width of the electron thermal
velocity distribution vsig.

negativeIonDetachment Parameters

crossSection (string, required)
cross-section to be used in the interaction. Possible values are builtIn, and functionDefined. See below
for required parameters for each choice.

impactSpecies (string, required)
Name of the incident particles described by a species block in the input file.

neutralGas (string, required)
Name of the Fluid block describing the background neutral gas. For more information on the kinds of allowed
neutral Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

3.14. Monte Carlo Interactions (DEPRECATED) 369

VSim Reference Manual, Release 11.0.1-r3016

neutralGasTemp (real, optional, default = 300.)
Temperature of the background neutral gas in Kelvin. This parameter is used to determine the incident ion
velocity relative to the neutral gas atoms and the final ion velocity.

isNeutralGasFluid (string, optional, default = true)
Defines whether the neutral gas tracked is a fluid background or not. The default is true, i.e. the neutral gas is
fluid. When this option is false, the kinetic neutral species and its gas type must be defined using inNeutrals
and inNeutralsGasType.

inNeutrals (string)

Name of the impact kinetic neutral particle described by a species block in the input file. This
attribute is required when isNeutralGasFluid is set to false.

inNeutralsGasType (string)

Type of the impact kinetic neutral gas particle. This attribute is required when
isNeutralGasFluid is set to false.

depleteBackgroundGas (string, optional, default = true)
A flag to modify the background fluid gas density when performing the interaction.

leaveIncidentUnchanged (bool, optional, default = false)
When enabled, this parameter leaves the impact (incident) particle unchanged after the collision is processed.
This is helpful when the scattering effect of the incident particle is treated as a bulk effect, such as in the
nullBgAbsorber.

detachmentThreshold (real, optional, default = 0.0)
Negative ion threshold energy (in eV) for detachment reaction.

detachedElectronSpecies (string, required)
Name of the detached electron species, product of the ion detachment reaction.

detachedNeutralSpecies (string, optional)
Name of the neutral species. If this is not set then the neutral species resulting from electron detachment is not
tracked.

crossSecScaleFactor (real, optional, default = 1.0)
A factor to scale the cross-section values.

useThermalDist (integer, optional, default = 0)
A flag to turn-on thermal distribution energy for detached electrons. If this flag is not set, then the electron
energy value is based on the expression given by Reiser’s book.

vbar (real, required)

Mean value of the electron thermal-distribution energy. This parameter is required when
useThermalDist flag is set to 1.

vsig (real, required)

Widths of detached electron thermal energy. This parameter is required when useThermalDist
flag is set to 1.

builtIn Parameters

The cross-section data for these interactions are based on ORNL’s Atomic Data for Fusion [?].

Please see Types of collisions for the available builtIn gases.

370 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

functionDefined Parameters

If the functionDefined cross-section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross-section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, LXcatFile, or expression. The OAFunc must return the value of the
cross-section in m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

Example negativeIonDetachment Block

<Interaction HminusIonDetachment>
kind = negativeIonDetachment
neutralGas = H2NeutralGas
impactSpecies = Hminus
crossSection = builtIn
detachedElectronSpecies = electrons
detachedNeutralSpecies = Hneutral
detachmentThreshold = 0.75

</Interaction>

electronAttachment

electronAttachment

works with VSimPD license.

A MonteCarlo interaction that models electron impact of a background neutral gas to cause attachment.

electronAttachment Parameters

neutralGas (string, required)
Name of the block describing the background neutral gas. For more information on the kinds of allowed neutral
Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

impactSpecies (string, required)
Name of the impact species

ionSpecies (string, required)
Name of the ion species. Product of the ionization of an atom of the background gas.

force1D (integer, option, default = 0)
Flag to force the interaction to occur in 1D.

3.14. Monte Carlo Interactions (DEPRECATED) 371

VSim Reference Manual, Release 11.0.1-r3016

crossSection (optional, default = functionDefined)
Cross section to be used in the interaction. Possible value is only functionDefined. See below for required
parameters.

functionDefined Parameters

If the functionDefined cross section type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name crossSectionFunc must be used inside the Interaction block. The
OAFunc block allows the user to define its own cross section for the interaction, either through a two-
column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, or expression. The OAFunc must return the value of the cross section in
m2.

Please see OAFunc Block for more information on the OAFunc block.

crossSectionVariable (string, optional, default = energy)
Used in the case when an OAFunc function is given for the cross section to specify whether the parameter of the
function is either the:

• Relative collision velocity magnitude of the incident particle in m-1: crossSectionVariable =
velocity

• Kinetic energy of the incident particle in eV: crossSectionVariable = energy

electronAttachment Example Block

<Interaction CO2Attachment>
kind = electronAttachment
neutralGas = CO2NeutralGas
impactSpecies = electrons
use an OAFunc to define the cross section
crossSection = functionDefined
<OAFunc crossSectionFunc>

read data from a file
kind = interpolatedFromFile
filename = electronAttachmentCS.dat

</OAFunc>
ionSpecies = CO2minus

</Interaction>

NullInteraction Kinds

NullInteractions:

nullSelfCombination

nullSelfCombination

Works with VSimPD license.

372 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Kind of MonteCarlo interaction that combines macroparticles of a single species together into one single
macroparticle. This interaction is designed to use variable-weight species.

Note: This feature replaces the selfCombCollision previously implemented in Vorpal
collision.

nullSelfCombination Parameters

species (string)
This specifies the name of the Species block representing the particles to be combined.

threshold (integer)
This specifies the number of particles that must exist in a cell before self-combination.

weight_max (real)
This specifies the maximum variable-weight to be given to a particle when self-combining variable-weight
species.

algorithm_kind (integer)
This specifies the kind of algorithm to be used when combining macroparticles. The possible values are 1, 2,
3, 4 or 5. Option 1 indicates a simple pair-wise combination of macroparticles, deleting one and adding the
number of real particles (weight) to the other (decimation). Option 2 indicates a slightly more accurate pair-
wise approach, deleting one macroparticle and assigning the other the mean position and velocity of the pair as
well as the total weight of the pair (inelastic). Option 3 is an elastic combination approach, where quartets of
macroparticles are combined into pairs that conserve energy and momentum (elastic). Option 4 is a pair-wise
combining approach similar to Option 2 except that it allows users to avoid combining particles that are above
the user specified limit. Option 5 is a pairwise approach in which the particles within a cell are grouped in
velocity phase-space bins and then particles in each velocity phase-space bin are combined pair-wise. In this
approach energy and momentum are conserved.

force1D (integer)
This option only applies to algorithm_kind 3 (elastic). If non-zero (true), this flag forces the velocities of
the new particles to be in the 0 direction, rather than in a random 3D direction.

noCombThresholdKE (float, optional, default = 10000.)
This option only applies to algorithm_kind 4. User specified kinetic energy limit in eV. This enables users
to set certain energetic particles not to participate in self-combination. Only energy values below this limit are
selected for combination.

numPSBins (integer vector, default = [2 2 2])
This option only applies to algorithm_kind 5. This enables users to set up the number of velocity phase-
space bins to consider in grouping particles in velocity phase-space. If the number of phase space bins large,
then the simulation will become slower. A reasonable choice would be using [4 4 4].

Example nullSelfCombination Block

<NullInteraction elecCollision>
kind = nullSelfCombination
species = electrons
algorithm_kind = 1
weight_max = 1000.
threshold = 2

</NullInteraction>

3.14. Monte Carlo Interactions (DEPRECATED) 373

VSim Reference Manual, Release 11.0.1-r3016

nullSelfSplit

nullSelfSplit

Works with VSimPD license.

Kind of MonteCarlo interaction that splits macroparticles of a single species into two or more macropar-
ticles. This interaction is designed to use variable-weight species. This interaction is applied at each time
step.

nullSelfSplit Parameters

species (string, required)
This specifies the name of the Species block representing the particles to be split.

thresholdFunc (block, required)
This specifies the maximum number of macroparticles existing in a cell for the self-split operation to be applied.
The thresholdFunc STFunc can be a space-time dependent function. This threshold is evaluated at each cell and
time step. Splitting will not take place in any cell with a greater number of macroparticles than this threshold.

minWeight (real, optional)
This specifies the minimum variable-weight to be given to a particle when self-split variable-weight species.
The default value is 1e-5. If the original particle weight is below the minWeight then the split is not performed.

algorithmType (integer, optional)
This specifies the type of algorithm to be used when splitting macroparticles. The possible values are 1 and
2. Algorithm 1 (default) performs a simple, fast split operation, whereas option 2 is more accurate but more
computationally intensive. In algorithm 1, the weight of the macro particle is simply split to one half and a new
macroparticle gets added at the same location with one half weight value. In algorithm 2, the split operation is
done such that the number of macro particles within a cell meets the requirement of the threshold value specified
by the user.

splitInterval (integer, optional)
This option specifies the number of time steps interval between two successive split operations. The default
value is 1, i.e. the split operation is done at every time step.

Example nullSelfSplit Block

<NullInteraction electronSelfSplit>
kind = nullSelfSplit
species = electrons
algorithmType = 1
splitInterval = 1
minWeight = 1e-3
<STFunc thresholdFunc>
kind = expression
expression = 100.0

</STFunc>
</NullInteraction>

NullInteractions working with a neutralGas Fluid block:

nullBgAbsorber

374 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

nullBgAbsorber

Works with VSimPD license.

Kind of MonteCarlo interaction that models the loss of energy and scattering of a particle interacting with
a background gas. nullBgAbsorber is used in conjunction with a Fluid block and a Species block.

nullBgAbsorber Parameters

species (string, required)
This is the name of the species interacting with the background gas. The species must be defined in the input
file using a Species block. The background absorber works with both sortSpecies and cellSpecies
in Vorpal. The species can be constant weight or variable weight.

fluid (string, required)
This is the name of the background gas, defined as a Fluid block in the input file. To use the builtIn models
of energy loss, multiple scattering, and energy straggling, the Fluid must be of kind neutralGas. For more
information on the kinds of allowed neutral Gases, please see Working with neutralGas Fluids and the gasKind
Parameter.

stoppingPower (string, required)
This attribute specifies the stopping power function to be used for energy loss in the gas. Possible values are
builtIn or functionDefined. See below for required parameters for each choice.

materialMass (string, required)
The material scatterer mass in kg

fluidTemperature (float, non-negative, optional, default = 0.0)
This parameter specifies the electron temperature of the fluid, in eV. If the temperature is 0.0, then all of the
electronic stopping comes from electrons that are bound to the fluid atoms. If the temperature is non-zero, then
some electronic stopping is from bound electrons, and some is from free electrons.

multipleScattering (string, optional, default = none)
This string specifies which model to use for multiple scattering of the incident particle. The accepted values
are none (turns multiple scattering off), ThomasFermi and LenzJensen (uses TxPhysics models based
on the Thomas-Fermi and Lenz-Jensen screening potentials), and gaussian (a simple gaussian model for the
mean scattering angle). When using the gaussian option, the parameter radiationLength is required,
in 𝑘𝑔/𝑚2, to determine the RMS angular spread experienced by particles traveling through the material.

radiationLength (float, optional)
The radiation length for the gaussian multiple scattering option

straggling (string, optional, default = none)
This string specifies which model to use for energy straggling of the incident particle. The accepted values are
none (turns energy straggling off) and builtIn (uses a TxPhysics model to calculate the Vavilov distribution).

atomicRatio (float, optional)
The ratio of the scatterer’s atomic number to atomic mass

thicknessFunc (block, optional)
Use an STFunc block of name thicknessFunc to specify a thickness function for the material. See below
for parameters related to the STFunc block.

builtIn Parameters

If the builtIn stopping power type is used, the following parameters must be set:

3.14. Monte Carlo Interactions (DEPRECATED) 375

VSim Reference Manual, Release 11.0.1-r3016

speciesAtomicNumber (real)
This parameter is required when using the builtIn stopping power. It defines the effective atomic number (Z)
of the incident species.

functionDefined Parameters

If the functionDefined stopping power type is used, the following parameters must be set:

OAFunc (block, required)
An OAFunc block of name stoppingPowerFunc must be used inside the NullInteraction block.
The OAFunc block allows the user to define its own stopping power for the interaction, either through a
two-column data file or through an expression. The kinds of OAFunc available for this interaction are
interpolatedFromFile, or expression. The OAFunc must return the value of the stopping power
as a function of the kinetic energy in MeV and return a value in MeV-cm2/g .

Please see OAFunc Block for more information on the OAFunc block.

refPtclMass (real)
This parameter is required when using the OAFunc stopping power. This defines the mass of the incident
particle (in kg) for which the stopping power data is given in the stoppingPower OAFunc function.

refPtclCharge (real)
This parameter is required when using the OAFunc stopping power. This defines the charge number of the
incident particle for which the stopping power data is given in the stoppingPower OAFunc function.

thicknessFunc Parameters

Use an STFunc block to specify a thickness function for the material. The following parameters are possible when
using the STFunc block of name thicknessFunc:

gridBoundary (string, required)
The name of the grid boundary for the location of the absorbing material.

materialName (string, required)
The name of the material absorbing the particles

materialDensity (string, required, default = 0.0)
The material scatterer density in m^-3

removeStoppedParticles (string, option, default = 0)
Whether to delete particles once they get stopped in the gas. 0 for false, 1 for true

Example nullBgAbsorber Block

This is an example of using an OAFunc function block to define the stopping power. In this case the stopping power
function is defined through a two-column data file (h2StoppingPower.dat), which gives the proton stopping
power in hydrogen. Blocks <Species refMuon> and <Fluid hydrogen> are also present in the input file.

<NullInteraction absorber>
kind = nullBgAbsorber
species = refMuon
fluid = hydrogen
specify the stopping power with an OAFunc
stoppingPower = functionDefined
materialMass = 1.66e-27

(continues on next page)

376 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<OAFunc stoppingPowerFunc>
kind = interpolatedFromFile
filename = h2StoppingPower.dat
set bounds of the function from min and max x values in the file.
option specific to kind = interpolatedFromFile
setMinMaxFromFile = 1
f has to be >0.
fmin = 0.

</OAFunc>
charge of the particle for which the stopping power is given
refPtclCharge = ELEMCHARGE
mass of the particle for which the stopping power is given
refPtclMass = PROTMASS
multipleScattering = none
straggling = none

</NullInteraction>

Using the builtIn stopping power (requires TxPhysics):

<NullInteraction absorber>
kind = nullBgAbsorber
species = muons
fluid = hydrogen
stoppingPower = builtIn
speciesAtomicNumber = 1.
multipleScattering = LenzJensen
straggling = builtIn

</NullInteraction>

nullFieldIonization

nullFieldIonization

Works with VSimPD and VSimPA licenses.

Kind of MonteCarlo interaction that models tunneling ionization of a background neutral gas, the quantum mechanical
phenomena where by applying an electric field, an electron can escape the potential barrier of an atom represented
by a background neutral gas. The background gas is described by a Fluid block in the input file. If you require a
background gas represented by a Species block see fieldIonization. During the interaction, an ion and an electron
are created; these must be defined by two Species block in the input file. Vorpal uses the field associated with the ion
species to determine if the background gas is ionized. When ions are created due to tunneling ionization, the density
of the background gas is reduced accordingly at the position of the ionization event.

Built-in models for field ionization of H, He, Li, Na, Rb and Cs exist, using Tech-X’s proprietary txphysics library.
This uses the analytical expressions derived by [?].

Alternatively an OAFunc can be used to provide the rate of this interaction. It must provide the effective ionization rate
from the initial state to the final state as a function of electric field E (V/m). This OAFunc can either be an analytical
expression or import from a two-column data file. See OAFunc Block for details.

The modified ADK (Ammosov, Delone, and Krainov) [?] formula, updated in [?] and first adapted to PIC by Penetrante
and Bardsley [?] and later corrected by Ilkov et al. [?], which gives the ionization rate for any type of atom, can also be
used. The user must specify the ionization potential of each atom by using the energy keyword. Both time averaged
and time resolved formula are implemented. The time averaged formula (ionizationKind = averagedADK)
should be used when modeling a linearly polarized electric field and the time step is larger than the oscillation period
(i.e., dt is much larger than the period of the field in question). This might occur, for example, when using an envelope

3.14. Monte Carlo Interactions (DEPRECATED) 377

VSim Reference Manual, Release 11.0.1-r3016

model for the laser pulse. The time resolved formula (ionizationKind = DCADK) is the correct choice in most
cases, i.e., any time the total electric field is fully time resolved.

The ionization rate for a time resolved field is given by:

𝑅𝑖 = 4.13 × 1016
𝑍2

2𝑛2
eff

(︂
2𝑒

𝑛eff

)︂2𝑛eff 1

2𝜋𝑛eff

(︂
2
𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

)︂2𝑛eff−1

exp

[︂
−2

3

𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

]︂ (︀
s−1
)︀

where 𝑍 is the charge state of the ionized particle, 𝑛eff = 𝑍/
√︀
𝑈ion/13.6[eV], 𝑈ion is the ionization potential in eV,

𝐸ℎ = 𝑚2
𝑒𝑞

5
𝑒/(4𝜋𝜖0~4) = 5.13 × 1011V/m, and 𝐸𝐿 is the electric field strength at the particle position.

The time averaged modified ADK formula is given by:

𝑅𝑖 = 6.6 × 1016
𝑒

𝜋

𝑍2

𝑛4.5
eff

(︂
10.87 × 𝐸ℎ

𝐸𝐿

𝑍3

𝑛4
eff

)︂2𝑛eff−1.5

exp

[︂
−2

3

𝐸ℎ

𝐸𝐿

𝑍3

𝑛3
eff

]︂ (︀
s−1
)︀

Subsequent validation work on the tunneling ionization models in VSim was conducted and is demonstrated in [?],
[?] and [?]. The model is valid up to approximately energy densities of 1023 − 1024 above which Barrier Suppression
Ionization is likely to be the dominant effect, and one way also want to consider vacuum pair-production in the
ionization cross-section.

The model assumes the background is a gas, that is to say that atoms are well separated with respect to their size.
At very high number density, 1026/𝑚3 the model may break down. See references to the Mott Transition for further
information.

nullFieldIonization Parameters

ionizationKind (optional, default = builtIn)
The ionization rate to be used in the interaction. Possible values are builtIn, averagedADK, DCADK and
userDefinedFunc. See below for required parameters for each choice.

input (string)
This specifies the name of the Fluid block used to described the neutral gas. For more information on the
kinds of allowed neutral Gases, please see Working with neutralGas Fluids and the gasKind Parameter.

electrons (string)
This specifies the name of the Species block representing the electron product of the ionization.

ions (string)
This specifies the name of the Species block representing the ion product of the ionization.

polarizationFlag (integer)
When the electric field magnitude is approximately constant in a Vorpal time step, 1 is the correct choice; i.e.
any time the total electric field is fully time-resolved. Use 0 for the case where you are modeling a linearly
polarized electric field, but the time step is larger than the oscillation period. This might occur, for example,
when using an envelope model for the laser pulse. This should be applied when the dt of Vorpal is much larger
than the period of the field in question.

frequency (real)
This parameter is used in the initialization process; the frequency of a laser pulse if there is such a pulse (the
default scenario when using field ionization). If a static field is used, this parameter should be set to 0.

builtIn Parameters

Please see Types of collisions for the available builtIn gases.

378 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

userDefinedFunc Parameters

If the userDefinedFunc ionizationKind type is used, the following parameters must be set:

OAFunc (required)
Effective field ionization rate as a function of electric field E (V/m). If not provided, built in rates are used.

Please see OAFunc Block for more information on the OAFunc block.

averagedADK or DCADK Parameters

If the averagedADK or DCADK ionizationKind type is used, the following parameters must be set:

energy (real, required)
The ionization potential in eV.

Example nullFieldIonization Block

<NullInteraction FluidIonizationCs>
kind = nullFieldIonization
input = CsNeutralGas
electrons = electrons
ions = Cs1
polarizationFlag = 1
frequency = 1.e15

</NullInteraction>

3.14.4 Using Cross Section Data

Fluid-neutralGas

Working with neutralGas Fluids and the gasKind Parameter

A Fluid block of kind=neutralGas provides a static background gas density. The block must also have the
parameter gasKind and an InitialCondition of component 0 to give the gas density. The gasKind is required in all
cases, otherwise an exception is thrown.

How this gasKind effects cross-section calculations depends on which interaction is being used. They are summa-
rized in following:

impactElastic
If crossSection = builtIn, the only value of gasKind available is Xe. For all other gasKind, the cross-section
is 0.

If crossSection = eedl, gasKind and the user supplied EEDL data file should match. If gasKind and EEDL
data file do not match, Vorpal still runs, but the results are unphysical.

If crossSection = functionDefined, the user provides an OAFunc that defines the cross-section. In this case,
gasKind does not set the mass, charge, ionization threshold, or other relevant properties, but it is still validated
by the Composer. Thus, it must at least be set to a value that is normally accepted as a gasKind.

impactExcitation`
If crossSection = builtIn, the only value of gasKind available is Xe. For all other gasKind, cross-section is
0.

3.14. Monte Carlo Interactions (DEPRECATED) 379

VSim Reference Manual, Release 11.0.1-r3016

If crossSection = eedl, gasKind and the user supplied EEDL data file should match. If gasKind and EEDL
data file do not match, Vorpal still runs, but the results are unphysical.

If crossSection = functionDefined, the user provides an OAFunc that defines the cross-section. In this case,
gasKind does not set the mass, charge, ionization threshold, or other relevant properties, but it is still validated
by the Composer. Thus, it must at least be set to a value that is normally accepted as a gasKind.

impactIonization
If crossSection = builtIn, available values for gasKind for electron impact are H2, He, CO2, O2, N2, Ar, Ne,
Xe, XePlus and for proton impact are H, H2, He, CO2, CO, O2, N2.

If crossSection = eedl, gasKind and the user supplied EEDL data file should match. If gasKind and EEDL
data file do not match, Vorpal still runs, but the results are unphysical.

If crossSection = functionDefined, the user provides an OAFunc that defines the cross-section. In this case,
gasKind does not set the mass, charge, ionization threshold, or other relevant properties, but it is still validated
by the Composer. Thus, it must at least be set to a value that is normally accepted as a gasKind.

impactIonCollisions
If crossSection = builtIn

If gasKind is Xe or Ar, cross-section is based on [?].

For all other gasKind, cross-section is based on [?].

If crossSection = functionDefined, the user provides an OAFunc that defines the cross-section. In this case,
gasKind does not set the mass, charge, ionization threshold, or other relevant properties, but it is still validated
by the Composer. Thus, it must at least be set to a value that is normally accepted as a gasKind.

No EEDL for ion.

negativeIonDetachment
If crossSection = builtIn, the only available gasKind are H, H2. All other gasKind leads to cross-section = 0.

If crossSection = functionDefined, the user provides an OAFunc that defines the cross-section. In this case,
gasKind does not set the mass, charge, ionization threshold, or other relevant properties, but it is still validated
by the Composer. Thus, it must at least be set to a value that is normally accepted as a gasKind.

electronAttachment
If crossSection = functionDefined, the user provides an OAFunc that defines the cross-section. In this case,
gasKind does not set the mass, charge, ionization threshold, or other relevant properties, but it is still validated
by the Composer. Thus, it must at least be set to a value that is normally accepted as a gasKind.

nullBgAbsorber
If stoppingPower = builtIn, rate values are obtained from TxPhysics. gasKind must be one of following,
otherwise an exception is thrown: H, He, C, N, O, Na, Al, Si, P, Ar, Fe, Ni, Cu, Ge, Ag, Ba, Os, Pt, Au, Pb, U,
Air, Water, Stainless.

nullFieldIonization
A neutralGas Fluid block provides a background gas density field. If crossSection = builtIn, the only available
gasKind are H, He, Li, Na, Rb, and Cs. All other gasKind leads to cross-section = 0.

OAFunc Cross-Section Interface

OAFunc: Particle collision is an important physical process in simulations of various plasma applications, such as
plasma discharges, magnetron sputtering and low temperature plasma processing. Vorpal allows user defined cross-
section in the Monte Carlo Interactions Package. This section describes how a user may include thier own, potentially
proprietary, cross-section data directly for Monte Carlo interactions in Vorpal.

380 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Import Scattering Cross-Section from an External Text Data File

Vorpal will assume you have arranged your data into two columns. It assumes there is no header information. (This
is different to the syntax that was required for some cross-sections in Vorpal 4.2 before the introduction of the new
flexible Monte-Carlo infrastructure to the software). The text file should have two columns, separated by a space. The
first column would contain either the electron or ion energy in eV, or the electron or ion velocity in ms-1, depending
on your choice of crossSectionVariable = energy or crossSectionVariable = velocity in the
parent Interaction block. The second column would contain the cross-section in m2.

Example of Cross-Section Import from an External Text Data File

This is an example of using an OAFunc function block to define the cross-section of a dissociation reaction. The data
is provided through a two-column data file (dissXSecVel.dat), which gives the cross-section as a function of
velocity.

<Interaction ionization>
kind = binaryDissociation
electrons = electrons
intElecMass=9.1093896999999993e-31
intSpecMass=1.e-27
outSpec1Mass = 0.2e-27
outSpec2Mass = 0.8e-27
speciesName = oxygen
inSpecies = oxygen0
outSpecies1 = oxygen1
outSpecies2 = oxygen2
outSpeciesEnergyRatio = 1.
crossSection = functionDefined
crossSectionVariable = velocity
<OAFunc crossSectionFunc>
kind = interpolatedFromFile
filename = dissXSecVel.dat

</OAFunc>
thresholdEnergy = 15.76

</Interaction>

Example Text Data File

In the example above, the text data file might look like this, where as described earlier, the first column is velocity in
units of ms-1and the second column is the cross-section in units of m2.

0 0
2.29542e+06 0
2.35285e+06 3.455e-12
2.3707e+06 3.45522e-12
2.44366e+06 2.10494e-11
2.5145e+06 4.18906e-11
2.65052e+06 8.67665e-11
2.71597e+06 1.08962e-10
...
1.51103e+07 1.17765e-10
1.56807e+07 1.11636e-10
1.6231e+07 1.06171e-10

(continues on next page)

3.14. Monte Carlo Interactions (DEPRECATED) 381

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

1.67633e+07 1.01266e-10
1.72793e+07 9.68342e-11
1.77802e+07 9.28099e-11
1.82674e+07 8.91374e-11
1.8742e+07 8.57709e-11

The text file should have two columns, separated by a space. The first column is the cross-section variable, which can
be either the kinetic energy of the incident particle in eV or the relative collision velocity magnitude of the incident
particle in ms-1. This variable should be consistent with the choice of crossSectionVariable = energy or
crossSectionVariable = velocity in the parent Interaction block. The second column is the cross-section
in m2.

One can generate this data format from any other existing data file. Just keep the two column data and remove all other
information. The resulting file can be used directly in above method.

Specifying the Cross-Section as a Function

Alternatively, it may be possible for the user to specify the function that the cross-section obeys. Note: the example
below is not a physically correct model, it is simply an example of the input file syntax.

<Interaction ionization>
kind = binaryDissociation
electrons = electrons
intElecMass=9.1093896999999993e-31
intSpecMass=1.e-27
outSpec1Mass = 0.2e-27
outSpec2Mass = 0.8e-27
speciesName = oxygen
inSpecies = oxygen0
outSpecies1 = oxygen1
outSpecies2 = oxygen2
outSpeciesEnergyRatio = 1.
crossSection = functionDefined
crossSectionVariable = energy
<OAFunc crossSectionFunc>
kind = expression
expression = H(x-15.6)*x*1.2e-13

</OAFunc>
thresholdEnergy = 15.76

</Interaction>

LXcatFile

LXcatFile OAFunc

LXcat is an open-access website for collecting, displaying, and downloading electron ans ion scattering cross-sections
required for modeling low temperature plasmas. The available databases include electron-neutral and ion-neutral
scattering cross-sections for various kinds of gases. There are fourteen databases that include around one hundred
different materials, such as Hg, Kr, Mg, BF3, C2OH6 and CF4. For each material, cross-sections of ionization,
excitation, as well as many other collisional processes are available at the LXcat website and can be used in PIC
simulations or Boltzmann solvers. These data can be either plotted or downloaded in text format. LXcat database can
be accessed from the LXcat Website (http://fr.lxcat.net/home/).

382 Chapter 3. Text Setup

https://fr.lxcat.net/data/set_type.php
http://fr.lxcat.net/home/

VSim Reference Manual, Release 11.0.1-r3016

Particle collision is an important physical process in simulations of various plasma applications, such as plasma dis-
charges, magnetron sputtering and low temperature plasma processing. Vorpal allows user defined cross-section in the
Monte Carlo Interactions Package. In a simulation of a particular material, user can download the cross-section data
for this material from LXcat and use it directly for Monte Carlo interactions in Vorpal.

Import scattering cross-section from LXcat data file

To import scattering cross-section from LXcat data file, one needs to download the data for corresponding material.
The cross-section data can be found at http://fr.lxcat.net/data/set_type.php. The LXcat website is under constant
development and its contents could change without notice. Please refer to the “how to use” section of LXcat website
for more details about obtaining the cross-section database.

After the LXcat data for a particular material is downloaded, it can be directly read in any Vorpal Monte Carlo
binary interactions that require a cross-section. The LXcat cross-section data is imported via an OAFunc of kind
LXcatFile, specifying the file name and type of collision. In order to use this OAFunc in the Interaction block,
the crossSection should be set as functionDefined, the OAFunc of kind LXcatFile must be named as
crossSectionFunc, and the option crossSectionVariable should be set as energy.

LXcatFile OAFunc Parameters

filename (string)
Name of the file that contains downloaded LXcat cross-section data.

typeOfCollision (string)
The type of the collision. This must exactly match the first line of the LXcat defining block. In the example
here, it is ELASTIC

ELASTIC
Xe
4.200000e-6
SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe, Elastic
PARAM.: m/M = 0.0000042, complete set
COMMENT: elastic momentum transfer.
UPDATED: 2012-04-13 18:41:58
COLUMNS: Energy (eV) | cross-section (m2)

Process (string)
Name of the target particle species and interaction process. This must exactly match the second line of the LXcat
defining block. In the example here, it is Xe

ELASTIC
Xe
4.200000e-6
SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe, Elastic
PARAM.: m/M = 0.0000042, complete set
COMMENT: elastic momentum transfer.
UPDATED: 2012-04-13 18:41:58

(continues on next page)

3.14. Monte Carlo Interactions (DEPRECATED) 383

http://fr.lxcat.net/data/set_type.php

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

COLUMNS: Energy (eV) | cross-section (m2)

Option (string, optional, no default value)
This is an optional parameter and if it is used, it must exactly match the third line of the LXcat defining block.
In the example here, it is 4.200000e-6

ELASTIC
Xe
4.200000e-6
SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe, Elastic
PARAM.: m/M = 0.0000042, complete set
COMMENT: elastic momentum transfer.
UPDATED: 2012-04-13 18:41:58
COLUMNS: Energy (eV) | cross-section (m2)

Comments (string, optional, no default value)
This is an optional parameter and if it is used, it must exactly match the COMMENT line of the LXcat defining
block, i.e. user comments and reference information of the LXcat data. In the example here, it is elastic
momentum tranfer.

ELASTIC
Xe
4.200000e-6
SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe, Elastic
PARAM.: m/M = 0.0000042, complete set
COMMENT: elastic momentum transfer.
UPDATED: 2012-04-13 18:41:58
COLUMNS: Energy (eV) | cross-section (m2)

outerBoundsValue (string, optional, default "except")
This controls how the OAFunc interpolates output data when the input value is out of bounds of the data file.
“except” throws an exception and the code stops running. “null” uses 0.0 whenever the input value is out of
bounds. “constant” uses the data at lower or upper bound when the input value is smaller or larger than the
lower and upper bounds. If it sets as ” ” (an empty string), a linear interpolation based on two data points at the
boundary will be used to obtain the outbound value, which may generate inaccurate or nonphysical cross-section
value.

Example interaction Block using LXcat cross-section

<Interaction CO2Excitation>
kind = impactExcitation
neutralGas = CO2Gas
impactSpecies = Electrons
crossSectionVariable = energy
crossSection = functionDefined

(continues on next page)

384 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<OAFunc crossSectionFunc>
kind = LXcatFile
filename = lxcat.dat
typeOfCollision = EXCITATION
Process = "CO2 -> CO2*(7.0eV)"
Option = "7.000e+0 / threshold energy"
Comments = "COMMENT: Electronic Excitation. ENERGY LOSS =7eV"
outBoundsValue = "null"

</OAFunc>
</Interaction>

LXcatFile Data Format

For the LXcat data file to work, it must have the proper format. Unfortunately, the LXcat headers and format have
been modified since it was implemented in Vorpal. Therefore, a recent download of LXcat data may not work with
Vorpal without some minor modifications first.

Vorpal uses the string ----- (5 dashes in a row, no spaces) to locate the headers and cross-section data. There must
be a minimum of 5 dashes starting in the left most column of the file in order for the header to be found.

Upon finding the first instance of -----, Vorpal will read the header data. The header data in the .dat file must exactly
match the parameters listed in the .pre file.

If headers do not match, you may run across the error:

Can not find the required data in OAFunc of kind "LXcatFile"..

After locating the header that matches the block in your .pre file, Vorpal will continue its search for the string -----.
It will then start reading in the Energy and Cross-Section* data until it reaches another string -----.

Multiple cross-sections may be included in a single .dat file.

An example of data with the proper format is as follows. There must be a set of dashes ----- before the first header.
Currently, the LXcat downloads do not include this.

EXCITATION
Xe -> Xe(1s5)
8.310000e+0

SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe(1s5), Excitation
PARAM.: E = 8.31 eV, complete set
COMMENT: Excitation XE+e__e + XE*(1s5).
UPDATED: 2009-09-09 21:02:24
COLUMNS: Energy (eV) | cross-section (m2)

8.310000e+0 0.000000e+0
8.470000e+0 2.500000e-22
8.840000e+0 6.300000e-22
9.036000e+0 1.027000e-21
9.380000e+0 8.700000e-22
9.520000e+0 1.800000e-21
9.730000e+0 1.026000e-21
1.049000e+1 1.158000e-21
1.097000e+1 1.180000e-21

(continues on next page)

3.14. Monte Carlo Interactions (DEPRECATED) 385

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

1.165000e+1 1.160000e-21
1.220000e+1 1.126000e-21
1.498000e+1 8.570000e-22
1.746000e+1 6.360000e-22
2.005000e+1 4.640000e-22
2.368000e+1 3.110000e-22
2.746000e+1 2.170000e-22
3.336000e+1 1.180000e-22
3.510000e+1 1.040000e-22
5.000000e+1 0.000000e+0

EXCITATION
Xe -> Xe(1s4)
8.440000e+0

SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe(1s4), Excitation
PARAM.: E = 8.44 eV, complete set
COMMENT: Excitation XE+e__e + XE*(1s4).
UPDATED: 2009-09-09 21:02:47
COLUMNS: Energy (eV) | cross-section (m2)

8.440000e+0 0.000000e+0
1.509000e+1 3.420000e-21
1.718000e+1 4.210000e-21
1.904000e+1 4.770000e-21
2.185000e+1 5.330000e-21
2.506000e+1 5.710000e-21
2.857000e+1 6.000000e-21
3.374000e+1 6.120000e-21
4.130000e+1 6.056000e-21
6.388000e+1 5.390000e-21
8.546000e+1 4.738000e-21
1.000000e+2 4.420000e-21
3.050000e+2 0.000000e+0

EXCITATION
Xe -> Xe(1s3-1s2-2p)
9.690000e+0

SPECIES: e / Xe
PROCESS: E + Xe -> E + Xe(1s3-1s2-2p), Excitation
PARAM.: E = 9.69 eV, complete set
COMMENT: XE+e__e + XE*(1s3+1s2+2p) extrapolated after 40 eV using ln(energy)/energy.
UPDATED: 2009-09-09 21:03:14
COLUMNS: Energy (eV) | cross-section (m2)

9.690000e+0 0.000000e+0
1.004000e+1 1.057000e-21
1.060000e+1 2.127000e-21
1.132000e+1 3.194000e-21
1.227000e+1 4.304000e-21
1.318000e+1 4.840000e-21
1.440000e+1 5.320000e-21
1.574000e+1 5.560000e-21
1.674000e+1 5.660000e-21
1.836000e+1 5.690000e-21

(continues on next page)

386 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

2.081000e+1 5.630000e-21
2.577000e+1 5.360000e-21
3.327000e+1 4.890000e-21
3.965000e+1 4.550000e-21
5.000000e+1 3.800000e-21
1.000000e+2 2.260000e-21
2.000000e+2 1.300000e-21
5.000000e+2 6.100000e-22
1.000000e+3 3.340000e-22

Available materials in LXcat database

There are about one hundred different materials available at LXcat. A short list of some materials that you may
encounter in simulations are in the following. Please refer to the LXcat website for a complete list.

• Ar

• BF3

• C, C2

• C2H2, C2H2+, C2H4, C2H6, C2OH6

• C3, C3H4, C3H6, C3H8, C3N

• CCl2F2, CCl4

• CF, CF2, CF4

• CH, CH+, CH2, CH3, CH4

• CHF3, CNH

• CO, CO2, CO2+

• CONH3, COS, CS

• CaF, CaF+

• Cl2

• Cu

• D2

• F2, F2O

• H, H2, H2+

• H2O, H2S, H4C, HBr, HCHO, HCN, HCP, HCl

• He

• Hg

• Kr

• Mg

• N, N2, N2O, NH3, NO, NO2

• Na

3.14. Monte Carlo Interactions (DEPRECATED) 387

VSim Reference Manual, Release 11.0.1-r3016

• Ne

• O, O2, O3, O-

• PH3

• SF6, SO2

• Si(CH3)4, Si2H6, SiF2, SiH4, SiO

• Xe

EEDL interface

EEDL: Particle collision is an important physical process in simulations of various plasma applications, such as plasma
discharges, magnetron sputtering and low temperature plasma processing. Vsim allows user defined cross-section
in the Monte Carlo Interactions Package. The Evaluated Electron Data Library [?], includes data to describe the
transport of electrons, as well as the initial generation of secondary particles, such as the primary photon due to
bremmsstrahlung, as well as the primary electron due to inelastic scattering and electroionization.

These cross-sections can be downloaded from the International Atomic Energy Agency Nuclear Data Services website.
You can download either the complete library or individual evaluations. Vorpal currently uses the eedl/endl format
for the libraries, so please be sure to download the right one.

The EEDL cross-section database supports minimum energy value from 10 eV (or from the threshold value in inelastic
interactions) and maximum up to 100 GeV. In VSim, when used an elastic interaction with the “eedl” option, a constant
cross-section value is taken for energy values below 10 eV, i.e. it uses the cross-section value of 10 eV for low energy
particles. The EEDL datasets are available for Z=1 to 100 elements.

They work with the following collision types: impactElastic, impactExcitation impactIonization and negativeIonDe-
tachment as described in MonteCarloInteractions.

Import scattering cross-section from EEDL data file

<Interaction ElecImpElastic>
kind = impactElastic
neutralGas = ArNeutralGas
impactSpecies = electrons
crossSection = eedl
crossSectionDataFile = eedlAr.dat

</Interaction>

After the EEDL data for a particular material is downloaded, it can be directly read in any Vsim Monte Carlo interac-
tions of the kinds specified in the interactions table that require a cross-section. In order to use an EEDL cross-section
in the Interaction block, the crossSection should be set as eedl, then the crossSectionDataFile
should be set to the name of the file you intend to use.

EEDL Data Format

An example set of data is given below in the EEDL/ENDL format.

Note: It is very important to make sure you are using the proper format. Vorpal currently uses the eedl/endl format
for the libraries, so please be sure to download the right one.

388 Chapter 3. Text Setup

https://www-nds.iaea.org/epdl97/

VSim Reference Manual, Release 11.0.1-r3016

18000 9 0 0.00000e+00 8912015 2 0.00000e+00 0.00000e+00 0.00000e+00
7 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
1.00000e-05 2.49353e+09
1.25893e-05 2.02388e+09
1.58489e-05 1.64269e+09
1.99526e-05 1.33330e+09
2.51189e-05 1.08218e+09
3.16228e-05 8.78354e+08
1.99526e+04 3.02448e-06
2.51189e+04 1.93916e-06
3.16228e+04 1.24298e-06
3.98107e+04 7.96534e-07
5.01187e+04 5.10324e-07
6.30957e+04 3.26874e-07
7.94328e+04 2.09326e-07
.
.
.
1.00000e+05 1.34020e-07

1
18000 9 0 0.00000e+00 8912015 2 0.00000e+00 0.00000e+00 0.00000e+00
8 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
1.00000e-05 2.49353e+09
1.25893e-05 2.15264e+09
1.58489e-05 1.85836e+09
1.99526e-05 1.60430e+09
2.51189e-05 1.38498e+09
3.16228e-05 1.19564e+09
3.98107e-05 1.03266e+09
5.01187e-05 8.91897e+08
6.30957e-05 7.70321e+08
7.94328e-05 6.65469e+08
1.00000e-04 5.75282e+08
1.25893e-04 4.97317e+08
1.58489e-04 4.29918e+08
1.99526e-04 3.71654e+08
2.51189e-04 3.21434e+08
3.16228e-04 2.78264e+08
3.98107e-04 2.40892e+08
5.01187e-04 2.08539e+08
6.30957e-04 1.80556e+08

If you wish to write your own cross-section data files in EEDL/ENDL format, please refer to [?] which describes the
format. All EEDL data distributed with VSim is freely available to all users.

3.15 History

History

3.15.1 History

Top-level block for recording data from a Vorpal simulation. You can use History blocks for Vorpal to
calculate and record data about fields and particles in a simulation.

History uses the kind parameter to determine which specific data to collect.

3.15. History 389

VSim Reference Manual, Release 11.0.1-r3016

History data is useful for diagnostics and for generating particle position data, as well as determining the
basis for performing current and field parameter adjustment during the simulation.

Throughout a simulation run, Vorpal writes the History data to a separate HDF5 file. The History data file
has the file name suffix _History.h5

When a simulation is started or restarted, Vorpal looks for an existing History file. If Vorpal finds a
History file, Vorpal appends data to contents of that existing file. If Vorpal does not find a History file,
Vorpal creates a new file.

You can create tagged particles that can then be used to generate particle position data by using a History
block. Once you have created a tagged species, you can use History blocks to follow particle trajectories
based on tag values. Learn how to tag particle species in the speciesTrackTag.

You can use Feedback History blocks to adjust parameters based on measured time dependent quantities.
For example, you could automatically adjust the current in a simulation to generate a desired voltage.
Learn how to use Feedback History blocks in historyAsSTFunc.

All Tensor Histories can also be used for feedback, in conjuction with UserFuncs of kind=historyFunc
(see historyFunc).

When Histories Collect Data

Generally, histories collect data at the end of each time step, after all other Vorpal objects have been updated.

However, histories can also collect data after the initialization of Vorpal objects (just before the first time step). Some
histories do not do this; all Tensor Histories do collect data just after initialization by default. To avoid collecting data
after initialization, simply add the following to the <History> block:

<Expression applySteps>
expression = (n > 0)

</Expression>

History Parameters

History block parameters might include:

kind (string or string vector)
Determines type of Field or Species data to be collected in the History data file during the simulation run.
The available field and particle species kinds are detailed in descriptions in the following pages. In addition to
specifying the kind, for each History block you must also specify one of the field, fields, or species keywords
(see below).

keyword (string or string vector)
Indicates species or field(s) for use with specified History kind.

field (string)
Indicates the field for a History kind that reports data for a single field. Specify a field reference in a History
block by using the name of the EmField followed by a dot (.) then the name of the field subobject. Example:
field = multiField.elecField

fields (string vector)
Indicates the fields for a History kind that reports data for multiple fields. Specify references to fields in a
History block by using the name of the EmField followed by a dot (.) then the name of the field subobject.
Example: fields = [multiField.elecField multiField.magField]

390 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

species (string vector)
Indicates particle species type for a History kind that reports data for particle species. Example: species =
[electrons]

Field History

• acceleratingVoltage

• bLoop

• EMfieldEnergy

• fieldAtCoords

• fieldAverage

• fieldAtIndices

• fieldEnergy

• fieldOnSemiCircle

• fieldOnMovingPlane

• fieldOnLine

• fieldPoyn

• integratedSurfaceFieldSquared

• kirchhoffSurfaceIntegral

• peakSurfaceFieldMagnitude

• pseudoPotential

• timeAverage

Particle History

• speciesAbsPtclData

• speciesCurrAbs

• speciesCurrEmit

• speciesDiag

• speciesEnergy

• speciesEngyAbs

• speciesMomen

• speciesNumberOf

• speciesNumPhysical

• speciesRmsDistToAxis

• speciesRmsMomen

• speciesRmsPosition

• speciesTrackTag

3.15. History 391

VSim Reference Manual, Release 11.0.1-r3016

• speciesDataOnPlane

History Operation Histories

• binaryOperation

Feedback Histories

• feedbackDesired

• feedbackMeasured

Scalar Histories

• scalarValue

Tensor Histories

• fieldArray

• cellFuncHist

• functionOfTime

• ptclSumData

• speciesAbsPtclData2

• speciesBinning

Tensor Histories are somewhat different from other Histories. They comprise select Histories that store records as a
tensor (or multi-dimensional array). A record is a single tensor (array), and the tensor history is a 1D array of records.
A record could be the value of a field at a certain time, or a sub-array of a field at a certain time, or the properties of a
particle absorbed, etc.

The values stored in Tensor Histories can be accessed (during a simulation) through UserFuncs (see historyFunc) to
provide feedback or to perform further calculations from the results of Tensor Histories.

Briefly, kinds of tensor histories are:

• fieldArray: Stores a subarray of a field (at desired time-steps).

• functionOfTime: Stores a function of time; generally this function involves the values of other tensor
histories. For example, it might multiply two histories together.

• cellFuncHist: Calculates line, surface, and volume integrals, as well as finding field maxima, etc.

• speciesAbsPtclData2: Records data for particles absorbed on a boundary – either data for each particle,
or statistics (averages, etc.). This history is similar to speciesAbsPtclData, but stores multiple data per particle
in a single history.

• speciesBinning: Creates an array of bins, with each binning holding a vector, and for each particle, adds
an amount to a bin chosen according to the particle properties. This history allows general particle distributions
(e.g., velocity distributions) to be stored.

Besides the attribute specific to each kind, they take the following attributes (which should mostly be ignored):

392 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

syncPeriod (non-negative integer, optional, default = 0): Reduces memory use (for parallel simula-
tions with multiple processes per node) by telling the processors to communicate their local histories
(to form the global history) every syncPeriod updates. (E.g., if applyPeriod = 10, so the
history adds a record every 10 time-steps, and syncPeriod = 3, then the the processors will
communicate every 3 updates, which is every 30 time-steps.) With the default value (0), processors
will communicate only when necessary, as at dump time.

This option may reduce memory use in parallel simulations with multiple processes on a single node.
Roughly, it reduces memory use by a factor a bit less than the number of processes per node. For
example, if there are 12 processes per node (all of which share the same memory), and the simulation
runs out of memory after 100 history updates, then setting syncPeriod to a number less than 100
will allow approximately 1000 updates (a bit less than 100 times 12). After this, the only way to
avoid running out of memory is to dump the data (by increasing the simulation’s dumpPeriodicity),
which removes most past history records from memory.

Communication takes time, even in the limiting case of very little data, so one generally wants to
avoid communicating small amounts of data at every time step. Histories that update at every time
step should use a larger syncPeriod. On the other hand, large histories that update infrequently
should use a small syncPeriod, perhaps 1 to 10.

maxMemChunkSize (integer, optional): This option should be rarely used. When used, it should be
set to a rough size (in bytes) of an amount of memory that will always be available. The history
will use chunking to try to avoid temporary use of chunks of memory much larger (a few times)
than maxMemChunkSize. For example, when the history is dumped to disk (for which it must
create a temporary array to store the history), it will dump the data in chunks of size (on the order
of) maxMemChunkSize. This also affects temporary memory use when communicating histories
among different ranks in a parallel simulation. Probably this should be at least 100 MB, and at least
1 kB times the number of processors in a parallel simulation.

minRecordsToKeep (integer, optional): This option should usually not be needed, since Vorpal can
almost almost always figure it out. This option can be set to a minimum number of history records
that Vorpal will keep (e.g., for HistoryFuncs of kind=historyFunc). In particular, Vorpal
deletes history records that have been saved to disk (to save memory), but will retain at least min-
RecordsToKeep, and upon restart, Vorpal does not reload the entire history, but only minRecordsTo-
Keep records. A situation that might require specification of minRecordsToKeep: If a simulation is
run (with no HistoryFunc) and dumped, the input file is modified to add a HistoryFunc, and then the
simulation is restarted from the dump. In this case, Vorpal could not figure out from the first run,
how many past records the second run would require.

3.15.2 Field History

acceleratingVoltage

acceleratingVoltage

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should perform the diagnostic activity of measuring the accelerating voltage received by
an electron traveling at a fixed velocity across a gap in a cavity structure. This history uses the definition
of accelerating voltage found in [?]. This hiStory is useful for RF cavity simulations.

3.15. History 393

VSim Reference Manual, Release 11.0.1-r3016

acceleratingVoltage Parameters

field (string vector, required)
The oscillating electric field that accelerates the test electron.

startPosition (double vector, required)
The starting point for the test electron.

endPosition (double vector, required)
The ending point for the test electron.

velocity (double vector, required)
The velocity of the test electron. This is usually set to the speed of light.

acceleratingVoltage History Example

<History accelVoltage>
kind = acceleratingVoltage
field = multiField.elecField
startPosition = [0. 0. 0.]
endPosition = [0. 0. CYL_LEN]
velocity = LIGHTSPEED

</History>

bLoop

bLoop

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Vorpal computes the enclosed current in Amperes. bLoop does not integrate along a circle. bLoop performs quadra-
ture to compute the B loop 1/mu_0 x S B . dl, which equals the enclosed current (i.e. the original Ampere’s circuital
law). Displacement current is neglected. The unit is Ampere.

Let the B loop go through cell centers so we only have to interpolate the B components between two
values (Yee mesh is assumed).

The point on the loop closest to the origin is thus at

LowerBounds+(1/2,1/2,1/2)=(xmin,ymin,zmin)

and the point on the loop furthest from the origin is at:

UpperBounds-(1/2,1/2,1/2)=(xmax,ymax,zmax)

We'll divide the loop into 6 segments:

1. +x direction, from (xmin, ymin, zmin) to (xmax, ymin, zmin)

2. +y direction, from (xmax, ymin, zmin) to (xmax, ymax, zmin)

3. +z direction, from (xmin, ymax, zmin) to (xmax, ymax, zmax)

4. -x direction, from (xmax, ymax, zmax) to (xmin, ymax, zmax)

5. -y direction, from (xmin, ymax, zmax) to (xmin, ymin, zmax)

394 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

6. -z direction, from (xmin, ymin, zmax) to (xmin, ymin, zmin)

For NDIM=1, the loop then consists of segments 1 and 4, a back and forth line integral that exactly
cancels out, so no need for quadrature.

For NDIM=2, the loop then consists of segments 1, 2, 4 and 5.

For NDIM=3, the loop consists of all 6 segments.

To maximize code reuse we’ll then put conditionals around segments 3 & 6.

bLoop Parameters

Use the bLoop History kind with the following parameters:

field (string, required)
Indicates the field for a History kind that reports data for a single field. Currently, this field should
be a magnetic field on the Yee mesh.

lowerBounds (integer vector, required)
Set loop corner closest to origin.

upperBounds (integer vector, required)
Set loop corner furthest from origin.

bLoop History Example

<History BLoop>
kind = bLoop
field = myEmField.magField
lowerBounds = [5 5 12]
upperBounds = [25 25 12]

</History>

EMfieldEnergy

EMfieldEnergy

Works with VSimEM, VSimPD, and VSimMD licenses.

Indicates Vorpal should calculate the total energy of the electromagnetic fields listed in the fields parameter
in the special case where a GridBoundary is present. The fields in cut cells created by the GridBoundary
are given special treatment to provide a more accurate result.

EMfieldEnergy Parameters

fields (string vector, required)
Indicates the fields for a History kind that reports data for a multiple fields. For this history there should be
exactly two fields where the first is the electric field and the second is the magnetic field.

gridBoundary (string, required)
The GridBoundary used in the energy calculation.

3.15. History 395

VSim Reference Manual, Release 11.0.1-r3016

EMfieldEnergy History Example

<History storedEnergy>
kind = EMfieldEnergy
fields = [multiField.elecField multiField.magField]
gridBoundary = cylindricalCav

</History>

fieldAtCoords

fieldAtCoords

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates point at which to record NDIM . Describes where in the system the data is to be taken (i.e.
the physical coordinate, measured in meters) by using the position (float vector) parameter. Use with the
following parameters:

fieldAtCoords Parameters

field (string, required)
Indicates the field for a History kind that reports data for a single field.

position (float vector, required)
Specify a physical coordinate where the field value is recorded.

components (integer vector, optional)
Specify which components of the field are recorded. If not specified, all available components of the field are
written out.

fieldAtCoords History Example

<History fieldAtCoords>
kind = fieldAtCoords
field = myField.testField
position = [0.5 0.5 0.5]
components = [0 1 2]

</History>

fieldAtCoords History Macro

addFieldAtCoordHist(name,fieldName,comp,px,py,pz)

fieldAverage

fieldAverage

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the average of a field over a specified region. Specify the region with
the upperBounds and lowerBounds parameters, or a Slab.

396 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

fieldAverage Parameters

field (string, required)
Indicates the field for a History kind that reports data for a single field.

components (integer vector, optional)
Specify the average value of which components of the field are recorded. If not specified, all available compo-
nents of the field are written out.

region (slab object, required)
A slab region defined by lowerBounds/upperBounds.

fieldAverage History Example

<History fieldAverage>
kind = fieldAverage
field = myField.testField
components = [0 1 2]
<Slab region>

lowerBounds = [4 4 4]
upperBounds = [7 7 7]

</Slab>
</History>

fieldEnergy

fieldEnergy

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the total energy of fields listed in the fields parameter. fieldEnergy may
have lowerBounds and upperBounds. By default, if you do not specify boundaries for fieldEnergy,
Vorpal calculates the EM field energy of the entire simulation space.

fieldEnergy Parameters

lowerBounds (integer vector)
fieldEnergy may have lowerBounds and upperBounds to measure the field energy only in the region
defined by lowerBounds/upperBounds. By default, if you do not specify boundaries for fieldEnergy,
Vorpal calculates the field energy of the entire simulation space.

upperBounds (integer vector)
fieldEnergy may have lowerBounds and upperBounds to measure the field energy only in the region
defined by lowerBounds/upperBounds. By default, if you do not specify boundaries for fieldEnergy,
Vorpal calculates the field energy of the entire simulation space.

fields (string vector, required)
Indicates the fields for a History kind that reports data for a multiple fields. Depends on the following parameter
singleField; the user must specify either one or two fields for energy calculation.

singleField (string, elecField or magField)
If singleField = elecField, a single electric field must be specified via fields. The energy of this
electrostatic field is calculated and recorded.

3.15. History 397

VSim Reference Manual, Release 11.0.1-r3016

If singleField = magField, a single magnetic field must be specified via fields. The energy of this
magnetostatic field is calculated and recorded.

If singleField is not specified. The energy of electromagnetic field is calculated and recorded. Exactly two
fields must be specified in the fields keyword. The first one is the electric field. The second one is the associated
magnetic field.

fieldEnergy History Example

Using the standard two field option.

<History myFieldEnergy>
kind = fieldEnergy
fields = [multiField.elecField multiField.magField]

</History>

Using the single field option.

<History ElecFieldEnergy>
kind = fieldEnergy
lowerBounds = [0 0 0]
upperBounds = [NX/2 NY/2 NZ/2]
singleField = elecField
fields = [multiField.elecField]

</History>

fieldAtIndices

fieldAtIndices

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Similar to fieldAtCoords, but the point is specified in terms of grid indices (as opposed to physical
coordinates).

(To store field values within a sub-array, see fieldArray.)

fieldAtIndices Parameters

Use the fieldAtIndices History kind with the following parameters:

field (string, required)
Indicates the field for a History kind that reports data for a single field.

point (integer vector, required)
Specify a grid indices where the field value is recorded.

components (integer vector, optional)
Specify which components of the field are recorded. If not specified, all available components of the field are
written out.

398 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

fieldAtIndices History Example

<History fieldAtIndices>
kind = fieldAtIndices
field = myField.testField
point = [3 3 3]
components = [0 2]

</History>

fieldMomen

fieldMomen

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the total momentum of EM fields listed in the fields parameter. fieldMo-
men may have lowerBounds and upperBounds. By default, if you do not specify lowerBounds
and upperBounds for fieldMomen, Vorpal calculates the momentum of the entire simulation space.

fieldMomen Parameters

lowerBounds (integer vector)
fieldMomen may have lowerBounds and upperBounds to measure the field momentum only in the re-
gion defined by lowerBounds/upperBounds parameter. fieldMomen may have lowerBounds and
upperBounds. By default, if you do not specify lowerBounds and upperBounds for fieldMomen,
Vorpal calculates the momentum of the entire simulation space.

upperBounds (integer vector)
fieldMomen may have lowerBounds and upperBounds to measure the field momentum only in the re-
gion defined by lowerBounds/upperBounds parameter. fieldMomen may have lowerBounds and
upperBounds. By default, if you do not specify lowerBounds and upperBounds for fieldMomen,
Vorpal calculates the momentum of the entire simulation space.

fields (string vector, required)
Indicates the fields for a History kind that reports data for a multiple fields. Exactly two fields must be specified
in the fields keyword. The first one is the electric field. The second one is the associated magnetic field.

fieldMomen History Example

<History myFieldMomen>
kind = fieldMomen
fields = [multiField.elecField multiField.magField]

</History>

fieldOnSemiCircle

fieldOnSemiCircle

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should perform the diagnostic activity of tracking any grid field along a circle. The fieldOnSemiCir-
cle diagnostic dumps the E or B field along a circle at equally spaced points. At each point the field will be interpolated

3.15. History 399

VSim Reference Manual, Release 11.0.1-r3016

from values in neighboring cells. fieldOnSemiCircle can be used for 2D or 3D simulations. The circle is defined by
its center, normal (vector) and radius. In 2D simulations, the circle lies in the X-Y plane and a normal should not
be specified. If you specify a circle which extends outside the simulation domain, points along the circle which are
outside the simulation domain will be ignored. Caution: if the circle has no points inside the simulation domain, an
error is generated.

fieldOnSemiCircle Parameters

fields (string vector, required)
Indicates the fields for a History kind that reports data. User can specify multiple fields, but must specify at
least one field. If multiple fields are specified, the values of each component of all these fields are recorded.

numComponents (integer, default value = 1)
Sets how many number of components of each field to record. By default, only the first component is recorded.

center (float vector, optional)
Sets the coordinate of the center of the circle. By default, the center of the simulation domain.

radius (float, optional)
Sets the radius of the circle. By default, one third the length of the smallest dimension.

normal (float vector, optional)
For 3D only, a vector which is perpendicular to the plane of the circle. By default this vector points in the
z-direction, so default 3D circles will lie in an X-Y plane with constant z value.

numPts (integer, default value = 8)
Sets the number of equally spaced interpolation points around the circle. If the circle extends outside the
simulation domain the number of values returned will be less than numPts.

fieldOnSemiCircle History Example

<History fieldOnSemiCircle>
kind = fieldOnSemiCircle
fields = [multiField.elecField multiField.magField]
numComponents = 3

</History>

fieldOnMovingPlane

fieldOnMovingPlane

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should perform the diagnostic activity of tracking any grid fields (electric magnetic or charge plus
current) along a line (2D) or plane (3D) of cells that is perpendicular to one of the Cartesian axes and that can be
moving along this axis. The fieldOnMovingPlane diagnostic dumps the global grid cells defining the line in the
simulation domain. In 2D, fieldOnMovingPlane dumps X and Y. In 3D, fieldOnMovingPlane dumps X, Y, and Z. In
addition, fieldOnMovingPlane dumps the initial position and speed of the plane. You can use fieldOnMovingPlane
for simulations only 2D or higher.

fieldOnMovingPlane Parameters

fields (string vector, required)
Indicates the fields for a History kind that reports data. User can specify multiple fields, but must specify at least

400 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

one field. If multiple fields are specified, the values of each component of all these fields are recorded.

numComponents (integer, default value = 1)
Sets how many number of components of each field to record. By default, only the first component is recorded.

direction (integer, optional, default value = 0)
Direction in which the plane (or line) is moving. 0: x, 1: y, 2: z.

initialLoc (float, required)
Location, on the direction axis, of the plane (or line) at t=0.

speed (float, required)
Velocity of the plane (or line), in m/s, along the direction axis.

cutDir (integer, default value = 0.0)
Axis perpendicular to the line.

cutVal (float, optional, default value = 0.0)
Location of line along axis perpendicular to the line.

fieldOnMovingPlane History Example

Specify history diagnostics
<History fieldAtMovingPlaneWaist>

kind = fieldOnMovingPlane
fields = [myField.elecField myField.magField]
direction = 0
initialLoc = HISTORY_LOC
speed = $ -1. * VX_BOOST $
numComponents = 3

</History>

fieldOnLine

fieldOnLine

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should perform the diagnostic activity of tracking any grid fields (electric magnetic or
charge plus current) along a line of cells that is parallel to one of the Cartesian axes. The fieldOnLine
diagnostic dumps the global grid cells defining the line in the simulation domain. In 2D, fieldOnLine
dumps X and Y. In 3D, fieldOnLine dumps X, Y, and Z. In Vorpal, a line of cells is specified as a volume
in which only one of the dimensions can have multiple cells. The concept of a line of cells does not imply
that all dumped components are located on a straight line.

fieldOnLine Parameters

fields (string vector, required)
Indicates the fields for a History kind that reports data. User can specify multiple fields, but must specify at least
one field. If multiple fields are specified, the values of each component of all these fields are recorded.

lowerBoundsupperBounds (integer vector, required)
Defines physical cell indices parallel to one of the Cartesian axes. All components of the given fields are
recorded along each grid cell of this line of cells. The values that are dumped for each component always
correspond to the values computed by the field solver routine. For example, in an Electromagnetic simulation,
this diagnostic will return the values defined by the Yee Cell.

3.15. History 401

VSim Reference Manual, Release 11.0.1-r3016

fieldOnLine History Example

Specify history diagnostics
<History SeveralFieldsOnLine>

kind = fieldOnLine
fields = [multiField.elecField SumRhoJ]
lowerBounds = [0 2 3]
upperBounds = [NX 3 4]

</History>

History-fieldPoyn

fieldPoyn

works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

indicates Vorpal should calculate the integrated Poynting vector (energy flux) through the area defined by the
upperBounds and lowerBounds of two fields.

fieldPoyn Parameters

lowerBounds
Defines a surface area. Vorpal calculates the integrated Poynting vector through this surface area.

upperBounds
Defines a surface area. Vorpal calculates the integrated Poynting vector through this surface area.

fields (string vector, required)
Indicates the fields for a History kind that reports data for a multiple fields. Exactly two fields must be specified
in the fields keyword. The first one is the electric field. The second one is the associated magnetic field.

fieldPoyn History Example

<History fieldPoynPt>
kind = fieldPoyn
lowerBounds = [1 1 1]
upperBounds = [1 3 3]
fields = [multiField.elecField multiField.magField]

</History>

integratedSurfaceFieldSquared

integratedSurfaceFieldSquared

Works with VSimBase, VSimEM, VSimPD, and VSimMD licenses.

Integrates the magnitude squared of a field over a grid boundary, or part of a boundary, and stores the
result in a history. Units recorded by this history are dependent on the units used for the field for which
the history is taken. That is, when you point this history at an electric field, for example, rather than a
magnetic field or another arbitrary user-defined field, the units will be registered in the same units as the
selected field squared times meters squared.

402 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

One common use for integratedSurfaceFieldSquared is to compute the power dissipated due to heating
the boundary of a device. In the example that follows, the magnitude of the magnetic field (H) is squared
and integrated over the surface of the gridBoundary. Since Vorpal technically uses the magnetic induction
(B) the coefficient parameter is used to convert the B field to the H field. When the surface integral
of the H field squared is multiplied by the resistance at the surface of the conductor, the result is the total
power loss due to surface resistance. Therefore, provided that you have an estimate of the resistance in
the conductor, you can use this code block to compute the total power loss due to ohmic heating at the
boundary.

integratedSurfaceFieldSquared Parameters

alpha (real, default value = 1.0)
Defines the offset distance from the boundary where the field will be measured. Interpolation on the boundary
is effected by values in the boundary itself so a more accurate value for the field is achieved by computing the
field slightly off the surface. The normal distance from the surface where the field is measured is given by alpha
times the cell hypotenuse.

coefficient (real, optional, default = 1.0)
Coefficient by which the surface integral can be multiplied.

field (string, required)
Name of the field whose magnitude is computed at each surface point.

gridBoundary (string, required)
Name of the gridBoundary object over which the integral is performed.

lowerBounds (integer vector)
Lower bounds of the region for which the magnitude squared calculation is to be integrated.

upperBounds (integer vector)
Upper bounds of the region for which the magnitude squared calculation is to be integrated.

integratedSurfaceFieldSquared History Example

<History integralOfMagFieldSquared>
kind = integratedSurfaceFieldSquared
alpha = 1.0
coefficient = $1/(MU0*MU0)$ # Converts B to H
gridBoundary = cylindricalCav
field = multiField.magField

</History>

kirchhoffSurfaceIntegral

kirchhoffSurfaceIntegral

Works with VSimEM license.

Performs a near to far field transformation of the electric field at a specified time and on a specified sphere.

kirchhoffSurfaceIntegral Parameters

fields (string vector, required)
The fields used in the transformation. The ordering E, dEdx, dEdy, dEdz, dEdt is assumed.

3.15. History 403

VSim Reference Manual, Release 11.0.1-r3016

lightSpeed (float, optional)
Speed of light in medium.

dtFar (float, optional)
Time seperation of far field time points.

numSurfacePoint (non-negative integer, optional)
Number of integration points around Kirchhoff circle.

timeInterval (float vector, required)
Time interval over which to compute far field.

position (float vector, optional)
Position of far field point.

centerSphere (float vector, required)
Center of Kirchhoff sphere.

radiusSphere (float, required)
Radius of Kirchhoff sphere.

haveNormalDeriv (0 or 1, optional)
Set to read normal derivatives of fields on Kirchhoff sphere.

radiusFarSphere (float, optional)
Radius of far sphere.

numTheta (non-negative integer, optional)
Number of polar angles on the far sphere.

numPhi (non-negative integer, optional)
Number of azimuthal angles on the far sphere.

kirchhoffSurfaceIntegral History Example

Far field parameters
Radius of the Kirchhoff sphere
$ RS = 1.0
Distance of far field from center of sphere
$ DFF = 10.0
Far field time interval
$ TFFMIN = (DFF + RS) / LIGHTSPEED
$ TFFMAX = TFFMIN + 1.0 / FREQ_ANT
$ NTFAR = 10
$ DTFAR = (TFFMAX - TFFMIN) / NTFAR
Number of integration points around
a circular slice of the Kirchhoff sphere
$ NS = 10

<History farField>
kind = kirchhoffSurfaceIntegral
The ordering E, dEdx, dEdy, dEdz and dEdt is assumed by kirchhoffSurfaceIntegral
fields = [emField.centerE emField.dEdx emField.dEdy emField.dEdz emField.dEdt]
radiusFarSphere = DFF
numTheta = 9
numPhi = 18
dtFar = DTFAR
For a single far field time at TFFMIN, we use a timeInterval of length 0
timeInterval = [TFFMIN TFFMIN]

(continues on next page)

404 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

The Kirchhoff sphere must be contained entirely within the computational domain
centerSphere = [0.0 0.0 0.0]
radiusSphere = RS
numSurfacePoint = NS

</History>

kirchhoffSurfaceIntegral History hdf5 File Structure

The hdf5 datset of the kirchhoff surface integral is structured as follows. The rows represent each timestep of the
simulation.

The columns go in order of numPhi and then numTheta at TFFMIN. Then numPhi and numTheta at TFFMAX. If
NTFAR is greater than 1, there will be more sets of phi/theta points in between TFFMIN and TFFMAX. This yields a
total number of columns of (numPhi+numTheta)*(NTFAR+1). The number of integration points (NS) is used in the
calculation of the values of the history, but do not impact it’s size.

See also kirchhoff.mac to implement a kirchhoffSurfaceIntegral history using macros.

peakSurfaceFieldMagnitude

peakSurfaceFieldMagnitude

Works with VSimBase, VSimEM, VSimPD, and VSimMD licenses.

Computes the peak magnitude of a field over a grid boundary. The value is stored in a history along with the location.
The first element of the history is the peak magnitude of the field, The units of this peak magnitude are expressed in
the same the units of the field itself. The next three values represent the x, y and z positions of the peak value, which
are expressed in meters. You can use peakSurfaceFieldMagnitude to compute the peak surface current observed on
the surface of a device.

In the example that follows for the peakSurfaceFieldMagnitude field history kind, this block computes the maximum
magnetic field (H) magnitude over a surface specified by gridBoundary, and records the value along with its
position on the surface. The B field in Vorpal is converted to H by using the coefficient parameter. Since the
peak H field on a surface corresponds to the peak in the surface current this use of the history can help identify potential
locations on a SRF cavity surface where the quenching of the superconductor may occur.

peakSurfaceFieldMagnitude Parameters

alpha (real, default value = 1.0)
Defines the offset distance from the boundary where the field will be measured. Interopolation on the boundary
is effected by values in the boundary itself so a more accurate value for the field is achieved by computing the
field slightly off the surface. The normal distance from the surface where the field is measured is given by alpha
multiplied by the cell hypotenuse.

coefficient (real, optional, default = 1.0)
Coefficient by which the peak magnitude can be multiplied.

field (string, required)
Name of the field whose magnitude is computed at each surface point.

gridBoundary (string, required)
Name of the gridBoundary object over which the peak will be determined.

3.15. History 405

VSim Reference Manual, Release 11.0.1-r3016

lowerBounds (integer vector)
Lower bounds of the region for which the peak magnitude calculation is to be performed.

upperBounds (integer vector)
Upper bounds of the region for which the peak magnitude calculation is to be performed.

peakSurfaceFieldMagnitude History Example

<History peakMagneticField>
kind = peakSurfaceFieldMagnitude
alpha = 1.0
coefficient = $1/MU0$ # Converts B to H
gridBoundary = cylindricalCav
field = multiField.magField

</History>

pseudoPotential

pseudoPotential

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Calculates the pseudo-potential difference, in Volts, between two points, the reference point and the mea-
sure point. pseudoPotential performs quadrature to compute the difference in pseudo potential:

Φ𝑝𝑠𝑒𝑢𝑑𝑜 =

∫︁ 𝑏

𝑎

E · 𝑑l

between the points 𝑎 (referencePoint) and 𝑏 (measurePoint). The vector potential is assumed time invari-
ant, hence the pseudo. The unit is Volt.

pseudoPotential Parameters

field (string, required)
Name of the magnetic field used to compute the surface currents. Exactly one field name should be specified.
For potential calculation purpose, this field should be an electric field.

referencePoint (integer vector, required)
The grid indices of the reference point.

measurePoint (integer vector, required)
The grid indices of the measured point.

pseudoPotential History Example

<History PseudoPotential3>
kind = pseudoPotential
field = myEmField.elecField
referencePoint = [8 2 5]
measurePoint = [3 8 5]

</History>

406 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

timeAverage

timeAverage: Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Incidates Vorpal should record the value of a specified field and take the time average. timeAverage require
both a history parameter and a timeWindow parameter. This history time averages the output, in the
form of a field, from another history.

timeAverage Parameters

history (string, required)
Indicates the history to reference whose output is to be time averaged.

timeWindow (float, required)
Specifies the time duration to average over.

timeAverage History Example

<History timeAvePseudo>
kind = timeAverage
history = potential
timeWindow = $10*DT$

</History>

Finally, a history must be defined which computes the quantity which is to be time averaged. In the example below, a
pseudoPotential history is used that defines the potential by integration of the electric field along a line.

<History potential>
kind = pseudoPotential
field = varEmField.ElecMultiField
referencePoint = [$NX/2$ 0 $NZ/2$]
measurePoint = [$NX/2$ NY $NZ/2$]

</History>

3.15.3 Particle History

speciesAbsPtclData

speciesAbsPtclData

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the specific information about particles absorbed by a given absorber.
This History collects data on a per particle basis. It can track different kind of physical information
of absorbed species via the choice of ptclAttribute. speciesAbsPtclData has multiple species
or absorbers. If only one species is specified, multiple absorbers can be specified for this species via
ptclAbsorbers. If more than one species are specified, same number of absorbers should be specified
and each species corresponds to exactly one absorber associated with that species.

See also, speciesAbsPtclData2.

3.15. History 407

VSim Reference Manual, Release 11.0.1-r3016

speciesAbsPtclData Parameters

species (string vector, required)
Indicates particle species type for a History kind that reports data for particle species. One or more species can
be specified.

ptclAbsorbers (string vector)
Specifies name(s) of the particle absorber(s) on which the absorbed current due to incident charged particles are
recorded. One or more absorbers can be specified.

ptclAttribute (string, required)
Corresponds to information about the absorbed particle data. One of the following options:

• time: Update time.

• position: Where a particle is absorbed.

• velocity: Velocity when a particle is absorbed.

• energy: Energy when a particle is absorbed.

• weight: Weight of a particle when it is absorbed.

• speciesIndex: Index of an absorbed particle.

• absorberIndex: Index of an absorbed where a particle is absorbed.

• rank: Rank of the grid where a particle is absorbed in parallel computation.

• totalEnergy: Total energy of all the species that is absorbed.

• totalCurrent: Total current of all the species that is absorbed.

• massLoss: Mass of the species that is absorbed at each time step.

component (integer, default value = :samp:`0`)
Only applies when ptclAttribute is position or velocity. Sets which component of the position or velocity vector
of the absorbed particle to record.

speciesAbsPtclData History Example

<History beamTotCurr>
kind = speciesAbsPtclData
species = [beamElectrons testElectrons]
ptclAbsorbers = [beamLeftAbsorber testLeftAbsorber]
ptclAttribute = totalCurrent

</History>

<History testEnergy>
kind = speciesAbsPtclData
species = [testElectrons]
ptclAbsorbers = [testLeftAbsorber]
ptclAttribute = energy

</History>

<History beamTotEnergy>
kind = speciesAbsPtclData
species = [beamElectrons]
ptclAbsorbers = [beamLeftAbsorber]

(continues on next page)

408 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

ptclAttribute = totalEnergy
</History>

<History testPosz>
kind = speciesAbsPtclData
species = [testElectrons]
ptclAbsorbers = [testLeftAbsorber]
ptclAttribute = position
component = 2

</History>

<History testT>
kind = speciesAbsPtclData
species = [testElectrons]
ptclAbsorbers = [testLeftAbsorber]
ptclAttribute = time

</History>

<History testVx>
kind = speciesAbsPtclData
species = [testElectrons]
ptclAbsorbers = [testLeftAbsorber]
ptclAttribute = velocity
component = 0

</History>

<History wmpiRank>
kind = speciesAbsPtclData
species = [mpiElectrons]
ptclAbsorbers = [mpiLeftAbsorber]
ptclAttribute = rank

</History>

speciesCurrAbs

speciesCurrAbs

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the absorbed current for a species by an absAndSav absorber. species-
CurrAbs requires both a species parameter and ptclAbsorbers parameter. This History tracks
the current from charged particles as they impact the absorbers.

speciesCurrAbs Parameters

species (string vector, required)
Indicates particle species type for a History kind that reports data for particle species. Exactly one species
name should be specified.

ptclAbsorbers (string vector)
Specifies name(s) the particle absorber(s), on which the absorbed current due to incident charged particles are
recorded. At least one absorber should be specified. The absorber must be a kind of absorb-and-save. If multiple
absorbers are specified, total absorbed current on all these absorbers are recorded.

3.15. History 409

VSim Reference Manual, Release 11.0.1-r3016

speciesCurrAbs History Example

<History ptclHistCurrent>
kind = speciesCurrAbs
species = [ions]
ptclAbsorbers = [rightAbsorber]

</History>

speciesCurrEmit

speciesCurrEmit

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should record the emitted current of a species from a particle source. speciesCurrEmit
requires both a species parameter and ptclSource parameter. This History tracks the emitted
current of a charged species from a particle source. It only tracks one particle source of one given species.

speciesCurrEmit Parameters

species (string, required)
Indicates particle species type for a History kind that reports data for particle species. Exactly one species
name should be specified.

ptclSource (string, required)
Specifies the name of a ParticleSource. Only one source name should be specified. The ParticleSource must
be a LoaderEmitter (xvLoaderEmitter) type particle source with emit set as true (the default value), or a
sourceType.

sourceType (integer, required)
Specifies the type of a ParticleSource, whether to measure the current from an emitter, a loader, or both. Set it 0
to measure emitter current only, 1 to measure loader current only, and 2 to measure currents from both emitter
and loader combined.

speciesCurrEmit History Example

<History currEmit>
kind = speciesCurrEmit
species = [electrons]
ptclSource = electrons.xvLoaderEmitterSource
sourceType = 0

</History>

speciesDiag

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates VSim should calculate average quantities for a particular species in the entire simulation domain.

410 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

speciesDiag Parameters

diagVar (string vector, required)
Quantities to average. Options are:

aveX, aveY, aveZ (average x, y, and z position)

aveVx, aveVy, aveVz (average x, y, and z velocity)

aveEng (average energy)

numInBandN (number of electrons in conduction band N, where N = 0, 1, or 2)

speciesDiag Particle Species History Example

<History speciesDiag>
kind = speciesDiag
diagVar = [aveEng aveVx aveVy aveVz aveX aveY aveZ numInBand0 numInBand1

→˓numInBand2]
species = [electrons]

</History>

speciesEnergy

speciesEnergy

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate total energy for a particular constant weight species in the whole simu-
lation domain.

speciesEnergy Parameters

species (string vector, required)
Name of a species type to record its total record its total energy in units of Joules over the whole simulation
domain.

speciesEnergy Particle Species History Example

<History energyChromiumAtoms>
kind = speciesEnergy
species = [chromiumAtoms]

</History>

speciesEngyAbs

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the energy absorbed by a given absorber. This history calculates the
energy for all the particles absorbed during one time step. (Joules/second) speciesEngyAbs requires both
a species and ptclAbsorbers. This History tracks the energy from charged particles as they
impact the absorber.

3.15. History 411

VSim Reference Manual, Release 11.0.1-r3016

speciesEngyAbs Parameters

species (string vector, required): Name of a species type to record its total energy in the whole simulation do-
main.

speciesEngyAbs Particle Species History Example

<History ptclHistEnergy>
kind = speciesEngyAbs
species = [ions]
ptclAbsorbers = [rightAbsorber]

</History>

speciesMomen

speciesMomen

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate total momentum for a particular species in the whole simulation domain.
It always records all three components of the momentum. Thus, for some simulations in 1D or 2D, some
components of the momentum may always be zero.

speciesMomen Parameters

species (string vector, required)
Name of a species type to record its total record its total momentum in the whole simulation domain.

speciesMomen Particle Species History Example

<History momenXenon>
kind = speciesMomen
species = [xenon]

</History>

speciesNumberOf

speciesNumberOf

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the total number of macro-particles for a simulation species.

speciesNumberOf Parameters

species (string vector, required)
Name of a species type to record its total number of macro-particles in the whole simulation domain.

412 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

speciesNumberOf Particle Species History Example

Specify history diagnostics
<History numElectrons>

kind = speciesNumberOf
species = [electrons]

</History>

speciesNumPhysical

speciesNumPhysical

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should calculate the total number of physical-particles for a simulation species.

speciesNumPhysical Parameters

species
Name of a species type to record its total number of physical particles in the whole simulation domain. (string
vector, required)

speciesNumPhysical Particle Species History Example

Specify history diagnostics
<History numPhysElectrons>

kind = speciesNumPhysical
species = [electrons]

</History>

speciesRmsDistToAxis

speciesRmsDistToAxis

Works with any VSim license.

Collect the average RMS distance to a given grid axis for all the particles in a species.

speciesRmsDistToAxis Parameters

species (string vector, required)
The name of the species use in the calculation.

axis (integer, required)
The axis to which Vorpal should calculate the average RMS distance.

speciesRmsDistToAxis History Example

3.15. History 413

VSim Reference Manual, Release 11.0.1-r3016

<History rmsDistToAxis>
kind = speciesRmsDistToAxis
species = [electrons]
axis = 0

</History>

speciesRmsMomen

speciesRmsMomen

Works with any VSim license.

Calculate the average RMS momentum for all the particles in a species.

speciesRmsMomen Parameters

species (string vector, required)
The name of the species use in the calculation.

components (integer vector, required)
A vector of components of average RMS momentum that should be recorded.

speciesRmsMomen History Example

<History rmsMomentum>
kind = speciesRmsMomen
species = [electrons]
components = [0 1 2]

</History>

speciesRmsPosition

speciesRmsPosition

Works with any VSim license.

Calculate the average RMS position for all the particles in a species.

speciesRmsPosition Parameters

species (string vector, required)
The name of the species use in the calculation.

components (integer, required)
A vector of components of average RMS position that should be recorded

speciesRmsPosition History Example

414 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<History rmsPositions>
kind = speciesRmsPosition
species = [electrons]
components = [0 1 2]

</History>

speciesTrackTag

speciesTrackTag

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should track the trajectory (position) or the internal variables of a subset of species
particles. The species tracked must be a tagged species where each particle has a unique integer tag
assigned to it. If there is no particle associated with a tag or the particle with a particular tag is removed
from the simulation then the position is reported as all zeros.

speciesTrackTag Parameters

species (string vector, required)
Indicates particle species type for a History kind that reports data for particle species. This species should be
a tagged kind, for example, kind = relBorisTagged.

tags (integer vector)
List of tags of particles that will be tracked.

maximumTag (integer)

Any particle with a tag smaller than the maximumTag will be tracked. The user must specify either tags
or maximumTag.

getTagsFromSpecies (bool)
If true then tags will be generated from initial distribution of particles.

getTagsFromAbsorber (bool)
If true then tags will be generated when particles interact with a specific particle sink.

tagsFromFile (string)
If this is set the tags will be taken from a text with the given name. The format of the file is just one column of
numbers which are the tags to be tracked.

xComponents (integer vector)
Indicates which position components to track.

iComponents (integer vector)
Indicates which internal variables (velocities, weights, etc) to track.

speciesTrackTag Particle Species History Example

<History trajectory>
kind = speciesTrackTag
List of tags to be tracked
tags = [0 1 2 3]
Or give a maximum tag to be tracked. Any particle
with a tag less than the maximum tag will be tracked.

(continues on next page)

3.15. History 415

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

maximumTag = 4
species = [electrons]

</History>

speciesDataOnPlane

speciesDataOnPlane

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Indicates Vorpal should track the particle data (positions and internal variables) on a plane (3D), or a line (2D),
perpendicular to one of the Cartesian axes and that can be moving along this axis.

speciesDataOnPlane Parameters

species (string vector, required)
Indicates particle species type for a History kind that reports data for particle species.

dir (integer, default value = 0)
Direction in which the plane (or line) is moving. 0: x, 1: y, 2: z.

initialPlanePos (float, required)
Location, on the dir axis, of the plane (or line) at t=0.

planeVelocity (float, required)
Velocity of the plane (or line), in m/s, along the dir axis.

speciesDataOnPlane Particle Species History Example

<History ptclOnPlane>
kind = speciesDataOnPlane
initialPlanePos = PLANE_POS
planeVelocity = -VX_BOOST
species = [electrons]

</History>

3.15.4 History Operation Histories

binaryOperation

binaryOperation

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This history does a binary operation on two other histories. The operation is performed at every time step.
Resulting values are recorded by this history. Available binary operations are add, subtract, multiply and
divide.

416 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

binaryOperation Parameters

The binaryOperation takes the following parameters:

histories (required string vector)
A vector of the names of the two histories for which the operation should be performed.

coeffs (required float vector)
A vector containing a two float numbers, specifying coefficients for the binary operation.

operation (required string)
Operation to apply to the histories; one of add, subtract, multiply or divide. Operations are:

add: (coeffs[0]*histories[0]) + (coeffs[1]*histories[1])
subtract: (coeffs[0]*histories[0]) - (coeffs[1]*histories[1])
multiply: (coeffs[0]*histories[0]) * (coeffs[1]*histories[1])
divide: (coeffs[0]*histories[0]) / (coeffs[1]*histories[1])

In divide operation, if coeffs[1]*histories[1] is 0, the resulted value is taken as 0.

binaryOperation History Example

<History QE>
kind = binaryOperation
histories = [NtransSum NseedSum]
coeffs = [1.0 1.0]
operation = divide

</History>

unaryOperation

unaryOperation

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

This history does a unary operation on one history. The operation is performed at every time step. Result-
ing values are recorded by this history. Available unary operation is sum.

unaryOperation Parameters

The unaryOperation takes the following parameters:

history (required string)
The names of the history for which the operation should be performed.

coeff (optional float)
A float number specifying the coefficient for the unary operation. It defaults to 1.

operation (required string)
Operation to apply to the history. Only sum is available at this stage. It is defined as

sum: sum (coeff * history)

3.15. History 417

VSim Reference Manual, Release 11.0.1-r3016

unaryOperation History Example

<History NtransSum>
kind = unaryOperation
history = Ntrans
coeff = 1.0
operation = sum

</History>

3.15.5 Feedback Histories

feedbackDesired

feedbackDesired

feedbackDesired: Works with VSimPD and VSimMD licenses.

FeedbackDesired history objects are used to adjust parameters (currents and fields for example) based on measured
time dependent quantities. An example would be automatically adjusting the current in a simulation to generate a
desired voltage. The feedback desired is calculated based on the computation of the measured voltage compared to
the desired voltage or any measured quantity verses a desired quantity. This factor is then used to adjust the current
(or other value that can be defined in a STFunc block) so that the measured voltage approaches the desired voltage.

The update equation for the feedback factor (calculated in feedback) is given by:

𝐹 [𝑛 + 1] = 𝐹 [𝑁] + (2 * 𝑑𝑡/𝜏) *𝑚𝑎𝑥(−1,𝑚𝑖𝑛(1, 𝐷[𝑛]−𝑀 [𝑛]
|𝐷[𝑛]|+|𝑀 [𝑛]|)) *

𝛼*𝐹 [𝑁]+𝛽*(|𝐷𝑛|+|𝑀𝑛|)
𝛾*𝐹 [𝑁]+𝛿

where:

• 𝐹 [𝑛 + 1]: feedback factor at time level n+1

• 𝑑𝑡: the simulation time step

• 𝜏 : relaxation time constant (timeConstant)

• 𝐷[𝑛]: desired value at time level n

• 𝑀 [𝑛]: measured value at time level n

• 𝛼: Exponential coefficient in feedback calculation (alpha)

• 𝛽: A constant determines linear feedback for small feedback (beta)

• 𝛾: A constant determines linear feedback for large feedback (gamma)

• 𝛿: A constant determines minimum denominator for small feedback (delta)

Using the default values for 𝛼 =1.0, 𝛽 =0.0, 𝛾 =0.0, 𝛿 =1.0 gives:

𝐹 [𝑛 + 1] = 𝐹 [𝑁] * (1.0 + 2.0 * 𝑑𝑡/𝜏 *𝑚𝑎𝑥(−1,𝑚𝑖𝑛(1, 𝐷[𝑛]−𝑀 [𝑛]
|𝐷[𝑛]|+|𝑀 [𝑛]|)))

An STFunc of kind feedbackSTFunc must be defined to make use of a feedbackDesired history. The
sumRhoJ source contains STFunc blocks defining the current source and we would like this current to
depend on a feedback parameter.

Note: Details of feedbackSTFunc and its parameters can be found in feedbackSTFunc.

418 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Required feedbackDesired Parameters

scalar
A scalar which defines the measured value 𝑀 [𝑛]. Previously, only a history could be used to define the measured
value, through feedbackHist.

feedbackHist
Points to another history, in this case a history called potential. Scalars should be used, to be removed in version
10.

timeConstant
Defines how quickly the feedback responds to differences in measured and desired values. If timeConstant
is too small the solution may oscillate about the correct answer quite a bit (or even diverge). If the value is
too large it may take a long time for the feedback factor to reach the desired value. Experimenting with the
timeConstant as in the example feedback code is a simple way to learn to understand this.

numberOfStepsForErrorAverage (integer, optional)
Number of time steps to use in moving average. This is used when the feedbackHist is oscillating.

desiredHistory (STFunc block)
Defines the desired value of the feedbackHist (i.e. the desired value of the potential in the example case).

alpha (optional, default = 1.0)
Exponential coefficient in feedback calculation. 𝛼 in the above equation.

beta (optional, default = 0.0)
A constant determines linear feedback for small feedback. 𝛽 in the above equation.

gamma (optional, default = 0.0)
A constant determines linear feedback for large feedback. 𝛾 in the above equation.

delta (optional, default = 1.0)
A constant determines minimum denominator for small feedback. 𝛿 in the above equation.

feedbackDesired History Example

<History feedbackDesiredHistory>
kind=feedbackDesired
feedbackHist=potential
timeConstant=$75.0*DT$
<STFunc desiredHistory>
kind=expression
expression = 1.0e5

</STFunc>
</History>

Finally, a history must be defined which computes the measured value and which is compared to the desired value in
the feedback equation. In the example below, a pseudo potential is used that defines the potential by integration of the
electric field along a line.

<History potential>
kind = pseudoPotential
field = varEmField.ElecMultiField
referencePoint = [$NX/2$ 0 $NZ/2$]
measurePoint = [$NX/2$ NY $NZ/2$]

</History>

3.15. History 419

VSim Reference Manual, Release 11.0.1-r3016

Note: SumRhoJ sources are actually STFunc blocks, so the feedbackSTFunc can be used to adjust currents in
simulations. Finally, restarts using feedback history require history data to be dumped at every time step.

feedbackMeasured

feedbackMeasured

Works with VSimPD and VSimMD licenses.

FeedbackMeasured history objects are used to pass the measured history information (currents and fields for example)
based on measured time dependent quantities. An example where the the measured current in outer boundaries is used
for setting the particle emission current by which the net loss of particle currents at the boundaries are adjusted in the
simulation domain. Also user has the option to add any value to measured history data.

To be deprecated in version 10. Instead, use scalars and feedbackDesired.

Note: An STFunc of kind historyAsSTFunc must be defined to make use of a feedbackMeasured history.

Details of historyAsSTFunc and its parameters can be found in historyAsSTFunc.

Required feedbackMeasured Parameters

feedbackHist
Points to another history.

addToMeasuredValue (optional, default = 0.)
Allows user to add a given value to the measured value from feedbackHist history.

feedbackMeasured History Example

<History feedbackMeasuredHistory>
kind=feedbackMeasured
feedbackHist=topWallElecCurrent
addToMeasuredValue = wallCurrent

</History>

Finally, a history must be defined which computes the measured value and supply that information to feedbackMea-
sured. In the example below, history of topWallElecCurrent is used that measures the electron current collected at the
top wall.

<History topWallElecCurrent>
kind = speciesCurrAbs
species = [electrons]
ptclAbsorbers = [topWall]

</History>

3.15.6 Scalar Histories

420 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

scalarValue

scalarValue (vector): Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Records one or more scalar values in time, and saves them into History file.

scalarValue Parameters

scalars (string vector, required)
Indicates the names of scalars for a History to record their values in time.

scalarValue History Example

<History scalarHist>
kind = scalarValue
scalars = [multiField.A1 multiField.A2]

</History>

3.15.7 Tensor Histories

fieldArray

fieldArray

Stores field values in a sub-array of the field.

Histories of kind=fieldArray are tensor histories that store values in a sub-array of a <Field>. For example, one
might want to store the values of the electric field E in the 5 × 6 × 4 sub-array from lowerBounds=[2 2 2] to
upperBounds=[7 8 6]. In this case if one specifies components = [0 1 2] the resulting history will be a
1D array of 5 × 6 × 4 × 3 arrays, or a dataset of dimension 𝑛× 5 × 6 × 4 × 3.

(See fieldAtIndices, which is similar, but stores field values for one cell only.)

fieldArray Parameters

field (string, required)
The name of the <Field> for which to record values (the field name may need to be qualified: e.g., myEmField.
yeeE instead of just yeeE).

lowerBounds (vectors of integers, required)
The lower bounds of the field values.

upperBounds (vectors of integers, required)
The upper bounds of the field values. As usual in Vorpal, the range is exclusive of the upper bound.

components (vector of integers, required)

The components of the field to be recorded; e.g., components = [0 1 2] to record all components of a 3-vector
field, or components = [0] to store just the x-component.

3.15. History 421

VSim Reference Manual, Release 11.0.1-r3016

fieldArray History Example

<History E1>
kind = fieldArray
field = emField.elecField
components = [0 1 2]
lowerBounds = [$NX/2$ $NY/2$ $NZ/2$]
upperBounds = [$NX/2+1$ $NY/2+1$ $NZ/2+1$]

</History>

functionOfTime

functionOfTime

Stores values calculated as a function of time and time-step, usually for the purpose of combining results
from other histories

Histories of kind=functionOfTime are ostensibly that: they record a value that depends on the time 𝑡 and time-
step 𝑛. However, their main purpose is to look up results from other Histories and other Vorpal objects, and combine
them in different ways.

If one places a UserFunc of kind=historyFunc inside histCalc (see historyFunc), then histCalc can use the result
from another history in its calculation. It’s important that one pay attention to the order of histories in the input file:
usually one wants the other history (referenced by the historyFunc) to precede the history that uses it.

functionOfTime Parameters

histCalc (code block, required)
An Expression <Expression histCalc> that takes two arguments, t (a scalar float) and n (a scalar in-
teger). Typically this Expression will contain local functions that look up values in other Vorpal objects (e.g.,
fieldFunc).

backupHistCalc (code block, optional)
An Expression <Expression backupHistCalc> with the same argument- and result-types as
<Expression histCalc>, to be evaluated if evaluation of histCalc fails, and if warningLevel <
3.

lastResortHistCalc (code block, optional)
An Expression <Expression lastResortHistCalc> with the same argument- and result-types as
<Expression backupHistCalc>, to be evaluated if evaluation of backupHistCalc fails, and if
backupWarningLevel < 3. If evaluation of this function fails, the simulation will halt.

resultVecDescriptions (vector of strings, optional)
Associates a string description with each component of the history result, to be written in the dump file. If
specified, the number of strings must equal the number of components in the history result; otherwise Vorpal
will halt with an error.

warningLevel (integer in {0, 1, 2}, default 0)
Specifies what to do if evaluation of histCalc fails; if 0, simply evaluate backupHistCalc; if 1, issue a warning
only after the first failure, and evaluate backupHistCalc; if 2, issue a warning and evaluate backupHistCalc; if 3,
halt the simulation.

Note: In a parallel simulation, evaluation may fail on one rank but not on another, so it may be important to
search the output on each rank for warnings and error messages.

422 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

backupWarningLevel (same as warningLevel)
The same as warningLevel, but applies to failure to evaluate backupHistCalc rather than histCalc. If backup-
WarningLevel is less than 3, and backupHistCalc fails, lastResortHistCalc will be evaluated instead (for that
cell).

functionOfTime History Example

<History frequencyEstimate>
kind = functionOfTime
<Expression applySteps>
expression = (n > 0)

</Expression>
<Expression histCalc>
<UserFunc freqSqrEstWeight>
kind = historyFunc
history = frequencyMoments
index = [0]

</UserFunc>
<UserFunc freqSqrEstSum>
kind = historyFunc
history = frequencyMoments
index = [1]

</UserFunc>
<UserFunc freqSqrEstSumSqr>
kind = historyFunc
history = frequencyMoments
index = [2]

</UserFunc>
$ F2_AVGexpr = (freqSqrEstSum(0)/freqSqrEstWeight(0))
$ MSDEVexpr = (freqSqrEstSumSqr(0)/freqSqrEstWeight(0) - F2_AVGexpr^2)
expression = vector(\

sqrt(F2_AVGexpr), \
if(MSDEVexpr > 0., MSDEVexpr, 0.))

resultVecDescriptions = ["frequency estimate (Hz)" "mean square deviation of
→˓frequency-squared (Hz^4)"]
</Expression>

</History>

cellFuncHist

Calculates a value in every cell, from a user-given function, which may reference fields, surfaces, etc., and
combines all those values (e.g., by summing). This history is especially useful for surface and volume
integrals, as well as peak fields.

Histories of kind=cellFuncHist are tensor histories that compute a result (a vector, or one-dimensional array of
values) for every cell, and combine those results in some way to produce a result for the whole simulation.

For example, one might define the <UserFunc histCalc> to find a field value in a given cell, and multiply it
by the volume of that cell. When the result is summed over all cells (reduceMethod = sum), it yields a volume
integral.

Alternatively, one might use reduceMethod = max, in which case the maximum value (over all cells) would be
returned.

3.15. History 423

VSim Reference Manual, Release 11.0.1-r3016

cellFuncHist Parameters

These Histories take the following attributes:

lowerBounds (vectors of integers, optional, default=entire simulation)
The lowerBounds and upperBounds specify the range of cells (with an exclusive upper bound, as usual in Vorpal)
for which this history will perform its calculation.

upperBounds (vectors of integers, optional, default=entire simulation)
The lowerBounds and upperBounds specify the range of cells (with an exclusive upper bound, as usual in Vorpal)
for which this history will perform its calculation.

reduceMethod (required string in {sum, min, max})
The method by which the results from individual cells are combined to create the final result. If sum, the results
are simply summed. If min or max, then the history result is the result from the cell for which the last component
(of the histCalc result) is minimal or maximal, respectively.

histCalc (code block, required)
A UserFunc <UserFunc histCalc> that takes one argument, named cell, which is a vector of NDIM
integers specifying a grid-cell index. Typically this UserFunc will contain local functions that get recent infor-
mation from other Vorpal objects (e.g., fieldFunc or gridBoundaryFunc). (See UserFunc Block)

lastResortHistCalc (code block, optional)
A UserFunc <UserFunc lastResortHistCalc> with the same argument- and result-types as
<UserFunc backupHistCalc>, to be evaluated if evaluation of backupHistCalc fails, and if
backupWarningLevel < 3. If evaluation of this function fails, the simulation will halt.

resultVecDescriptions (vector of strings, optional)
Associates a string description with each component of the history result, to be written in the dump file. If
specified, the number of strings must equal the number of components in the history result; otherwise Vorpal
will halt with an error.

warningLevel (integer in {0, 1, 2}, default 0)

Specifies what to do if evaluation of histCalc fails; if 0, simply evaluate backupHistCalc; if 1, issue
a warning only after the first failure, and evaluate backupHistCalc; if 2, issue a warning and evaluate
backupHistCalc; if 3, halt the simulation. In a parallel simulation, evaluation may fail on one rank but
not on another, so it may be important to search the output on each rank for warnings and error messages.

backupWarningLevel (same as warningLevel)
The same as warningLevel, but applies to failure to evaluate backupHistCalc rather than histCalc.
If backupWarningLevel is less than 3, and backupHistCalc fails, lastResortHistCalc will be
evaluated instead (for that cell).

Use of backupHistCalc and lastResortHistCalc

Each cellFuncHist History has one to three <UserFunc>s that specify the function to be evaluated in each cell:
histCalc, backupHistCalc, lastResortHistCalc. The function histCalc is evaluated for every
cell; if, in any cell, evaluation fails, then backupHistCalc is evaluated for that cell instead; if evaluation fails
again, lastResortHistCalc will be evaluated.

In such cases where field interpolation is performed, it is recommended that the backupHistCalc be used to
obtain the same result, but (e.g, for a UserFunc of fieldFunc) with interpolationOrder = 0 (assuming the
histCalc used a higher order). Since that might also fail, it is further recommended that lastResortHistCalc perform
a fail-safe calculation that will not harm the final result, if possible; for example, when performing an integral, it might
simply return 0.

424 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

While a small number of evaluation failures will hardly affect the result in many cases, there are of course
cases that cannot tolerate such failures. In those cases, one should use the options warningLevel and
backupWarningLevel to issue a warning or even halt the simulation if failure occurs.

If evaluation of lastResortHistCalc fails, the simulation will halt with an error message.

The use of UserFuncs that obtain values from other simulation entities allows cellFuncHist to be a very powerful tool,
computing locations of peak field values, surface integrals, volume integrals, etc.

cellFuncHist History Example

The best place to see examples of powerful and complicated cellFuncHists is in the history macro file, hist.mac,
which contains macros implementing CellFuncHists for calculating surface and volume integrals, etc.

sum the values of field F
<History sum>

kind = cellFuncHist
reduceMethod = sum
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
calculate history every fourth time step
<Expression applySteps>
expression = (mod(n, 4) == 0)

</Expression>
<UserFunc histCalc>
kind = expression
inputOrder = [cell]
<Input cell>

kind = uniformVector
type = integer
length = NDIM

</Input>
<UserFunc F>

kind = fieldFunc
result = fieldValue
field = multiField.F
interpolationOrder = 0

</UserFunc>
since DX=1 and origin = 0, cell index and position are identical

expression = F(cell)
</UserFunc>
resultVecDescriptions = ["sum of F"]
following is a rough memory size (in MB) that can always be
obtained: it's (very) small here for testing; normally it's best to
use the default value.
maxMemChunkSize = 9.6e-5 # about 100 B
to use such a small value for testing, we need to set the following
allowSmallMaxMemChunkSize = true

</History>

ptclSumData

ptclSumData

Records data as a simple sum over particles (typically emitted or absorbed by a source or sink). This TensorHistory is
meant to be lightweight, so it does not offer much flexibility.

3.15. History 425

VSim Reference Manual, Release 11.0.1-r3016

The History of kind=ptclSumData is a tensor history that records the number of particles, the total weight of
particles, the sum of particle positions, and the sum of particle internal variables (i.e., velocity, weight, etc.) – for
particles emitted by a ParticleSource, or absorbed by a ParticleSink, in each timestep.

These quantities can be calculated very easily, and don’t take much memory (compared with storing individual particle
data, as in speciesAbsPtclData2). This history is an easy way to calculate, e.g, the total charge (hence current) emitted
by a ParticleSource, or the average velocity, or average positon, etc. (More complicated quantities like average energy
absorbed need to be calculated with, e.g., speciesAbsPtclData2.)

Simply recording data should not reduce simulation speed. However, if the recorded data is used at each timestep
(e.g., in a historyFunc), then the data must be summed over all MPI ranks (in a parallel simulation) at each timestep.
This communication can potentially slow down a simulation; however, in many simulations, this communication will
be hardly noticeable.

If this History is used to record data for multiple species, they must all have the same IDIM – i.e., the same number
of internal variables. For instance, a constant weight species and a variable weight species cannot be recorded in the
same ptclSumData history.

The resulting History will be a 2D array: a 1D array of length NDIM+IDIM+2 for each timestep. The 1D array will
contain (in this order):

• component 0: the sum (over particles) of macroparticle ‘weight’ (see note below) times x-position (or whatever
the first spatial dimension is)

• (if NDIM > 1) component 1: the sum of particle weight times y-position

• (if NDIM > 2) component 2: the sum of particle weight times z-position

• component NDIM: the sum of particle weight times component zero of the particle’s internal variables (i.e.,
usually the weighted sum of x-velocity)

• components NDIM+1 through NDIM+IDIM-1: weighted sums of the rest of the internal variables

• component NDIM+IDIM: the sum of particle weight (all the above quantities can be divided by this to get
average position, velocity, etc.)

• component NDIM+IDIM+1: the number of macroparticles

• Note: here, macroparticle ‘weight’ is the actual number of physical particles in the macroparticle.

ptclSumData Parameters

ptclAbsorbers (vector of strings, optional, default [])
A list of ParticleSink objects that record summed data over particles. (The attribute
recordParticleSumStats=true may need to be added to the <ParticleSink> blocks.) These
should be qualified by the species name: e.g., electrons.cathodeAbsorber.

ptclSources (vector of strings, optional, default = [])
A list of ParticleSource objects that record summed data over particles. (The attribute
recordParticleSumStats=true may need to be added to the <ParticleSource> blocks.) These
names should be qualified by the species name: e.g., electrons.cathodeEmitter.

ptclSourceSpecies (vector of strings, optional, default = [])
A list of species, one for each ParticleSource in ptclSources. This list must be specified (only) if one of the
ParticleSources emits more than one species.

426 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

ptclSumData History Example

This history records the sum over emitted particles from
two ParticleSources in species electrons.
<History absobedPtclSums>

kind = ptclSumData
ptclAbsorbers = [electrons.cathodeAbsorber1 electrons.cathodeAbsorber2]

</History>

<History emittedPtclSums>
kind = ptclSumData
ptclSources = [electrons.cathodeEmitter electrons.secondaryEmitter]
ptclSourceSpecies = [electrons electrons]

</History>

It may be helpful to use a functionOfTime History with a historyFunc to convert the ptclSumData to desired quantities.

This history converts the above ptclSums History to current.
To do this, you have to know the timestep DT and the number of
physical particles per species electron macroparticle of weight 1
(and also the electron charge).
<History emittedCurrent>

kind = functionOfTime
<UserFunc weightEmitted>
kind = historyFunc
history = emittedPtclSums
index = [$NDIM+IDIM$]

</UserFunc>
expression = -ELEMCHARGE * ELECTRON_MACRONUMBER * weightEmitted(0)/DT

</History>

This history converts the above ptclSums History to average x-velocity.
<History avgVelocity0>

kind = functionOfTime
<UserFunc sumWtVel0>
kind = historyFunc
history = emittedPtclSums
index = [$NDIM+0$]

</UserFunc>
<UserFunc sumWt>
kind = historyFunc
history = emittedPtclSums
index = [$NDIM+IDIM$]

</UserFunc>
expression = sumWtVel0(0) / sumWt(0)

</History>

speciesAbsPtclData2

speciesAbsPtclData2

Stores data (individual or statistical) for particles absorbed by a boundary

The History of kind=speciesAbsPtclData2 (intended as an eventual replacement for
kind=speciesAbsPtclData, c.f., speciesAbsPtclData) is a tensor history that records data about parti-
cles that get absorbed (by a kind=absAndSav or similar ParticleSink, c.f., absStairStep Parameters).

3.15. History 427

VSim Reference Manual, Release 11.0.1-r3016

Depending on the attribute collectMethod this can record data for each individual particle, or it can record sums
or statistics for all particles absorbed within each time step.

speciesAbsPtclData2 Parameters

ptclAbsorbers (vector of strings, required)
A list of particle absorbers (of kind=absAndSav or similar, see absStairStep Parameters) for which this
history will record data. If this is non-empty, species must contain a list of the absorbed species, one for each
absorber.

species (vector of strings, required)
A list of Species, one for each ptclAbsorber, indicating the species that will be absorbed.

ptclSources (vector of strings, optional, default = [])
A list of ParticleSources (with recordParticleData=true) for which this history will record data. If this
is non-empty, ptclSourceSpecies must contain a list of the sourced species, one for each source.

ptclSourceSpecies (vector of strings, optional, default = [])
A list of species, one for each ParticleSource in ptclSources.

collectMethod (string, required)
The method for collecting particle data. May be one of the following:

recordForEachPtcl:

Store the desired particle attributes for each absorbed particle in a separate record—-useful
when one wants to know the data for each particle; in this case the absorption time will
automatically be recorded for each particle (as the last component of the result).

In this case, the history dataset will be an array of size 𝑁𝑝×(1+𝑚) where 𝑚 is the number
of ptclAttributes given, and 𝑁𝑝 is the number of particles absorbed.

sumForEachStep:

Sum the desired particle attributes for all particles absorbed for each time step, yielding one
record per time step

In this case, the history dataset will be an array of size 𝑛 × 𝑚 where 𝑚 is the number of
ptclAttributes given, and 𝑛 is the number of time steps.

statsForEachStep:

At each step, record

• The total weight of absorbed particles,
∑︀

𝑝 𝑤𝑝,

• The weighted sum of desired particle attributes,
∑︀

𝑝 𝑤𝑝𝑎𝑝, where 𝑎𝑝 is the desired
particle attribute, such as xPosition or yVelocity, and

• The weighted sum of squares,
∑︀

𝑝 𝑤𝑝𝑎
2
𝑝.

(For non-weighted particles, 𝑤𝑝 is one.)

If there are 𝑚 quantities in the ptclAttributes string, then the history dataset will be
an array of dimensions 𝑛×3×𝑚, where in in the number of time steps. For each time step,
the 3 ×𝑚 record has elements

• (0, 𝑛), the total weight of particles absorbed;

• (1, 𝑛) the weighted sum of particle attribute 𝑛; and

• (2, 𝑛) the weighted sum of squares.

428 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Dividing (1, 𝑛) by (0, 𝑛) yields the average of quantity 𝑛 over all particles absorbed in a
given time step.

ptclAttributes (vector of strings, required)
A list of the particle attributes that should be recorded by this history. Valid attributes are listed in speciesBinning
under ptclAttributes.

speciesAbsPtclData2 History Example

<History testMoments>
kind = speciesAbsPtclData2
species = [beamElectrons]
ptclAbsorbers = [beamLeftAbsorber]
ptclAttributes = [pos0 pos1 pos2 gVel0 gVel1 gVel2 gamma]
collectMethod = statsForEachStep

</History>

speciesBinning

speciesBinning

A History that bins or sums particle data into an array according to a user-specified function; for example,
the velocity distribution of a species can be recorded at every time step.

This history creates a multidimensional array of bins, with each bin contaning a vector; at every time step, a new array
is created, and for each particle, a (vector) value is added to a particular bin; the bin is chosen based on the particle’s
properties.

Data is recorded for all particles in a simulation belonging to one of a list of specified species, or alternatively, for all
particles absorbed by a list of specified particle absorbers.

To use the history, one must decide the dimensions of the array of bins, as well as the length of the vectors located at
every array index. One then writes a Expression that, based on particle properties requested in ptclAttributes,
determines an index (of the array), and a vector-value (to add to the bin with that index).

speciesBinning Parameters

species (vector of strings, required)
A list of Species for which data will be recorded.

If the ptclAbsorbers attribute is not given, then data for all the particles in these species will be recorded;
otherwise, data will be recorded only for species absorbed by the specified absorbers (in this case, there should
be one Species listed for each ptclAbsorber).

ptclAbsorbers (vector of strings, optional, default = [])
A list of ParticleSinks (of kind=absAndSav or similar, see absStairStep Parameters) for which this history
will record data. If this attribute is given, only data for absorbed particles will be recorded. There must be, listed
in the species attribute, one species for each absorber.

ptclSources (vector of strings, optional, default = [])
A list of ParticleSources (with recordParticleData=true) for which this history will record data. There
must be, listed in the ptclSourceSpecies attribute, one species for each source.

ptclSourceSpecies (vector of strings, optional, default = [])
A list of species, one for each ParticleSource in ptclSources, indicating the emitted species (note that some
ParticleSources can emit multiple species).

3.15. History 429

VSim Reference Manual, Release 11.0.1-r3016

binDims (vector of positive integers, required)
The dimensions of the “array of bins” (the array of vectors) or equivalently, the dimensions of each history
record not counting the last dimension (which is given by arrayComponents).

For example, to bin by velocity direction, one might choose to have 40 divisions in longitude and 20
division in latitude, hence binDims = [40, 20].

binDimDescriptions (vector of strings, optional)
A list of descriptions or labels for each array dimension. For example, when recording velocity angular distri-
butions, the bin dimensions might represent the 𝜑 and 𝜃 coordinates, and so binDimDescriptions might
be ["phi (radians, 40 divisions)" "theta (radians, 20 divisions)"], or whatever
descriptions might be helpful for someone examining the output file.

binComponents (positive integer, required)
The length of the vector in each bin, or equivalently, the length of the last dimension of each history record.

binComponentDescriptions (vector of strings, required)
A list of descriptions or labels for each of the binComponents. For example, binComponents
= 2 and the 2 components are the total weight of particles and the number of macroparticles (in each
bin), then one might use binComponentDescriptions = ["total ptcl weight" "number of
macroparticles"].

indexAndResult (code block, required)
An Expression <Expression indexAndResult> that takes as many scalar arguments as elements in
ptclAttributes, and returns 𝑛𝑑 + 𝑛𝑐 values, where 𝑛𝑑 is the number of “bin” dimensions (the number of
elements in binDims), and n_c is binComponents. See expression.

The first 𝑛𝑑 values must be integers; moreover, they must be a valid index in arrayDims (in the expression, the
funtions int(x), floor(x), and ceil(x) may be useful for creating integers from floats).

warningLevel (integer, optional, default = 2)
Specifies behavior if <Expression indexAndResult> produces an index that does not correspond to a bin (i.e.,
that is out of range).

• 0: ignore completely

• 1: warn the first time this happens (and ignore particle)

• 2: warn every time this happens (and ignore the particle)

• 3: halt the simulation when this happpens

DatasetAttrib (vector of floats)
<DatasetAttrib> contains a vector of floats to be added to attributes in the History’s dataset stored on disc
(code block, optional). The DatasetAttrib takes a single attribute, value. For example:

<DatasetAttrib binEdgesInJoules>
value = [0. 4e-19 8e-19 1.2e-18 1.6e-18 2e-18]

</DatasetAttrib>

will store the above list of values under an attribute named binEdgesInJoules. (One can specify as many
<DatasetAttrib> objects as desired.)

This may be useful in, e.g., the following situation. Suppose one is binning particles by energy, with 5 bins,
from 0 to 2e-18 J. For post-simulation analysis, it might be useful if the history dataset also described the bins.
By adding the above <DatasetAttrib>, that information gets stored along with the history dataset; someone
analyzing the history dataset can then understand how the data is binned, without having to look in the input
file.

ptclAttributes (vector of strings, required)
A list of the particle attributes that should be recorded by this history. The following strings are allowed.

430 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

one: The number one. This is useful, e.g., for History of kind speciesAbsPtclData2, where
one might want to count the number of macroparticles—e.g., summing the number 1
for each macroparticle.

ndim: The simulation spatial dimensionality.

nIntVars: The number of internal variables per particle (e.g., velocity components, plus
weight, plus tag, etc.)

iVarRole0, iVarRole1, etc.: The role of an internal variable, such as velocity or
weight, expressed an an integer.

time: The time (e.g., at which the particle was absorbed), is seconds.

weight: The particle weight (always 1 except for variable-weight particles); usually
numPtclsInMacro is the quantity desired for physical results, rather than weight,
because the weight is relative to the macroparticle, not the physical particle. E.g., if
each standard macro particle has 100 electrons, then a macro-particle with weight 1 is
equivalent to 100 electrons, and weight 0.1 is equivalent to 10 electrons.

tag: The particle tag (or, if the species is untagged, returns -1.).

numPtcls: The number of physical particles in the macroparticle, or physical weight
(i.e., the macro-particle’s weight times the species’s number of physical particles per
macroparticle).

mass: The mass (in kg) of the macroparticle.

pMass: The mass (in kg) of a physical particle.

charge: The charge (in Coulombs) of the macroparticle.

pCharge: The charge (in Coulombs) of a physical particle.

cell0, cell1, cell2: The global index of the cell containing the particle.

pos0, pos1, pos2: The position of the particle, (e.g., in Cartesian geometry,
position_0 is x, position_1 in y, etc., in meters). If the particle was absorbed
or emitted, this is the location at or from which it was absorbed or emitted.

vel0, vel1, vel2: Components of velocity (m/s).

gVel0, gVel1, gVel2: Components of gamma times velocity (m/s).

gamma: 1/
√︀

1 − 𝑣2/𝑐2

velMag: The magnitude of the particle velocity (m/s)

gVelMag: The magnitude of gamma times the particle velocity (m/s)

physEnergy: The (relativistic) kinetic energy of a physical particle in the macroparticle
(in Joules)

energy: The (relativistic) kinetic energy of the macroparticle (in Joules)

pNonRelEnergy: The non-relativistic kinetic energy (𝑚𝑣2/2) of a physical particle in
the macroparticle (in Joules) Note: this assumes that the species is non-relativistic (in
the sense that its internal variables store the 3-velocity and not the 4-velocity; a rela-
tivistic species will calculate, meaninglessly, 0.5𝑚𝑣2/(1 − 𝑣2/𝑐2)).

nonRelEnergy: The non-relativistic kinetic energy (𝑚𝑣2/2) of the macroparti-
cle (in Joules). Note: this assumes that the species is non-relativistic (see
physNonRelativisticKineticEnergy).

rank: The rank (in a parallel simulation) on which the particle was absorbed

3.15. History 431

VSim Reference Manual, Release 11.0.1-r3016

baseNumPtcls: The default number of physical particles per macroparticle (e.g., in a
macroparticle with weight 1.)

sWtIndex: The component of the internal variables containing the weight (or -1 for
species that don’t have variable weight).

sTagIndex: The component of the internal variables containing the tag (or -1 for species
that aren’t tagged).

sRel: 1 if the species is relativistic, 0 if not (currently this is not very trustworthy; the cri-
teria for being relativistic are not consistent across all species; ideally, it should indicate
whether a species stores the 4-velocity or the 3-velocity in its internal variables).

current: The current associated with the macroparticle charge (in A), i.e., the charge
divided by the time-step

spIndex: The index of the species of the particle; i.e., if multiple species are collected.

abIndex: The index of the absorber that absorbed the particle, if particles are collected
from multiple absorbers.

sourceIndex: The index of the source that emitted the particle, if particles are collected
from multiple sources.

Particles that are collected from absorbers or emitters can have additional attributes:

normAbs0, normAbs1, normAbs2: The unit surface normal pointing into the absorber
(or away from the direction of emission); this can be the zero vector in cases where the
normal is not known (which can sometimes happen in pathological cases)

sTanA0, sTanA1, sTanA2: A vector tangent to the (absorption or emission) surface and
in the plane of the particle’s velocity (with a positive scalar product between the two).

sTanB0, sTanB1, sTanB2: A vector tangent to the (absorption or emission) sur-
face, perpendicular to the normal and surfaceTangentA; The vectors (-
surfaceNormalIntoAbsorber, surfaceTangentA, surfaceTangentB)
should form a right-handed orthonormal basis (i.e., with the normal pointing away from
the absorber, which is convenient for an emission-velocity basis).

iAng: The angle (in radians) of incidence relative to the surface normal into absorber. An
angle of 0 indicates a velocity pointing directly into the absorber.

cosIAng: The cosine of the angle of incidence.

speciesBinning History Example

<History gammaDist>
kind = speciesBinning
species = [electrons]
ptclAttributes = [numPtcls gamma]
$ NUMBINS = 200
$ G_MIN = 1.
$ G_MAX = 30.
binDims = [NUMBINS]
binDimDescriptions = ["relativisticGamma"]
binComponents = 1
binComponentDescriptions = ["number of physical particles in bin"]

<Expression indexAndResult>
kind = expression

(continues on next page)

432 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

$ g = relativisticGamma
$ INDEX = min(NUMBINS-1, int(0.5 + (NUMBINS-1)*(g-G_MIN)/(G_MAX-G_MIN)))
expression = vector(INDEX, numPtcls)

</Expression>
to explicate hdf5 dataset
$ GAMMA_BIN_EDGES = [G_MIN + n*(G_MAX-G_MIN)/NUMBINS for n in range(NUMBINS+1)]

<DatasetAttrib gammaBinEdges>
value = GAMMA_BIN_EDGES

</DatasetAttrib>
</History>

3.16 Feedback

3.16.1 Feedback

Feedback is use to modify an input variable so that some computed variable equilibrates to a given value. As an
example of use, many plasma devices are stable with only a constant current source, but the input parameter is the
voltage. In this case, the voltage is varied to get the current to be a certain value.

For the general case we have the following quantities

• H is the history that we want to get to a value by feedback.

• D is the value that we want it to get to.

• P is the parameter that we can change, such that increasing P causes H to increase in the region of stable
operation.

1. S1 = H (unaryScalarOpUpdater with historySTFunc, message)

2. S2 = (1-a)*S2 + a*S1 = averaged history (scalarBinOpUpdater, add, no message)

3. F = F + b*(D - S2) = feedback (userFuncScalarUpdater, no message)

4. V = min(Vmax, max(Vmin, c*F)) = new value of feedback variable (userFuncScalarUpdater, no message)

5. Set boundary condition = scalarFieldBinOpUpdater, add, aCoeff=1, bCoeff=0

3.17 External Circuit Model

3.17.1 External Circuit Model

General Theory

The external circuit module in Vorpal follows the method of V. Vahedi and G. DiPeso [?]. In Vorpal this method is ex-
tended to three-dimensional electromagnetic and electrostatic solvers, in additional to two-dimensional electrostatics.
In principle, the total current, 𝐽𝑡 = 𝜕𝐷

𝜕𝑡 + 𝐽 , is conserved through the whole system. In the external circuit, the total
current 𝐽𝑡 is solved from the different equation based on its impedance (resistance R, inductance L, capacitance C) and
source components of the circuit. In the simulated plasma region, the total current consists of displacement current 𝜕𝐷

𝜕𝑡
and convective current carried by charged particles 𝐽 . Matching these two at the boundary provides a time-dependent
boundary condition for the simulated plasma region.

Considering a device that is connected to an external circuit via two electrodes, such as a electron gun or plasma
discharging chamber, the total electric field between the electrodes is decomposed due to linear superposition as

3.16. Feedback 433

VSim Reference Manual, Release 11.0.1-r3016

𝐸⃗𝑡𝑜𝑡(𝑡) = 𝐸⃗(𝑡) + 𝜑(𝑡)𝐸⃗0, where 𝐸⃗𝑡𝑜𝑡(𝑡) is the total electric field at time t that is used to advance charged particle
dynamics. Electric field 𝐸⃗(𝑡) is obtained by solving the Maxwell‘s equations for electric (𝐸⃗) and magnetic (𝐵⃗) fields,
assuming perfect electric conducting boundary conditions on the two electrodes that are both grounded. 𝜑(𝑡) is the
time-dependent potential difference between the anode and the cathode that can be measured via pseudopotential. The
electric field 𝐸⃗0 is a constant field that is solved with 1 volt potential difference between the electrodes and no charged
particles or currents between them. 𝐸⃗0 is essentially a vacuum field with unit potential.

The potential 𝜑(𝑡) is related to the total charge 𝑄(𝑡) on one electrode as 𝑄(𝑡) = 𝐶0𝜑(𝑡). As there is a fix capacitance
𝐶0 for the device when vacuum is assumed, its potential is proportional to the total charge. The charge under 1
volt potential is 𝑄0, thus at any time t, the electrode potential is 𝜑(𝑡) = 𝑄(𝑡)/𝑄0. The total field is written as
𝐸⃗𝑡𝑜𝑡(𝑡) = 𝐸⃗(𝑡) + 𝑄(𝑡)

𝑄0
𝐸⃗0, where 𝑄(𝑡) is calculated at each time step via equations of external circuit, and 𝑄0 can be

obtained after solving 𝐸⃗0.

For a general series RCL circuit as shown in figure Sketch of a plasma simulation with a general RLC external circuit.,
applying Kirchhoff’s law to the electrode yields the current equation, 𝑑𝑄

𝑑𝑡 = 𝐼𝑐𝑜𝑛𝑣 + 𝐼 , where 𝐼 is the current in the
external circuit that depends on its source and impedance. 𝐼𝑐𝑜𝑛𝑣 is the plasma convection current at the electrode,
representing charges emitted or absorbed by the electrode at each time step.

The voltage equation is obtained by applying Kirchhoff’s law around the circuit, 𝐿𝑑2𝑄𝑐

𝑑𝑡2 +𝑅 𝑑𝑄𝑐

𝑑𝑡 + 𝑄𝑐

𝐶 = 𝑉 (𝑡)−𝜑(𝑡)
where 𝑄𝑐 is the charge in the external circuit capacitor. It is related to the external circuit current via 𝐼 = 𝑑𝑄𝑐/𝑑𝑡.
Substituting this relation into current equation yields 𝑑𝑄

𝑑𝑡 = 𝐼𝑐𝑜𝑛𝑣 + 𝑑𝑄𝑐

𝑑𝑡 . In PIC simulations, the convective current
𝐼𝑐𝑜𝑛𝑣 and the potential difference between two electrodes are defined as 𝐼𝑐𝑜𝑛𝑣 = 𝐼𝑒𝑚𝑖𝑡𝑡𝑒𝑑 − 𝐼𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 and 𝜑(𝑡) =∫︀
𝐸⃗(𝑡)𝑑𝑟. Both can be measured in Vorpal via History blocks. Equations of current and voltage are solved for two

unknowns 𝑄𝑐(𝑡) and 𝑄(𝑡). Both quantities determine the status of the external circuit and the boundary condition on
the electrode.

The voltage equation is solved for capacitor charge 𝑄𝑐 at time step n as 𝑄𝑛
𝑐 = 𝑉 (𝑛)−𝜑𝑛−𝐾𝑛

𝛼0
, where

𝐾𝑛 = 𝛼1𝑄
𝑛−1
𝑐 + 𝛼2𝑄

𝑛−2
𝑐 + 𝛼3𝑄

𝑛−3
𝑐 + 𝛼4𝑄

𝑛−4
𝑐

𝛼0 = 9
4

𝐿
Δ𝑡2 + 3

2
𝑅
Δ𝑡 + 1

𝐶

𝛼1 = −6 𝐿
Δ𝑡2 − 2 𝑅

Δ𝑡

𝛼2 = 11
2

𝐿
Δ𝑡2 + 1

2
𝑅
Δ𝑡

𝛼3 = −2 𝐿
Δ𝑡2

𝛼4 = 1
4

𝐿
Δ𝑡2

The self-consistent solution for charges on the electrode is 𝑄𝑛 = 𝑄𝑛−2 + 𝐼𝑛−1
𝑐𝑜𝑛𝑣 · 2∆𝑡 + 𝑄𝑛

𝑐 − 𝑄𝑛−2
𝑐 . Both the

potential 𝜑𝑛 and convective current 𝐼𝑛𝑐𝑜𝑛𝑣 can be measured in Vorpal. Equations of voltage and currents are solved
with UserFuncUpdater in Vorpal to obtain the electrode charge 𝑄𝑛 at each time step. 𝑄𝑛 is then coupled with field
equation to find the total electric field self-consistently in the system as 𝐸⃗𝑡𝑜𝑡(𝑡) = 𝐸⃗(𝑡) + 𝑄𝑛

𝑄0
𝐸⃗0. Beside the Courant

stability condition that is required by the electromagnetic solver, the time step ∆𝑡 should also follow certain constraints
due to external circuits as discussed in reference [?].

Simulation Procedures

Based on the above algorithm, a simulation with external circuit needs two stage execution. The first stage calculates
𝐸⃗0 and 𝑄0 that are used in the second stage, where the actual simulation is carried out.

Stage One of the Simulation

The first stage runs a Poisson solver with unit potential in vacuum for only one time step to obtain the electric field
𝐸⃗0 and the charge on electrode 𝑄0. As the electrodes are represented by GridBoundary, the Poisson solver looks as
following

434 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Fig. 3.5: Sketch of a plasma simulation with a general RLC external circuit.

3.17. External Circuit Model 435

VSim Reference Manual, Release 11.0.1-r3016

##########
#
Electrostatic Poisson solver with GridBoundary
#
##########
<EmField myESField>
kind = yeeStaticEmField

set the grid boundary
gridBoundary = plates

Set potential on the grid boundary
<STFunc boundaryFunc>

kind = expression
expression = 1.0*phiFunc(x,y,z)

</STFunc>

<Solver mysolver>
kind = bicgstab
precond = multigrid
smoother = GaussSeidel
nLevels = 7
tolerance = 1.0e-10
output = none
dumpPotential = true

</Solver>

</EmField>

The total charge on one electrode, such as the cathode used in this example, is calculated with cellFunHist with the
following code.

This is the total charge on the left plate (cathode)
Its value is important and used for subsequent simulations
Test its value for convergence
<History totalQ>
kind = cellFuncHist
funcLookupScope = myFields
reduceMethod = sum
lowerBounds = [0 0 0]
upperBounds = [$NX/2$ NY NZ]

<Expression applySteps>
expression = (mod(n, 1) == 0)

</Expression>

<UserFunc histCalc>
kind = expression

<CellFunc unitNormal>
kind = gridBoundaryFunc
gridBoundary = plates
result = surfaceOutwardUnitNormal3D

</CellFunc>

<CellFunc surfacePos>
kind = gridBoundaryFunc

(continues on next page)

436 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

gridBoundary = plates
result = surfaceCenter

</CellFunc>

<CellFunc dArea>
kind = gridBoundaryFunc
gridBoundary = plates
result = surfaceArea

</CellFunc>

<SpaceFunc E>
kind = fieldFunc
result = fieldValue
field = myESField.YeeStaticElecFld
interpolationOrder = 1
gridBoundary = plates
polation = fromInOrOutside
the following option is not usually recommended
#boundaryCondition = electricAtPEC

</SpaceFunc>

expression = -1.0 * sum(unitNormal(cell) * E(surfacePos(cell))) *
→˓EPSILON0 * dArea(cell)
</UserFunc>

resultVecDescriptions = ["sum of total charge"]
following is a rough memory size (in MB) that can always be
obtained: it's (very) small here for testing; normally it's best to
use the default value.
maxMemChunkSize = 9.6e-5 # about 100 B
to use such a small value for testing, we need to set the following
allowSmallMaxMemChunkSize = true
checkForUnaccessedAttribs = 2

</History>

After the run of this first stage, totalQ (𝑄0) is read from the hdf5 file for History. It values, together with the electro-
static field (YeeStaticElecFldTrilinos), are used for stage two.

Stage Two of the Simulation

Stage two is to run the actual simulation that is coupled with external circuit. The convective current at the cathode is
measured with the following two History blocks for emitted and absorbed currents.

<History cathodeEmitCurrent>
kind = speciesCurrEmit
species = [electrons]
ptclEmitter = electrons.psource

</History>

<History cathodeAbsCurrent>
kind = speciesCurrAbs
species = [electrons]
ptclAbsorbers = [cathodeAbs]

</History>

The electrostatic field at unit potential calculated from stage one is imported to an edge field name unitE0. It is

3.17. External Circuit Model 437

VSim Reference Manual, Release 11.0.1-r3016

imported from hdf5 file and only needs to update once at the beginning of the simulation.

<FieldUpdater initunitE0Updater>
kind = importFromFileUpdater
fileName = "./externalCircuit0_YeeStaticElecFldTrilinos_1.h5"
dataset = "YeeStaticElecFldTrilinos"
writeFields = [unitE0]
writeComponents = [0 1 2]
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]

</FieldUpdater>

Charges on the capacitor of external circuit and one of the electrodes are updated via two updaters that solve external
circuit voltage and current equations. Q0 used in the chargeQUpdater is obtained form stage one simulation.

This updated the Q at the capacitor C at time step n
according to the external circuit voltage equation (Kirchoff's voltage law)
Here the cuircuit is assumed to a general series RLC
<FieldUpdater capacitorQUpdater>
kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]

readFields = [phiField capacitorQnm1 capacitorQnm2 capacitorQnm3
→˓capacitorQnm4]
readComponents = [0 0 0 0 0]
readFieldVarNames = [phi qnm1 qnm2 qnm3 qnm4]

writeFields = [capacitorQn]
writeComponents = [0]
maxNumEvals = 64

<UserFunc updateFunction>
kind = expression
$alpha0 = 2.25*L/DT/DT + 1.5*R/DT + 1/C
$alpha1 = -6.0*L/DT/DT - 2.0*R/DT
$alpha2 = 5.5*L/DT/DT + 0.5*R/DT
$alpha3 = -2.0*L/DT/DT
$alpha4 = 0.25*L/DT/DT
expression = (Vsource((n)*dt) - phi - alpha1*qnm1 - alpha2*qnm2 -

→˓alpha3*qnm3 - alpha4*qnm4) / alpha0
</UserFunc>

</FieldUpdater>

<FieldUpdater chargeQUpdater>
kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]

readFields = [totalQnm2 capacitorQn capacitorQnm2]
readComponents = [0 0 0]
readFieldVarNames = [qnm2 qcn qcnm2]

writeFields = [totalQn]
writeComponents = [0]
maxNumEvals = 64

(continues on next page)

438 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<UserFunc updateFunction>
kind = expression
expression = qnm2 + (qcn - qcnm2) - 2.0*dt*(emitI - absI)

</UserFunc>
</FieldUpdater>

Assuming both electrodes are perfect electric conductors, edgeE and faceB are solved with regular Faraday, Ampere
and Dey-Mittra updaters. Combining edgeE with scaled unitE, we obtain the totalE field that is use to advance charged
particles dynamics via Lorenz force together with faceB.

<FieldUpdater totalEUpdater>
kind = userFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [NX1 NY1 NZ1]

readFields = [edgeE edgeE edgeE unitE0 unitE0 unitE0 totalQn]
readComponents = [0 1 2 0 1 2 0]
readFieldVarNames = [EX EY EZ E0X E0Y E0Z QN]

writeFields = [totalE totalE totalE]
writeComponents = [0 1 2]
maxNumEvals = 64

<UserFunc updateFunction>
kind = expression
expression = tensorProd(EX, EY, EZ) + tensorProd(E0X, E0Y, E0Z) * QN / Q0

</UserFunc>
</FieldUpdater>

Notes for External Circuit

UserFuncs are heavily used in the external circuit module. Users are suggested to read relevant sections about User-
Funcs. In the capacitorQUpdater, phi is measured via pseudopotential and read into a field via historySTFunc. For
their usage, please refer to the sections about feedback and historySTFunc in VSim Reference.

3.18 Functions

3.18.1 Function Blocks

Function blocks built into Vorpal that are used to model various effects. The four types of Function
blocks are:

NAfunc: No-argument function block. See NAFunc Block.

OAfunc: One-argument function block. See OAFunc Block.

STfunc: Space-Time function block. See STFunc Block.

SVTFunc: Space-Time-Velocity function block. See SVTFunc Block.

(Also see Introduction to UserFuncs and Expressions.)

3.18. Functions 439

VSim Reference Manual, Release 11.0.1-r3016

3.18.2 NAFunc

NAFunc Block

Typically used for sequences, such as generating a set of velocities to be used in particle load-
ing. Some NAFunc functions, for example, randGauss, take a nested NAFunc that uses the name
numberSequence.

NAFunc Kinds

• constNAFunc

• stretcher

• randGauss

• randExp

• randOAFunc (NAFunc)

Example NAFunc Block

<NAFunc velocitySequence_0>
kind = constNAfunc
amplitude = 100.0

</NAFunc>

<ParticleSource rampSrc>
kind = bitRevDensSrc
density = DENSITY
lowerBounds = [X_LEFT_WALL 0. 0.]
upperBounds = [X_RIGHT_WALL LY LZ]

Particle distribution uniform over initial phase space
<NAFunc velocitySequence_0>
kind = randGauss
mean = 0.
sigma = VEL_500K

</NAFunc>
<NAFunc velocitySequence_1>
kind = randGauss
mean = 0.
sigma = VEL_500K

</NAFunc>
<NAFunc velocitySequence_2>
kind = randGauss
mean = 0.
sigma = VEL_500K

</NAFunc>
<NAFunc velocitySequence_3>
kind = randExp
mean = 1.

</NAFunc>
</ParticleSource>

440 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

constNAFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses. Constant no-argument
function.

constNAFunc Parameters

amplitude (float vector)
This function accepts a value, which then is the amplitude value assigned to every value in the sequence.

Example constNAFunc Block

<NAFunc velocitySequence_0>
kind = constNAFunc
amplitude = 0.

</NAFunc>

bitRevNAFunc

Creates a bit-reversed sequence.

bitRevNAFunc Parameters

prime (integer)
The prime for the bit reverse.

Example bitRevNAFunc Block

<NAFunc velocitySequence_0>
kind = bitRevNAFunc
prime = 13

</NAFunc>

mTwister

mTwister

Creates a bit-reversed sequence.

mTwister Parameters

prime (integer)
The prime for the bit reverse.

3.18. Functions 441

VSim Reference Manual, Release 11.0.1-r3016

Example mTwister Block

<NAFunc numberSequence>
seed = VX_SEED
kind=mTwister

</NAFunc>

randExp

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Creates a random sequence distributed according to the exponential probability density function:

𝑓(𝑥) =

{︃
1
𝜇 exp

(︁
− 𝑥

𝜇

)︁
, 𝑥 ≥ 0

0 , 𝑥 < 0

where 𝜇 > 0 is the mean.

randExp Parameters

mean (float)
The mean.

seed (integer)
Random number seed.

numberSequence (code block, optional)
An NAFunc code block, <NAFunc numberSequence> generates a random number; if not specified, Vor-
pal’s default random number generator (uniform in [0,1)) will be used to generate the initial random number.

Example randExp Block

<NAFunc velocitySequence_0>
kind = randExp
mean = 1.0

</NAFunc>

randGauss

randGauss

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Creates a random sequence distributed according to the Gaussian probability density function:

𝑓 (𝑥) =
1

𝜎
√

2𝜋
exp

[︃
− (𝑥− 𝜇)

2

2𝜎2

]︃

where 𝜇 ∈ R is the mean and 𝜎 > 0 is the standard deviation.

442 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

randGauss Parameters

sigma (float)
The standard deviation.

mean (float)
The mean.

seed (integer)
Random number seed.

numberSequence (code block, optional)
The <NAFunc numberSequence> is an NAFunc code block that generates a random number; if not spec-
ified, Vorpal’s default random number generator (uniform in [0,1)) will be used to generate the initial random
number.

Example randGauss Block

<NAFunc velocitySequence_0>
kind = randGauss
mean = 0.0
sigma = 1.0e6

</NAFunc>

randGaussLimit

randGaussLimit

Creates a random sequence distributed according to the Gaussian distribution with lower and upper
bounds. See randGauss for standard Gaussian distribution.

randGaussLimit Parameters

sigma (float)
The standard deviation.

mean (float)
The mean.

lowerLimit (float)
The lower limit for the distribution.

upperLimit (float)
The upper limit for the distribution.

seed (integer)
Random number seed.

numberSequence (code block, optional)
The <NAFunc numberSequence> is an NAFunc code block that generates a random number; if not spec-
ified, Vorpal’s default random number generator (uniform in [0,1)) will be used to generate the initial random
number.

3.18. Functions 443

VSim Reference Manual, Release 11.0.1-r3016

Example randGaussLimit Block

<NAFunc velocitySequence_0>
kind = randGaussLimit
mean = 0.0
sigma = 1.0e6
lowerLimit = -2.0e6
upperLimit = 2.0e6

</NAFunc>

randGamma

randGamma

creates a random sequence distributed according to the Gamma probability density function:

𝑓(𝑥) =

{︂ 1
Γ(𝛼)𝛽

𝛼𝑥𝛼−1 exp (−𝛽𝑥) , 𝑥 > 0

0 , 𝑥 ≤ 0

where 𝛼, 𝛽 > 0, 𝛼/𝛽 is the mean,
√
𝛼/𝛽 is the standard deviation, and

Γ (𝑥) =

∫︁ ∞

0

𝑑𝑡 𝑡𝑥−1 exp (−𝑡)

is the gamma function.

randGamma Parameters

sigma (float)
The standard deviation.

mean (float)
The mean.

seed (integer)
Random number seed.

numberSequence (code block, optional)
<NAFunc numberSequence> is an NAFunc code block that generates a random number; if not specified,
Vorpal’s default random number generator (uniform in [0,1)) will be used to generate the initial random number.

Example randGamma Block

<NAFunc velocitySequence_0>
kind = randGamma
mean = 0.0
sigma = 1.0e6

</NAFunc>

randKappa

444 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

randKappa

Create a random sequence distributed according to the general kappa velocity distribution, assuming three
velocity components.

randKappa Parameters

sigmas (float)
The widths of the distribution.

seed (integer)
Random number seed.

lowerLimits (vector float)
The lower limits for the velocities.

upperLimits (vector float)
The lower limits for the velocities.

numberSequence (code block, optional)
<NAFunc numberSequence> is an NAFunc code block that generates a random number; if not specified,
Vorpal’s default random number generator (uniform in [0,1)) will be used to generate the initial random number.

Example randKappa Block

<NAFunc velocitySequence_2>
kind = randKappa
sigmas = [$0.8*SIGMA_VEL$ SIGMA_VEL $1.2*SIGMA_VEL$]

</NAFunc>

randOAFunc

randOAFunc (NAFunc)

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

A function that returns a random number based on a user-given random distribution.

randOAFunc Parameters:

seed (non-negative integer, optional)
A seed for Vorpal’s default random number generator (used only if <NAFunc numberSequence> is not
given). If seed is not given, a seed will be chosen by Vorpal’s random number generator (N.B. this is a pseudo-
random seed, not like using the current time for the seed.)

probDist (code block, required)
<OAFunc probDist> is an OAFunc (function of one argument, returning a scalar) specifying a probability
distribution, including the domain (which describes the range of possible values resulting from this random
number generator). An OAFunc of kind=expression is the usual choice here.

maxRelErr (float, optional, default = 1e-2)
The probability distribution will be approximated with a relative error below this level, subject to
maxNumPoints.

3.18. Functions 445

VSim Reference Manual, Release 11.0.1-r3016

maxNumPoints (positive integer, optional, default = 40961)
The maximum number of points at which to sample the probability distribution. The number of sample points
will be increased, trying to attain maxRelErr, up to maxNumPoints.

doComparison (bool, optional, default = false)
For diagnostic purposes only, compare the approximation of the <OAFunc probDist>, printing out (to stdout)
how close the approximation is.

printSampleValues (non-negative integer, optional, default = 0)
For diagnostic purposes only, the number of sample random numbers to be printed (to stdout) so the user can
see if they are distributed as desired.

numberSequence (code block, optional)
<NAFunc numberSequence> is an NAFunc code block that generates a random number; if not specified,
Vorpal’s default random number generator (uniform in [0,1)) will be used to generate the initial random number.

Random numbers will be generated with the desired distribution only if numberSequence generates a number
uniformly in [0,1).

Using this code block makes the seed option irrelevant.

stretcher

stretcher

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function that stretches the distribution returned by another.

stretcher Parameters

minvalue (float)
Minimum value of the random number.

maxvalue (float)
Maximum value of the random number.

stretchFunc (no-arg functor)
Function that is to be stretched.

seed (optional)
Random seed of the stretched function stretchFunc, if it has one.

Example stretcher Block

<NAFunc velocitySequence_0>
kind = stretcher
minvalue = -1.0e6
maxvalue = 1.0e6

</NAFunc>

sysRandom

446 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sysRandom

Generates random sequence between 0 and 1 via system random number generator (drand48() from
stdlib).

sysRandom Parameters

seed (integer)
The seed for the random generator.

Example sysRandom Block

<NAFunc velocitySequence_4>
kind = sysRandom
seed = 2341

</NAFunc>

3.18.3 OAFunc

OAFunc Block

Defines a function that depends on one variable only, which can be of two kinds:
interpolatedFromFile or expression. For example, OAFunc are used in MonteCarlo
Interactions to define interactions cross sections.

OAFunc Kinds

• interpolatedFromFile

• expression (OAFunc)

• LXcatFile OAFunc

Example OAFunc Block

<OAFunc mysp>
kind = interpolatedFromFile
filename = h2StoppingPower.dat
set bounds of the function from min and max x values in the file.
option specific to kind = interpolatedFromFile
setMinMaxFromFile = 1
f has to be >0.
fmin = 0.

</OAFunc>

3.18. Functions 447

VSim Reference Manual, Release 11.0.1-r3016

interpolatedFromFile

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

User provides a file with two columns where the first column is the argument of the function and the sec-
ond column is the corresponding value of the function. The function is evaluated by linearly interpolating
between the points.

interpolatedFromFile Parameters

filename (string)
Name of the file which contains the two-column data. It is assumed that the data in the first column is either in
increasing or decreasing order.

setMinMaxFromFile (boolean / integer, optional, default = false / 0)
Set xmin and xmax parameters to the minimum and maximum values of the first column. If this parameter is
false, and the function argument 𝑥 is smaller (larger) than the minimum (maximum) value of the first column,
linear interpolation from the two first (last) points is used.

Example interpolatedFromFile Block

<OAFunc oafunc1>
read data from a file
kind = interpolatedFromFile
filename = ../ionize/electronCSection.dat

</OAFunc>

OAFunc-expression

expression (OAFunc)

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

A function of one argument, given via a UserFunc

expression Parameters

argMin (float, optional, default = minimum float)
the lower bound of the function’s domain

argMax (float, optional, default = maximum float)
the upper bound of the function’s domain

fmin (float, optional, default = minimum float)
the minimum function value (if specified, the value will be clamped above fmin)

fmax (float, optional, default = maximum float)
fmax: the maximum function value (if specified, the value will be clamped below fmax)

expression (string)
The function expression (can be given directly for simple functions), required if a UserFunc code block is not
given; in this case, a UserFunc of kind=expression is automatically created with this expression.

448 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

outerBoundsValue (string, optional)
specifies the function value when the argument is outside the function’s domain.

• “null”: set value to zero

• “constant”: set value to the function’s value at the nearest domain boundary (i.e., argMin or argMax)

• “except”: halt the simulation with an error.

UserFunc (code block)
A UserFunc can be specified directly; it must take one argument, and return a scalar. This code block is required
if a string expression is not given.

variable (string, optional, default = x)
Name of the variable in the expression.

Example expression Block

<OAFunc oafunc1>
kind = expression
expression = cos(x)

</OAFunc>

3.18.4 STFunc

STFunc

STFunc Block

Many blocks in Vorpal can use space-time functions. These are normally contained within other classes that require
time signals or spatial profiles, such as Initial and Boundary Conditions.

When using an STFunc block, place the function in its own STFunc block, specifying the function using the kind
parameter as in the Example STFunc Block Usage.

Users can make use of kind = expression to write their own functions.

Descriptions of STFunc parameters are described on each STFunc kind page.

STFunc Kinds

• cacheFunc

• chirpWavePulse

• constantFunc

• cosineFlattop

• cosineRamp

• expression (STFunc)

• feedbackSTFunc

• gaussian

• gaussianPulse

3.18. Functions 449

VSim Reference Manual, Release 11.0.1-r3016

• halfSinePulse

• ignoreArgFunc

• inverseFunc

• leakychannel

• multFunc

• planeWavePulse

• radialCosChannel

• sinePlaneWave

• sumFunc

• stPyFunc

• tagGen

Example STFunc Block Usage

<FieldUpdater currentSource_0>
kind = setToSTFuncUpdater
lowerBounds = [0 0 0]
upperBounds = [10 20 30]
component = 1 # J_x, rho is component 0
writeFields = [SumRhoJ]

<STFunc sourceFunc>
kind = expression
expression = 3.*exp(0.1*(t-10.)^2)*sin(3.14*t - 7.2*x)

</STFunc>

</FieldUpdater>

cacheFunc

cacheFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Defines a function that remembers its last arguments and value, and avoids recalculation if possible.

cacheFunc Parameters

STFunc (block, required)
The function to be cached.

timeIsIrrelevant (bool)
Whether the change is time is relevant to the function.

irrelevantDirs (integer vector)
Any direction where the change is irrelevant to the function.

450 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Example cacheFunc Block

<STFunc memDrive>
kind = cacheFunc
irrelevantDirs = [1 2]
<STFunc drive>
kind = expression
expression = amp*H(T_DRIVE-t)*cos(K*x)*sin(OMEGA*t)

</STFunc>
</STFunc>

chirpWavePulse

chirpWavePulse

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Produces a plane wave modulated by a pulse envelope, where the envelope is a half-sine function along
the direction of motion, and it is Gaussian transverse.

chirpWavePulse Parameters

vg (float)
Group velocity by which the origin of the envelope is moved.

amplitude (float)
Amplitude of the pulse.

phase (float)
Additional phase of the sinusoid.

keepon (option)
If true, pulse is on after rises to max value.

origin (float vector)
Origin of the envelope.

widths (float vector)
Widths of the pulse.

• widths[0] (float)

Width along the direction of motion. This is half the width of the non-zero extent of the half-sine,
or the FWHM of the square of the half-sine.

• widths[1] (float)

Width along the direction of perpendicular to k and the third (index 2) axis, unless k is along the
third (index 2) axis, in which case this is the width along the first (index 0) axis. The width for
transverse directions is the full width at the 1√

𝑒
points.

• widths[2] (float)

Width along the direction of perpendicular to k and the direction for widths[1].

chirp (float)
The chirp of the pulse is equal to the change in frequency during the full width at half power max; a positive
chirp indicates rising frequency along the pulse.

3.18. Functions 451

VSim Reference Manual, Release 11.0.1-r3016

skewness (float)
Skewness in the pulse; positive skewness.

waistDisplacement (float)
Displacement of the waist along the direction of propagation.

Example chirpWavePulse Block

<STFunc component0>
kind = chirpWavePulse
chirp = -0.9
amplitude = 5.0e+12
phase = 1.57
k = [125.6 0. 0.]
vg = LIGHTSPEED
widths = [1.e-1 2.e-1 2.e-1]
origin = [-1.e-1 0.e-5 0.e-5]

</STFunc>

constantFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Defines a constant space-time function.

constantFunc Parameters

amplitude (float vector): Value this function has.

Example constantFunc Block

<STFunc myConstFunc>
kind = constantFunc
amplitude = 1.0

</STFunc>

cosineFlattop

cosineFlattop

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function for a flat top function with cosine ramps up and down.

cosineFlattop Parameters

direction (float vector)
Direction of the ramp (unit vector û of gradient).

startPosition (float)
Value of û · x at which the ramp starts.

452 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

startFlattop (float)
Value of û · x at which the flat top starts.

endFlattop (float)
Value of û · x at which the flat top ends.

endPosition (float)
Value of û · x at which the ramp ends.

startAmplitude (float)
Amplitude for û · x < 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.

endAmplitude (float)
Amplitude for û · x > 𝑒𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.

flattopAmplitude (float)
Amplitude for 𝑠𝑡𝑎𝑟𝑡𝐹 𝑙𝑎𝑡𝑡𝑜𝑝 < û · x < 𝑒𝑛𝑑𝐹 𝑙𝑎𝑡𝑡𝑜𝑝.

Example cosineFlattop Block

<STFunc cosFT>
kind = cosineFlattop
direction = [1. 0. 0.]
startPosition = 0.0
startFlattop = 0.1
endFlattop = 1.
endPosition = 1.
startAmplitude = 0.
endAmplitude = 0.
flattopAmplitude = 1.0e9

</STFunc>

cosineRamp

cosineRamp

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function for an initial ramp.

cosineRamp Parameters

direction (float vector)
Direction of the ramp (unit vector û of gradient).

startPosition (float)
Value of û · x at which the ramp starts.

endPosition (float)
Value of û · x at which the ramp ends.

startAmplitude (float)
Amplitude for û · x < 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.

endAmplitude (float)
Amplitude for û · x > 𝑒𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.

3.18. Functions 453

VSim Reference Manual, Release 11.0.1-r3016

Example cosineRamp Block

<STFunc component0>
kind = cosineRamp
direction = [1. 0. 0.]
startPosition = 0.0
endPosition = 0.1
startAmplitude = 0.
endAmplitude = 1.0e17

</STFunc>

STFunc-expression

expression (STFunc)

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function that can be defined by an arbitrary mathematical expression.

expression Parameters

expression (string)
Expression to be evaluated, involving the arithmetic operators + (addition), - (subtraction), * (multiplication), /
(division), and ** (exponentiation), and the below functions of position and/or time:

Function Mathematical Description General Description
pow(x,y) 𝑥𝑦 exponential, arbitrary base
exp(x) 𝑒𝑥 exponential, base 𝑒
sin(x) sin (𝑥) sine
cos(x) cos (𝑥) cosine
tan(x) tan (𝑥) tangent
asin(x) arcsin (𝑥), 𝑥 ∈ [−1, 1] inverse sine
acos(x) arccos (𝑥), 𝑥 ∈ [−1, 1] inverse cosine
atan(x) arctan (𝑥), 𝑥 ∈ [−𝜋/2, 𝜋/2] inverse tangent
atan2(y,x) arctan (𝑦/𝑥); 𝑥 and 𝑦 not both 0, inverse tangent, returns angles in correct quadrant

𝑥 = 0 returns ±𝜋/2
sinh(x) sinh (𝑥) hyperbolic sine
cosh(x) cosh (𝑥) hyperbolic cosine
tanh(x) tanh (𝑥) hyperbolic tangent
ln(x) log𝑒 (𝑥) logarithm, base 𝑒
log(x) log𝑒 (𝑥) logarithm, base 𝑒
log10(x) log10 (𝑥) logarithm, base 10
mod(x,y) 𝑥− ⌊𝑥/𝑦⌋𝑦 floating point remainder
inv(x) −𝑥 additive inverse

H(x) 𝐻 (𝑥) =

⎧⎨⎩ 0 , 𝑥 < 0
0.5 , 𝑥 = 0
1 , 𝑥 > 0

Heaviside step function

J0(x) 𝐽0 (𝑥) Bessel function of the first kind, order 0
J1(x) 𝐽1 (𝑥) Bessel function of the first kind, order 1
J2(x) 𝐽2 (𝑥) Bessel function of the first kind, order 2
J3(x) 𝐽3 (𝑥) Bessel function of the first kind, order 3

Continued on next page

454 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Table 3.1 – continued from previous page
Function Mathematical Description General Description
abs(x) |𝑥| absolute value
sqrt(x)

√
𝑥 square root

rand(x) uniform random number in [0, 1), independent of 𝑥
gauss(x,y) Gaussian random number with standard deviation 𝑥 and mean 𝑦
ceil(x) ⌈𝑥⌉ smallest integer not less than x
floor(x) ⌊𝑥⌋ largest integer not greater than x
min(x,y) 𝑥 if 𝑥 ≤ 𝑦, else 𝑦 minimum
max(x,y) 𝑥 if 𝑥 ≥ 𝑦, else 𝑦 maximum

Example expression Block

<STFunc component0>
kind = expression
expression = 100.*sin(2.0e9*t)

</STFunc>

feedbackSTFunc

feedbackSTFunc

Works with VSimPD and VSimMD licenses.

Function that pulls its values from a feedbackDesired history. See feedbackDesired history.

feedbackSTFunc Parameters

kind
For STFunc, must be set to feedbackSTFunc.

feedback
Points to the feedback history being used.

expression
For any space time function, this value is a guess as to what the adjustable term (current for example) will look
like to produce the desired quantity (voltage in this case). The value obtained from the feedback is then
multiplied by the value of expression to produce the resulting value of addjustableTerm. The value of
feedback changes at every time step, but ideally will approach a constant value.

Example feedbackSTFunc Block

<STFunc adjustableTerm>
kind = feedbackSTFunc
feedback = feedbackHistory
expression = 0.5*J_DRIVE*tanh(t/T0)

</STFunc>

gaussian

3.18. Functions 455

VSim Reference Manual, Release 11.0.1-r3016

gaussian

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function for a Gaussian.

gaussian Parameters

width (float vector)
Width of the Gaussian.

origin (float)
Origin of the center of the Gaussian.

velocity (float)
Velocity of the pulse.

amplitude (float vector)
Amplitude of the wave.

Example gaussian Block

<STFunc relMacroFluxFunc>
kind = gaussian
widths = [1. 0. 1.]
origin = [0. 0. 0.]
velocity = [0. 1.e5 0.]
amplitude = 1.

</STFunc>

gaussianPulse

gaussianPulse

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function for a sinusoidal pulse in the form of a Gaussian beam, modulated by a Gaussian envelope longi-
tudinally. The longitudinal envelope rises adiabatically on the tails of the Gaussian to avoid discontinuous
truncation.

gaussianPulse Parameters

omega (required float)
Angular frequency of the wave 𝜔.

k (required float vector)
The wave vector k.

amplitude (required float)
Amplitude of the wave.

phase (optional float, default = 0)
The phase, added to (k · x− 𝜔𝑡).

456 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

origin (required float vector)
The initial location of the peak of the pulse. This is usually located a distance widths[0] outside the sim-
ulation domain, so that the value of the function is initially 0 everywhere in the simulation. The pulse then
propagates into the simulation domain.

widths (required float vector)
Widths of the pulse:

widths[0]

Full half-width of the pulse in the longitudinal direction (i.e. along k). The trauncated Gaussian
reaches 0 this distance away from the peak.

Note: The Gaussian envelope must be truncated, which implies a finite starting amplitude. Because
a finite starting amplitude is unphysical and can significantly perturb the simulation, the truncated
Gaussian is brought smoothly to zero with a simple cubic switching function. Hence, 90% of the
envelope is a true Gaussian, but the 10% at the leading and trailing edges has a different functional
form. Any ramifications should be negligible if the full half-width of the pulse is at least 3 RMS.

widths[1]

The width of the Gaussian beam in the direction perpendicular to k in the plane of k and x̂; if k is
parallel to x̂, this is the width in the 𝑦 direction. The width is the full-width at the 1/

√
𝑒 points (of

the function value, not function squared) at the beam waist.

widths[2]

The width of the Gaussian beam in the direction perpendicular to both k and x̂; if k is parallel to x̂,
this is the width in the 𝑧 direction. The width is the full-width at the 1/

√
𝑒 points (of the function

value, not function squared) at the beam waist.

vg (required float)
Group velocity, by which the origin of the envelope is moved.

waistDisplacement (required float)
Location of the pulse focus along its direction of propagation, measured from the initial peak location specified
by origin.

L_fwhm (required float)
Longitudinal full width at half-maximum of the pulse intensity (function squared).

keepon (optional integer, default = 0 (false))
If true, the pulse does not fall after getting to its peak value.

Example gaussianPulse Block

<STFunc component1>
kind = gaussianPulse
omega = OMEGA
k = [K_LASER 0. 0.]
amplitude = EPUMP
origin = [XSTARTPUMP 0. 0.]
widths = [WXPUMP WYPUMP WYPUMP]
vg = LIGHTSPEED
waistDisplacement = STARTFLAT

Full length at half max of pulse envelope

(continues on next page)

3.18. Functions 457

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

L_fwhm = L_FWHM
</STFunc>

halfSinePulse

halfSinePulse

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function for a sinusoidal pulse in the form of a Gaussian beam, modulated by a longitudinal half-sine
function.

halfSinePulse Parameters

omega (required float)
Angular frequency of the wave 𝜔.

k (required float vector)
The wave vector k.

amplitude (required float)
Amplitude of the wave.

phase (optional float, default = 0)
The phase, added to (k · x− 𝜔𝑡).

origin (required float vector)
The initial location of the peak of the pulse. This is usually located a distance widths[0] outside the simula-
tion domain, so that the value of the function is initially equal to zero everywhere in the simulation. The pulse
then propagates into the simulation domain.

widths (required float vector)
The widths of the pulse:

widths[0]

Full half-width of the pulse in the longitudinal direction (i.e. along k). The half-sine function reaches
zero at this distance away from the peak.

widths[1]

The width of the Gaussian beam in the direction perpendicular to k in the plane of k and x̂; if k is
parallel to x̂, this is the width in the 𝑦 direction. The width is the full-width at the 1/

√
𝑒 points (of

the function value, not function squared) at the beam waist.

widths[2]

The width of the Gaussian beam in the direction perpendicular to both k and x̂; if k is parallel to x̂,
this is the width in the 𝑧 direction. The width is the full-width at the 1/

√
𝑒 points (of the function

value, not function squared) at the beam waist.

vg (required float)
Group velocity, by which the origin of the envelope is moved.

waistDisplacement (required float)
Location of the pulse focus along its direction of propagation, measured from the initial peak location specified
by origin.

458 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

skewness (optional float, default = 0)
Skewness in the pulse, which is a distortion so that the pulse rises more rapidly than it falls (negative skewness)
or vice versa.

keepon (optional integer, default = 0 (false))
If nonzero, the pulse does not fall after getting to its peak value.

Example halfSinePulse Block

<STFunc component0>
kind = halfSinePulse
omega = 3.0e7
k = [5. 0. 0.]
amplitude = 0.7
origin = [0. 0. 0.]
widths = [14.9896e-6 8.48528e-6 8.48528e-6]
vg = 2.9998e8
waistDisplacement = 0.2

</STFunc>

historyAsSTFunc

historyAsSTFunc

Works with VSimPD and VSimMD licenses.

Function that pulls its values from any history. The history must be single valued (i.e. current).

historyAsSTFunc Parameters

kind
For STFunc, must be set to historyAsSTFunc.

history
Points to the history being used.

addToValue
A value which is added to this history, before being multiplied by expression. Default 0.0.

expression
For any space time function, this value will be used to adjust the measured quantity. addToValue and
history are added and then multiplied by the value of expression to produce the value of STFunc.

Example historyAsSTFunc Block

<STFunc currentDensityFunc>
kind = historyAsSTFunc
history = feedbackTopWallCurrent
expression = $ 1.0 / TOP_WALL_AREA $

</STFunc>

3.18. Functions 459

VSim Reference Manual, Release 11.0.1-r3016

ignoreArgFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Provides an STFunc block that is an interface to an NAFunc block.

ignoreArgFunc Parameters

NAFunc (code block, required)
IgnoreArgFunc block must contain an NAFunc block that has the name func.

ignoreArgFunc STFunc Kind Example

<STFunc component0>
kind = ignoreArgFunc
<NAFunc func>

kind = stretcher
minvalue = VX_MIN_DF
maxvalue = VX_MAX_DF
seed = VX_SEED

</NAFunc>
</STFunc>

inverseFunc

inverseFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Defines a function that is an inverse of another function.

inverseFunc Parameters

STFunc (block)
The function to be inverted. Must be a named function.

Example inverseFunc Block

<STFunc sourceFunc>
kind = inverseFunc
<STFunc function>
kind = expression
expression = ((x+0.5*LX)*(y+0.5*LY))^2

</STFunc>
</STFunc>

leakychannel

460 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

leakychannel

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function that is parabolic in radius, then drops linearly to zero.

leakychannel Parameters

direction (float vector)
Direction of the ramp (unit vector û of gradient).

channelPosition (float)
Position of the center of the channel.

maxParabRadius (float)
Radius (transverse to û) at which the channel starts turning from parabolic to linear.

maxRadius (float)
Radius (transverse to û) at which the channel vanishes.

centerAmplitude (float)
Value at the center of the channel.

quadCoef (float)
Coefficient of the quadratic term.

expanFunc (float)
Function whose values on axis give the expansion of the channel, with corresponding decrease of the radius.

Example leakyChannel Block

<STFunc channel>
kind = leakyChannel
direction = [1. 0. 0.]
channelPosition = [0. 0. 0.]
maxParabRadius = MAXPARABRADIUS
maxRadius = MAXRADIUS
centerAmplitude = DENSRAT
quadCoef = QUADCOEF

</STFunc>

multFunc

multFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Defines a function that is a product of one or more other functions.

multFunc Parameters

STFunc (block)
One of the functions to be multiplied.

3.18. Functions 461

VSim Reference Manual, Release 11.0.1-r3016

Example multFunc Block

<STFunc sourceFunc>
kind = multFunc
<STFunc func1>
kind = expression
expression = x

</STFunc>
<STFunc func2>
kind = expression
expression = y

</STFunc>
</STFunc>

planeWavePulse

planeWavePulse

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

A plane wave modulated by a Gaussian transversely and a half-sine longitudinally.

planeWavePulse Parameters

omega (required float)
Angular frequency of the wave 𝜔.

k (required float vector)
The wave vector k.

amplitude (required float)
Amplitude of the wave.

phase (optional float, default = 0)
The phase, added to (k · x− 𝜔𝑡).

origin (required float vector)
The initial location of the peak of the pulse. This is usually located a distance widths[0] outside the simu-
lation domain, so that the value of the function is initially zero everywhere in the simulation. The pulse then
propagates into the simulation domain.

widths (required float vector)
The widths of the pulse:

widths[0]

Full half-width of the pulse in the longitudinal direction (i.e. along k). The half-sine function reaches
zero at this distance away from the peak.

widths[1]

The width of the Gaussian beam in the direction perpendicular to k in the plane of k and x̂; if k is
parallel to x̂, this is the width in the 𝑦 direction. The width is the full-width at the 1/

√
𝑒 points (of

the function value, not function squared).

widths[2]

462 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

The width of the Gaussian beam in the direction perpendicular to both k and x̂; if k is parallel to x̂,
this is the width in the 𝑧 direction. The width is the full-width at the 1/

√
𝑒 points (of the function

value, not function squared).

vg (required float)
Group velocity, by which the origin of the envelope is moved.

skewness (optional float, default = 0)
Skewness in the pulse.

keepon (optional integer, default = 0 (false))
If true, the pulse does not fall after getting to its peak value.

Example halfSinePulse Block

<STFunc function>
kind = planeWavePulse # Function used for E_z
omega = OMEGA # Angular frequency parameter for function
k = [KAY 0 0] # k-vector parameter for function
amplitude = EWAVE
phase = 1.57
widths = [5.e-6 1.e-5 1.e-5] # widths of pulses, along k, transverse
origin = [-5.e-6 0.e-5 0.e-5] # Origin parameter for function
vg = LIGHTSPEED # Group velocity parameter for function

</STFunc>

radialCosChannel

radialCosChannel

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function for an initial ramp into a region of a channel.

radialCosChannel Parameters

direction (float vector)
Direction of the ramp (unit vector û of gradient).

channelPosition (float)
Position of the center of the channel.

startRadius (float)
Radius (transverse to û) at which the channel starts to turn into the outer region.

endRadius (float)
Radius (transverse to û) at which the channel stops changing and the outer region begins.

startAmplitude (float)
Amplitude for û · x < 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.

endAmplitude (float)
Amplitude for û · x > 𝑒𝑛𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.

scalarFunc

3.18. Functions 463

VSim Reference Manual, Release 11.0.1-r3016

scalarFunc

Works with VSimPD and VSimMD licenses.

Function that pulls its values from a scalar. See Scalar in multiFields.

scalarFunc Parameters

kind
For STFunc must be set to scalarFunc.

scalar (required string)
The name of the scalar being used.

Example scalarFunc Block

<STFunc fA5>
kind = scalarFunc
scalar = A5

</STFunc>

sinePlaneWave

sinePlaneWave

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Plane wave pulse based on a sine wave.

sinePlaneWave Parameters

omega (required float)
Angular frequency of the wave 𝜔.

k (required float vector)
The wave vector k.

amplitude (required float)
Amplitude of the wave.

phase (optional float, default = 0)
The phase, added to (k · x− 𝜔𝑡).

Example simplePlaneWave Block

<STFunc component0>
kind = sinePlaneWave
omega = OMEGA_RF
k = [0. 0.01 0.]
amplitude = 1.0e5
phase = 0.0

</STFunc>

464 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

sumFunc

sumFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Defines a function that is a sum of one or more other functions.

sumFunc Parameters

STFunc (block)
One of the functions to be summed.

Example sumFunc Block

<STFunc sourceFunc>
kind = sumFunc
<STFunc func1>
kind = expression
expression = x

</STFunc>
<STFunc func2>
kind = expression
expression = y

</STFunc>
</STFunc>

stPyFunc

stPyFunc

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Function defined by a Python script, which is contained in a separate file. The parameter name is used to
point to this file.

stPyFunc Parameters

name (string)
Name of the function.

Example stPyFunc Block

Python block in a Python file with same name as the input file.

def imagAmp(x, y, z, t):
if NDIM == 1:

return 0.0
elif NDIM == 2:

return gausBeam2D(LIGHTSPEED * (t - T_WAIST), x - X_WAIST, y).imag

(continues on next page)

3.18. Functions 465

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

else:
return gausBeam3D(LIGHTSPEED * (t - T_WAIST), x - X_WAIST, y, z).imag

Block in Vorpal referencing the Python function defined in the Python file.

<InitialCondition ImagA>
lowerBounds = [0 0 0]
upperBounds = [NX NY NZ]
kind = variable
components = [1]
<STFunc component1>
kind = stPyFunc
name = imagAmp

</STFunc>
</InitialCondition>

tagGen

Works with VSimPD, VSimPA, and VSimMD licenses.

Very specialized function used only to generate tags for tagged particles species.

tagGen Parameters

The tagGen function has no additional parameters.

Example tagGen Block

<STFunc component3>
kind = tagGen

</STFunc>

userFuncExpression

userFuncExpression

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

Defines a function that wraps an Expression Block.

userFuncExpression Parameters

Expression (block)
The Expression wrapped by the STFunc.

Example userFuncExpression Block

466 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<STFunc function>
kind = userFuncExpression
<Expression updateFunction>
expression = min(vector(R_CAV^2 -x^2-y^2, z - Z_START +1e-6*DZ, Z_START+LZ+1e-

→˓6*DZ-z))
</Expression>

</STFunc>

3.18.5 SVTFunc

SVTFunc Block

Space-Velocity-Time function objects are used for defining phase space functions, such as those needed
for delta-f PIC simulations.

SVTFunc Kinds

• maxwellian

maxwellian

maxwellian

Works with VSimBase, VSimEM, VSimPD, VSimPA, and VSimMD licenses.

An SVTFunc created using a Maxwellian function with kind = maxwellian.

maxwellian Parameters

density
Density of the plasma in the region of simulation.

velocityDim
Number of velocity coordinates.

densGrad_x
x-derivative of the density function specified above.

densGrad_y
y-derivative of the density function specified above.

densGrad_z
z-derivative of the density function specified above.

vthermal
Thermal velocity of the particles (related to energy level).

vdrift_x
Specifies drift velocity of particles in x-direction.

vdrift_y
Specifies drift velocity of particles in y-direction.

vdrift_z
Specifies drift velocity of particles in z-direction.

3.18. Functions 467

VSim Reference Manual, Release 11.0.1-r3016

Example maxwellian Block

Example showing that all parameters (except .. describe:: velocityDim‘) are specified through STFuncs of kind ..
describe:: expression‘ or .. attribute:: constantFunc‘.

<SVTFunc equilibDist>

kind = maxwellian
velocityDim = 3

<STFunc density>
kind = expression
expression = DENSITY_P*x/LX

</STFunc>

<STFunc densGrad_x>
kind = expression
expression = DENSITY_P/LX

</STFunc>

<STFunc densGrad_y>
kind = constantFunc
amplitude = 0.

</STFunc>

<STFunc densGrad_z>
kind = constantFunc
amplitude = 0.

</STFunc>

<STFunc vthermal>
kind = constantFunc
amplitude = ELECTHERMSPEED

</STFunc>

<STFunc vdrift_z>
kind = constantFunc
amplitude = 0.

</STFunc>

</SVTFunc>

3.18.6 UserFuncs, Expressions, and related functions

Introduction to UserFuncs and Expressions

A UserFunc Block is like an STFunc or OAFunc or NAFunc, etc., but the UserFunc framework is more general and
powerful (and complicated). UserFuncs can call other (user-defined) UserFuncs, and they allow more general function
signatures, with vector arguments and results

This is an example of a very simple UserFunc that takes a single scalar argument (of float type) and squares it:

<UserFunc square>
kind = expression
inputOrder = [b]

(continues on next page)

468 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<Input b>
kind = arbitraryVector
types = [float]

</Input>
expression = b^2

</UserFunc>

A few terms, very briefly:

• An <Expression> block is like a UserFunc of kind = expression, except that the <Expression> block
does not have to specify the inputOrder or <Input> blocks. See expression.

• An Input Block block describes the (vector-)length and types of an input argument to the function. Along with
the inputOrder attribute, the <Input> blocks give the input signature of the function: the number and types
of arguments.

• Local UserFuncs are UserFunc (sub)blocks that appear within a UserFunc block (usually of kind =
expression).

• A Term Block is a cross between an <Input> and a local <UserFunc>. It is a term that can be used (e.g., in an
expression), but its value is not passed to the function as an argument, but rather found by evaluating a local
function. Even when a Term appears more than once (or not at all) in an expression, the Term is evaluated
exactly once; in contrast, a local UserFunc may be evaluated once for each time it appears, or not at all if its
result is not needed. Moreover, a local UserFunc can be called multiple times in the same expression with
different arguments.

UserFunc Block

A block for functions specifed by the user

UserFuncs can be used to specify a function, e.g., as a string expression. While already very powerful and useful,
UserFuncs are still an experimental feature that will require continued development, and the interfaces to them will
probably change as they evolve.

A UserFunc is a vector-valued function that takes vector arguments; in general, a UserFunc can take an arbitrary
number of vector arguments, and return a vector; each vector (in general) can contain any number of scalar elements.

Note: For convenience, we will often write vectors using brackets, e.g., [1.5, 2, -3, 4.1]. However, this bracket-
notation is not recognized within a UserFunc expression, where a vector must be written vector(1.5, 2, -3,
4.1).

UserFuncs distinguish 3 types of scalars: float (a floating point number), integer, and boolean (0 or 1).

Note: Type information helps avoid unexpected values before any evaluation is performed; type information is never
used during the evaluation itself. In other words, if the number 1 is passed to a function, the result will never depend
on whether 1 is a boolean, an integer, or a float; in particular, 1.0/2.0 = 1/2 = 0.5 as far as UserFuncs are concerned.

A function that takes an integer argument will also take a boolean; similarly, a function that takes a float argument will
also take an integer or a boolean. The reverse is not true: e.g., a function that takes a boolean will not take a general
integer or float.

A specific UserFunc has a signature that describes the number, lengths, and types of arguments, as well as the length

3.18. Functions 469

VSim Reference Manual, Release 11.0.1-r3016

and types of the result. Here are the signatures of some common functions:

sin : ([float]) → [float]
==: ([float], [float]) → [boolean]

floor : ([float]) → [integer]

In these simple examples, each vector (argument or result) has only one element.

UserFuncs use 0-indexing: the first argument is argument 0; the first element of a vector has index 0.

Simple UserFuncs of kind = expression are easy to use when, for instance, they are employed in the same way
as STFuncs. For example, suppose some attribute block expects a UserFunc that is a function of space and time, i.e.,
of scalars x, y, z, and t. Example input might be:

<OuterBlock someObjectThatNeedsAUserSpecifiedFunction>
...
<UserFunc someName>
kind = expression
inputOrder = [t x y z]
<Input t>

kind = arbitraryVector
types = [float]

</Input>
<Input x>

kind = arbitraryVector
types = [float]

</Input>
expression = sin(3*x) * cos(0.2*t)

</UserFunc>
</OuterBlock>

To learn how to use UserFuncs, it might be easiest to look first at examples (such as in Local UserFuncs and Term
Block), and then refer to the following explanation as needed.

Kinds of UserFuncs

There are several kinds of UserFuncs: an expression simply takes a string expression in the input file.

An expression UserFunc block must include its input signature (inputOrder and the <Input> blocks), but most
other UserFuncs have only one possible input signature and therefore don’t require the input signature to be specified.
(And <Expression> is like UserFuncs of kind=expression but require no signature; see expression.)

UserFuncs specified at the top-level of the input file are special because they can be called by any other UserFuncs (or
<Expression>s) in the entire simulation.

• constant (a function returning a constant value)

• distributedRandom (a random number generator with arbitrary distribution)

• conductorFunc (returns voltage/charge/capacitance of a Conductor Block)

• expression (a function specified by a string expression)

• fieldFunc (returns a field value)

• gridFunc (returns information about grid geometry)

• gridBoundaryFunc (returns information about surface geometry)

• historyFunc (returns values from a Tensor History)

470 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Some of these kinds get their values from other simulation objects; when running parallel simulations, it is impor-
tant to remember that the entire object may not be accessible to all processors. For example, a fieldFunc can in
principle be used to look up a field value at any spatial location; however, each rank has access to just a part of the
field—attempting to find the field value outside that range will halt the simulation. Some objects that use UserFuncs
(notably cellFuncHist) offer backup-functions that can be called should the main UserFunc fail to evaluate.

UserFunc Parameters

General UserFuncs can take the following attribute:

maxNumEvals (positive integer, optional, default = 128)
The maximum number of simultaneous evaluations a function can perform (see Speed and Multiple Evaluations
of UserFuncs). Increasing this number increases memory use and evaluation speed: 16–128 is recommended
for kind = expression.

Expression Block

A block for functions specifed by the user.

Expressions are essentially UserFuncs of kind = expression except that they do not need to specify the
inputOrder attributes, nor any <Input> blocks.

Expressions try to adapt their input signatures to what the surrounding block needs.

See expression

UserFunc Kinds

constant

constant

Describes a function with a constant return value.

Constant UserFunc Parameters

UserFuncs with kind=constant take the following attribute:

value (vector of floats)
The vector-valued result of the function.

Examples

This example shows a function that returns whether the point (x,y) falls within a rod, where the rod centers are specified
in a list (and the rods extend in the z direction). (Such a list cannot be used directly in a UserFunc expression, though
one can use the vector(. . .) function. However, here the constant function gets around that problem.)

$ ROD_RADII = 0.2
$ ROD_CENTERS_X = [1. 0.5 -0.5 -1. -0.5 0.5]
$ ROD_CENTERS_Y = [0. 0.866 0.866 0. -0.866 -0.866]
<UserFunc isInRod>

(continues on next page)

3.18. Functions 471

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

kind = expression
inputOrder = [x y]
<Input x>
kind = arbitraryVector
types = [float]

</Input>
<Input y>
kind = arbitraryVector
types = [float]

</Input>
<UserFunc rcx>
kind = constant
value = ROD_CENTERS_X

</UserFunc>
<UserFunc rcy>
kind = constant
value = ROD_CENTERS_Y

</UserFunc>
expression = or((x-rcx)^2 + (y-rcy)^2 < ROD_RADII^2)

</UserFunc>

This expression uses folding and threading to return 1 if (x,y) is within at least one of the rods, or 0 if (x,y) is not
within any of the rods. Briefly, the subtracting, squaring, addition, and less-than operators are threaded through the
vector values of rcx and rcy, yielding a vector such as vector(0,0,0,1,0,0), indicating that (x,y) falls within the fourth
rod (but not any of the other rods). The or-function is then folded over the vector, yielding 1 if any element of the
vector is 1.

distributedRandom

distributedRandom

A UserFunc that takes no arguments, and returns a random number with a user-given distribution.

distributedRandom Parameters

seed (non-negative integer, optional)
A seed for Vorpal’s default random number generator (used only if <NAFunc numberSequence> is not
given). If seed is not given, a seed will be chosen using the current time.

probDist (code block, required)
<OAFunc probDist> is an OAFunc (function of one argument, returning a scalar) specifying a probability
distribution, including the domain (which describes the range of possible values resulting from this random
number generator). An OAFunc of kind = expression is the usual choice here.

maxRelErr (float, optional, default = 1e-2)
The probability distribution will be approximated with a relative error below this level, subject to
maxNumPoints.

maxNumPoints (positive integer, optional, default = 40961)
The maximum number of points at which to sample the probability distribution. The number of sample points
will be increased, trying to attain maxRelErr, up to maxNumPoints.

doComparison (bool, optional, default = false)
For diagnostic purposes only, compare the approximation of the <OAFunc probDist>, printing out (to stdout)
how close the approximation is.

472 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

printSampleValues (non-negative integer, optional, default = 0)
For diagnostic purposes only, the number of sample random numbers to be printed (to stdout) so the user can
see if they are distributed as desired.

numberSequence (code block, optional)
<NAFunc numberSequence> is an NAFunc code block that generates a random number; if not specified,
Vorpal’s default random number generator (uniform in [0,1)) will be used to generate the initial random number.

Random numbers will be generated with the desired distribution only if numberSequence generates a number
uniformly in [0,1).

Using this code block makes the seed option irrelevant.

conductorFunc

conductorFunc

UserFuncs of kind = conductorFunc return a result with information about a Conductor Block in a cutCellPois-
son updater, namely the voltage on the conductor, the total and absorbed charge on the conductor, or the capacitance
of the conductor (with respect to other conductors).

UserFuncs of kind = conductorFunc take zero arguments.

conductorFunc parameters

conductor
The name of a Conductor Block to query for information. The name may need to be qualified,
e.g., with the name of the MultiField and FieldUpdater containing the referenced conductor – e.g.,
myEsField.poissonUpdater.metalSphereC.

result (string, required)
Specifies what information the function should return; depending on result, different attributes may apply.

Following is a list of results and the extra attributes (if any) that pertain to each specific result. Each result is a
scalar float.

voltage
result = voltage returns the voltage of the conductor (in Volts).

charge
result = charge returns the total charge on the conductor (in Coulombs). To calculate this,
calculateCharge must be true in the Conductor Block (this is automatically true for floating con-
ductors).

For floating conductors, this will be the absorbed charge (minus the emitted charge). For setVoltage con-
ductors, this will be the induced charge, calculated from Gauss’s Law by integrating the electric field of
the surface of the conductor.

absorbedCharge
result = absorbedCharge returns the absorbed charge on the conductor (in Coulombs). To cal-
culate this, calculateCharge must be true in the Conductor Block (this is automatically true for
floating conductors).

The absorbed charge is charge on the conductor resulting from absorbed/emitted particles as well as speci-
fied currents (cf. ptclAbsorbers, ptclSources, and <Expression current> in the Conduc-
tor Block). For floating conductors, the absorbed charge will be (nearly) equal to the total charge. For
conductors with setVoltage, the absorbed charge will be zero.

3.18. Functions 473

VSim Reference Manual, Release 11.0.1-r3016

capacitance
This result uses the following attribute:

otherConductor (string, optional, default: the same
as 'conductor')

which (like conductor) specifies the name of a Conductor Block.

result = capacitance returns the capacitance of the conductor with respect to another conductor
(or itself). Unlike the other results, this does not typically change in time over the course of a simulation.

The capacitance of conductor C1 with respect to another conductor C2 is defined as the charge induced on
C1 when 1V is placed on conductor C2 (while the voltage of all other conductors – including C1 if C1 and
C2 are not the same – is maintained at zero). The units are C/V (or Farads).

Note: the otherConductor must be in the same cutCellPoisson block as the conductor.

Note: either conductor or otherConductor (or both) must be floating conductors (cf. Conductor
Block) for the capacitance to be calculated.

Note: if conductor and otherConductor are the same, the capacitance is positive: 1 V on the
conductor will generally induced a positive charge on that conductor. However, if the conductors are
different, the resulting capacitance is negative: putting 1 V on C2 while C1 remains at 0 V will generally
induce a negative charge on C1.

Note: the capacitance between two floating conductors C1 and C2 is symmetric; swapping conductor
and otherConductor will yield the same result.

conductorFunc examples

In these examples, a conductorFunc is used within a functionOfTime TensorHistory to record charge, voltage, and
capacitance of a conductor. These assume that there is a MultiField block ‘myEsField’ that contains a cutCellPoisson
updater block ‘poissonUpdater’ that contains Conductor Block ‘sphereC’ and ‘plateC’, both of which are floating
conductors.

<History sphereVoltageAndCharge>
kind = functionOfTime
<Expression histCalc>
<UserFunc v>

kind = conductorFunc
conductor = myEsField.poissonUpdater.sphereC
result = voltage

</UserFunc>
<UserFunc q>

kind = conductorFunc
conductor = myEsField.poissonUpdater.sphereC
result = charge

</UserFunc>
expression = vector(v(), q())

</Expression>
</History>
<History sphereCapacitance>

kind = functionOfTime
<Expression histCalc>
<UserFunc c>

kind = conductorFunc
conductor = myEsField.poissonUpdater.sphereC
otherConductor = sphereC # default
result = capacitance

(continues on next page)

474 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</UserFunc>
expression = c()

</Expression>
applyPeriod = 0 # this doesn't change in time, so record just once

</History>
<History spherePlateCapacitance>

kind = functionOfTime
<Expression histCalc>
<UserFunc c>

kind = conductorFunc
conductor = myEsField.poissonUpdater.sphereC
otherConductor = plateC
result = capacitance

</UserFunc>
expression = abs(c()) # c() < 0; for convenience, we record abs(c()).

</Expression>
applyPeriod = 0 # this doesn't change in time, so record just once

</History>

UserFunc-expression

expression

Describes a function with an string expression, e.g., sin(k*x).

A <UserFunc> block of kind = expression and an <Expression> block take all the same attributes, except that
<Expression> blocks do not take the inputOrder attribute, nor <Input> blocks.

Generally, UserFuncs or Expressions are required by some object to compute a user-defined value; each object will
specify whether it requires a UserFunc or an Expresssion. However, UserFuncs may also be defined at the top level of
the input file; these UserFuncs may then be referenced in other UserFuncs throughout the input file. For example, one
could define, at the top level, a <UserFunc rotate> that takes (𝑥, 𝑦, 𝑧) and performs a specific three-dimensional
rotation, returning (𝑥′, 𝑦′, 𝑧′). The rotate function can then be called conveniently from other UserFuncs and
Expressions. Expessions may not be defined at the top-level.

Expression Parameters

UserFuncs with kind = expression take several attributes in addition to the ones for general UserFuncs:

expression (string, required)
The function expression, e.g., 𝑥 * 𝑦 − 𝑠𝑖𝑛(𝑧). The following sections describe how to write an
expression.

inputOrder (vector of strings: UserFunc only)
The order of the arguments, by name; e.g., inputOrder=[x y z numElephants]. Each
element of inputOrder should be the name of an Input block. (This attribute is not given to <Expres-
sion> blocks.)

Input (code block, required in UserFuncs for each member of inputOrder)
For each input variable named in inputOrder, there must be a corresponding <Input> block with
the same name as the variable; the <Input> block specified the length and types of each input. For
example, if inputOrder=[x y z numElephants] then one would also specify:

3.18. Functions 475

VSim Reference Manual, Release 11.0.1-r3016

<Input x>
kind = arbitraryVector
types = [float]

</Input>
<Input y>

kind = uniformVector
types = float
length = 3

</Input>
<Input z>

kind = arbitraryVector
types = [boolean integer]

</Input>
<Input numElephants>

kind = arbitraryVector
types = [integer]

</Input>

to tell Vorpal that x is a scalar floating point number, y is a 3-vector of floats, z is a vector of length
2, the first element a boolean, the second an integer, and numElephants is a scalar integer.

See Input Block.

UserFunc (code block, optional)
A local function, called by the expression. A local <UserFunc> (unlike a <Term>) can be called
with different arguments in different places in the expression; if its result is not needed, it may not
be evaluated at all.

See UserFunc Block and Local UserFuncs.

Term (code block, optional)
A local UserFunc that is evaluated with the same arguments as the containing <UserFunc>; the
<Term> is evaluated exactly once each time the <UserFunc> is evaluated, and the result of the
<Term> can be used in the expression like an input variable. The attributes of a <Term> block are
identical to those of a <UserFunc>.

See Term Block.

Most users will never need to worry about the following optimization options, which should rarely be altered from
their default values:

optimize (bool, default true)
The default value for the following optimizations (unless one suspects a bug, only useMemory
and shortCircuitUnneededArgs should ever be turned off; the other optimizations can only improve
things)

useMemory (bool, default = optimize)
Whether functions that take a long time to evaluate (e.g., sin, but not +) should remember their
previous argument and result, and re-use the result if the same argument is called twice in a row;
invoking this optimization increases run-time evaluation overhead, but may save time if the same
argument is passed for multiple evaluations (however, Vorpal is semi-intelligent about this optimiza-
tion; if the same argument doesn’t often appear twice in a row, it stops using the memory feature).

shortCircuitUnneededArgs (bool, default = optimize)
Whether certain functions (such as if and multiplication) should bypass arguments that don’t mat-
ter. For example, if(x > y, sin(x), cos(y)) needs to evaluate sin(x) but not cos(y)
when x > y. Similarly, H(x) * sin(x) needs to evaluate sin(x) only if 𝑥 ≥ 0 (hence
𝐻(𝑥) ̸= 0). Like useMemory, this optimization may increase evaluation costs in some cases.

476 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

pruneConsts (bool, default = optimize)
Whether to replace constant sub-expressions with a single constant; e.g., whether to replace
3+4+cos(0) with 8.

pruneCSEs (bool, default = optimize)
Whether to perform common sub-expression elimination.

pruneIfs (bool, default = optimize)
Whether to bypass if-functions when the first argument can be determined (independent of the func-
tion arguments); for example, whether to replace if(0 < 1, x, y) with x.

pruneSelects (bool, default = optimize)
Whether to bypass select-functions when the indices (in the second argument) are constant and
sequential.

Basic built-in scalar functions

UserFuncs specified at the top level of the simulation can be used in other expression UserFuncs (anywhere); and
some UserFuncs recognize local functions (defined in the same UserFunc block as the expression). In addition,
there are many built-in functions. The basic functions are implemented with the C++ standard library. The recognized
unary scalar functions follow, along with descriptions of the non-standard ones:

identity identity(𝑥) = 𝑥
inv inv(𝑥) = −𝑥
sqr sqr(𝑥) = 𝑥2

cube cube(𝑥) = 𝑥3

sqrt
sin
cos
tan
exp
asin result in [-pi/2, pi/2]
acos result in [0, pi]
atan result in [-pi/2, pi/2]; cf. binary function atan2(y,x)
sinh
cosh
ln
H H(x) = 0 if x<0, 1/2 if x=0, 1 if x>0
J0 Bessel function 𝐽0
J1 Bessel function 𝐽1
J2 Bessel function 𝐽2
J3 Bessel function 𝐽3
abs
erf
rand rand(x) = a random number in [0,1) (x is irrelevant)
gauss gauss(x) = a random number gaussian-distributed with std. dev. x (and mean 0)
print the identity, but prints the result to stdout
ceil
floor
modmod modmod(x) = y in (-0.5,0.5] such that y = x (mod 1)
not the logical not operator: not(0) = 1, not(1) = 0
bool bool(x)=1 for all x, except bool(0)=0

Continued on next page

3.18. Functions 477

VSim Reference Manual, Release 11.0.1-r3016

Table 3.2 – continued from previous page
int casts to an integer (floor and ceil are usually preferable)
assertBool the identity, but raises an exception at run-time if the argument is not 0 or 1
assertInt the identity, but raises an exception at run-time if the argument is not an integer

The following standard binary operators are recognized: ==, !=, >, >=, <, <=, + (also sum(x,y)), -, * (also
prod(x,y)), / (N.B. this is always float division), ∧ and ** (two notations for exponent). Other built-in binary
functions are:

min
max
sum sum(x,y) = x+y (addition)
prod prod(x,y) = x*y (multiplication)
pow pow(x,y) = x^y
mod mod(x,y) = x mod y (N.B.: mod(-4,3)=-1, mod(4,-3)=1, mod(-4,-3)=-1.)
atan2 atan2(y,x) = arctan(y/x) in [-pi, pi]
gaussRand gaussRand(x,y) is a random number, gaussian-distributed with mean y and std. dev. x
and logical and
or logical or

Built-in functions generally have obvious argument and return types. For example, logical operators (such and not
and and) take only boolean arguments and return booleans; floor will take a float and return an integer. Built-in
functions are fairly smart about argument and return types; for example, the plus operator will return a float if either
of its arguments are float-type, but will return an integer if both of its arguments have boolean or integer types.

Built-in functions for use with GridBoundaries

There are a handful of special functions meant for dealing with results related to whether something (such as a point
or a cell) is inside our outside a GridBoundary, or whether something is cut by the GridBoundary.

In the following, 𝑥 and 𝑦 are “interiorness” values, representing the “interiorness” of a point or a cell or some other
region. See gridBoundaryFunc for sources of interiorness values. Interiorness values are integers that represent
whether something is inside, outside, or on (or cut by) a boundary: one should use the following functions rather than
interpreting the values, but typically, 1 is interior, 0 is on the boundary, and -1 is exterior.

Usually (when we remember) we use the language “inside” and “outside” when we want to separate objects into 2
disjoint categories; and we use “interior,” “exterior,” and “cut by the boundary” when we want to separate objects into
3 disjoint categories.

isInside(𝑥) returns 1/0: whether 𝑥 is inside a boundary
isOutside(𝑥) returns not(isInside(𝑥))
isInterior(𝑥) returns 1/0: whether 𝑥 is inside but not on or cut by boundary
isExterior(𝑥) returns 1/0: whether 𝑥 is outside but not on or cut by boundary
isCutByBndry(𝑥) returns 1/0: whether 𝑥 is on or cut by the boundary
onSameSideOfBndry(𝑥, 𝑦) returns 0/1 if 𝑥 and 𝑦 are on [different sides/the same side] of a boundary, according to

isInside()

Special built-in functions

Some special functions are: if, vector, select, and len.

478 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• if(a, x, y) returns 𝑥 if 𝑎 == 1 (true) and 𝑦 if 𝑎 == 0 (false). 𝑥 and 𝑦 must have the same length, and 𝑎
must be a scalar boolean value.

• The vector functions concatenates vectors (taking any number of arguments, each of any length and types)

vector([𝑥0, . . . , 𝑥𝑘], [𝑦0, . . . , 𝑦ℓ], . . . , [𝑧0, . . . , 𝑧𝑚]) = [𝑥0, . . . , 𝑥𝑘, 𝑦0, . . . , 𝑦ℓ, . . . , 𝑧0, . . . , 𝑧𝑚].

The bracket notation [0,1,2] is not recognized by UserFunc expressions; we simply use it for convenience
here. In an expression, one must write vector(0,1,2).

• The select function selects certain elements from a vector; it takes 2 arguments, a vector of arbitrary types,
and a vector of arbitrary (non-negative) integers:

select([𝑥0, . . . , 𝑥𝑘], [𝑖0, . . . , 𝑖𝑛]) = [𝑥𝑖0 , . . . , 𝑥𝑖𝑛].

• The len function returns the (integer) length of an arbitrary vector.

len([𝑥0, 𝑥1, . . . , 𝑥𝑘−1]) = 𝑘.

Special treatment of scalar functions for vector arguments

Functions defined to be scalar (taking arguments of length 1 and returning a vector of length 1) are automatically
altered to take non-scalar arguments in two very natural ways: threading and folding (terms from Mathematica).

Threading: For an example of threading, we “thread” the scalar function sin(𝑥) = 𝑦 through its vector argument:

sin([𝑥0, . . . , 𝑥𝑛]) = [sin(𝑥0), . . . , sin(𝑥𝑛)].

Multi-argument scalar functions can be threaded if each argument is a vector of the same length or length 1. Thus the
scalar plus function, 𝑥 + 𝑦 = 𝑧 can be used as follows:

[𝑥0, . . . , 𝑥𝑛] + [𝑦0, . . . , 𝑦𝑛] = [𝑥0 + 𝑦0, . . . , 𝑥𝑛 + 𝑦𝑛]

or

[𝑥0, . . . , 𝑥𝑛] + [𝑦] = [𝑥0 + 𝑦, . . . , 𝑥𝑛 + 𝑦].

Folding: Folding allows any binary scalar function 𝑓(𝑥, 𝑦) = 𝑧 to take a single vector argument of arbitrary length
and return a scalar value:

𝑓([𝑣, 𝑤, 𝑥, . . . , 𝑦, 𝑧]) = 𝑓(𝑓(· · · 𝑓(𝑓(𝑣, 𝑤), 𝑥) . . . , 𝑦), 𝑧).

By definition, a folded function applied to a single scalar is the identity:

𝑓([𝑥]) = [𝑥].

For example, the sum function is simply an alias for scalar plus: sum(𝑥, 𝑦) = 𝑥 + 𝑦. Therefore,

sum([𝑥0, . . . , 𝑥𝑛]) =

𝑛∑︁
𝑖=0

𝑥𝑖.

The prod function is an alias for scalar times, and so can be folded to calculate the product of all elements of a vector.
Folding may also be especially useful with the and, or, min, and max functions.

Defining 𝑓(𝑥) = 𝑥 for a binary scalar function 𝑓 and scalar argument 𝑥 makes sense for binary functions that one
typically wants to fold; for example, sum(𝑥) = 𝑥, prod(𝑥) = 𝑥, min(𝑥) = 𝑥. Be forewarned, however, that this
behavior may sometimes hide a mistake; if one has a (scalar) function of 2 scalar arguments 𝑓(𝑥, 𝑦), and accidentally
calls it with a single scalar argument, 𝑓(𝑥), then Vorpal treats that as a folded function (which is the identity, 𝑓(𝑥) = 𝑥),
rather than giving an error message as usual when a function is called with the wrong number of arguments.

3.18. Functions 479

VSim Reference Manual, Release 11.0.1-r3016

A word on optimization

Expression UserFuncs are pretty good at performing simple optimizations, so it is generally recommended to write
expressions in a way that is simplest to read and understand, rather than trying to guess which of several equivalent
expressions will evaluate fastest.

For example, constant expressions are evaluated: x + 3*4*0.1 + y will be reduced to x + 1.2 + y.

Common sub-expressions are evaluated only once, so the sin function is evaluated only once in the expression
sin(x) + exp(sin(x)).

Functions that take a relatively long time to evaluate (such as transcendental functions) will remember the previous
argument and result, and avoid a new evaluation if the argument did not change. This memory feature tends to be less
helpful when performing multiple simultaneous evaluations (see Speed and Multiple Evaluations of UserFuncs).

Also, the expression evaluator can sometimes determine when part of an expression need not be evaluated; in such a
case, it can skip (or short-circuit) an evaluation whose result is unneeded. The most important example is the special
if(a, expr1, expr2) function—-if 𝑎 = 1 then expr1 will be evaluated, but not expr2, and vice-versa if
𝑎 = 0. Again, this feature is less helpful when performing multiple simultaneous evaluations (see Speed and Multiple
Evaluations of UserFuncs).

fieldFunc

fieldFunc

A UserFunc that returns the value of a <Field> at the given position.

A kind=fieldFunc UserFunc takes a single argument, a spatial position (a vector of floats with as many compo-
nents as spatial dimensions).

fieldFunc parameters

field (required string)
The name of a <Field> to query for information (It may be necessary to qualify the field name; for example, if
<Field yeeE> appears within <MultiField emField>, then field=emField.yeeE should be specified.)

result (string, required)
Specifies what information about the <Field> the function will return; two results are currently available,
fieldValue and zeroFieldValue. Depending on the result, different attributes apply.

Following is a list of results, the length and type of the vector returned, and the extra attributes (if any) that
pertain to each specific result.

zeroFieldValue
result = zeroFieldValue returns a vector of zeros with the same length as the number
of components in the field. This can be useful in anif-statement. For example, it would be useful
for a function that does the following–if a cell is interior to a boundary, then return the (vector)
field value in that cell, otherwise return all zeros.

fieldValue
result = fieldValue returns the (vector) value of a field at the given point in space.
See below for more detail. Returns as many floats as components in the field; or 1 float if
component is specified.

component (integer, optional)
The desired component of the field to be returned (if not specified, all components of
the field are returned in a vector)

480 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

interpolationOrder (non-negative integer, default = 1)
The order of interpolation used to find the field value at a point; e.g., 1 means linear
interpolation, which has second-order error in the length of a grid cell. N.B. the
higher interpolationOrder is, the more field values from surrounding cells will be
needed to perform the interpolation. E.g., when interpolating a field value to a point
in cell [5] (in a 1D simulation), interpolationOrder=0 requires only the field value in
one cell (probably cell [5]), whereas interpolationOrder = 6 might require field values
from cells [2] through [8].

gridBoundary (string, optional)
The name of a <GridBoundary>; the field will be interpolated or extrapolated avoid-
ing cells near the gridBoundary; that is, the gridded field values used to interpo-
late/extrapolate to the given point will be taken from cells far (enough) away from
the boundary.

polation (string)
Required when gridBoundary is specified, with choices fromInOrOutside,
fromInside, fromOutside. Whether field values will be interpo-
lated/extrapolated from cells inside or inside the boundary (if fromInOrOutside, cells
will be used on the same side of the boundary as the position at which the field value
is desired).

boundaryCondition (string, optional)
Choices: none, dirichlet, neumann, electricAtPEC,
magneticAtPEC with default = none. Except none, these options are not
generally recommended, because they tend not to do exactly what one wishes.
This attribute specifies a boundary condition to be used to extrapolate field val-
ues (near) to the given gridBoundary surface. The choice none is the same as
specifying no boundaryCondition. Choices dirichlet or neumann assume
that all field components, or the normal-derivatives of all field components, vanish
at the boundary. For 3-vector fields (intended for electric and magnetic fields),
the choice electricAtPEC assumes boundary conditions appropriate for an
electric field at a perfectly conducting metal boundary (or for a magnetic field at a
magnetically-conducting boundary); the choice magneticAtPEC is appropriate
for a magnetic field at a perfectly-conducting metal boundary (or for an electric field
at perfect magnetic conductor). The latter choices are appropriate for divergenceless
fields only.

gridFunc

gridFunc

UserFuncs of kind = gridFunc return a result with information about a <Grid> object.

UserFuncs of kind = gridFunc take one argument, a cell index (a vector of integers with as many elements as
spatial dimensions), and return information about that grid cell, depending on the result attribute.

gridFunc parameters

grid
The name of a <Grid> object to query for information.

result (string, required)
Specifies what information the function should return; depending on result, different attributes will apply.

3.18. Functions 481

VSim Reference Manual, Release 11.0.1-r3016

Following is a list of results, the length and type of the vector returned, and the extra attributes (if any) that
pertain to each specific result.

nodePos (returns NDIM floats)
result = nodePos returns the position of the cell node.

edgeCenterPos (NDIM floats)
result = edgeCenterPos returns the position of the center of an edge of the cell (the edge that
touches the cell node).

dir (required, either 0, 1, or 2)
The direction of the desired edge; e.g., 0 for the cell edge parallel to x that touches the cell node.

faceCenterPos (NDIM floats)
result = faceCenterPos returns the position of the center of a face of the cell (the face that touches
the cell node).

dir (required, either 0, 1, or 2)
The direction normal to the desired face; e.g., 2 for the cell face normal parallel to x and y that touches
the cell node.

cellCenterPos (NDIM floats)
result = cellCenterPos returns the position of the cell center.

cellVolume (1 float)
result = cellVolume returns the volume of the cell.

gridBoundaryFunc

gridBoundaryFunc

UserFuncs of kind = gridBoundaryFunc return a result with information a <GridBoundary> object, i.e.,
information related to a surface (described by the <GridBoundary>).

UserFuncs of kind = gridBoundaryFunc take one argument, a cell index (a vector of integers with as many
elements as spatial dimensions), and return information about the GridBoundary surface in that cell, depending on the
result attribute.

gridBoundaryFunc parameters

gridBoundary (string, required)
The name of the <GridBoundary> object to query for information.

result (string, required)
Specifies what information the function should return; depending on result, different attributes will apply.

gridBoundaryFunc results that return an “interiorness” value specify whether a region is inside, outside, or cut
by the boundary; these results should, if possible, be used as arguments to the functions isInside, isInterior,
isOutside, isExterior, isCutByBndry (see Built-in functions for use with GridBoundaries). In the following,
references to a node, a face, or an edge, refer to the node, face, or edge of the cell specified by the CellFunc
argument (and also the dir attribute if appropriate).

Following is a list of results, the length and type of the vector returned, and the extra attributes (if any) that
pertain to each specific result.

nodeInteriorness (returns 1 integer)
result = nodeInteriorness returns the interiorness of a node.

482 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

cellInteriorness (1 integer)
result = cellInteriorness returns the interiorness of a cell.

dualCellInteriorness (1 integer)
result = dualCellInteriorness returns the interiorness of a dual-grid cell.

cellCenterInteriorness (1 integer)
result = cellCenterInteriorness returns the interiorness of the cell center (a
point).

edgesInteriorness (3 integers)
result = edgesInteriorness returns the interiorness of all 3 edges.

dualEdgesInteriorness (3 integers)
result = dualEdgesInteriorness returns the interiorness of all 3 edges of the dual-
grid cell.

facesInteriorness (3 integers)
result = facesInteriorness returns the interiorness of all 3 faces.

dualFacesInteriorness (3 integers)
result = dualFacesInteriorness returns the interiorness of all 3 faces of the dual-
grid cell.

cellInsideCentroid (NDIM floats)
result = cellInsideCentroid eturns the centroid of the interior volume of the cell.

cellOutsideCentroid (NDIM floats)
result = cellOutsideCentroid returns the centroid of the exterior volume of the cell.

surfaceCentroid (NDIM floats)
result = surfaceCentroid returns the centroid of the boundary surface cutting through
the cell, or the zero vector if the cell is not cut by the boundary.

surfaceCenter (NDIM floats)
result = surfaceCenter returns a point which is approximately the centroid of the
boundary surface cutting through the cell, but is approximately on the surface even if the surface
is curved; if the cell is not cut by the boundary, returns the zero vector.

cellVolFrac (1 float)
result = cellVolFrac returns the fraction of the cell volume that is interior to the grid-
Boundary.

facesAreDmNeglected (3 boolean)
result = facesAreDmNeglected returns whether the 3 faces (that touch the node) of
the cell would be neglected by the Dey-Mittra Faraday update, given the gridBoundary’s dmFrac.

surfaceArea (1 float)
result = surfaceArea returns the area of the gridBoundary surface cutting through the
cell.

surfaceOutwardArea (NDIM floats)
result = surfaceOutwardArea returns a vector with direction in the surface-outward-
normal and length equal to the surfaceArea within the cell.

surfaceOutwardArea3D (3 floats)
result = surfaceOutwardArea3D returns a vector with direction in the surface-
outward-normal and length equal to the surfaceArea within the cell.

surfaceOutwardUnitNormal (NDIM floats)
result = surfaceOutwardUnitNormal returns a unit vector with direction in the
surface-outward-normal.

3.18. Functions 483

VSim Reference Manual, Release 11.0.1-r3016

surfaceOutwardUnitNormal3D (3 floats)
result = surfaceOutwardUnitNormal3D returns a unit vector with direction in the
surface-outward-normal.

ndimZeroVector (NDIM booleans)
result = ndimZeroVector returns NDIM zeros (this can be convenient for figuring

out the spatial dimension).

edgeInteriorness (1 integer)
result = edgeInteriorness returns the interiorness of an edge.

dir (required; 0, 1, or 2)
The direction of the desired edge.

dualEdgeInteriorness (1 integer)
result = dualEdgeInteriorness returns the interiorness of a dual-grid edge.

dir (required; 0, 1, or 2)
The direction of the desired edge.

faceInteriorness (1 integer)
result = faceInteriorness returns the interiorness of a face.

dir (required; 0, 1, or 2)
The direction normal to the desired face.

dualFaceInteriorness (1 integer)
result = dualFaceInteriorness returns the interiorness of a dual-grid face.

dir (required; 0, 1, or 2)
The direction normal to the desired face.

faceInsideCentroid (NDIM floats)
result = faceInsideCentroid returns the centroid of the interior part of the face.

dir (required; 0, 1, or 2)
The direction normal to the desired face.

faceOutsideCentroid (NDIM floats)
result = faceOutsideCentroid returns the centroid of the exterior part of the face.

dir (required; 0, 1, or 2)
The direction normal to the desired face.

faceAreaFrac (1 float)
result = faceAreaFrac returns the fraction of the cell face that is interior to the grid-
Boundary.

dir (required; 0, 1, or 2)
The direction normal to the desired face.

edgeLengthFrac (1 float)
result = edgeLengthFrac returns the fraction of the cell edge that is interior to the
gridBoundary.

dir (required; 0, 1, or 2)
The direction of the desired edge.

faceIsDmNeglected (1 boolean)
result = faceIsDmNeglected returns whether a given face would be neglected by the
Dey-Mittra Faraday update, given the gridBoundary’s dmFrac.

dir (required; 0, 1, or 2)
The direction normal to the desired face.

edgeBordersDmNeglectedFace (1 boolean)
result = edgeBordersDmNeglectedFace returns whether the given cell edge borders

484 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

a cell face that would be neglected by the Dey-Mittra Faraday update, given the gridBoundary’s
dmFrac.

historyFunc

historyFunc

A UserFunc of kind = historyFunc returns values from a <History>.

Currently only Tensor Histories can be probed by historyFunc; see Tensor Histories.

A UserFunc of kind = historyFunc is a function that takes a single argument of a single integer, and returns a
(scalar) value from a <History> record. The argument is meant to be the difference between the current time step
and a past time step. For example, a kind = historyFunc function will return its most recent record given an
argument of 0; it will return its next-most-recent record given argument of 1, and so on.

historyFunc parameters

history (string, required)
The name of a <History> from which to retrieve data.

index (vector of integers, required)
The array-index of the desired element in the History. For example, if the History stores records that are 3 × 2
arrays (or tensors), then index might be [0, 0] or [2,1]. For a History that stores scalar records, this should
simply be [0]. (N.B. the array dimensions of a history can be looked up in the History dump-file, keeping in
mind that the first dimension is the record-index; for example, a scalar history stores a dataset of dimensions
𝑛× 1.)

UserFunc Blocks

Local UserFuncs

Local UserFuncs are <UserFunc> blocks that appear within a UserFunc block of kind = expression (or within
an <Expression> block), and can be called by the expression. Local functions are accessible only within the surround-
ing block.

Local functions can be used to simplify an expression; they can also be used to lookup values based on other simulation
objects (such as fields).

The following UserFunc contains a local UserFunc named mySqr:

<UserFunc f>
kind = expression
inputOrder = [y]
<Input y>
kind = arbitraryVector
types = [float]

</Input>
<UserFunc mySqr>
kind = expression
inputOrder = [x]
<Input y>

kind = arbitraryVector
types = [float]

(continues on next page)

3.18. Functions 485

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</Input>
expression = x*x

</UserFunc>
expression = mySqr(y)*mySqr(y+1) + y

</UserFunc>

The expression of <UserFunc f> specifies the argument when it calls mySqr. This example can be contrasted with
that using Terms (see Term Block).

While local UserFuncs and Terms (Term Block) of kind = expression may helpfully simplify expressions, this
may result in decreased performance. Where speed is important, it may be better to use pre-processor macros and
pre-processor variables instead. For example, in the above we could probably benefit by replacing UserFunc mySqr
with:

<macro mySqr(x)>
(x*x)
</macro>

Term Block

A block that represents a local function whose value can be found and used as a term in a UserFunc
expression (or in an <Expression>).

<Term>s are similar to Local UserFuncs; the difference is that <Term>s must take exactly the same arguments as the
containing function, and they are treated like an <Input> in the containing function (although they shouldn’t appear in
the inputOrder, and they are not arguments of the function).

Differences between Terms and local functions:

• A <Term> must take the exact same arguments as the UserFunc in which it appears.

• A <Term> is evaluated exactly once for every evaluation of its containing UserFunc; if, e.g., it appears multiple
times in an expression, the same value will be used each time (even if the Term returns a random number). In
contrast, a local function will be called anew when needed.

– Often this distinction is moot; it becomes important when evaluation is contingent. For example, suppose
a <Term f> and a local <UserFunc g> appear in expression = if(a, f, g()). The expres-
sion f is needed only if a evaluates to true, and g() must be evaluated only if a is false. In this case f
will be evaluated regardless, while g() is evaluated only if a is false. Therefore, using a local function
instead of a variable can sometimes save time.

– Another difference involves non-deterministic functions, e.g., random-number generators. If f is a Term,
and g() a local function, each of which returns a random number, then in expression = if(f <
0.5, f, 0.5) + if(g() < 0.5, g(), 0.5) the same value will be used for both appearances
of f, but each appearance of g() will evaluate to a different number.

Kinds of Terms

Terms take all the same kinds (and corresponding attributes) as UserFuncs (see UserFunc Block).

Examples

This example can be contrasted with that using local functions (see Local UserFuncs).

486 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<UserFunc f>
kind = expression
inputOrder = [y]
<Input y>
kind = arbitraryVector
types = [float]

</Input>
<Term mySqrVar>
kind = expression
inputOrder = [y] # same args as UserFunc f
<Input y>

kind = arbitraryVector
types = [float]

</Input>
expression = y*y

</Term>
<Term myPlusOneSqrVar>
kind = expression
inputOrder = [y] # same args as UserFunc f
<Input y>

kind = arbitraryVector
types = [float]

</Input>
expression = (y+1)*(y+1)

</Term>
expression = mySqrVar*myPlusOneSqrVar + y

</UserFunc>

In the above example, each Term is like a UserFunc that takes the same arguments as function f (namely, a scalar float
named y). The Terms are then used in f’s expression as variables.

All Terms are evaluated before f’s expression is evaluated; this differs from local functions, which are typically evalu-
ated only as needed.

Input

Input Block

A block that describes the name, length, and types of a vector input argument to a UserFunc or Term.

Each (vector) input argument has a given length, and each element has a type (either boolean, integer, or float).

Input kinds

kind (string)
Specifies the kind of Input block.

arbitraryVector
A vector of arbitrary length, with arbitrary types.

uniformVector
A vector argument of arbitrary length, but uniform type.

3.18. Functions 487

VSim Reference Manual, Release 11.0.1-r3016

arbitraryVector Parameters

types (vector of strings, required)
The type of each element of the input argument, in a list. For example, [integer float float boolean] specifies of
vector of length 4, with the first element of type integer, the second of type float, etc.

uniformVector Parameters

The kind = uniformVector is especially useful for specifying NDIM-dimensional arguments (with the same
dimension as the simulation), for simulations that can be run with arbitrary NDIM. Instead of constructing a list and
truncating it to NDIM elements, one just adds length = NDIM.

type (string, required)
The type of each element of the input argument; either float, integer, or boolean.

length (optional non-negative integer, default=1)
The length of the vector.

More details

Speed and Multiple Evaluations of UserFuncs

Some UserFuncs can decrease computation time by vectorization, or simultaneous multiple evaluations. For example,
consider the function 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦, which we want to evaluate for several values of (𝑥, 𝑦), namely (0, 0), (0, 1),
(2, 3), and (−1, 2). We can often get results faster by performing all 4 evaluations at once, essentially trading 4 calls
to the plus function with scalar arguments for 1 call to a plus function with 4-vector arguments. Since the addition of
two numbers can usually be done faster than a function call, this is often a good trade-off, even though there are extra
computational costs to allowing multiple (or vector) evaluation.

Unfortunately, vectorization is not always possible, and is not always efficient even when it is possible.

UserFuncs of kind expression allow multiple evaluations, limited by the maxNumEvals attribute. Expressions are
pretty efficient evaluated one at a time; however, performing 64 evaluations at once typically reduces the computation
time (per evaluation) by 30%–50%. There seems to be little benefit to going beyond 128 simultaneous evaluations.

The userFuncUpdater can efficiently use the ability to perform multiple evaluations at once. However, other Vorpal
objects that use user-given functions cannot.

Changes in UserFunc syntax from 6.0 to 6.2

Vorpal 6.2 introduced changes in the experimental UserFunc framework, to bring UserFunc input more inline with
other Vorpal input. The manual describes UserFuncs in detail, along with the current options.

These changes are not backwards compatible; input files that previously used UserFuncs and related objects (such as
Tensor Histories) may have to be converted. This process involves several kinds of small changes.

Expression blocks are now used instead of UserFunc blocks in cases where the function signature is
known/determined. Expression’s are otherwise very similar to UserFunc’s of kind = expression. The doc-
umentation for the surrounding block will state whether a UserFunc or an Expression is required.

For example, inside a FieldUpdater of kind = userFuncUpdater, the <UserFunc updateFunction> becomes an
<Expression updateFunction> (with no kind attribute).

For example,

488 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<UserFunc applySteps>
kind = expression
expression = (n == 1)

</UserFunc>

becomes

<Expression applySteps>
expression = (n == 1)

</Expression>

and

<UserFunc updateFunction>
kind = expression
<SpaceFunc F>
kind = fieldFunc
result = fieldValue
field = F
component = 2
interpolationOrder = 4

</SpaceFunc>
expression = F(posz)

</UserFunc>

becomes

<Expression updateFunction>
<UserFunc F>
kind = fieldFunc
result = fieldValue
field = F
component = 2
interpolationOrder = 4

</UserFunc>
expression = F(posz)

</Expression>

Blocks SpaceFunc, HistoryFunc, CellFunc should be changed to blocks of type UserFunc (with kind = spaceFunc,
historyFunc, gridBoundaryFunc, etc.). See above example.

UserFunc blocks must specify the function signature; this is often done by specifying the kind—however, the signature
must be explicitly given for kind = expression.

• varOrder is replaced by inputOrder (where varOrder was previously optional, inputOrder is now
required)

• An Input block should be specified for each element of inputOrder.

• Variable blocks should be replaced by Term blocks.

For example,

<Variable i>
kind = expression
varOrder = [cellPos]
cellPos = [integer integer integer]
expression = select(cellPos,0)

</Variable>

3.18. Functions 489

VSim Reference Manual, Release 11.0.1-r3016

becomes

<Term i>
kind = expression
inputOrder = [cellPos]
<Input cellPos>
kind = uniformVector
type = integer
length = 3

</Input>
expression = select(cellPos,0)

</Term>

Some specific cases where changes will be needed are:

• In FieldUpdaters of kind = userfuncUpdater, <Expression upadateFunction> replaces <UserFunc up-
dateFunction>.

• UserFunc’s applySteps and applyTimes are replaced with Expression’s.

Other effects of these changes:

• In Tensor Histories, the funcLookupScope attribute is no longer valid.

• The checkForUnaccessedAttribs is no longer useful in most cases.

3.19 Slab Block

3.19.1 Slab

A Slab block defined the lower and upper bounds to a volume. Slab blocks are used in several different
contexts in Vorpal.

PositionGenerator Blocks

PositionGenerator

<Slab loadSlab>
lowerBounds = [0 0 0]
upperBounds = [1 1 1]

</Slab>

<Slab emitSurface>
lowerBounds = [0 0 0]
upperBounds = [0 1 1]

</Slab>

gridLoader ParticleSource Blocks

gridLoader

490 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

<Slab initLoadSlab>
lowerBounds = [0 0 0]
upperBounds = [1 1 1]

</Slab>

fieldAverage History Blocks

fieldAverage

<Slab region>
lowerBounds = [0 0 0]
upperBounds = [1 1 1]

</Slab>

3.20 Macros

3.20.1 Introduction to Macros

Note: In VSim 9, the transition to direct macros has been completed, so the previous macros are being
deprecated.

The macros are organized following a well defined-methodology. The philosophical change is that rather than having
only macros that write out input file snippets directly, now there are macros that instead write the snippets into “accu-
mulation variables”. Then, at the end of the file, a call is made to finalize(), which writes out the accumulated
information with the nesting needed for correct interpretation by Vorpal. A requirement for use of these version 8
macros is that the input (.pre) file must adhere to some structure, but the result is a much less constrained structure
compared with the previous macros, which had to be placed in the pre-file in the location where the substitution was
desired.

Here we provide an overview of these depcrecated macros. We will define direct macros to be those that directly write
snippets. They can be used just as macros were used before. We define accumulation macros to be those that add
snippets to accumulation variables. The latter are often effected by the former, as we shall see. The old macros will be
removed in a later version.

Direct Macros Overview: Namespacing and input file structure

All global variables, e.g., the accumulation variables (to be discussed later), for the new macros start with VPM_. The
standard macros are not namespaced, but may be namespaced in a future release. Also, there are variables that are
namespaced starting with TXU_; for instance, variables that describe units.

With the new macros, the input file has to have a particular structure:

• Preamble: Setting of user-defined variables and variables that determine the type of simulation, e.g., electro-
magnetic versus electrostatic.

• Macro file importing.

• The user-defined regular and space-time functions.

• The ordered macros, i.e., grid and timing.

• The unordered macros (for all other dynamics).

3.20. Macros 491

VSim Reference Manual, Release 11.0.1-r3016

• Finalization.

The Preamble

The preamble consists of the setting of the variables that one might want to use in the input file. For pre files generated
from visual setup, the input file preamble begins with

###
#
This PRE file,
emcartfull.pre,
was generated from the simulation definition file,
emcartfull.sdf,
by the sdf2vpre translator.
Any changes to this file will be lost if the
translator is rerun.
#
###

###
#
Ordered blocks
#
###

###
User defined constants and parameters
###

$ import mathphys

$ WAVELENGTH = 1.00000000000000e-01
$ WIDTH = 3*WAVELENGTH
$ DX = WAVELENGTH/16
$ QWID = 0.5*HALFWIDTH
$ EXPFAC = 0.5/(QWID^2)
$ XeMass = 131.3*PROTMASS

Of course, the comments (anything after the #) are not processed, nor are the blank lines. The user has freedom to
choose the variable names provided they do not clash with the names in mathphys.mac, nor do they begin with VPM_
or TXU_, which are reserved for distinguishing variables that are defined for system use. The macro system defines
various boolean variables, so the user should not define variables with names like True or FALSE. Similarly, common
math functions and Python system functions are reserved and should not be used as variable names. For this reason,
users should not assign variable names like cos, sqrt, open, or float.

Next follows the basic variables that define the simulation:

###
Simulation definition from the basic settings
###

$ VPM_COORDINATE_SYSTEM = "cartesian"
cylindrical not found.
$ VPM_NDIM = "3"
$ VPM_PRECISION = "double"
$ VPM_USE_GPU = "False"

(continues on next page)

492 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

$ VPM_SIMULATION_TYPE = "electromagnetic"
electrostatic not found.
$ VPM_GRID_SPACING = "uniform"
$ VPM_INCLUDE_PARTICLES = "False"
include particles.estimated max electron density not found.
include particles.estimated max electron temperature (eV) not found.
$ VPM_TOP_LEVEL_VERBOSITY = VPM_INFO
$ VPM_GRID_TYPE = UniformCartesian

and if VPM_INCLUDE_PARTICLES is True, one must also define

$ VPM_MAX_ELECTRON_DENSITY = "1.e18"
$ VPM_MAX_ELECTRON_TEMP_EV = "1.0"

These variables are used later to calculate the time step, if one is not provided, by later macros.

Macro Importing

To obtain that standard macros, the user need import only a single file, VSim,

$ import VSim

This in turn imports all of the standard macro files needed for the simulation of type defined in the preamble. This
also initializes all of the accumulation variables, which will be further discussed below. If a user creates custom macro
files, they should be imported after the above statement. For example,

$ import mymacrofile

User-defined regular and space-time functions.

The user defines regular and space-time functions in this part of the file in the regular way. Examples are shown below.

###
User defined functions
###

<function SomeFunc(x,y)>
cos(x)*sin(y)

</function>

###
User defined space-time functions
###

$ Jz = exp(-EXPFAC*(y^2+z^2))*sin(OMEGA*t)

The Ordered Macro Calls

There are only two ordered macro calls. Each must be preceded by the definition of some global variables. The grid
macro call comes first and has the form,

3.20. Macros 493

VSim Reference Manual, Release 11.0.1-r3016

###
Translation of grid
###

$ VPM_BGN0 = 0 * TXU_METERS
$ VPM_BGN1 = NEGHW * TXU_METERS
$ VPM_BGN2 = NEGHW * TXU_METERS

$ VPM_L0 = $LENGTH - 0$ * TXU_METERS
$ VPM_L1 = $HALFWIDTH - NEGHW$ * TXU_METERS
$ VPM_L2 = $HALFWIDTH - NEGHW$ * TXU_METERS

$ VPM_N0 = NX
$ VPM_N1 = NPERP
$ VPM_N2 = NPERP

$ VPM_PERIODIC_DIRS = []

setGridData(VPM_NDIM, VPM_GRID_TYPE)

with the following definitions

VPM_BGN0: The start of the grid in the first coordinate.

VPM_BGN1: The start of the grid in the second coordinate.

VPM_BGN2: The start of the grid in the third coordinate.

VPM_L0: The extent of the grid in the first coordinate.

VPM_L1: The extent of the grid in the second coordinate.

VPM_L2: The extent of the grid in the third coordinate.

VPM_N0: The number of cells in the first direction.

VPM_N1: The number of cells in the second direction.

VPM_N2: The number of cells in the third direction.

VPM_PERIODIC_DIRS: An array listing the coordinate directions in which one has periodic boundary condi-
tions.

Following that is the timing setup, which has the form,

###
Translation of the time group
###

$ VPM_DT = "0.0"
$ VPM_CFL_NUMBER = "0.95"
$ VPM_NSTEPS = 100
$ VPM_DUMP_PERIOD = 20

setTimingData()

VPM_DT: The time step for the simulation. If it is set to zero, the setTimingData macro will provide a best guess.

VPM_CFL_NUMBER: This is used when VPM_DT is set to zero. The time step is set to this factor times the maxi-
mum known stable time step.

VPM_NSTEPS: The number of time steps for the simulation.

494 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

VPM_DUMP_PERIOD: The number of time steps between each data dump.

The Unordered Macro Calls

With the new version-8 macros, one can now call the accumulation macros in any order. For example, one can add
boundary conditions via

addBoundaryLauncher(boundaryLauncher0, ElectricField, 0.0, None, 0.0, upperY)
addMalBoundary(mal0, emField, lowerY, MALWID)
addOpenBoundary(open0, emField, upperX)

and one can add particle species, sinks and loaders with

addParticleSpecies(Xenon, 1.602176487e-19, XeMass, relBoris, variableWeights, 1.e18,
→˓5.0, None)

addParticleSpeciesSink(absorbAndSave0, electrons0, absAndSav, lowerX)
addParticleSpeciesLoader(particleLoader0, xvLoaderEmitter, electrons0, 0.
→˓00000000000000e+00, 0.00000000000000e+00, relativeDensity, 1.0, grid,
→˓beamVelocityGen, [0.00000000000000e+00, 0.00000000000000e+00, 0.00000000000000e+00],
→˓[5.00000000000000e+06, 5.00000000000000e+06, 5.00000000000000e+06], [-0.5, -0.5, -0.
→˓5], [0.5, 0.5, 0.5])
addParticleSpecies(electrons0, ELECCHARGE, ELECMASS, relBoris, variableWeights, 1.e18,
→˓ 5.0, None)

From the above one can see that the order is independent, as the species, electrons0, is added after its loaders and
sinks. However, if a loader or sink is added for a species that ultimately is not added, no such species shows up in the
simulation.

Finalization

Finalization consists of a single line,

$ finalize()

This macro takes all of the accumulated descriptions of the simulation, held in the accumulation variables, and writes
it into the file with correct ordering and nesting.

Version 8 Macros Methodology

The basic units of the new macro system are the direct macros. An example of one from solvers.mac is

Add the base solver block to an accumulation variable.
@param name the accumulation variable
@param krySize the Krylov subspace size (for gmres)
@param orthogType the orthogonality type for the Krylov subspace (for gmres
<macro writeBaseSolverBlock(name, krySize, orthogType)>

<BaseSolver myBS>
kind = name
$ if isEqualString(name, generalized minimal residual solver)

kspace = krySize
orthog = orthogType

$ endif

(continues on next page)

3.20. Macros 495

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</BaseSolver>
</macro>

Like all macros, this macro has basic documentation in the macros file, giving the macro name along with any param-
eters. In this case the macro directly writes an input file fragment, hence its name. Direct macros can be used just like
any of the traditional macros, where the user controls the file structure, and the user knows where to place this macro
call for the desired effect. Because all direct macros directly write, their names begin with write.

The above is actually an independent direct macro in that it can be used at any place in the file (though it may not make
sense in any place). In particular, it need not be preceded with any other macros that set any accumulation variables,
which we now turn to.

However, for deferred writing to allow the system to get the order of the macros correct, instead of writing directly,
we accumulate these blocks in accumulation variables using accumulation macros, and then we write those out at
finalization time. An example of an accumulation macro is

Add the base solver block to the accumulation variable, VPM_MATRIX_SOLVER.
Used for iterative solvers, such as gmres.
@param name the name of the base solver block
@param krySize the Krylov subspace size (for gmres)
@param orthog the orthogonality type for the Krylov subspace (for gmres)
<macro addBaseSolver(name, krySize, orthog)>

$ requires VPM_MATRIX_SOLVER
$ VPM_MATRIX_SOLVER = appendToBlock(VPM_MATRIX_SOLVER, writeBaseSolverBlock(name,

→˓krySize, orthog))
$ global VPM_MATRIX_SOLVER

</macro>

This macro counts on there being a global accumulation variable, VPM_MATRIX_SOLVER, which is defined in
solvers.mac. It is important to initialize accumulation variables to an empty string prior to accumulating input file
lines into them. Thus, the definition of an accumulation variable should be of the form,

$ VPM_MATRIX_SOLVER = ""

Accumulation into a variable appends to that variable the output of the previous macro, e.g.
writeBaseSolverBlock(...). With this device, we now have the base solver stored in the variable
VPM_MATRIX_SOLVER, and we can write that variable out where it is needed.

For example, to write out a linear solver, one calls the dependent direct macro,

Write the interative poisson solver block. When used, it must come
after addBaseSolver and addPreconditioner, as it writes the accumulation
variables for the base solver and the preconditioner.
@param maxIt the maximum number of iterations allowed.
@param tol the tolerance for the solution
@param met the metric for convergence, e.g., L1, L2
Verbosity set to same as top level verbosity
<macro writePoissonSolverIterativeBlock(maxIt, tol, met)>

$ requires VPM_TOP_LEVEL_VERBOSITY
<LinearSolver linearSolver>
kind = iterativeSolver
verbosity = VPM_TOP_LEVEL_VERBOSITY
maxIterations = maxIt
tolerance = tol
metric = met
VPM_MATRIX_SOLVER
VPM_PRE_CONDITIONER

(continues on next page)

496 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

</LinearSolver>
</macro>

This is called dependent because it relies on previous macro calls to have defined VPM_MATRIX_SOLVER and
VPM_PRE_CONDITIONER. This writes (and so is a direct macro) a linear solver block, which can be used inside
a multifield block. A user may use this macro just like any of the pre-version-8 macros, provided that the variables,
VPM_MATRIX_SOLVER and VPM_PRE_CONDITIONER have been appropriately initialized.

In the application to multifields, one has at least the updaters, the update steps, and the update step order. The above
macro would be used to write an update step. It is accumulated in the variable, VPM_ES_SOLVER_UPDATERS,
which is finally written into the multifield block during the call to finalize().

Version 8 Macro Files Organization

There are three sections in a macro file for (1) public macros, (2) global (including accumulation) variables, and (3)
private macros. When working in the visual setup, the problem description is written out in an xml-like format that the
translator translates to macro calls that are then processed to produce input file lines. Because most users only ever see
these macro calls, they come first in the macro file. After those macro calls, the file defines the accumulation variables
and then the other macros.

Public Macros

These are the macros currently written by the translator plus a few more, so they are sometimes called translator
macros. They can be order dependent. For example, the macros calls for defining an iterative solver must occur as

addBaseSolver(bicgstab)
addPreconditioner(multigrid, SA, 30, GaussSeidel, 3, before, Jacobi, 1.
→˓33300000000000e+00, 0.00000000000000e+00, increasing)
This writes preconditioner, so it must be last.
addPoissonSolver(relPerm, 1000, 1.00000000000000e-08, r0)

Global (including accumulation) Variables

These are the variables into which one accumulates blocks for later printing in the correct order. All variables are
namespaced with VPMT_, VPM_ or TXU_ so that the user can confidently use names that are not namespaced with
VPMT_, VPM_, or TXU_ provided they also avoid the names in mathphys.mac.

There is no guarantee that these variables will not change with future versions.

Private Macros

The translator macros make use of many other macros to accumulate blocks. These other macros take many forms:
direct macros, utility macros, string manipulation, and so forth. These macros are not guaranteed to be stable between
versions unless they appear in the documentation.

Top Level Macro Files

The top-level macro files are VSim.mac, VSimEm.mac, and VSimEs.mac. These control which other macro files
are included, provide some universally used macros, and define the basic accumulation variables. In particular, if
VPM_SIMULATION_TYPE equals Electromagnetic, then VSimEm.mac is loaded and it loads the macro files needed

3.20. Macros 497

VSim Reference Manual, Release 11.0.1-r3016

for electromagnetic simulations. If VPM_SIMULATION_TYPE equals Electrostatic, then VSimEs.mac is loaded
and it loads the macro files needed for electrostatic simulations. Subsequently, VSim.mac loads the macro files for
particles, fluids, collisions, etc., depending on what the preamble requested.

Remaining Macro Files

The remaining macro files are organized by functionality. For example, electrostatic boundary condition macros are
in esbcs.mac. The particle macros are in particles.mac. When following the standard organization decribed above, the
accumulation variables for any macros in a macro file are defined and initialized in either that file or in a previously
loaded file.

3.20.2 Selective Processing

The preprocessor, txpp.py, processes macros by substitution, giving numerical values that can be interpreted by Vorpal.
However, there are times when one wuld like to selective process, e.g., one might like expand all of the algorithms in
order to substitute others or to access features that are not yet exposed in Visual Setup, or to combine algorithms in
new and creative ways. Selective processing, slso known as partial preprocessing, allows one to do this. With selective
processing one substitutes only a subset of the macros that txpp.py normally substitutes.

Default Selective Processing

Default selective processing is set to process as much as possible while still being able to have a final processing. As
usual, one must set up paths by doing,

on Linux:

source /path/to/vsim/VSimComposer.sh

on MacOS:

source /Applications/VSim-*/VSimComposer.app/Contents/Resources/VSimComposer.sh

on Windows:

\path\to\vsim\setupCmdEnv.bat

Then proceed with the default selective processing on Windows by

python -m txppp -n simnameT.pre simname

If on Mac or linux use

txppp.py -n simnameT.pre simname

This gives the default text-based input file, simnameT.pre, that one can further modify. A good practice is to copy
simnameT.pre to simnameM.pre and modify the second one, so that if one changes simname.sdf, one can re-create
simnameT.pre and merge in any differences to simnameM.pre.

Custom Selective Processing

The preprocessor, txpp.py, can also perform selective processing using the --selective flag to process a subset of
the macros. At present, this has been tested on files that were generated from visual setup.

Running txpp.py with the selective option, e.g.

498 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

txpp.py --selective=fn input.pre -o input.ppp

expands the macros listed in the file named, fn. With

txpp.py --selective="" input.pre -o input.ppp

the file, expandmacros.txt, will be sought. It finds the file by following the usual import path, which includes the
macros directory in which there is expandmacros.txt, containing, e.g.,

$ cat expandmacros.txt
Below are the write macros that must be expanded
writeGrid
writeMultiField
writeEsFieldUpdaterBlock
writeParticleSpeciesBlock
writeImpactColliderBlock
writeParticleAbsorberEmitterHistoryBlock
Below or the variables that must be expanded
VPMT_NDIM # Expanded for clean limits
VPMT_INCLUDE_PARTICLES # Remove condition blocks depending on this
Add more expansions here

To have more macros or variables expanded, copy this file next to your input file and edit it to add all the macros you
want expanded, one per line.

By this method you should be able to arbitrarily morph an sdf-generated pre file to any .ppp file that is between the
sdf-written pre file and the final .in file. One can then run vorpal using the ppp file as input, or one can further or fully
process the ppp file.

3.20.3 Utility Macros

These macros will be mostly used by the framework, but the user may want to import and use them (especially like
the mathphys macro), so they are docemented here.

All utility macros are available to all packages.

• listUtilities.mac

• logicals.mac

• mathphys.mac

• timing.mac

• units.mac

• utilities.mac

• verbosity.mac

• vputilities.mac

listUtilities.mac

This macro file can be imported to an input file with

$ import listUtilities

Macros available in listUtilities are used to append blocks and lists.

3.20. Macros 499

VSim Reference Manual, Release 11.0.1-r3016

logicals.mac

This macro file can be imported to an input file with

$ import logicals

This macros file simply defines the logical variables: true, TRUE, false, and FALSE.

mathphys.mac

This macro file can be imported to an input file with

$ import mathphys

In many of the input file examples that are supplied in VSimComposer, you will see macros from mathphys invoked.
Macros available in mathphys define a series of physical and mathematical constants that are commonly used in
simulations. The constants defined in this macro file are:

Math constants
$ PI = math.pi
$ PIO2 = 0.5*PI
$ TWOPI = 2.*PI

Physical constants from http://physics.nist.gov/cuu/Constants/index.html
$ LIGHTSPEED = 2.99792458e8 # m/s
$ C2 = LIGHTSPEED*LIGHTSPEED
$ MU0 = 4e-7*PI
$ EPSILON0 = 1/(MU0 * C2)
$ ELECMASS = 9.10938215e-31 # kG
$ PROTMASS = 1.672621637e-27 # kG
$ MUONMASS = 1.88353130e-28 # kg
$ ELEMCHARGE = 1.602176487e-19 # C
$ KB = 1.3806504e-23 # J/K

gyromagnetic anomaly of the proton (CODATA 2014)
$ PROTON_GMA = 1.7928473508 # (85), dimensionless
gyromagnetic anomaly of the electron (CODATA 2014)
$ ELECTRON_GMA = 1.15965218091e-3 # (26), dimensionless

Secondary parameters
$ ELECCHARGE = -ELEMCHARGE # C
$ ELECMASSEV = ELECMASS*C2/ELEMCHARGE # eV

timing.mac

This macro file can be imported to an input file with

$ import timing

It is imported by VSim.mac. This macro file defines time-related parameters and makes them global variables.

500 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Public Macros

setTimingData()
In the typical use case, VPM_DT, VPM_NSTEPS, VPM_DUMP_PERIOD, VPM_DMFRAC, and
VPM_CFL_NUMBER are set before entry. This macro then computes VPM_SIMULATION_TIME, and
VPM_NUM_DUMPS. VPM_DT is respected if not zero. Otherwise it is computed from the VPM_CFL_NUMBER
and the minimum CFL time steps from electromagnetics (if an electromagnetic simulation) and (if there
are particles present) the plasma frequency and the thermal electron cell crossing time computed from
VPM_MAX_ELECTRON_DENSITY and VPM_MAX_ELECTRON_TEMP_EV.

units.mac

This macro file can be imported to an input file with

$ import units

This macro file contains conversions factors for units to SI units.

utilities.mac

This macro file can be imported to an input file with

$ import utilities

This macro file contains various utilities for testing equality, converting coords, and the like.

Public Macros

isEqualString(aString, bString)
The isEqualString macro tests if two strings are equal. It returns True or False.

Parameters

• aString – The first of two strings to compare.

• bString – The second of two strings to compare.

isNotEqualInt(i, j)
The isNotEqualInt macro tests if two integers are not equal. It returns True or False.

Parameters

• i – The first of two integers to compare.

• j – The second of two integers to compare.

entryToBool(pd)
The entryToBool macro converts an array of 0/1’s to booleans True/False.

Parameters pd – An array of integers representing booleans, e.g. periodicity.

verbosity.mac

This macro file can be imported to an input file with

3.20. Macros 501

VSim Reference Manual, Release 11.0.1-r3016

$ import verbosity

This macro file contains the constants used in setting the level of output in a simulation.

After importing, it can be used by setting the verbosity to the desired level, e.g. verbosity = VPM_NOTICE.

The verbosity levels are as follows:

$ VPM_EMERGENCY
$ VPM_ALERT
$ VPM_CRITICAL
$ VPM_ERROR
$ VPM_WARNING
$ VPM_NOTICE
$ VPM_INFO
$ VPM_DEBUG
$ VPM_DEBUG2
$ VPM_DEBUG3

vputilities.mac

This macro file can be imported to an input file with

$ import vputilities

It is imported by VSim.mac. This macro file defines vsim-specific utility macros.

Public Macros

writeIndicesFromCoords(coordBounds)
Convert coordinates to the corresponding indices.

Parameters coordBounds – The coordinates to be converted. A float array of length
VPM_NDIM.

write1CellVolume(p, outwardNormal, dl0, dl1, dl2, l0, l1, l2, st0, st1, st2)
Create a 1-cell slab from in (x,y,z) tuple and a direction outwardNormal. It is a tuple that points in the direction
of the outward normal to the surface.

Parameters

• p – A value that gives the position to place the slab.

• outwardNormal – Array of integers specifying the outward normals.

• dl0 – Cell length in the zeroth direction, e.g. VPM_DX.

• dl1 – Cell length in the first direction, e.g. VPM_DY.

• dl2 – Cell length in the second direction, e.g. VPM_DZ.

• l0 – Length of the domain in the zeroth direction, e.g. VPM_LX.

• l1 – Length of the domain in the first direction, e.g. VPM_LY.

• l2 – Length of the domain in the second direction, e.g. VPM_LZ.

• st0 – Starting point in the zeroth direction, e.g. VPM_BGNX.

• st1 – Starting point in the first direction, e.g. VPM_BGNY.

502 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• st2 – Starting point in the second direction, e.g. VPM_BGNZ.

getBoundaryOffsets(location)
Apply offsets to our bounds if a boundary condition has already been set to an orthogonal face.

Parameters location – The boundary location, one of lower/upper[X,Y,Z].

3.20.4 Directed Macros

beamemitters.mac

This macro file can be imported to an input file with

$ import beamemitters

It is imported by VSim whenever a simulation contains particles.

This macro file is available to all packages.

This macro file defines macros for adding beam emitters for particles to be emitted from.

Public Macros

addBeamEmitter(sourceName, owningSpecies, start, stop, vbar, vsig, fluxSetting, fluxOrCurrent, location)
Add a particle emitter source block to the simulation. Velocity is given by the mean and standard deviation of
the velocity distribution of the emitted particles. Current density is given by explicitly being set or by setting
the desired flux whereby a calculation is done later. Location of emission can be off a GridBoundary shape or a
boundary of the simulation domain. Delegates to addSettableFluxEmitter(15 args).

Parameters

• sourceName – The name of the particle source block.

• owningSpecies – The name of the emitted particle the source belongs to. Can be an
electron, an ion, or a neutral particle.

• start – The simulation time at which emission begins.

• stop – The simulation time at which emission ends.

• vbar – A three-vector of mean velocities.

• vsig – A three-vector of rms velocities.

• fluxSetting – A string used to determine whether to explicitly set the current density
or to calculate it.

• fluxOrCurrent – The function or numerical value used to set the current density or to
calculate it.

• location – The boundary plane of the simulation domain to emit off.

addBeamEmitter(sourceName, owningSpecies, start, stop, vbar, vsig, fluxSetting, fluxOrCurrent, emOff,
maskFunction, object)

Add a particle emitter source block to the simulation. Velocity is given by the mean and standard deviation of
the velocity distribution of the emitted particles. Current density is given by explicitly being set or by setting
the desired flux whereby a calculation is done later. Location of emission can be off a GridBoundary shape or a
boundary of the simulation domain. Delegates to addSettableFluxEmitter(15 args).

Parameters

3.20. Macros 503

VSim Reference Manual, Release 11.0.1-r3016

• sourceName – The name of the particle source block.

• owningSpecies – The name of the emitted particle the source belongs to. Can be an
electron, an ion, or a neutral particle.

• start – The simulation time at which emission begins.

• stop – The simulation time at which emission ends.

• vbar – A three-vector of mean velocities.

• vsig – A three-vector of rms velocities.

• fluxSetting – A string used to determine whether to explicitly set the current density
or to calculate it.

• fluxOrCurrent – The function or numerical value used to set the current density or to
calculate it.

• emOff – The distance away from the emitting object to emit.

• maskFunction – A function used to tailor the shape of emission off of the emitting object.

• object – The shape object, or GridBoundary as it is called in vorpal, off of which to emit.

addBeamEmitter(sourceName, owningSpecies, start, stop, vbar, vsig, fluxSetting, fluxOrCurrent, coordi-
nate, minValue, maxValue, location)

Add a particle emitter source block to the simulation. Velocity is given by the mean and standard deviation of
the velocity distribution of the emitted particles. Current density is given by explicitly being set or by setting
the desired flux whereby a calculation is done later. Location of emission can be off a GridBoundary shape or a
boundary of the simulation domain. Delegates to addSettableFluxEmitter(15 args).

Parameters

• sourceName – The name of the particle source block.

• owningSpecies – The name of the emitted particle the source belongs to. Can be an
electron, an ion, or a neutral particle.

• start – The simulation time at which emission begins.

• stop – The simulation time at which emission ends.

• vbar – A three-vector of mean velocities.

• vsig – A three-vector of rms velocities.

• fluxSetting – A string used to determine whether to explicitly set the current density
or to calculate it.

• fluxOrCurrent – The function or numerical value used to set the current density or to
calculate it.

• coordinate – The coordinate of the plane of emission. For a Z-Plane, an R-coordinate.

• minValue – A coordinate defining the minimum spatial value for emission. For a Z-Plane
a Z-coordinate.

• maxValue – A coordinate defining the maximum spatial value for emission. For a Z-Plane
a Z-coordinate.

• location – The boundary plane of the simulation domain to emit off.

504 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

collisions.mac

This macro file can be imported to an input file with

$ import collisions

It is imported by VSim whenever a simulation contains particles.

This macro file is available to all packages.

This macro file defines macros for adding collisions between particles and particles and between particles and fluids
into a simulation.

Uses: collisionsinz.mac, collisionsmc.mac, and collisionsrxn.mac

To add collisions to your simulation with the collisions.mac macros involves 3 defining steps.

• Create the neutral gas using the fluids.mac macro addNeutralGas

• Specify the type of collisions (electrons or ions) by including a macro for either addElectronNeutralFluidColli-
sions or addIonNeutralFluidCollisions

• Specify which types of collisions for each species where choices are

– Electrons: Elastic, Excitation, Ionization

– Ions: Charge Exchange, Momentum Exchange

Examples

Here are some example uses of the macros in this macro file:

addNeutralGas(XeNeutralGas, Xe, initGasDen, 300., True, [zMin, rMin], [zMax, rMax])

addElectronNeutralFluidCollisions(elecNeutralColl, electrons, XeNeutralGas)

addElectronNeutralFluidIonizationCollision(elecIonization, elecNeutralColl, electrons,
→˓ XePlus, isotropic, EvaluatedElectronDataLibrary, eedl.dat)

addElectronNeutralFluidElasticCollision(elecElastic, elecNeutralColl, isotropic,
→˓EvaluatedElectronDataLibrary, eedl.dat)

addElectronNeutralFluidExcitationCollision(elecExcitation, elecNeutralColl, isotropic,
→˓ EvaluatedElectronDataLibrary, eedl.dat)

Public Macros

addElectronNeutralFluidCollisions(name, impactElectrons, neutralGas)
Add collisions between an electron species and a neutral background gas.

Parameters

• name – The name of this collision process.

• impactElectrons – The name of the impacting electron species.

• neutralGas – The name of the neutral background gas.

addIonNeutralFluidCollisions(name, impactIons, neutralGas)
Add collisions between an ion species and a neutral background gas.

3.20. Macros 505

VSim Reference Manual, Release 11.0.1-r3016

Parameters

• name – The name of this collision process.

• impactElectrons – The name of the impacting electron species.

• neutralGas – The name of the neutral background gas.

addElectronNeutralFluidElasticCollision(name, owningCollider, productDist, crossSection-
Type)

Add elastic collision with built in cross-sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addElectronNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of isotropic
or VahediSurendra.

• crossSectionType – The cross section calculation method. Choice of userDefined-
CrossSection or EvaluatedElectronDataLibrary.

addElectronNeutralFluidElasticCollision(name, owningCollider, productDist, crossSection-
Type, dataFile)

Add elastic collision with file defined in cross-sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addElectronNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of isotropic
or VahediSurendra.

• crossSectionType – The cross section calculation method. Choice of userDefined-
CrossSection or EvaluatedElectronDataLibrary.

• dataFile – The file containing the cross section data.

addElectronNeutralFluidExcitationCollision(name, owningCollider, productDist, crossSec-
tionType)

Add excitation collision with built in cross-sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addElectronNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of isotropic
or VahediSurendra.

• crossSectionType – The cross section calculation method. Choice of userDefined-
CrossSection or EvaluatedElectronDataLibrary.

addElectronNeutralFluidExcitationCollision(name, owningCollider, productDist, crossSec-
tionType, dataFile)

Add excitation collision with file defined in cross-sectioning.

Parameters

506 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addElectronNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of isotropic
or VahediSurendra.

• crossSectionType – The cross section calculation method. Choice of userDefined-
CrossSection or EvaluatedElectronDataLibrary.

• dataFile – The file containing the cross section data.

addElectronNeutralFluidIonizationCollision(name, owningCollider, productElectrons, pro-
ductIons, productDist, crossSectionType)

Add ionization collision with built in cross sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addElectronNeutralFluidCollisions macro.

• productElectrons – The name of the product electron species.

• productIons – The name of the product ion species.

• productDist – The distribution of product velocities after collision. Choice of isotropic
or VahediSurendra.

• crossSectionType – The cross section calculation method. Choice of builtIn, userDe-
finedCrossSection or EvaluatedElectronDataLibrary.

addElectronNeutralFluidIonizationCollision(name, owningCollider, productElectrons,
productIons, productDist, crossSectionType,
dataFile)

Add ionization collision with file defined in cross-sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addElectronNeutralFluidCollisions macro.

• productElectrons – The name of the product electron species.

• productIons – The name of the product ion species.

• productDist – The distribution of product velocities after collision. Choice of isotropic
or VahediSurendra.

• crossSectionType – The cross section calculation method. Choice of builtIn, userDe-
finedCrossSection or EvaluatedElectronDataLibrary.

• dataFile – The file containing the cross section data.

addIonNeutralFluidChargeExchangeCollision(name, owningCollider, productDist, crossSec-
tionType)

Add charge exchange collision with built in cross-sectioning.

Parameters

• name – The name of this collision process.

3.20. Macros 507

VSim Reference Manual, Release 11.0.1-r3016

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addIonNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of backward.

• crossSectionType – The cross section calculation method. Choice of builtIn or
userDefinedCrossSection.

addIonNeutralFluidChargeExchangeCollision(name, owningCollider, productDist, crossSec-
tionType, dataFile)

Add charge exchange collision with file defined in cross-sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addIonNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of backward.

• crossSectionType – The cross section calculation method. Choice of builtIn or
userDefinedCrossSection.

• dataFile – The file containing the cross section data.

addIonNeutralFluidMomentumExchangeCollision(name, owningCollider, productDist, cross-
SectionType)

Add momentum exchange collision with built in cross-sectioning.

Parameters

• name – The name of this collision process.

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addIonNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of backward

• crossSectionType – The cross section calculation method. Choice of builtIn or
userDefinedCrossSection

addIonNeutralFluidMomentumExchangeCollision(name, owningCollider, productDist, cross-
SectionType, dataFile)

Add momentum exchange collision with file defined in cross sectioning

Parameters

• name – The name of this collision process

• owningCollider – The collisions parent that defines the impact species and the neutral
gas. The name used for the addIonNeutralFluidCollisions macro.

• productDist – The distribution of product velocities after collision. Choice of backward.

• crossSectionType – The cross section calculation method. Choice of builtIn or
userDefinedCrossSection.

• dataFile – The file containing the cross section data.

embcs.mac

This macro file can be imported to an input file with

508 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

$ import embcs

It is imported by VSimEM in all cases.

This macro file is available to all packages.

This macro file defines numerous different electromagnetic boundary conditions such as Ports, PortLauncers, PMLs
and MALs, magnetic symmetries and electric symmetries.

Public Macros

addElectricBoundary(name, fieldName, location)
Add an electric (PEC) boundary condition.

Parameters

• name – The name of the updater.

• fieldName – Unused.

• location – The location of the boundary condition, [lower/upper][X/Y/Z].

addMagneticBoundary(boundaryConditionName, fieldName, location)
Add a magnetic boundary condition.

Parameters

• boundaryConditionName – The name of the updater.

• fieldName – Unused.

• location – The location of the boundary condition, [lower/upper][X/Y/Z].

addOpenBoundary(boundaryConditionName, fieldName, location)
Add an open boundary.

Parameters

• boundaryConditionName – The name of the updater.

• fieldName – Unused.

• location – The location of the boundary condition, [lower/upper][X/Y/Z].

addMalBoundary(boundaryConditionName, fieldName, location, malThickness)
Add a Matched Absorbing Layer (MAL), a layer with increasing resistance out to the simulation boundary. Sets
default pwr = 3.0, frac = 0.5, and malThickness = 1.0.

Parameters

• boundaryConditionName – The name of the updater.

• fieldName – Name of the field. Determines updater and step names.

• location – The location of the boundary condition, [lower/upper][X/Y/Z].

• malThickness – Real valued thickness of MAL into sim domain, same units as the grid.
There are macro guards on the tickness that restrict the MAL thickness to be no greater than
50% of the simulation domain and no thinner than 2 grid cells regardless of whether the user
specify quantities greater/lesser than these values.

addBoundaryLauncher(boundaryConditionName, fieldName, xProfile, yProfile, zProfile, location)
Add boundary launcher, formats the bounds.

3.20. Macros 509

VSim Reference Manual, Release 11.0.1-r3016

Parameters

• boundaryConditionName – The name of the updater.

• fieldName – Name of the field. Determines updater and step names.

• xProfile – The x component of the field.

• yProfile – The y component of the field.

• zProfile – The z component of the field.

• location – The location of the boundary condition, [lower/upper][X/Y/Z].

emfilters.mac

This macro file can be imported to an input file with

$ import emfilters

It is imported at the top of all simulation runs.

This macro file is available to all packages.

This macro file defines the macro for applying an EM noise filter. Currently, the filter is a numerical Cerenkov filter.

Public Macros

applyNumericalCerenkovFilter(stages)
Applies a Cherenkov filter of a given stage type.

Parameters stages – The type of filter to use. Select from: none, weak, medium, strong, and
extreme.

esmatrix.mac

This macro file can be imported to an input file with

$ import esmatrix

It is imported by VSimEs.mac.

This macro file is available to all packages.

This macro file defines macros that set up the matrix for solving electrostatics. Includes setting up the bulk matrix and
the boundary conditions. Use by first adding all the needed boundary conditions. Then write the matrix, which will
insert those boundary conditions.

Default Accumulation Macros

addEsDirichletBC(name, value, location)
Add a Dirichlet boundary condition using a simulation boundary location.

Parameters

• name – The name of the boundary condition block.

• value – The voltage for this boundary condition.

510 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• location – The boundary condition location, one of lower/upper[X,Y,Z], e.g. for Carte-
sian coordinates.

addEsDirichletBC(name, value, lb, ub)
Add a Dirichlet boundary condition using an index slab.

Parameters

• name – The name of the boundary condition block.

• value – The voltage for this boundary condition.

• lb – The lower bound indexes of the slab over which this boundary condition is applied.

• ub – The upper bound indexes of the slab over which this boundary condition is applied.

addEsNeumannBC(name, value, location)
Add a Neumann boundary condition using a simulation boundary location.

Parameters

• name – The name of the boundary condition block.

• value – The value of the potential difference between two nodes.

• location – The boundary condition location, one of lower/upper[X,Y,Z], e.g. for Carte-
sian coordinates.

addEsNeumannBC(name, value, direction, multiplier, lb, ub)
Add a Neumann boundary condition using an index slab.

Parameters

• name – The name of the boundary condition block.

• value – The value of the potential difference between two nodes. (See multiplier).

• direction – The direction of the potential difference. One of [0,1,2], corresponding to
[X,Y,Z] in Cartesian coordinate systems, e.g.

• multiplier – The multiplier for the potential difference. If this is positive, one takes the
value one cell up minus the value at the node. If this is negative or zero, one takes the value
at the node minus the value one cell down.

• lb – The lower bound indexes of the slab over which this boundary condition is applied.

• ub – The upper bound indexes of the slab over which this boundary condition is applied.

fluids.mac

This macro file can be imported to an input file with

$ import fluids

It is imported by VSim whenever a simulation contains particles.

This macro file is available to all packages.

This macro file defines macros for adding fluids that particles can collide off of.

3.20. Macros 511

VSim Reference Manual, Release 11.0.1-r3016

Public Macros

addNeutralGas(name, gasKind, gasDensity, gasTemp, isvar, lc, uc)
Add a fluid block to the simulation. Adds to the fluid blocks accumulation variables and adds to accumulation
variables for parameters like excitation and ionization thresholds for use in other blocks

Parameters

• name – The name of the fluid block.

• gasKind – The kind of neutral gas. Typically the symbol for elemental fluids, e.g. Xe for
xenon.

• gasDensity – The function or numerical value for the initial density.

• gasTemp – The neutral gas temperature.

• isvar – Whether the initial density is a spatially dependent expression, f(x,y,z), or a con-
stant value (amplitude).

• lc – The lower coordinates of the fluid location. Real array of length VPM_NDIM.

• uc – The upper coordinates of the fluid location. Real array of length VPM_NDIM.

grids.mac

This macro file can be imported to an input file with

$ import grids

It is imported at the top of all simulation runs.

This macro file is available to all packages.

This macro file defines the variable for the grids. The grid is written at time of finalize.

Public Macros

setGridData(nDim, coordSystem)
Set the grid variables,

VPM_BGN0: The start of the grid in the first coordinate,

VPM_BGN1: The start of the grid in the second coordinate,

VPM_BGN2: The start of the grid in the third coordinate,

VPM_L0: The extent of the grid in the first coordinate,

VPM_L1: The extent of the grid in the second coordinate,

VPM_L2: The extent of the grid in the third coordinate,

VPM_N0: The number of cells in the first direction,

VPM_N1: The number of cells in the second direction,

VPM_N2: The number of cells in the third direction,

VPM_PERIODIC_DIRS: An array listing the coordinate directions in which one has periodic boundary condi-
tions,

then calls setGridData(4 args) to set the coordinate-system dependent variables.

512 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Parameters

• nDim – The dimensionality of the simulation.

• coordSystem – The coordinate system. One of “UniformCartesian” or “Cylindrical”.

setGridData(nDim, coordSystem, numCells, lengths, startPositions)
Sets the coordinate-system dependent grid variables, VPM_NDIM and VPM_GRID_TYPE, and sets the peri-
odic directions.

For UniformCartesian, computes and sets: VPM_NX, VPM_NY, VPM_NZ, VPM_LX, VPM_LY, VPM_LZ,
VPM_BGNX, VPM_BGNY, VPM_BGNZ, VPM_ENDX, VPM_ENDY, VPM_ENDZ, VPM_DX, VPM_DY,
VPM_DZ, VPM_NXP1, VPM_NYP1, VPM_NZP1, VPM_NXM1, VPM_NYM1, VPM_NZM1, VPM_DXI,
VPM_DYI, VPM_DZI, VPM_DL, VPM_DLI, depending on the dimensionality.

For Cylindrical, computes and sets: VPM_NZ, VPM_NR, VPM_NPHI, VPM_LZ, VPM_LR, VPM_LPHI,
VPM_BGNZ, VPM_BGNR, VPM_BGNPHI, VPM_ENDZ, VPM_ENDR, VPM_ENDPHI, VPM_DZ,
VPM_DR, VPM_DPHI, VPM_NZP1, VPM_NRP1, VPM_NPHIP1, VPM_NZM1, VPM_NRM1,
VPM_NPHIM1, VPM_DZI, VPM_DRI, VPM_DPHII, VPM_DL, VPM_DLI, depending on the dimen-
sionality.

Parameters

• nDim – The dimensionality of the simulation.

• coordSystem – The coordinate system. One of “UniformCartesian” or “Cylindrical”.

• numCells – An integer array of length nDim indicating the number of cells in each direc-
tion.

• lengths – A real-valued array of length nDim indicating the lengths of the simulation
domain in each direction.

• startPositions – A real-valued array of length nDim indicating the start position of
each direction. I.e. the coordinate of the node with indices [0,0,0].

histories.mac

This macro file can be imported to an input file with

$ import histories

It is imported by VSim.mac.

This macro file is available to all packages.

This macro file provides macros for all vorpal histories supported in this release. Histories pertain primarily to fields
and particles.

Public Macros

addParticleMomentumHistory(name, speciesName)
Add particle history block that records the momentum of a particle species.

Parameters

• name – The name of the history block.

• speciesName – The name of the species to be recorded.

3.20. Macros 513

VSim Reference Manual, Release 11.0.1-r3016

addParticleAbsorberLog(name, absorberName, ptclQty, component)
Add particle history block that records a specific quantity about particles absorbed by the given absorber.

Parameters

• name – The name of the history block.

• absorberName – The name of the particle absorber at which to record.

• ptclQty – The quantity to be recorded. Particle quantities include time, position, velocity,
weight, energy, and current.

• component – The component of the particle quantity to record. Only position, velocity,
and weight require a component.

addParticleAbsorberCurrentHistory(name, absorberName)
Add particle history block that records the current located at a particle absorber.

Parameters

• name – The name of the history block.

• absorberName – The name of the particle absorber at which to record.

addParticleAbsorberEnergyHistory(name, absorberName)
Add particle history block that records the energy of particles located at a particle absorber.

Parameters

• name – The name of the history block.

• absorberName – The name of the particle absorber at which to record.

addParticleEmitterCurrentHistory(name, emitterName)
Add particle history block that records the current located at a particle emitter.

Parameters

• name – The name of the history block.

• emitterName – The name of the particle emitter at which to record.

addMacroParticleCountHistory(name, speciesName)
Add particle history block that records the number of macro particles in a simulation.

:param name The name of the history block.

:param speciesName The name of the species to be recorded.

addPhysicalParticleCountHistory(name, speciesName)
Add particle history block that records the number of physical particles in a simulation.

:param name The name of the history block.

:param speciesName The name of the species to be recorded.

addParticleEnergyHistory(name, speciesName)
Add particle history block that records energy of a particle species.

Parameters

• name – The name of the history block.

• speciesName – The name of the species to be recorded.

addEMFieldEnergyHistory(name, region)
Add field history block that records energy of the EM field. Can specify the entire simulation region or the
region inside a user defined shape.

514 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Parameters

• name – The name of the history block.

• region – A string representing the region in which to record. Can either be the entire
simulation domain or a regiondefined by an imported geometry or created through CSG.

addEMFieldEnergyHistory(name, lb, ub)
Add field history block that records energy of the EM field. Can specify any region in the simulation domain.

Parameters

• name – The name of the history block.

• lb – An integer three-vector. The lower bounds on which to record in grid indices.

• ub – An integer three-vector. The upper bounds on which to record in grid indices.

addFieldEnergyAtPositionHistory(name, location, field)
Add field history block that records energy of the specified field. Records field energy at specific point in the
simulation domain.

Parameters

• name – The name of the history block.

• location – A real valued three-vector. The point at which to record.

• field – The field which to record.

addElectricFieldEnergyHistory(name, simRgn)
Add field history block that records energy of the electric field inside the whole simulation domain.

Parameters

• name – The name of the history block.

• simRgn – A string representing the entire simulation region.

addElectricFieldEnergyHistory(name, lb, ub)
Add field history block that records energy of the electric field. Can specify any region in the simulation domain.

Parameters

• name – The name of the history block.

• lb – An integer three-vector. The lower bounds on which to record in grid indices.

• ub – An integer three-vector. The upper bounds on which to record in grid indices.

addMagneticFieldEnergyHistory(name, simRgn)
Add field history block that records energy of the magnetic field inside the whole simulation domain.

Parameters

• name – The name of the history block.

• simRgn – A string representing the entire simulation region.

addMagneticFieldEnergyHistory(name, lb, ub)
Add field history block that records energy of the magnetic field. Can specify any region in the simulation
domain.

Parameters

• name – The name of the history block.

• lb – An integer three-vector. The lower bounds on which to record, in grid indices.

3.20. Macros 515

VSim Reference Manual, Release 11.0.1-r3016

• ub – An integer three-vector. The upper bounds on which to record, in grid indices.

addPseudoPotentialHistory(name, refPoint, measPoint)
Add history block that calculates the pseudo-potential difference, in volts, between the reference point and the
measure point. See the pseudoPotential documentation for details.

Parameters

• name – The name of the history block.

• refPoint – An integer three-vector. The grid indices of the reference point.

• measPoint – An integer three-vector. The grid indices of the measurement point.

addBinaryCombinationHistory(name, coeff1, coeff2, op, history1, history2)
Add history block that performs an element-wise binary operation on two other histories.

Parameters

• name – The name of the history block.

• coeff1 – A real valued coefficient for history1.

• coeff2 – A real valued coefficient for history2.

• op – The operation to perform on the two histories.

• history1 – The name of the first history.

• history2 – The name of the second history.

addPoyntingHistory(name, lb, ub)
Add history block that records the poynting flux on some plane within the simulation domain.

Parameters

• name – The name of the history block.

• lb – A real valued three-vector. The lower bounds on which to record, in coordinates.

• coeff2 – A real valued three-vector. The upper bounds on which to record, in coordinates.

addFarFieldHistory(name, timeDelay, duration, numTimePts, kirchRad, numPolarAng, numAzimAng,
numLinInts, comp, kirchCenter, field)

Add history block that records the far field radiation pattern of an EM source.

Parameters

• name – The name of the history block.

• timeDelay – The simulation time at which to begin recording.

• duration – The length of time during which the history records.

• numTimePts – The number of sampling points on the time interval.

• kirchRad – The radius of the Kirchhoff sphere.

• numPolarAng – The number of polar angles represented on the Kirchhoff sphere.

• numAzimAng – The number of azimuthal angles represented on the Kirchhoff sphere.

• numLinInts – The number of integration segments around the Kirchhoff sphere.

• kirchCenter – The center of the Kirchhoff sphere.

addFarFieldBoxHistory(name, startTime, endTime, lc, uc)
This history macro adds a set of histories that save fields on a 2-cell thick box, for use in the Kirchhoff Box Far
Field post-processing.

516 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Parameters

• name – The name of the history block.

• startTime – The simulation time at which the history begins recording.

• endTime – The simulation time at which the history stops recording.

• lc – The lower coordinates of the box (or slab).

• uc – The upper coordinates of the box (or slab).

kirchhoff.mac

This macro file can be imported to an input file with

$ import kirchhoff

It is imported at the top of all simulation runs.

This macro file is available to all packages.

This macro file defines the macro for computing the far field radiation pattern for a simulation.

Public Macros

addKirchhoffSurfaceIntegral()
Adds the Field, FieldUpdater and History blocks necessary to calculate the Kirchhoff Surface Integral to give
the far field radiation pattern.

matrices.mac

This macro file can be imported to an input file with

$ import matrices

It is imported by VSimEs.mac.

This macro file is available to all packages.

This macro file defines macros for matrices. None of the macros are considered public, i.e., with stable APIs.

Public Macros

StencilElementMacro(name, value, minDim, offset, rowFldIndx, colFldIndx)
Insert a constant-value matrices StencilElement.

Parameters

• name – The name to give the stencil element.

• value – The value of the stencil element.

• minDim – The minimum dimensionality to apply this stencil element.

• offset – The offset (in index space) of the column cell from the row cel.

• rowFldIndx – The index in the matrices for the row. This corresponds to the writefield
for multiply, to the readfield for solve.

3.20. Macros 517

VSim Reference Manual, Release 11.0.1-r3016

• colFldIndx – The index in the matrices for the column. This corresponds to the readfield
for multiply, to the writefield for solve.

STFuncStencilElementMacro(name, value, minDim, cellOffset, funcOffset, rowFldIndx, colFldIndx)
Insert a function-value matrices StencilElement.

Parameters

• name – The name to give the stencil element.

• value – The value of the stencil element.

• minDim – The minimum dimensionality to apply this stencil element.

• cellOffset – The offset (in index space) of the column cell from the row cel.

• funcOffset – The offset (in real space, as a multiple of the grid spacing) of the function
evaluation point from the row cell.

• rowFldIndx – The index in the matrices for the row. This corresponds to the writefield
for multiply, to the readfield for solve.

• colFldIndx – The index in the matrices for the column. This corresponds to the readfield
for multiply, to the writefield for solve.

CoordProdSTFuncStencilElementMacro(name, value, minDim, cellOffset, funcOffset, gridDir, grid-
Offset, rowFldIndx, colFldIndx)

Insert a function-value matrices StencilElement in coordProd grid.

Parameters

• name – The name to give the stencil element.

• value – The value of the stencil element.

• minDim – The minimum dimensionality to apply this stencil element.

• cellOffset – The offset (in index space) of the column cell from the row cel.

• funcOffset – The offset (in real space, as a multiple of the grid spacing) of the function
evaluation point from the row cell.

• gridDir – The direction in which differencing is being done for the stencil. Determines
which grid spacing and face area to use.

• gridOffset – The offset (in index space) from the row cell at which the grid spacing and
face area are taken.

• rowFldIndx – The index in the matrices for the row. This corresponds to the writefield
for multiply, to the readfield for solve.

• colFldIndx – The index in the matrices for the column. This corresponds to the readfield
for multiply, to the writefield for solve.

multifields.mac

This macro file can be imported to an input file with

$ import multifields

It is imported by VSim in all cases (electromagnetic and electrostatic).

This macro file is available to all packages.

518 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

This macro file contains many macros which add initial conditions to fields. It also contains macros to setup common
operations with fields such as needed to make nodal fields, add applied (external) magnetic fields, copy perimieter
fields, and perform binary operations with fields. A master macro, writeMultiField(), writes the <MultiField>
block with all of the specified field operations.

Public Macros

addInitialCondition(fieldName, numComponents, comp0, comp1, comp2)
Add initial conditions to field blocks.

Parameters

• fieldName – The name of the field into which the initial condition block is written. De-
termines the name of the InitialCondition block.

• numComponents – The number of components in the initial condition.

• comp0 – Expression (or None) for the component 0 of the initial condition.

• comp1 – Expression (or None) for the component 1 of the initial condition.

• comp2 – Expression (or None) for the component 2 of the initial condition.

addInitialCondition(fieldName, numComponents, comp0, comp1, comp2, lb, ub)
Add initial conditions to field blocks.

Parameters

• fieldName – The name of the field into which the initial condition block is written. De-
termines the name of the InitialCondition block.

• numComponents – The number of components in the initial condition.

• comp0 – Expression (or None) for the component 0 of the initial condition.

• comp1 – Expression (or None) for the component 1 of the initial condition.

• comp2 – Expression (or None) for the component 2 of the initial condition.

• lb – The grid index (integer) lowerBounds of the initial condition.

• ub – The grid index (integer) upperBounds of the initial condition.

addFieldInitialCondition(fieldName, component, function)
Add an initial update step for initial conditions.

Parameters

• fieldName – fieldName The name of the field being initialized.

• component – The (integer) component of the field to initialize.

• function – The function to which the field will be initialized to.

particles.mac

This macro file can be imported to an input file with

$ import particles

3.20. Macros 519

VSim Reference Manual, Release 11.0.1-r3016

It is imported by VSim if VPM_INCLUDE_PARTICLES is true.

This macro file is available to all packages.

This macro file defines the finalizeParticles() macro, specific to particle simulations. It contains the macros
for defining particle species. It also contains macros for <ParticleSources> whcih load the particles into the simulation,
for <ParticleSinks> which remove particles from a simulation.

Public Macros

addParticleSpecies(speciesName, kind, charge, mass, nominalDensity, weighting, weightSetting, pp-
morc)

Add a particle species to a simulation by adding its data to the accumulation variables. Other accumulation
variables, like those for sources and sinks, are added to by the other “add” methods. finalizeParticles() writes
out the species with their sources and sinks.

Parameters

• speciesName – The name of the particle species.

• kind – The kind of species, e.g. relBoris, relBorisCyl, etc.

• charge – The charge of a physical particle of the species, in Coulombs.

• mass – The mass of a physcial particle of the species, in Kg.

• nominalDensity – A convenient (anticipated) density for the species, in 1/meters^3. To-
gether with nomPtclsPerCell, it can be used to set the wieght of a constantWeight macropar-
ticles, or the normalization of variableWeight macroparticles.

• weighting – The weighting for this species, either “constantWeights” or “vari-
ableWeights”.

• weightSetting – How the weight is set, either explicitlySetWeights, or computed-
Weights from nominalDensity.

• ppmorc – For computedWeights, the number of macro particles in a cell, when the density
in that cell is equal to nominal density. For explicitlySetWeights, the number of physical
particles represented by one macro particle.

addParticleSpeciesLoader(sourceName, owningSpecies, initOrRepeat, denTyp, denFunc, pos-
GenKind, vbar, vsig, lb, ub)

Add a particle loader to a particle species given the mean and standard deviation of the velocity distribution of
the loaded particles. Loading is only on initialization.

Parameters

• sourceName – The name of the particle loader.

• owningSpecies – The name of the species to be loaded.

• initOrRepeat – A string denoting whether the loading is initialize only or to repeat.

• denTyp – Either physics load density or relative (to nominal) load density.

• denFunc – The function to use for loading.

• posGenKind – The kind of position generator (grid, bit-rev, . . .).

• vbar – A three-vector of mean velocities.

• vsig – A three-vector of rms velocities.

• lb – An NDIM vector of loower coordinates.

520 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• ub – An NDIM vector of upper coordinates.

addParticleSpeciesLoader(sourceName, owningSpecies, initOrRepeat, tmin, tmax, denTyp, denFunc,
posGenKind, vbar, vsig, lb, ub)

Add a particle loader to a particle species given the mean and standard deviation of the velocity distribution of
the loaded particles. Loading is only on initialization. Delegates to addParticleSpeciesLoader(14 args).

Parameters

• sourceName – The name of the particle loader.

• owningSpecies – The name of the species to be loaded.

• initOrRepeat – A string denoting whether the loading is initialize only or to repeat.

• tmin – Tthe time to start loading.

• tmax – The time to stop loading (inclusive).

• denTyp – Either physics load density or relative (to nominal) load density.

• denFunc – The function to use for loading.

• posGenKind – The kind of position generator (grid, bit-rev, . . .).

• vbar – A three-vector of mean velocities.

• vsig – A three-vector of rms velocities.

• lb – An NDIM vector of loower coordinates.

• ub – An NDIM vector of upper coordinates.

addParticleSpeciesSink(sinkName, owningSpecies, sinkKind, volType, lb, ub)
Add a particle species sink to a particle species given the lower and upper bounds.

Parameters

• sinkName – The name of the particle sink.

• owningSpecies – The name of the species that contains this source block.

• sinkKind – The kind of sink. E.g. absAndSav, absorber, specularBndry, absAndSavCut-
Cell.

• volType – The type of volume, either slab or location.

• lb – The lower bounds. An integer array of length VPM_NDIM.

• ub – The upper bounds. An integer array of length VPM_NDIM.

addParticleSpeciesSink(sinkName, owningSpecies, sinkKind, location)
Add a particle species sink to a particle species given the location.

Parameters

• sinkName – The name of the particle sink.

• owningSpecies – The name of the species that contains this source block.

• sinkKind – The kind of sink. E.g. absAndSav, absorber, specularBndry, absAndSavCut-
Cell.

• location – location The location of the boundary condition, one of [lower|upper][X|Y|Z].

addParticleSpeciesSink(sinkName, owningSpecies, sinkKind, volType, lb, ub, location)
Add a particle species sink to a particle species. Either location or lb and ub should be None, as they are mutually
exclusive. Done by adding to the string arrays describing the sink.

3.20. Macros 521

VSim Reference Manual, Release 11.0.1-r3016

Parameters

• sinkName – The name of the particle sink.

• owningSpecie – The name of the species that contains this source block.

• sinkKind – The kind of sink. E.g. absAndSav, absorber, specularBndry, absAndSavCut-
Cell.

• volType – The type of volume, either slab or location.

• lb – The lower bounds. An integer array of length VPM_NDIM.

• ub – The upper bounds. An integer array of length VPM_NDIM.

• location – location The location of the boundary condition, one of [lower|upper][X|Y|Z].

finalizeParticles()
Writing the particle Species blocks. Inserts Sinks and Sources (loaders and emitters) into the block. Writes
depositor fields if electrostatic simulation.

physsetemits.mac

This macro file can be imported to an input file with

$ import physsetemits

It is imported at the top of all simulation runs.

This macro file is available to all packages.

This macro file defines the macros for setting up and writing physics-set-flux emitters into particle species definition.

Public Macros

addPhysicsSetFluxEmitterSource(sourceName, sourceKind, owningSpecies, start, stop, vbar, vsig,
workFunc, fldEvalOff, temp, fldEnhance, fluxMult, A, B, Cv, Cy,
emOff, maskFunction, object, location)

Adds a particle emitter source to a particle species. This macro handles the case of emission from a shape
geometry.

Parameters

• sourceName – The name of the source block.

• sourceKind – The kind of emission model being used.

• owningSpecies – The name of the species that contains this source block.

• star – Time to start emission.

• stop – Time to end emission.

• vbar – The mean velocity of the distribution of emitted particles.

• vsig – The standard deviation of the velocity distribution of emitted particles.

• workFunc – The work function. The minimum energy required to emit an electron (eV).

• fldEvalOff – Field evaluation offset. Presumably the offset from the surface where the
field resulting from the particle is evaluated. No use of this in the regression tests.

• temp – Temperature of the emitting surface (K).

522 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• fldEnhance – Field enhancement. Multiplies the measured electric field by this amount.

• fluxMult – Flux multiplier. Multiplies the resulting output current by this amount.

• A – Coefficient A of the Fowler-Nordheim emission model.

• B – Coefficient B of the Fowler-Nordheim emission model.

• Cv – Coefficient Cv of the Fowler-Nordheim emission model.

• Cy – Coefficient Cy of the Fowler-Nordheim emission model.

• emOff – The distance away from the object that emission begins, a computational con-
trivance.

• maskFunction – The masking function to tailor emission as desired.

• object – The shape geometry to emit off of.

• location – The plane from which to emit.

addChildLangmuirEmitter(sourceName, owningSpecies, start, stop, vbar, vsig, emOff, maskFunction,
object)

Adds a particle emitter source to a particle species with Child Langmuir properties. Child Langmuir specifies
the mean and standard deviation of a velocity distribution.

addRichardsonDushmanEmitter(sourceName, owningSpecies, start, stop, fldEnhance, fldEvalOff, flux-
Mult, temp, workFunc, emOff, maskFunction, object)

Adds a particle emitter source to a particle species with Reichardson Dushman properties.

addFowlerNordheimEmitter(sourceName, owningSpecies, start, stop, A, B, Cv, Cy, fldEnhance, work-
Func, emOff, maskFunction, object)

Adds a particle emitter source to a particle species with Fowler Nordheim properties.

secondemits.mac

This macro file can be imported to an input file with

$ import secondemits

It is imported by VSim whenever a simulation contains particles.

This macro file is available to all packages.

This macro file defines macros for adding secondary emitters for the various kinds of secondary emission supported
by vorpal.

Public Macros

addSecondaryElectronEmitter(secElecSpeciesName, secElecElectronSpeciesName, material, sup-
pressEnergy, secElecParticleSinkName)

Add a secondary electron particle source block to the simulation. Emission is from a primary particle source’s
absorber which can either be a shape (imported or created through CSG) or a boundary of the simulation domain.
Emission takes into account material properties. Delegates to addSecondaryElectrons(10 args).

Parameters

• secElecSpeciesName – The name of the secondary electron particle source block.

• secElecElectronSpeciesName – The name of the emitted electron species.

3.20. Macros 523

VSim Reference Manual, Release 11.0.1-r3016

• material – A material that determines secondary electron yield. Can be either “copper”
or “stainless”.

• suppressEnergy – A real number, units eV, denoting the suppressing energy of the local
electric field. If the local field is of sign that would immediately push the electron back into
the surface, then emission does not occur. If emission is desired regardless than this number
is set to a very large number. Default is 1e20.

• secElecParticleSinkName – The name of the particle sink that the secondary elec-
trons are to be emitted from. Must be a Boundary Absorb and Save or a Cut Cell Absorb
and Save.

addInteriorSecondaryElectronEmitter(secElecSpeciesName, secElecElectronSpeciesName, ma-
terial, suppressEnergy, emissionAxis, emissionDir, emis-
sionCoord, secElecParticleSinkName)

Add a secondary electron particle source block to the simulation. Emission is from a primary particle source’s
absorber which is interior to the simulation domain. Emission takes into account material properties. Emission
direction and offset can be defined as desired. Delegates to addSecondaryElectrons(10 args).

Parameters

• secElecSpeciesName – The name of the secondary electron particle source block.

• secElecElectronSpeciesName – The name of the emitted electron species.

• material – A material that determines secondary electron yield. Can be either “copper”
or “stainless”.

• suppressEnergy – A real number, units eV, denoting the suppressing energy of the local
electric field. If the local field is of sign that would immediately push the electron back into
the surface, then emission does not occur. If emission is desired regardless than this number
is set to a very large number. Default is 1e20.

• emissionAxis – An integer that defines the axis of emission (e.g. x,y, or z).

• emissionDir – A string: “positive” or “negative”. Defines which direction for the sec-
ondary electrons to travel after emission.

• emissionCoord – A real valued coordinate that defines the emission offset, or the dis-
tance away from the absorber to emit.

• secElecParticleSinkName – The name of the particle sink that the secondary elec-
trons are to be emitted from. Must be a Interior Absorb and Save.

addSimpleSecondaryElectronEmitter(simpleSecSpeciesName, simpleSecElectronSpeciesName,
emissionProbability, emittedEnergy, simpleSecParti-
cleSinkName)

Add a secondary electron particle source block to the simulation. The secondary electron is of the same species
as the primary (absorbed) electron. Emission is from a primary electron’s absorber which can either be a shape
(imported or created through CSG) or a boundary of the simulation domain. The emitted electron’s energy can
be specified along with the secondary electron yield.

Parameters

• simpleSecSpeciesName – The name of the secondary electron particle source block.

• simpleSecElectronSpeciesName – The name of the emitted electron species.

• emissionProability – The probability a secondary electron will be emitted. This is
differentiated from the constant probability secondary electron emitter in that the emitted
energy is still variable.

524 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

• emittedEnergy – A real number denoting the energy, in Joules. The energy of an emit-
ted electron will be random, between 0 and this number.

• simpleSecParticleSinkName – The name of the particle sink that the secondary
electrons are to be emitted from. Must be a Boundary Absorb and Save or a Cut Cell
Absorb and Save.

addConstantProbabilitySecondaryElectronEmitter(constProbSecSpeciesName, constProb-
SecElectronSpeciesName, emission-
Prob, constProbSecParticleSinkName)

Add a secondary electron particle source block to the simulation. Emission is from the primary species’ absorber
which can either be a shape (imported or created through CSG) or a boundary of the simulation domain. The
probability for emission can be explicitly set.

Parameters

• constProbSecSpeciesName – The name of the secondary electron particle source
block.

• constProbSecElectronSpeciesName – The name of the emitted electron species.

• emittedProb – A real valued number on [0.0, 1.0] denoting the probability of emitting a
secondary electron.

• constProbSecParticleSinkName – The name of the particle sink that the secondary
electrons are to be emitted from. Must be a Boundary Absorb and Save or a Cut Cell Absorb
and Save.

addSputterEmitter(sputterSpeciesName, sputterElectronSpeciesName, sputterEmittedSpeciesType, vsig,
sputterParticleSinkName)

Add a secondary neutral particle source block to the simulation. Emission is from the primary species’ absorber
which can either be a shape (imported or created through CSG) or a boundary of the simulation domain. The
type of atom to be sputtered can be selected along with the standard deviation of the velocity of the emitted
particles. Delegates to addSputterer(10 args).

Parameters

• sputterSpeciesName – The name of the secondary electron particle source block.

• sputterElectronSpeciesName – The name of the emitted electron species.

• sputterEmittedSpeciesType – The type of atom that is to be sputtered. See the
sputter emitter documentation for a list of valid types.

• vsig – A three-vector of rms velocities.

• sputterParticleSinkName – The name of the particle sink that the secondary parti-
cles are to be emitted from. Must be a Boundary Absorb and Save or a Cut Cell Absorb and
Save.

addSputterEmitter(sputterSpeciesName, sputterElectronSpeciesName, sputterEmittedSpeciesType, vsig,
emissionAxis, emissionDir, emissionCoord, sputterParticleSinkName)

Add a secondary neutral particle source block to the simulation. Emission is from the primary species’ absorber
which can either be a shape (imported or created through CSG) or a boundary of the simulation domain. The
type of atom to be sputtered can be selected along with the standard deviation of the velocity of the emitted
particles. Emission direction and offset can be defined as desired. Delegates to addSputterer(10 args).

Parameters

• sputterSpeciesName – The name of the secondary electron particle source block.

• sputterElectronSpeciesName – The name of the emitted electron species.

3.20. Macros 525

VSim Reference Manual, Release 11.0.1-r3016

• sputterEmittedSpeciesType – The type of atom that is to be sputtered. See the
sputter emitter documentation for a list of valid types.

• vsig – A three-vector of rms velocities.

• emissionAxis – An integer that defines the axis of emission (e.g. x,y, or z).

• emissionDir – A string: “positive” or “negative”. Defines which direction for the sec-
ondary electrons to travel after emission.

• emissionCoord – A real valued coordinate that defines the emission offset, or the dis-
tance away from the absorber to emit.

• sputterParticleSinkName – The name of the particle sink that the secondary parti-
cles are to be emitted from. Must be a Boundary Absorb and Save or a Cut Cell Absorb and
Save.

shapes.mac

This macro file can be imported to an input file with

$ import shapes

It is always imported by VSim at the top level.

This macro file is available to all packages.

This macro file defines the macros for adding shapes of different materials.

Public Macros

addShape(cadBoundaryName, cadFileName, material)
Add a shape by writing the GridBoundary block to the shapes accumulation variable. If PEC, set
VPM_CONDUCTING_GRID_BOUNDARY_NAME to this name Else If dielectric, add to the dielectric shapes,
etc.

Parameters

• cadBoundaryName – The name of the GridBoundary.

• cadFileName – The name of the (stl) file that contains the geometry.

• material – The name of the material that the boundary is made of

addConductor(materialName, resistance)
Add a conducting material.

Parameters

• materialName – The name of the material.

• resistance – The resistance of the material.

addDielectric(materialName, relativePermittivity, conductivity)
Add a dielectric material.

Parameters

• materialName – The name of the material.

• relativePermittivity – The relative permittivity of the material.

• conductivity – The conductivity of the dielectric object.

526 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

solvers.mac

This macro file can be imported to an input file with

$ import solvers

It is imported by VSimEs.mac.

This macro file is available to all packages.

This macro file provides macros for Poisson solvers, which are described below.

Public Macros

addBaseSolver(name, krySize, orthog)
Add the base solver block for an iterative solver to the accumulation variable, VPM_MATRIX_SOLVER, which
will be put into the simulation.

Parameters

• name – Name for the updater.

• krySize – The size of the Krylov subspace. For gmres only.

• orthog – The orthogonality type for the Krylov subspace. For gmres only.

stfuncs.mac

This macro file can be imported to an input file with

$ import stfuncs

It is always imported by VSim at the top level.

This macro file is available to all packages.

This macro file defines the macros for adding shapes of different materials.

Public Macros

addGaussianPulseSTFuncBlock(stName, omega, k0, k1, k2, amplitude, phase, origin0, origin1, ori-
gin2, widths0, widths1, widths2, vg, waistDisplacement, L_fwhm,
keepon)

This macro adds a block with all of the parameters and arguments necessary for a built-in Gaussian pulse. See
gaussianPulse for explanation of the options.

Parameters blah – The blah param.

addChirpWavePulseSTFuncBlock(stName, chirp, k0, k1, k2, amplitude, phase, origin0, origin1, ori-
gin2, widths0, widths1, widths2, vg, waistDisplacement, skewness,
keepon)

This macro adds a block with all of the parameters and arguments necessary for a built-in Chirp Wave pulse.
See chirpWavePulse for explanation of the options.

addCosineFlattopSTFuncBlock(stName, startPosition, startFlattop, endPosition, endFlattop, star-
tAmplitude, endAmplitude, flattopAmplitude, direction)

This macro adds a block with all of the parameters and arguments necessary for a built-in Cosine Flattop func-
tion. See cosineFlattop for explanation of the options.

3.20. Macros 527

VSim Reference Manual, Release 11.0.1-r3016

addCosineRampSTFuncBlock(stName, startPosition, endPosition, startAmplitude, endAmplitude, direc-
tion)

This macro adds a block with all of the parameters and arguments necessary for a built-in Cosine Ramp function.
See cosineRamp for explanation of the options.

addFeedbackSTFuncBlock(stName, stFuncExpression, historyName, historyGoal, timeConstant)
This macro adds a block with all of the parameters and arguments necessary for a built-in Feedback function.
See feedbackSTFunc for explanation of the options.

addGaussianSTFuncBlock(stName, amplitude, origin0, origin1, origin2, widths0, widths1, widths2, ve-
locity0, velocity1, velocity2)

This macro adds a block with all of the parameters and arguments necessary for a built-in Gaussian function.
See gaussian for explanation of the options.

addHalfSinePulseSTFuncBlock(stName, omega, k0, k1, k2, amplitude, phase, origin0, origin1, ori-
gin2, widths0, widths1, widths2, vg, waistDisplacement, skewness,
keepon)

This macro adds a block with all of the parameters and arguments necessary for a built-in Half Sine pulse. See
halfSinePulse for explanation of the options.

addLeakyChannelSTFuncBlock(stName, channelPosition0, channelPosition1, channelPosition2,
maxRadius, maxParabRadius, centerAmplitude, quadCoef, expan-
Func, direction)

This macro adds a block with all of the parameters and arguments necessary for a built-in Leaky Channel
function. See leakychannel for explanation of the options.

addPlaneWavePulseSTFuncBlock(stName, omega, k0, k1, k2, amplitude, phase, origin0, origin1, ori-
gin2, widths0, widths1, widths2, vg, skewness, keepon)

This macro adds a block with all of the parameters and arguments necessary for a built-in Plane Wave pulse.
See planeWavePulse for explanation of the options.

addRadialCosineChannelSTFuncBlock(stName, channelPosition, startRadius, endRadius, startAm-
plitude, endAmplitude, direction)

This macro adds a block with all of the parameters and arguments necessary for a built-in Radial Cosine Channel
function. See radialCosChannel for explanation of the options.

addSinePlaneWaveSTFuncBlock(stName, omega, k0, k1, k2, amplitude, phase)
This macro adds a block with all of the parameters and arguments necessary for a built-in Sine Plane Wave
function. See sinePlaneWave for explanation of the options.

addSumFunctionSTFuncBlock(stName, sumName1, sumName2)
This macro adds a block with all of the parameters and arguments necessary for a built-in Sum function. See
sumFunc for explanation of the options.

addProductFunctionSTFuncBlock(stName, prodName1, prodName2)
This macro adds two blocks with all of the parameters and arguments necessary for a built-in Multifunc product
function. See multFunc for explanation of the options.

VSim.mac

This macro file can be imported to an input file with

$ import VSim

It is imported at the top of all simulation runs.

This macro file is available to all packages.

This macro file defines the finalize() macro, which writes out the blocks defined by accumulation variables. This
file also defines many of the global accumulation variables.

528 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Public Macros

finalize()
Write out all the previously defined blocks in the correct order and with the correct nesting.

VSimEm.mac

This macro file can be imported to an input file with

$ import VSimEm

It is imported by VSim if VPM_SIMULATION_TYPE is electromagnetic.

This macro file is available to all packages.

This macro file defines the finalizeUpdaters() macro, specific to electromagnetic simulations, and it also
defines many macros for adding EM update steps.

Public Macros

writeMovingWindow(shiftPos, shiftSpd)

Write a moving window in the X-Direction block to the top level of the .in file.

Parameters

• shiftPos – The fractional amount of the domain for the speed below to cross before
shifting.

• shiftSpd – The fraction of light speed to move the window by.

writeMovingWindow(shiftDir, shiftPos, shiftSpd)
Write a moving window to the top level of the .in file with specifiable direction.

Parameters

• shiftDir – The capital character describing the (Cartesian) direction to shift the window.
One of X,Y,Z.

• shiftPos – The fractional amount of the domain for the speed below to cross before
shifting.

• shiftSpd – The fraction of light speed to move the window by.

addCurrentDistribution(name, j0, j1, j2, lc, uc)
Add a current distribution into a slab.

Parameters

• name – The name of this current distribution.

• j0 – Function giving component 0 (x) of the current distribution.

• j1 – Function giving component 1 of the current distribution.

• j2 – Function giving component 2 of the current distribution.

• lc – Lower limits of the coordinate slab over which to apply this current distribution

• uc – Upper limits of the coordinate slab over which to apply this current distribution

3.20. Macros 529

VSim Reference Manual, Release 11.0.1-r3016

addDipoleCurrentDistribution(name, comp, function, coordinate)
Add a dipole current at a coordinate.

Parameters

• name – The name of this dipole current distribution.

• comp – The component of j that is being set.

• function – Function that the component of j will be set to.

• coordinate – The location for this dipole current.

finalizeUpdaters()
Create all of the updaters needed for an EM simulation. Writing them occurs in writeMultiField, which is called
by finalize().

VSimEs.mac

This macro file can be imported to an input file with.

$ import VSimEs

It is imported by VSim if VPM_SIMULATION_TYPE is electrostatic.

This macro file is available to all packages.

This macro file defines the finalizeUpdaters() macro, specific to electrostatic simulations, and it also defines
many private macros for adding ES update steps.

Public Macros

finalizeUpdaters()

Noindex

Add in all of the updaters needed for an ES simulation. Writing them occurs in writeMultiField, which is called
by finalize().

VSimMs.mac

This macro file can be imported to an input file with

$ import VSimMs

This macro file is available to all packages.

This macro file defines the macros for magnetostatic simulations.

Public Macros

There are no public macros for the file.

530 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

VSimPf.mac

This macro file can be imported to an input file with.

$ import VSimPf

This macro file is available to all packages.

This macro file defines macros for the updaters of EM fields to provide high resolution data for calculating secondary
electron production and multipacting effects. Will only work with PEC grid boundaries.

This macro file defines the following public macros:

Public Macros

addTimeDependence(name, function)
Sets the global variable VPM_MODE_FUNCTION. This is the time dependent mode function of a cavity.

Parameters

• name – The name of the cavity in which to add the time-dependent mode function.

• function – The time-dependent function of the mode.

3.21 Postprocessing Tools

3.21.1 FDM

FDM class: Python class, available in the file share/FDM.py file, that provides an interface to the filter diagonal-
ization method [?] for extracting eigenmodes and their frequencies from time-domain data. In [?], we validate
the method and demonstrate its accuracy.

FDM methods

__init__ (self, prefix, fieldName, beginDump, endDump)
Initialize the FDM object. Here prefix is the path to the data files, up to and excluding the underscore
preceding the dataset name. fieldName is the name of the field to analyze to obtain frequencies. beginDump
and endDump are the first and one greater than the last dump numbers to use.

setPointsRandom (self, npts)
Select npts random field points to use in the analysis. Components will also be chosen randomly.

setPointsUniform (self, npts, component = None)
Here, npts is a tuple giving the number of points to use in each spatial direction; points will be placed on
a uniform grid. If component (an integer) is given, only that component will be used. If component is
omitted, the component will be chosen from among all field components in a round-robin fashion.

readAndCompute (self)
This reads the data specified and performs the bulk of the FDM analysis. However, computeModes must be
called to compute a requested number of modes.

computeModes (self, nmodes)
This computes the (complex) frequencies of nmodes modes.

3.21. Postprocessing Tools 531

VSim Reference Manual, Release 11.0.1-r3016

constructModes (self, fieldName, compl = real)
Construct the field fieldName for the previously computed modes. compl can be either real or imag.
Eigenmode fields will be written to files named Eigenmode_*fieldName*[I]_modenum.h5 in the same
directory as the data. The letter I is appended to the field name for imaginary fields, and modenum is the mode
index, starting with 0, ordered from low to high frequency.

displayModes (self)
Display the computed mode information in a convenient format. This gives the number of the mode, the fre-
quency, the inverse Q and the SVD value which allows the user to understand where the reliable mode calcula-
tions stop.

Example use of FDM

import FDM

extr = FDM.FDM("modeExtract2s", "elecField", 2, 14)
extr.setPointsUniform((10, 10), None)
extr.readAndCompute()
extr.computeModes(2)
extr.constructModes("elecField")
extr.displayModes()

3.21.2 Particle Postprocessing

Particle postprocessing utility: A separate executable for performing basic reduction of Vorpal particle data in par-
allel.

The VSim distribution includes separate executables, ptclPostproc for parallel execution and
ptclPostprocser for serial execution, that can perform basic reductions of particle data. These executa-
bles process input files consisting of attributes and attribute blocks, similar to Vorpal input files. The Species block
specifies a data file to reduce. Possible reductions include downselection (specified in a ParticleSelector
block) and histogramming (with a ParticleHistogram block).

Particle postprocessing input parameters

runName (string)
Specifies the name of the run to postprocess. This is the beginning of the data file names, up to, and excluding,
the underscore before the data set name.

The input file can also contain the following blocks:

• Species

• ParticleSelector

• ParticleHistogram

When the postprocessing utility is run, the executable will read each dump of each species that appears in at least
one postprocessing (ParticleSelector or ParticleHistogram) block. It will perform the requested post-
processing for each of those blocks. In parallel, the particle data will be divided evenly across the processes, and the
results of the processing combined once all processes have completed their analysis. The executable will write a dump
file for each postprocessing block for each dump of the associated species.

532 Chapter 3. Text Setup

VSim Reference Manual, Release 11.0.1-r3016

Species block

The Species block sets parameters for a particle species to postprocess. The name of the block must be set to the
name of the species data set.

weightIndex (integer)
For a weighted species, the index in the data set of the particle weight (with indices starting at 0). This can be
omitted for an unweighted species.

ParticleSelector block

The ParticleSelector selects particles from the data set for which a specified variable is in a given interval, and writes
the selected particles to the postprocessed output file.

species (string)
The name of the species to postprocess.

element (integer)
The data element (with indices starting at 0) on which to base the selection.

interval (float vector)
A 2-element vector giving the minimum and maximum of the interval in which to select particles.

ParticleHistogram block

The ParticleHistogram bins the specified variables of the particle data into a one- or two-dimensional histogram with
the given number of bins. This procedure only works with weighted species.

species (string)
The name of the species to postprocess.

axes (integer vector)
The data element(s) (with indices starting at 0) of the particle species to bin. The dimension of the histogram
will be equal to the number of elements specified in the vector.

numBins (integer vector)
The number of bins in each dimension of the histogram. The length of this vector parameter must be the same
as that of the axes vector.

Example postprocessing input file

The name of the original run. In this example, it is a 3D run.
runName = lpa

The number of dimensions in lpa is 2, so we set a variable for the number of
→˓dimensions accordingly.
$NDIM = 2

The species to read from, which is tagged and weighted
<Species plasmaElectrons>

weightIndex = NDIM + 4
</Species>

A selector for particles with relativistic longitudinal velocity
above 3e7 m/s

(continues on next page)

3.21. Postprocessing Tools 533

VSim Reference Manual, Release 11.0.1-r3016

(continued from previous page)

<ParticleSelector uxSelector>
species = plasmaElectrons
element = NDIM
interval = [3.0e7 1.0e20]

</ParticleSelector>

A 1D histogram of relativistic longitudinal velocity
<ParticleHistogram momentum>

species = plasmaElectrons
axes = [NDIM]
numBins = [100]

</ParticleHistogram>

A 2D histogram of longitudinal phase space
<ParticleHistogram phaseSpace>

species = plasmaElectrons
axes = [0 NDIM]
numBins = [300 300]

</ParticleHistogram>

Command-line options

-i
The name of the preprocessed input file.

-d
The location of the original data to reduce.

534 Chapter 3. Text Setup

CHAPTER

FOUR

ENGINE (VORPAL) EXECUTION

4.1 Vorpal Command Line Options

When running Vorpal from the command line, the input filename and runtime options are specified as command line
options. To use multiple options, the command line syntax is:

vopalser|vorpal -i filename [-o prefix_name] [-dim num] [-dt fnum] [-rnum] [-sd] [-
→˓nd] [-nc] [-oc] [other options]

in which vorpalser is used to run a serial computation or vorpal for parallel. See user-guide-running-vorpal-
from-the-command-line-serial-computation for details about serial computation. See the User Guide:Running in Par-
allel From VSimComposer for details of command line invocation with parallel computation.

Commonly used options that you can specify on the command line include:

-i filename
Read input from file named filename.

For example:

vorpalser -i esPtclInCell.pre

-o prefix_name
Base names of output files on the text string prefix_name.

For example, if you want output files named newesPtclInCell rather than esPtclInCell, use:

vorpalser -i esPtclInCell.pre -o newesPtclInCell

-dim num
Run simulation using num spatial dimensions. This option overrides the dimension parameter specified in
the input file.

For example, if you want to run esPtclInCell in 2D rather than 3D, use:

vorpalser -i esPtclInCell.pre -dim 2

-dt fnum
Use time step of size fnum. This option overrides the dt parameter defined in the .pre file.

For example, if you want to run esPtclInCell with the timestep duration 9.9e-12 seconds, use:

vorpalser -i esPtclInCell.pre -dt 9.9e-12

535

VSim Reference Manual, Release 11.0.1-r3016

-n num
Run the simulation for num time steps. This option overrides the nsteps parameter.

For example, if you want to run esPtclInCell with 50 time steps rather than 10, use:

vorpalser -i esPtclInCell.pre -dt -n 50

-d num
Dump data every num time steps. This option overrides the dumpperiodicity parameter.

For example, to run esPtclInCell and dump output after every 5 time steps, use:

vorpalser -i esPtclInCell.pre -d 5

-r num`
Restart Vorpal from dump num.

For example, if you want to restart esPtclInCellSteps using the output dumped at time step 50, use:

vorpalser -i esPtclInCellSteps.pre -r 50

-sd
Dump data at start of simulation. This option is useful for debugging purposes. It lets you see whether Vorpal
used the data you wanted it to use at the start of the simulation.

-nd
Disable data dumping.

-nc
Redirect all of the *_comms_*.txt output to /dev/null.

-oc [rank]
Suppress the creation of all comms text files except for that file from the specified [rank] process. This flag is
overriden by the -nc flag, above.

-b
Provide a barrier at each timestep. This means that, when running in parallel at the end of a time step, the
simulation will halt all processes that are more rapid than others so that the slower processes can catch up before
the next timestep initiates.

-id
Forces each processor to dump into its own separate file, these files can then be concatenated into a single file
for analysis.

-ns
Disable particle sorting. Sorting affects the way particles in cells and memory are handled and can lead to some
inefficiencies both with sorting on or off. It is up to the user to discover whether or not to turn the sorting off.
However, there are some algorithms, especially in the plasma discharge realm, in which sorting is needed.

-gpudevnum
Select the GPU to use to run a serial run.

-ra
Read all particles from all domains on a restart. Particularly useful if you try to restart with a different number
of cores or configuration of domains to the dataset from which the earlier data is taken.

-v, --version
Show Vorpal version. This provides information relevant to developers if you run into issues.

-validate
Validate input file semantics.

536 Chapter 4. Engine (Vorpal) Execution

VSim Reference Manual, Release 11.0.1-r3016

-svn, --svn
Show svn revision number of this build.

--license
Show license info.

-iargs
Pass options (including substitutions) to internal txpp. For example:

vorpalser -i esPtclInCell.pre -iargs NDIM=2, DX=0.1

4.2 Customizing Environment Variables

Commonly used environment variables that you can specify in the shell include:

SIM_DATA_PATH
Define a list of directories for Vorpal to search data files from, in order to hold a central repository for EEDL,
LXCAT and other files. When a data file is needed in a simulation, Vorpal will search it in order of current di-
rectory and all directories listed in SIM_DATA_PATH. One can set up this environment variable before running
VSimComposer. The default SIM_DATA_PATH in the distribution contains potentially useful data files.

4.2. Customizing Environment Variables 537

VSim Reference Manual, Release 11.0.1-r3016

538 Chapter 4. Engine (Vorpal) Execution

CHAPTER

FIVE

ANALYZERS

5.1 Guide to Analyzers

5.1.1 Introduction to Analyzers

Analyzers are executables provided with VSim for post processing simulation-produced data. They can produce one
or a few numbers, such as mode frequencies, or they can produce large data files, like a density field from a particle
file. In the latter case, the data is written into VizSchema compliant HDF5 files, which can then be visualized in the
Visualization pane.

5.1.2 Using an Analyzer

The analyzer executables are located in the same directory as the Vorpal executable. They may be used either within
VSimComposer’s analysis tab Python environment or invoked on the command line. For command-line usage, one
must have correctly set the environment as described in command-line-execution-environment of the User Guide.

5.2 Available Analyzers

5.2.1 addPtclComponentKEeV.py

This analyzer creates a column which provides the particle energies (based on the magnitude of particle velocities) in
eV. This column allows energetic particles to be differentiated within the simulation. One may also bin and average
these quantities using the binning view in the visualize pane. This provides access to the plasma electron temperature,
which in turn is important for assessing the mesh size against the Debye length.

If outputSpeciesName is not given, then the column of data is appended to the named species data set file with
the names _KEeV, _KEeVx, _KEeVy, or _KEeVz depending on which component(s) are specified. If columns of
these names already exist, then the script will print a message and do nothing.

Ultrarelativistic calculations of Particle Kinetic Energy in eV

If one of the KEeVx, KEeVy, or KEeVz component options is invoked, the analyzer performs a simplified calculation of
the kinetic energy, in eV, assuming ultrarelativistic motion in the corresponding direction. Because of the assumptions
available, these may be faster than the default KEeV option.

-s <simname>, --simulationName=<simname>
(string, required)

539

VSim Reference Manual, Release 11.0.1-r3016

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species to be subselected, to append the longitudinal or component energy in eV.

-A <A>, --addRemoveFlag=<A>
(string, required, default = add)

<A> one of [add, remove].

• If add, the component specified in the component argument will be appended to the species dataset. If
the specified component already exists in an H5 file, the add operation will be ignored (on that file only,
every file is checked individually).

• If remove, the last component of the species dataset will be removed, provided the last component is one
of KEeV, KEeVx, KEeVy, or KEeVz. If no eV component exists in an H5 file, the remove operation
will be ignored (on that file only, every file is checked individually).

-m, --magnitude
(boolean, required, default = 1)

Determines whether to output energy, KEeV: 1 for yes, 0 for no.

-x, --outputXcomponent
(boolean, required, default = 0)

Determines whether to output KEeVx: 1 for yes, 0 for no.

-y, --outputYcomponent
(boolean, required, default = 0)

Determines whether to output KEeVy: 1 for yes, 0 for no.

-z, --outputZcomponent
(boolean, required, default = 0)

Determines whether to output KEeVz: 1 for yes, 0 for no.

-o <outspname>, --outputSpeciesName=<outspname>
(string, optional)

<outspname> is the name of the species to write. Will construct filename from this species name, otherwise will
use same file.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script, by default, overwrites your existing species data with a file containing the additional column of
energy in eV.

Alternately, if the addRemoveFlag is set to remove, it will remove the last component of the dataset if that component
is one of KEeV, KEeVx, KEeVy, or KEeVz.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

540 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.2 annotateFieldOnLine.py

This analyzer enables the raw h5 data recorded in a fieldonLine history to be available as a 2D field containing spatial
cell index on the ordinate and time on the abcissa. For fieldOnLine histories containing multiple components, there is
an option to choose the index to test.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the history dataset to analyze, eg E1.

-C <comp>, --component=<comp>
(integer, required)

<comp> is the component to analyze, eg 0,1,2. If set, this chooses a specific index of the history.

-x <multiplier>, --positionMultiplier=<multiplier>
(float, optional)

If set, multiplies the cell index by <multiplier> for the fieldOnLine history, eg by DX to determine the position.

-a <offset>, --positionOffset=<offset>
(float, optional)

If set, offsets the position by the value <offset>. Adjusts the minimum value to use for cell index when plotting,
eg XSTART. If used without positionMultiplier then this could be used for the minimum cell index so
that the plot shows actual cell index, rather than containing cells numbered from zero.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script outputs a VizSchema file containing 2D data on a uniform Cartesian mesh, spatial cell index (along
the line specified in the history) on the ordinate, time on the abscissa.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2. Available Analyzers 541

VSim Reference Manual, Release 11.0.1-r3016

5.2.3 annotateSpeciesAbsPtclData2.py

This analysis script enables the raw h5 data recorded in a speciesAbsPtclData2 history to be available as a field
showing the number density of the macroparticles deposited in each cell, and any of the other parameters you
have written out. It requires that the first components measured in the history are the particles’ spatial coordi-
nates, like ptclAttributes = [xPosition yPosition kineticEnergy current] for a 2D sim-
ulation, whether a ZR or xy coordinate system, and is specific to particles collected with collectMethod =
recordForEachPtcl.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the species to be analyzed.

-T <thresh>, --threshold=<thresh>
(float, optional)

Particle densities below <thresh> will be ignored.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script outputs a VizSchema field file evaluating the sum of particles deposited in each cell in that timestep,
as well as a cumulative sum total.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.4 annnotateSpeciesDataOnPlane.py

This analyzer provides particle files corresponding to the data in the history.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required, default = electrons)

<spname> is the name of the species to analyze.

542 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-H <histname>, --historyName=<histname>
(string, required, default = speciesOnPlane)

<histname> is the name of the history to analyze.

-o <outspname>, --outputSpeciesName=<outspname>
(string, optional, default = speciesOnPlane)

<outspname> is the name of the species file to write.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script produces particle vizschema hdf5 output corresponding to what passed through the plane.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example of Usage

Consider the electron gun simulation (text driven). You may add this block to measure the particles crossing a given
plane.

<History speciesOnPlane>
kind = speciesDataOnPlane
initialPlanePos = $XEND-10.*DX$
planeVelocity = 0.
species = [electron]

</History>

This example may be run for 8000 steps and there may already be enough data recorded by this history to be worth-
while.

We can set the analyzer settings as shown in Fig. 5.1

This will allow you to plot the particles collected by the history like any other species in the simulation as shown in
Fig. 5.2

It also opens up other postprocessing opportunites, such as phase space plots and binning plots. In Fig. 5.3 we see the
phase space, and the availability of the additional particle attribute representing time in the simulation. Longitudinal
velocity is being plotted against time of arrival on the plane, coloured by the macroparticle weight - proportional to
the number of physical particles per particle.

5.2.5 compareFields.py

This analyzer compares fields and outputs the difference field. Example uses include evaluating the evolution of a field
with time, or looking at the change in a field as a function of some other parameter in the input file, or looking at the

5.2. Available Analyzers 543

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.1: Setup parameters for analyzing the electron gun beam

Fig. 5.2: annotateSpeciesDataOnPlane.py output in data overview

544 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.3: annotateSpeciesDataOnPlane.py output in phase space plot

difference between two quantities.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-F <refFldName>, --fieldName=<refFldName>
(string, required, default = E)

<refFldName> is the name of the reference field, for example, E.

-D <targetFld>, --targetField=<targetFld>
(string, required, default = emPlaneWaveT_E_2.h5)

<targetFld> specifies a target field to compare with. Slightly different behaviour will result depending on the
contents of this input field.

• If <targetFld> is a whole name of a file in the present directory, then all time dumps of field <refFldName>
will be compared with <targetFld>. This allows for comparison of time dependent behaviour.

• If <targetFld> is a directory path, then this analyzer will try to find a simulation with the same basename as
the present simulation, and try to compare dump 1 from this simulation with dump 1 from that simulation,
dump 2 with dump 2, etc.

• If <targetFld> is a directory path and simulation name (eg “../testDir/testSim”) we will look to do a com-
parison betwen dumps of <refFldName> in the current working directory and corresponding dumps of that
simulation (eg “testSim_refFldName” in the target directory).

• If <targetFld> is a directory path, simulation name and field name (eg “../testDir/testSim_testFld”), we will
look to do a comparison between dumps of <refFldName> in the current working directory, and dumps of
testFld in the targeted directory).

5.2. Available Analyzers 545

VSim Reference Manual, Release 11.0.1-r3016

-o <outfield>, --outputField=<outfield>
(string, required, default = diffE)

<outfield> is the name of the field to write the results of the comparison to, for example, diffE.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

The output will be a vizschema compatible field file, containing the reference field minus the target field, in other
words a difference field.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.6 compute2DantennaGainAndPhase.py

This analysis script computes far field gain, and phase of Etheta and also calculated S-paramters.

Note: The default values of this analyzer are set to match the default setup of the Antenna Array 2D simulation and
its documentation.

This script prints out the S parameter of the excited element of the antenna array, as well as the S paramter of any of
the non-excited elements (the non-excited element for this calculation is set in the simulation SETUP. Must be a 2D
simulaton in the x-y plane, see VSimEM example Antenna Array 2D.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-dn <dnr>, --dumpNr=<dnr>
(string, required)

<dnr> is the dump number at which the electric field is read.

-n <nlambda>, --nlambda=<nlambda>
(string, required)

<nlambda> is the distance (radius) in factors of lambda from emission point at which the far field is measured.
Note: must be within the domain and further than 2 lambda.

-d <gapwidth>, --gapWidth=<gapwidth>
(string, required)

<gapwidth> The length of the aperture in meters.

546 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-c <center>, --center=<center>
(string, required)

<center> is the X & Y coordinate of the emission point. The Y coordinate should match the value of
ZEND_METAL in the default setup. Note: the X coordinate will change if the excitation element is not on
centered at x=0.

-dt <dt>, --dt=<dt>
(string, required)

<dt> is the timestep during both regular and the calibration run. This value is obtained from the Run Tab.

-f <freq>, --freq=<freq>
(string, required)

<freq> is the frequency of the waveguide in aperture.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This script creates a text file with 5 columns. The first column is the theta direction in degrees, the second column is
the analytical gain of the ISOLATED excited element in dB, the third column is the gain measured by VSim in dB, the
fourth column is the analytical phase of the ISOLATED excited element in degrees, and the fith column is the phase
measured by VSim in degrees. The name of the text file is SIMULATIONNAME_gainAndPhaseData.txt. The default
values of this analyzer are set to match the default setup of the Antenna Array 2D simulation and its documentation.
See the VSimEM example Antenna Array 2D for more information.

5.2.7 computeAED.py

This analyzer computes the Angular Energy Distribution (AED) function of a kinetic species hitting a surface. To use
this analyzer, the user must set up a Log History called Absorbed Particle Log. Before setting up the history, the user
must also set up a Boundary Absorb and Save for at least one species. Once the history is included, right click on your
mouse with the mouse hovering over the history name. Then you will have the ability to add the particle data you want
to save. To use this analyzer, you must save the particles location, velocity, time, energy, weight, charge, and number
of particles in a macroparticle. Note that in 2D, you need to save 2 positions and you need to save all three velocity
components. See the Wafer Impact input file as an example.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <SPECIESNAME>, --SpeciesName=<SPECIESNAME>
(string, required)

<SPECIESNAME> is the name of the species to compute the AED for. Example: “ions”

-T1 <STARTTIME>, --startTime=<STARTTIME>
(float, required)

<STARTTIME> is the time you want to start with when computing the AED. This is in units of RF periods. So
if you want to start at RF cycle 4, enter 4 for the start time.

5.2. Available Analyzers 547

VSim Reference Manual, Release 11.0.1-r3016

-T2 <ENDTIME>, --endTime=<ENDTIME>
(float, required)

<ENDTIME> is the time you want to end with when computing the AED. This is in units of RF periods. So if
you want to end at RF cycle 5, enter 5 for the end time.

-P1 <LOWERPOS>, --lowerPos=<LOWERPOS>
(float, required)

<LOWERPOS> is the lower position along the surface you want to include when computing the AED. In 1D,
this parameter is ignored

-P2 <UPPERPOS>, --upperPos=<UPPERPOS>
(float, required)

<UPPERPOS> is the upper position along the surface you want to include when computing the AED. In 1D,
this parameter is ignored

-H <HISTORYNAME>, --historyName=<HISTORYNAME>
(string, required)

<HISTORYNAME> is the name of the history that you provide when you create the history. Some default value
is created when you make the history. You can also change the name by double clicking on the history name in
Composer.

-Neng <NUMENGERYBINS>, --numEnergyBins=<NUMENERGYBINS>
(integer, required)

<NUMENERGYBINS> is the number of energy bins to use when binning the data. This is used in a Python
histrogram function

-Nang <NUMANGLEBINS>, --numAngleBins=<NUMANGLEBINS>
(integer, required)

<NUMANGLEBINS> is the number of angular bins to use when binning the data. This is used in a Python
histrogram function

-E1 <LOWERENERGY>, --lowerEnergy=<LOWERENERGY>
(float, required)

<LOWERENERGY> is the lower energy to use when binning the data. This is used in a Python histrogram
function

-E2 <UPPERENERGY>, --upperEnergy=<UPPERENERGY>
(float, required)

<UPPERENERGY> is the upper energy to use when binning the data. This is used in a Python histrogram
function

-A1 <LOWERANGLE>, --lowerAngle=<LOWERANGLE>
(float, required)

<LOWERANGLE> is the lower angle to use when binning the data. This is used in a Python histrogram function

-A2 <UPPERANGLE>, --upperAngle=<UPPERANGLE>
(float, required)

<UPPERANGLE> is the upper angle to use when binning the data. This is used in a Python histrogram function

-f <ANGULARFREQUENCY>, --angularFrequency=<ANGULARFREQUENCY>
(float, required)

<ANGULARFREQUENCY> is the angular frequency (2 pi times the linear frequency) of you RF source. This
value is used to confine the times that you choose for your startTime (T1) and endTime (T2).

548 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-ndim <NDIM>, --NDIM=<NDIM>
(integer, required)

<NDIM> is the number of dimensions of you simulation. The analyzer currently works in 1D and 2D

-P <PERPDIR>, --perpDir=<PERPDIR>
(string, required)

<PERPDIR> is the perpendicular direction to surface that charges are collected on. Accepted values are +x,-
x,+y,-y,+z,-z,+r,-r. Y-axis would have perpendicular direction of +x. X-axis would have perpendicular direction
of +y.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer outputs a 2D angular and energy distribution function. It also outputs the 1D angular distribution
fucntion (integrated over all energies) and 1D energy distribution function (integegrated over all angles).

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.8 computeBeam2ModeCoupling.py

This analyzer convolves a beam current with the dominant mode frequency so you can tell how much your beam is
coupling to a high-power microwave device. Inputs are the name of the current density field representing the particle
beam, the directional component to couple, and the frequency of the mode that is going to be coupled to. The start
time is also specified in order to compute the coupling after any transient time.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-j <curdenfield>, --jName=<curdenfield>
(string, required)

<curdenfield> is the name of the current density field to analyze.

-c <comp>, --component=<comp>
(int, required)

<comp> is the component 0,1,or 2 of the current density field to analyze.

-f <freq>, --frequency=<freq>
(float, required)

Replace <freq> with the frequency to be analyzed.

5.2. Available Analyzers 549

VSim Reference Manual, Release 11.0.1-r3016

-t <time>, --startTime=<time>
(float, required)

Replace <time> with the start time of the analysis.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer prints the coupling coefficients to the screen as well as writing them out to a text file namd I1.txt.

If you are running this analyzer from the UI, and the file I1.txt exists, then it will be overwritten each time the analyzer
is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.9 computeCavityG.py

It is important to measure the efficiency with which a resonating cavity stores energy. A very useful cavity figure of
merit for this efficiency is the Geometry Factor, G, which depends only on the geometry of the cavity.

This analyzer computes this factor G, along with the mode frequency, and the squared magnetic field strength inte-
grated over both the domain and the cavity surface.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-g <geometry>, --geometryName=<geometry>
(string, required)

<geometry> is the name of the surface geometry object on which to calculate the 𝐺 factor.

-b <bd>, --beginDump=<bd>
(int, required)

<bd> is the first dump number to process.

-e <ed>, --endDump=<ed>
(int, optional)

Replace <ed> with the last dump number to process. Must be larger than beginDump and not greater than the
total number of available dumps.

Output

A VizSchema compliant output named Bsurf containing information about the cavity, including the G merit factor.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

550 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.10 computeCumulativeSumHistory.py

This analyzer computes the cumulative sum of a history and writes it to a new history. It can be used, for example, to
get a total charge from a current measurement.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the history name to perform the cumulative sum on.

-o <newhistname>, --newHistoryName=<newhistname>
(string, required)

<newhistname> is the history name to write the resulting cumulative sum/integral to.

-m <M>, --multiplier=<M>
(float, required, default = 1.0)

<M> is the factor, variable of integration, eg dt, that you can multiply your history by, if you choose.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

An additional history is output to a new vizschema history file containing the cumulative sum/integral for the chosen
history dataset. The text output displays the average and standard deviation for both input and output datasets, so this
analyzer also produces a convenient way of computing the average.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example of Usage

Consider our 2D magnetron example, which measures the current to the anode, in Amps. Running this analyzer on
that history will return the total charge deposited on that surface.

5.2. Available Analyzers 551

VSim Reference Manual, Release 11.0.1-r3016

5.2.11 computeDebyeLength.py

This analyzer script generates particle number density, temperature (K) and Debye length, and creates a dataset for
visualization containing the fraction of Debye length occupied by each mesh cell, based on the data in particle files.
Only implemented for 2D-Cylindrical coordinate systems, e.g. ZR. It is important to calculate the kinetic energy of
the particles before running this analyzer. You do this by executing addPtclComponentKEeV.py.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the electron species for which particle number density to be calculated. If there is
more than one electron species, the calculation may not be valid.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer script outputs particle number density (/𝑚3), temperature (𝑇 = 3
2 · 𝑘𝐵), and the ratio of debye length

measured in the units of the maximum grid dimension at that point (𝐷 = 𝜆𝐷/∆𝑥). All data is output as VizSchema
compliant fields visualizable in Composer. A high value, greater than 10, is an indication that the Debye length is well
resolved. A value less than 1 means that the Debye length is not resolved, and is an indication that particles in the
simulation are likely to artificially heat. Some mitigation is possible with higher order particles but normally the best
solution is to increase the grid resolution. These density fields can help to analyze the particle distribution results in
the simulation domain.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.12 computeWaveguideModes.py

This analyzer computes the profiles & effective indices of guided modes based on the dielectric & PEC cross-section
by directly solving an eigenvalue equation. Use on dielectric & PEC waveguides with a constant cross-section. Find
any desired mode & then use the output mode profile to launch the mode in the full simulation. The cross-section must
be normal to x.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

552 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-T <slice>, --transverseSlice=<slice>
(string, required, default = 0, -1:1, -1:1)

<slice> is the slice of invEps field to analyze. In 2d, omit the z-range. Example of use: -T 0, -1:1, -1:1

-L <vacwave>, --vacWavelength=<vacwave>
(float, required, default = 1.55)

<vacwave> is the vacuum wavelength of source. Example of use: -L 1.55

-m <maxnodes>, --nModes=<maxnodes>
(int, optional, default = 10)

<maxnodes> is the maximum number of modes to find. Includes degenerate modes.

-F <field>, --writeFieldProfile=<field>
(string, optional, default is H)

<field> is which field(s) (H,E, and/or D) to write for the modes. Example of use: -F H,E,D

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer outputs a table with a list of the modes and effective indices. Export your choice of the H, E, and/or D
field profiles. The profile of each mode is output to a separate H5 file. This file includes the real and imaginary parts.
These modes can be imported and launched in a simulation.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.13 computeEmittanceFromDump.py

This analysis script computes the emittance and associated quantities of a particle beam as it moves through the
simulation.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species to be analyzed.

-x <N1>, --x1plane=<N1>
(float, optional, default = -1.e6)

If set, excludes particles at x less than this value.

5.2. Available Analyzers 553

VSim Reference Manual, Release 11.0.1-r3016

-X <N2>, --x2plane=<N2>
(float, optional, default = 1.e6)

If set, excludes particles at x greater than this value.

-n <S>, --numSlices=<S>
(int, optional, default = 1)

This feature allows one to choose the number of slices <S> (between x1plane and x2plane) for the purposes of
computing the emittance within each slice.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script produces text output specifying the beam parameters it has calculated, and also writes a new
history containing the emittance and normalized emittance in x,y (and if 3D, z).

If you are running this analyzer from the GUI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you run the analyzer for multiple slices, and then run it later with a single slice, the datasets for the previous multiple
slices are not overwritten, so you will need to delete those datasets first to avoid confusion.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Usage and Testing

In order to check the output of the analyzer, open the Python file for this analyzer, computeEmittanceFromDump.py
(found under your Tech-X Program Files under Contents > engine > bin), and change the verbosity. Find on or around
line 25

verbose = 0

and replace it with

verbose = 1

Remember to change this back when you are finished or you will slow down the analyzer.

The following instructions can all be performed from within the VSim Composer GUI. For this example, use the
electronBeamDrivenPlasmaT.pre example file, and click on View Input File. Underneath

$ BEAM_GAMMA_INV_2 = BEAM_GAMMA_INV * BEAM_GAMMA_INV

(shortly after 200 lines) insert the text

$ SIGMA_Y_PRIME = 1.e-3
$ SIGMA_Y = BEAM_UX*SIGMA_Y_PRIME

554 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Then in the definition of the velocityGeneratorwithin the species ElectronBeam (around line 1522), change
the expression for component1.

<STFunc component1>
kind = expression
expression = gauss(SIGMA_Y)

</STFunc>

You then have set both 𝜎𝑦 and 𝜎𝑦′ , so it is possible to simply calculate the geometric and normalized emittance.

Run this file for 5 steps, dumping every step, and check the box Dump at Time Zero. Then click on the Analyze tab.

Select the computeEmittanceFromDump.py analyzer.

Set up your options as shown using the base name of your input file (without extension), something like
ElectronBeamDrivenPlasma1 and the name of the species for analysis ElectronBeam.

Fig. 5.4: Setting up the analyzer

Click on Analyze. The output should look something similar to that shown below.

We can see that our SIGMA_R setting further up the file has translated into 𝜎𝑦 = 2 · 10−5, which is shown, 𝜎𝑦′ =
1 · 10−3, so geometric emittance for this uncorrelated case is 𝜖𝑦 = 2 · 10−8. As 𝛾 = 490.2, the normalized emittance
is around under 𝜖𝑦𝑛 = 1 · 10−5.

Proceed to the Visualize tab and select the 1-D Fields from the Add a Data View button at top left of the Composer
window. You may want to reload data before looking at the results. This is demonstrated in Fig. 5.6. You can
see the emittance in y is constant or decreases by a negligible fraction, transferred to the x component in the self-
magnetic field, but due to the beam being completely monoenergetic in x to start, the x emittance grows rapidly. It is
straightforward to add a gaussian function for the BEAM_UX to watch what happens there too.

5.2. Available Analyzers 555

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.5: Analysis output

Fig. 5.6: 1-D Fields showing analysis output over time

556 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

5.2.14 computeEmittanceOnPlane.py

This analysis script, computeEmittanceOnPlane.py, computes the RMS emittance of a beam in Cartesian coordinates
as it crosses a plane, and provides various other beam phase space quantities using a speciesDataOnPlane history.
As with calculating the emittance from species dump files, some care should be taken with 2D simulations of novel
acceleration scenarios as a greater overall charge is often modeled to obtain a field strength to an equivalent 3D
simulation with a Gaussian distribution in z. For the 2D simulation, there is no Gaussian in z, so charge is uniform
and normalized to 1m.

The speciesDataOnPlane history records metadata which is checked to see if the species is weighted. The analyzer
will report if the weights were found in this metadata.

The emittances are calculated as the square root of the determinant of the covariance matrix whose elements are the
products of the averaged position and primed coordinates.

Input Parameters

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed.

-S <spname>, --speciesName=<spname>
(string, required, default = electron)

<spname> is the name of the species to be analyzed.

-H <histname>, --historyName=<histname>
(string, required, default = speciesOnPlane)

<histname> is the name of the speciesDataOnPlane history to be analyzed.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script outputs additional histories in a VizSchema (VSim) compatible output file. These contain phase
space measurements like bunch RMS size, longitudinal and transverse emittance, etc. The time slices in which they
are measured correspond to the times the species data was dumped. Both time-slice measurements and cumulative
measurement of reduce phase space quantities up to that time are recorded. Additionally the analyzer produces a csv
file containing the RMS values of the same various phase space measurements.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2. Available Analyzers 557

VSim Reference Manual, Release 11.0.1-r3016

5.2.15 computeFarFieldFromKirchhoffBox.py

This analyzer script analyzes a user-specified history. It will perform a near to far field transformation on the history it
is given. This allows for examination of the far field parameters, or radar cross section, of a particular object. The size
of the sphere used as the near field is specified in the .pre file, typically with the variable name RS.

The Kirchhoff Box should surround all structures but be a few cells inside any boundary cells, including the cells
associated with any MALs or PMLs.

The start time should be set to a time that allows for the desired signal to have reached all points on the Kirchhoff Box.
This is typically rise time of the pulse plus the time to cross the far-field box diagonal.

The end time of the box is typically the start time plus another box crossing time or two, plus the desired length of
time one wishes to have in the far field, e.g. one or two cycles of an oscillating signal. The simulation can end after
the end time of the box.

This script calculates the far fields at the specified points on the far sphere, as designated by the sphere radius and a
number of points in theta and phi spherical angles. It then puts that data along with the field magnitude on a spherical
mesh that can be visualized with VSimComposer in a separate file for each analysis time. It does this for multiple far
field times, as controlled by the timeStepStride parameter.

Input Parameters

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-l <fldlabel>, --fieldLabel=<fldlabel>
(string, optional, default = E)

<fldlabel> is the name of the field for which the far field is desired. This defaults to E which should work.

-r <R>, --farFieldRadius=<R>
(float, required)

<R> is the radius at which the far field will be calculated. This is typically set to a number that is large (10x
is reasonable) compared with the size of the Kirchoff Box. However, the algorithm remains accurate for any
radius outside the Kirchoff Box, even if that is technically in the radiation near field.

-n <stepstride>, --timeStepStride=<stepstride>
(int, optional, default = 20)

From the first calculation of the far field, how often should it calculate the far field, as a multiplier of the
simulation time step.

-g <FC>, --getFourierComponent=<FC>
(int, optional, default = 0)

Whether to time integrate assuming a single Fourier frequency component.

-f <freq>, --frequency=<freq>
(float, optional)

<freq> is the Fourier component frequency, ignored if getFourierComponent = 0.

-t <num>, --numTheta=<num>
(int, required, default = 60)

Replace <num> with the number of theta points to be calculated.

558 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-p <num>, --numPhi=<num>
(int, required, default = 120)

Replace <num> with the number of phi points to be calculated.

-z <dir>, --zeroThetaDirection=<dir>
(string, optional, default = (0,0,1))

<dir> is a vector pointing to where the polar angle is zero, typically the positive z direction.

-x <dir>, --zeroPhiDirection=<dir>
(string, optional, default = (1,0,0))

<dir> is a vector pointing to where the azimuthal angle is zero, typically the positive x direction.

-v, --varyingRadiusMesh
(int, optional, default = 0)

Whether to vary the mesh by the magnitude of the field.

-i, --simpsonIntegration
(int, optional, default = 0)

Use higher order Simpson integration.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script outputs a series of HDF5 files named <simulationName>_FarField<fieldName>_NN.vsh5, where
<simulationName> is the name of the simulation, and <fieldName> (e.g, E) is the field for which the far field is
being calculated. This data can be seen in the Visualize tab under Data Overview Scalar Data as farE (if E is the
fieldName). If the Visualize tab has already been opened the Reload Data button must be clicked in order to load the
new data.

The dumps are not synchronized with the regular Vorpal data dumps, because the far field times may be strongly time
delayed due to the large far field radius. Instead these dumps start at number 0, with the first far field analysis time,
which is computed internally to be consistent with the required data being available in the Kirchhoff Box data stream.
E.g., this time is delayed from the first dump time by half, or more, of a box diagonal transit time, depending on the
centering of the Kirchhoff Box. Far field dumps are then output every timeStepStride as long as the necessary
data for the computation is available in the Kirchhoff Box data stream.

Further analysis of these dumps is possible to get a single frequency amplitude, and is often done with a user-generated
custom script. Such scripts can also be provided upon request.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2. Available Analyzers 559

VSim Reference Manual, Release 11.0.1-r3016

5.2.16 computeFarFieldRadiation.py

This analyzer script analyzes a user-specified history. It will perform a near to far field transformation on the history it
is given. This allows for examination of the far field parameters, or radar cross section of a particular object. The size
of the sphere used as the near field is specified in the .pre file, typically with the variable name RS.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the history dataset; typically farField or RCS. The file extension should NOT be
included in this text field.

-p <N>, --numPhi=<N>
(int, required, default = 120)

<N> is the number of phi points in the history. Specified in the input file.

-e <N>, --numTheta=<N>
(int, required, default = 60)

<N> is the number of theta points in the history. Specified in the input file.

-t <num>, --numTime=<num>
(int, optional, default = 16)

<num> is the number of time points spanning the far field time interval. May have been specified in the input
file as NTFAR, otherwise it is 16.

-n, --SLL
(float, required, default = 40)

The lowest side lobe level (dB). If set to -40 side lobes, down to -40 dB will be displayed.

-g, --normalize
(int, optional, default = 0)

If set to 1, the dB gain values will be scaled so that the highest is 1. If set to 0, there is no change.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer script outputs a history dataset into the HDF5 file named simulationName_historyName.vsh5,
where historyName is the name of the farfield history dataset. In the Visualize tab of VSimComposer it is visualizable
in Scalar Data. Note that if the Visualize tab has already been opened the Reload Data button must be clicked in
order to load the new file.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

560 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.17 computeFieldCrossProduct.py

This analyzer is used to perform a cross product of two different vector fields. A typical application would be for a
postprocessing computation of poynting flux with E and B fields (so that they are co-located). There is an optional
multiplier so that the 1/mu factor can be included, or if a velocity field has been calculated, then vxB can be estimated
and compared with acceleration due to E. The poynting vector represents only instantaneous power, and so time
averaging would need to be employed to work out intensity.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-1 <fldname>, --field1Name=<fldname>
(string, required)

<fldname> is the name of the first field to analyze.

-2 <fldname>, --field2Name=<fldname>
(string, required)

<fldname> is the name of the second field to analyze.

-o <outfldname>, --outputFieldName=<outfldname>
(string, required, default = CrossProduct)

<outfldname> is the name of the field to write. A suffix and base name will be added, eg ‘Poynting’.

-m <M>, --multiplier=<M>
(float, required, default = 1.0)

<M> is an optional multiplier. It can be used, for example, to create laser intensity, where you would use
1/mu0=1/1.25663e-6=795774.7

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

A set of VsHdf5 compatible field files containing the result of the cross-product operations.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2. Available Analyzers 561

VSim Reference Manual, Release 11.0.1-r3016

5.2.18 computeFieldMaxAmplitude.py

This analyzer reads the Field data and writes the max amplitude to a history.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-F <fldname>, --fieldName=<fldname>
(string, required)

<fldname> is the name of the field to rewrite, for example EdgeE.

-o <outhistname>, --outputHistoryName=<outhistname>
(string, optional)

<outhistname> is the file into which the new time series will be written.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

An additional history is output with the max amplitude of the Field data.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.19 computeFieldRelIntensityHilbert.py

This analyzer uses a Hilbert transform of the E field to obtain the time invariant E amplitude. This can be used for a
calculation of relativistic intensity.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-F <fldname>, --fieldName=<fldname>
(string, required, default = E)

<fldname> is the name of the field to apply the Hilbert transform to.

-o <outfldname>, --outputFieldName=<outfldname>
(string, required, default = Intensity)

<outfldname> is the name of the field to write. A suffix and base name will be added.

562 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

A set of VsHdf5 compatible field files is written containing the result of calculations.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.20 computeGradient.py

This analyzer writes the gradient of a history into a new history.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the history name to perform the gradient operation on.

-O <newhistname>, --newHistoryName=<newhistname>
(string, optional)

<newhistname> is the history name to write the results to.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

An additional history is output of the gradient of the chosen history dataset.

Example of Usage

Consider a plasma discharge example where some ionization process is the only source of a particular species. If we
measure the number of physical particles in that species, then the gradient gives the rate of creation. That rate might
be useful in a different simulation, or a 0D model, or to replace the reaction by a direct loader for the particles, for
performance reasons.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

5.2. Available Analyzers 563

VSim Reference Manual, Release 11.0.1-r3016

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.21 computeInverseQ.py

This analyzer script computes the inverse Q from a time series. For an oscillating history with amplitude damping
rate 𝜔/2𝑄, calculates the quantity 1/𝑄, where 𝜔 = 2𝜋× frequency.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f, --frequency
(float, required)

Frequency of the low-pass filter.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the history to analyze.

-O <outname>, --outputFileName=<outname>
(string, optional, default = SIMULATIONNAME_inverseQ)

<outname> is the name of the file into which the inverse Q will be written.

-c <comp>, --component=<comp>
(int, optional, default = 0)

<comp> is the component to select within a multi-component dataset Default = 0

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer script outputs two columns of data with the titles Time(s) and Inverse Q. The script also creates a
VizSchema-compliant HDF5 file that contains a new dataset that can be visualized in Composer. The name of the new
HDF5 file is SIMULATIONNAME_inverseQ.vsh5. It contains the dataset inverseQ_FREQ, where FREQ is the filter
frequency with periods replaced by underscores.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

564 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

5.2.22 computeMassFlux.py

This analyzer generates mass flux in units of kg*m^-2*s^-1 from particles stored in history data files. It is intended for
finding the emission flux or absorption flux through a plane, especially for neutral species which necessarily have zero
current. It expects a history of kind speciesAbsPtclData2 with records: xPosition yPosition . . . numPtclsInMacro time.
(Time is always last and added by Vorpal automatically.) Derived from annotateSpeciesAbsPtclData2.py Currently
only works for Cylindrical.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the history for which the number density is to be calculated.

-t <time>, --startTime=<time>
(float, required)

<time> is the time in seconds at which to begin flux rate calculations. Often this should be set to a time after
steady state conditions have been achieved in the simulation.

-T <timeint>, --timeInterval=<timeint>
(float, required)

Replace <timeint> with the desired time interval. Only events in startTime - [startTime + timeInterval] will be
counted. This interval should be the period of interest.

-D <direction>, --fluxDir=<direction>
(int, required, default = 0)

Replace <direction> with the direction the flux is going (0 or 1). Used to decide which cell unit lengths to use
in flux determination.

-m <mass>, --mass=<mass>
(float, required)

Replace <mass> with the mass of the physical atom/molecule in the species flux.

-d, --density
(flag)

Divide by the mass density to get linear etch rate in m/s. Specifying this option on the command line sets this
flag to true. The default is false.

-I, --integrate
(flag)

Integrate linear etch rate over timeInterval to get the erosion depth (only works with -d). Specifying this option
on the command line sets this flag to true. The default is false.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

5.2. Available Analyzers 565

VSim Reference Manual, Release 11.0.1-r3016

Output

Particle number density, temperature, and debye length/max grid length data as fields. These density fields can help to
analyze the particle distribution results in the simulation domain.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.23 computePtclBalance.py

This analysis script helps with choosing the parallel decomposition of the computation domain onto multiple proces-
sors. It uses internal variables stored in the particle output to work out which processors have the most macroparticles,
and which have fewest, determining the ratio between ‘perfectly’ balanced and how well balanced this data set is.
Perfect load balancing actually depends on a number of other parameters too, for example field decomposition and
other species are also likely to be important. Nevertheless, if you know particles are your bottleneck, this could be
very helpful.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species to be analyzed.

-o <outname>, --outputHistoryName=<outname>
(string, optional)

The filename will be determined from <outname> by adding the simulation name and an extension. If not set,
we simply default to <simname>_Balance.vsh5.

-r <maxranks>, --maxRanksToReport=<maxranks>
(string, required, default = 8)

If the number of ranks in the computation is less than <maxranks> we output number of particles on each rank,
and the fraction of total for each rank, otherwise we just give statistics for the particle balance.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

The output is a VizSchema compatible dataset containing a set of ‘history’ or 1D vs time data. Always the maximum
number of macros on any individual rank is reported, as is the ratio of this to the number of macros that would be
perfectly balanced (ie total number of particles/number of ranks). We report which rank has the most macroparticles
(so the worst balance), and the standard deviation of values of the balance which helps determine if most ranks have a

566 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

reasonably similar number of macros. If the number of ranks is fewer than the number specified in <maxranks> above,
then the number of macroparticles on each rank, and the particle balance for each rank, is also reported.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.24 computePtclImpactSpectrum.py

This analysis script outputs cumulative and per dump information about the particles that were recorded by an
speciesAbsPtclData2 history, to enable their spectrum to be determined.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the speciesAbsPtclData2 history to analyze.

-c <comp>, --component=<comp>
(int, required, default = 0)

<comp> is the physical component to plot the spectrum against.

-n <num>, --numBins=<num>
(int, required, default = 32)

<num> is the number of energy bins.

-T <N>, --threshold=<N>
(float, optional)

Particle densities below the chosen <N> will be ignored.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script outputs a vizschema compatible field file with position index along one coordinate and the kinetic
energy of the particles along the other axis. These density fields can help to analyze the particle distribution results in
the simulation domain.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

5.2. Available Analyzers 567

VSim Reference Manual, Release 11.0.1-r3016

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example

We can use this on the cylHallThruster example. See Fig. 5.7 for example values to set in the analyzer dialog box.

Fig. 5.7: computePtclImpactSpectrum.py settings

The output then looks like that shown in Fig. 5.8.

5.2.25 computePtclLimits.py

This analysis script helps locate particles which have breached the computational domain. This helps determine where
they may have come from, to identify potential issues with sources and sinks. Additionally the analyzer writes a
‘history’ type particle dataset with a time mesh given by dumps which can be plotted on one axis against the extents of
the species coordinates as they vary through the simulation. As such it can also find the fastest particles in a simulation,
which is useful for checking that timesteps and mesh size are okay.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species to be analyzed.

-O <outname>, --outputFileName=<outname>
(string, optional)

<outname> is the filename to write the history output containing maximum and minimum particle coordinates
for each timestep. The default is simulationname_MaxMinData_*.vsh5. If a filename is given, the user should
include the simulationName and the extension .vsh5.

568 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.8: computePtclImpactSpectrum.py analyzer applied to elecAbsData dataset in the cylindrical hall thruster ex-
ample.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

The output is a VizSchema compatible dataset containing a set of ‘history’ or 1D vs time data. The contents will be
xmax, ymax, vxmax, vymin, etc. and should be equally suited to cylindrical and Cartesian datasets.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.26 computePtclNumDensity.py

This analyzer script generates particle number density fields based on the particles data files. It works in 1D, 2D, and
3D Cartesian, as well as 2D RZ cylindrical.

The script can optionally perform a spatial average on the resulting data set. The spatial average is weighted and
computed over an NxN square kernel. The size of the kernel and number of iterations are specified in the analyzer
input. For example, if we set avgNxN to 5, the kernel would be weighted like this:

5.2. Available Analyzers 569

VSim Reference Manual, Release 11.0.1-r3016

1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

Setting iterateAvg to 2 will perform the averaging twice, for a smoother result.

Spatial averaging can become very slow for kernels much larger than 3, especially if the number of iterations is 2 or
more, or if the dimensionality is 3.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species for which particle number density is to be calculated.

-N <avg>, --avgNxN=<avg>
(int, optional, default = 1)

<avg> determines the size of the averaging kernel. Type an odd integer for N, and kernel will be N long in 1D,
NxN in 2D, or NxNxN in 3D. Defaults to 1 if no averaging is desired.

-i <I>, --iterateAvg=<I>
(int, optional, default = 1)

If avgNxN > 1, <I> is the number of iterations of the spatial averaging function. Ignored if avgNxN = 1.

-m <min>, --minDumpNum=<min>
(int, optional)

<min> is the minimum dump number to process.

-M <max>, --maxDumpNum=<max>
(int, optional)

<max> is the maximum dump number to process.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer script outputs particle number density data as fields. These density fields can help to analyze the particle
distribution results in the simulation domain. The files written will have the .vsh5 file extension and will show up
under Scalar Data on the Visualization pane as speciesNameDensity.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

570 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.27 computeS11Parameters.py

This analysis script calculates the S11Parameter at one point between two sets of electromagnetic field data. For the
history to work correctly, the simulation must have at least two separate sets of electromagnetic fields.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-t <histcal>, --historyCAL=<histcal>
(string, required, default = S11_TPCAL)

<histcal> is the name of the history used in the calibration run.

-p <histpat>, --historyPATCH=<histpat>
(string, required, default = S11_TPPATCH)

<histpat> is the name of the patch history used in the test run.

-E <N>, --nElements=<N>
(int, optional, default = 5000)

<N> is the number of time steps in the simulation run.

-e <pts>, --nPoints=<pts>
(int, required, default = 500)

<pts> is the number of points to analyze within the history.

-c <step>, --dt=<step>
(float, required, default = 5.1034579840981468e-13)

The length of one time step. Can be found in the Run tab under Runtime Options.

-n <Z>, --nZeros=<Z>
(int, optional, default = 50000)

<Z> is the total length of the FFT. Can be used for zero padding.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer script outputs a VizSchema file of the title dataset_SParameters.h5. It can be visualized as a 1D-Field.
If the Visualize tab has already been opened the Reload Data button must be clicked in order to load the new file.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

5.2. Available Analyzers 571

VSim Reference Manual, Release 11.0.1-r3016

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.28 computeSParamsFromHists.py

This script fourier transforms (in time) the FieldSlabData histories, and from that computes the frequency-domain
Poynting fluxes. Finally, by simple division, it provides the S parameter, the transmission coefficient.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f <first>, --firstStep=<first>
(int, optional)

<first> is the number of the first time step.

-l <last>, --lastStep=<last>
(int, optional)

<last> is the number of the last time step.

-O <offset>, --stepOffset=<offset>
(int, optional, default = 0)

<offset> is the offset between out and in time segments.

-L <maxl>, --maxWavelength=<maxl>
(float, required, default = 1.5)

Replace <maxl> with the largest wavelength (microns).

-S <minl>, --minWavelength=<minl>
(float, required, default = 1.3)

Replace <minl> with the smallest wavelength (microns).

-d <dir>, --inDirection=<dir>
(int, required, default = 0)

<dir> is the normal of the input plane: 0, 1, or 2.

-e <inelec>, --inSlabE=<inelec>
(string, required, default = eSlab0)

<inelec> is the input electric field array history.

-b <inmag>, --inSlabB=<inmag>
(string, required, default = bSlab0)

<inmag> is the input magnetic field array history.

-1, --inSign
(int, optional, default = 1)

Sign of the input Poynting vector.

-D <dir>, --outDirection=<dir>
(int, required, default = 0)

<dir> is the normal of the output plane: 0, 1, or 2.

572 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-E <outelec>, --outSlabE=<outelec>
(string, required, default = eSlab1)

<outelec> is the output electric field array history.

-B <outmag>, --outSlabB=<outmag>
(string, required, default = bSlab1)

<outmag> is the output magnetic field array history.

-2, --outSign
(int, optional, default = 1)

Sign of the Poynting vector to write.

-n <outname>, --outputFileName=<outname>
(string, optional)

<outname> is the name of the file into which to write the output.

-x <outsufx>, --outputSuffix=<outsufx>
(string, optional)

<outsufx> is a comma-delimited array of suffixes for the analyzer histories.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

A set of VsHdf5 compatible files with the frequency-domain Poynting fluxes and the S parameter.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.29 computeSParamsViaOverlapIntegral.py

A python module for calculating the overlap integral between two slabs in your simulation. The script Fourier trans-
forms (in time) the E and B FieldSlabData histories at each slab, and from that computes the overlap integral for each
wavelength bin. The slabs must have the same orientation.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-M <maxlength>, --maxWavelength=<maxlength>
(float, required)

Replace <maxlength> with the maximum vacuum wavelength to analyze. (microns)

5.2. Available Analyzers 573

VSim Reference Manual, Release 11.0.1-r3016

-m <minlength>, --minWavelength=<minlength>
(float, required)

Replace <minlength> with the minimum vacuum wavelength to analyze. (microns)

-e <inslabE>, --inSlabE=<inslabE>
(string, required, default = eSlab0)

Replace <inslabE> with the name of the input electric field array history.

-b <inslabB>, --inSlabB=<inslabB>
(string, required, default = bSlab0)

Replace <inslabB> with the name of the input magnetic field array history.

-E <outslabE>, --outSlabE=<outslabE>
(string, required, default = eSlab1)

Replace <outslabE> with the name of the output electric field array history.

-B <outslabB>, --outSlabB=<outslabB>
(string, required, default = bSlab1)

Replace <outslabB> with the name of the output magnetic field array history.

-f <firstin>, --firstStepInSlab=<firstin>
(int, optional)

Replace <firstin> with the time step to begin analyzing the input slab. Default is first step.

-F <firstout>, --firstStepOutSlab=<firstout>
(int, optional)

Replace <firstout> with the time step to begin analyzing the output slab. Default is first step.

-L <steps>, --numSteps=<steps>
(int, optional)

<steps> is the number of time steps to analyze for both slabs. Default is the maximum number of steps.

-D <suffix>, --outputFileSuffix=<suffix>
(string, optional)

<suffix> is the string added to the output file to distinguish it.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

A .vsh5 file with with the overlap integral plotted as a function of wavelength.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

574 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

5.2.30 computeSpectrogram.py

This analysis script, computeSpectrogram.py, takes a history of field at a coordinate or cell index, and works out the
spectrogram, writing it into a 2D dataset containing frequency vs time which may be viewed in VSimComposer.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the history dataset to analyze, for example, E1.

-f <size>, --fourierTransSize=<size>
(integer, required, default = 4096)

Replace <size> with the number of timesteps (or history points) to use for each Fourier transform. Determines
lowest measurable frequency in the transform.

-n <overlap>, --noOverlap=<overlap>
(integer, required, default = 2048)

Replace <overlap> with the number of timesteps that will overlap between successive measurements of fre-
quency. Set this to between zero and the size of the Fourier transform.

-F <max>, --maxFreq=<max>
(float, required, default = 0.0)

When preparing the data, discard frequencies above this maximum frequency <max>. FFTs show a maximum
frequency corresponding to 2*dt. This is higher than any frequency you are reliably going to be able to calculate.

-W <windowfunc>, --windowType=<windowfunc>
(integer, required, default = 1)

Specify a windowing function for the spectrogram. Default is 1 - Hanning.

1) Hanning

2) Hamming

3) Blackmann

4) Bartlett

If you are unfamiliar with these functions, please consult numpy documentation.

-c <comp>, --component=<comp>
(integer, optional, default = 0)

<comp> is the component to select if history contains multicomponent data.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script outputs a VizSchema compatible HDF5 file containing a 2D field readable in VSimComposer,
time on the ordinate, frequency on the abcissa.

5.2. Available Analyzers 575

VSim Reference Manual, Release 11.0.1-r3016

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.31 computeTimeSeriesAmplitude.py

This analyzer script computes the amplitude of a time series or more specifically calculates the instantaneous amplitude
of history at the specified frequency.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f, --frequency
(float, required)

The frequency at which history will be analyzed.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the history dataset to analyze.

-O <outname>, --outputFileName=<outname>
(string, optional, default = SIMULATIONNAME_timeSeriesAmplitude)

<outname> is the name of the file into which the amplitude will be written.

-c <comp>, --component=<comp>
(int, optional, default = 0)

<comp> is the component to select within a multi-component dataset.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This script prints out formatted text in two columns. The first column is the time axis in seconds, and the second column
is the amplitude of the time series. The scripts also creates a VizSchema-compliant Hdf5 file that contains a new dataset
that can be visualized in Composer. The name of the new HDF5 file is SIMULATIONNAME_timeSeriesAmplitude.vsh5
that contains the dataset Amplitude_FREQ, where FREQ is the filter frequency with periods replaced by underscores.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

576 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.32 computeTimeSeriesFrequency.py

This analyzer script computes the frequency vs time of a time series. The script calculates the instantaneous frequency
of history at the specified frequency.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f, --frequency
(float, required)

The frequency at which history will be analyzed.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the history dataset to analyze.

-O <outname>, --outputFileName=<outname>
(string, optional, default = SIMULATIONNAME_timeSeriesFrequency)

<outname> is the name of the file into which the amplitude will be written.

-c <comp>, --component=<comp>
(int, optional, default = 0)

<comp> is the component to select within a multi-component dataset.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This script prints out formatted text in two columns. The first column is the time axis in seconds, and the second column
is the frequency of the time series. The script also creates a VizSchema compliant HDF5 file that contains a new dataset
that can be visualized in Composer. The name of the new HDF5 file is SIMULATIONNAME_timeSeriesFrequency.vsh5
that contains the dataset Frequency_FREQ, where FREQ is the filter frequency with periods replaced by underscores.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2. Available Analyzers 577

VSim Reference Manual, Release 11.0.1-r3016

5.2.33 computeTransitTimeFactor.py

This analyzer computes the accelerating voltage and transit time of a cavity mode. Typically one will first run the
extractModes.py analyzer to compute the the cavity modes, then run computeTransitTimeFactor.py with the modes as
input.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-b <bd>, --beginDump=<bd>
(int, required, default = 0)

<bd> is the initial dump number.

-e <ed>, --endDump=<ed>
(int, required, default = 2)

<ed> is the ending dump number.

-B <beta>, --beta=<beta>
(float, required, default = 1.0)

Replace <beta> with the fraction of the speed of light for the particle bunch for which we are calculating transit
time factor.

-a, --axis
(int, required, default = 0)

Axis along which to compute time transit factor.

-0, --offsetx0
(float, optional, default = 0.0)

Distance from center to offset axis along the x0 direction.

-1, --offsetx1
(float, optional, default = 0.0)

Distance from center to offset axis along the x1 direction.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

Accelerating voltage, time-independent accelerating voltage and transit time factor, computed along the specified axis
in the center of the domain, are printed to the screen.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

578 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

5.2.34 convertFieldComponentCartToCylX.py

This analyzer converts 3D Field data from Cartesian to cylindrical coordinates. The script analyzes 3D vec-
tor field data specified on a 3D Cartesian mesh 𝐹𝑥(𝑥, 𝑦, 𝑧), 𝐹𝑦(𝑥, 𝑦, 𝑧), 𝐹𝑧(𝑥, 𝑦, 𝑧) and provides a copy of the
field’s components from a Cartesian system to a cylindrical polar system around the x-axis of the Cartesian mesh
𝐹𝑧′(𝑥, 𝑦, 𝑧), 𝐹𝑟′(𝑥, 𝑦, 𝑧), 𝐹𝜑′(𝑥, 𝑦, 𝑧). We treat the system as right handed, so the angle 𝜑′ increases from the (Carte-
sian) y-axis towards the z-axis, and 𝑧′ = 𝑥 points perpendicular from the plane swept out by 𝜑′.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f, --fieldName
(string, required)

Name of the field to rewrite, e.g. edgeE.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

The output is a field whose name is “<fieldName>xRPhi” (where the option --fieldName is used). The components
𝑧′, 𝑟′, 𝜑′ (where 𝑥− > 𝑧,

√︀
𝑦2 + 𝑧2− > 𝑟 and 𝜑) are calculated from the arctangent of z and y.

This analyzer script outputs an HDF5 file, titled baseName_fieldNamexRPhi.h5, i.e. magnetron2D_edgeExRPhi. The
fields will be available in the Visualize tab of VSimComposer under Scalar Data, where there will be a list of three
components, 0, 1, and 2 which map to 𝑧′, 𝑟′ and 𝜑′ respectively.

If the Visualize tab has already been opened, the Reload Data button must be clicked in order to load the new file.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.35 convertFieldComponentCartToCylZ.py

This analyzer converts 3D Field data from Cartesian to cylindrical coordinates. The script analyzes 3D vector
field data specified on a 2D or 3D Cartesian mesh 𝐹𝑥(𝑥, 𝑦, 𝑧), 𝐹𝑦(𝑥, 𝑦, 𝑧), 𝐹𝑧(𝑥, 𝑦, 𝑧), and provides a copy of
the field’s components from a Cartesian system to a cylindrical system around the z-axis of the Cartesian mesh
𝐹𝑧′(𝑥, 𝑦, 𝑧), 𝐹𝑟′(𝑥, 𝑦, 𝑧), 𝐹𝜑′(𝑥, 𝑦, 𝑧). We treat the system as right handed, so the angle 𝜑′ increases from the (Carte-
sian) x-axis towards the y-axis, and 𝑧′ = 𝑧 points perpendicular from the plane swept out by 𝜑′.

Additionally, this script also adds a derived 2D vector to the input HDF5 file that contains the X and Y components
of the field, which enables quiver plots for the field data for simulations on 2D meshes. Typically this might be used
for plotting magnetic field data in cartesian plots.

5.2. Available Analyzers 579

VSim Reference Manual, Release 11.0.1-r3016

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f, --FieldName
(string, required)

The name of the field to be analyzed with a Cartesian coordinate system. i.e. edgeE or faceB.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

The output is a field, whose name is <fieldName>zRPhi (where the FieldName is used). The components 𝑧′,
𝑟′, 𝜑′ (where 𝑧− > 𝑧′,

√︀
𝑦2 + 𝑦2− > 𝑟 and 𝜑) are calculated from the arctangent of z and y.

This analyzer script outputs an HDF5 file named baseName_fieldNamezRPhi.h5, i.e. magnetron2D_edgeEzRPhi.h5.
The fields will be available in the Visualize tab of VSimComposer under Scalar Data, where there will be a list of
three components, 0, 1, and 2, which map to 𝑧′, 𝑟′ and 𝜑′ respectively.

If the Visualize tab has already been opened, the Reload Data button must be clicked in order to load the new file.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.36 convertPtclComponentsCartToCylX.py

Sometimes we perform simulations with natural cylindrical symmetry in Cartesian coordinates to avoid issues aris-
ing from the small timestep caused by small cells near the axis. It is helpful to interpret the results in cylindrical
coordinates, rather than the Cartesian coordinates of the simulation mesh. This analyzer performs the conversion of
the particle coordinates and the particle velocity. New _r, _phi, _vr, _vphi columns are added to the particle file’s
coordinates. If one is wishing to restart, these columns will need removing before proceeding. This assumes the x-axis
in the Cartesian simulation would correspond to z’, the coordinate along r = 0 in the cylindrical coordinate system. z
and vz in the transformed frame is not written, as this is simply the same as x and vx in the original system, which are
already present in the dataset.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species from which you want to read Cartesian coordinates.

580 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-o <outspname>, --outputSpeciesName=<outspname>
(string, optional)

<outspname> is the name of the species into which you want to write cylindrical coordinates. If unset, will add
these to the species from which it read the Cartesian output. This will limit your ability to restart the simulation
unless you manually remove these columns from the dataset before restarting.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script updates the species datafile, adding _r and _phi components for both position and velocity. As
𝑥 → 𝑧′, there is no new component required for z.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example usage

This analysis script may be useful for interpreting the klystron and helix TWT examples in VSim for Microwave
Devices, which naturally have particles traveling down a cylindrical beampipe oriented along x.

5.2.37 convertPtclComponentsCartToCylZ.py

convertPtclComponentsCartToCylZ.py differs from convertPtclComponentsCartToCylX.py as it assumes the z axis of
the original Cartesian simulation and of the axis of the cylindrical coordinate system is shared.

Sometimes we perform simulations with natural cylindrical symmetry in Cartesian coordinates to avoid issues aris-
ing from the small timestep caused by small cells near the axis. It is helpful to interpret the results in cylindrical
coordinates, rather than the Cartesian coordinates of the simulation mesh. This analyzer performs the conversion of
the particle coordinates and the particle velocity. New _r, _phi, _vr, _vphi columns are added to the particle file’s
coordinates. If one is wishing to restart, these columns will need removing before proceeding. This assumes the z-axis
in the Cartesian simulation would correspond to z’, the coordinate along r = 0 in the cylindrical coordinate system. z
and vz in the transformed frame is not written, as this is simply the same as z and vz in the original system, which are
already present in the dataset.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species from which you want to read the particle dataset in Cartesian coordinates.

5.2. Available Analyzers 581

VSim Reference Manual, Release 11.0.1-r3016

-o <outspname>, --outputSpeciesName=<outspname>
(string, optional)

<outspname> is the name of the species into which you want to write cylindrical coordinates. If unset, will add
these to the species from which it read the Cartesian output. This will limit your ability to restart the simulation
unless you manually remove these columns from the dataset before restarting.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analysis script updates the species datafile, adding _r and _phi components for both position and velocity. As
𝑧 → 𝑧′, there is no new component required for z.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example usage

This analysis script may be useful for interpreting the 2D magnetron example in VSim for Microwave Devices, which
has particles traveling in x,y space with a cylindrical central cathode oriented along z.

5.2.38 createMissingPtclsDumps.py (deprecated in VSim 11)

This analyzer writes empty particle dump files for any missing particle dumps. This is a workaround for the fact that
VisIt does not know how to handle missing dumps and instead continues to display the previous particle dump of the
simulation. It automatically determines all species in the .pre file and checks for field dumps without a corresponding
particle dataset for each species.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species to analyze.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

582 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Output

This analyzer writes simulationName_speciesName_NN.h5, for each value of NN not having a particle dump but
having field dumps.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.39 createParticleTracks.py

This analysis script will write a new file for each particle that you wish to track over time. This requires the use of
tagged particle species with a unique tag identifier for each particle.

The new .h5 file will contain the particle positions and velocities for each time dump of your simulation. Since the
analyzer reads in the data from existing species dump files (e.g. simulation_electrons_*.h5), it is beneficial to set your
simulation to dump frequently.

Note: This analyzer requires tagged particle species as the order of particles may be affected by particle creation,
removal, and sorting operations.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the tagged species that contains the particle to be tracked.

-p, --ptclIndex
(int, required)

Tag ID of the particle to be tracked.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

createParticletclsTracks.py writes simulationname_speciesnameTrackNN_0.h5 for each value of NN where
NN=ptclIndex is the tag number in the particle file to use.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

5.2. Available Analyzers 583

VSim Reference Manual, Release 11.0.1-r3016

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.40 exportSpecies.py

This analysis script interrogates particles data files, and writes them in a text file format suitable for use in the file-
DensSrc kind of species source, or for those who want to have ascii format data to read into another code.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species which is the source of the export operation.

-d <num>, --dumpNum=<num>
(int, required)

Which dump number to export.

-O <outname>, --outputFileName=<outname>
(string, optional)

<outname> is the name of the output file, including extension. Not used if numOutFiles > 1.

-o <outbasename>, --outputBaseName=<outbasename>
(string, optional)

Name of the output file, no extension, compatible with the fileDensSrc applyPeriod parameter. Only used if
numOutFiles > 1.

-N <files>, --numOutFiles=<files>
(int, required, default = 1)

Will convert the H5 file to this many .dat files, each containing totalNumPtcls/numOutFiles. Useful for loading
the electrons over a period of time.

-P, --applyPeriod
(int, optional)

If using the fileDensSrc applyPeriod parameter, set this equal to your applyPeriod.

-R, --randomizePtcls
(int, required, default = 1)

0 or 1. If 1, will copy particles in random order.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

584 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Output

This analysis script outputs one or more ascii files readable in any test editor, potentially with a filtered set of particles
ready for re-import.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.41 extractModes.py

This analyzer extracts the frequencies and modes of a field from time-series data using the Filter Diagonalization
Method (FDM) [?]. It is useful for simulations in which one has modes of well defined frequencies, and where only
a modest number (<~20) of modes are excited. An example simulation would be that of electromagnetic oscillations
rung up by a narrow frequency band of excitation current.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f <fld>, --field=<fld>
(string, required)

<fld> is the name of the field (E or B) to which we apply the FDM.

-b <bd>, --beginDump=<bd>
(int, required, default = 2)

<bd> is the initial dump number used by the FDM method. This must be after the source excitation has been
turned off.

-e <ed>, --endDump=<ed>
(int, required, default = 10)

<ed> is the ending dump number used by the FDM method. This is exclusive, so if beginDump = 10 and
endDump = 15, FDM will use dumps 10, 11, 12, 13, and 14.

-m <nummodes>, --nModes=<nummodes>
(int, required, default = 5)

<nummodes> is the number of modes to find in the frequency range.

-t <samptype>, --sampleType=<samptype>
(int, optional, default = 0)

<samptype> Sampling type (0 for uniform, 1 for random), which determines how the modes are sampled on the
grid.

-u <unipts>, --numberUniformPts=<unipts>
(int, optional, default = 10)

<unipts> is the number of points to sample uniformly in each direction (required if <samptype> = 0, otherwise
ignored).

5.2. Available Analyzers 585

VSim Reference Manual, Release 11.0.1-r3016

-r <ranpts>, --numberRandomPts=<ranpts>
(int, optional, default = 100)

<ranpts> is the number of points to sample randomly (required if <samptype> = 1, otherwise ignored).

-c, --construct
(int, optional, default = 1, to construct)

Whether to construct modes.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer outputs the data in columns. The frequency is in the column labeled freq [Hz] (eigenmode frequency),
the inverse quality factor is in the column labeled invQ, and the singular value decomposition index is in the column
labeled SVD.

This analyzer also creates new eigenmode fields that may be viewed in the VSimComposer Visualize tab. For example,
a simulation with an electric field E would have the scalar fields E_x/y/z (eigenE) in addition to the electric fields
E_x/y/z (E).

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Usage Recommendations

Current Source

It is recommended that the current source used to excite a cavity take the following form:

𝐼 (𝑡) = 𝐼0

{︂
sin [2𝜋𝑓ℎ𝑖 (𝑡− 𝜏/2)] − sin [2𝜋𝑓𝑙𝑜 (𝑡− 𝜏/2)]

2𝜋 (𝑓ℎ𝑖 − 𝑓𝑙𝑜) (𝑡− 𝜏/2)

}︂
exp

[︁
− (𝛿𝑓)

2
(𝑡− 𝜏/2)

2
]︁
𝐻 (𝜏 − 𝑡)

as depicted in Fig. 5.9

𝐼0 = 𝐼 (𝜏/2) is the maximum current, 𝜏 = 2𝑢2/𝜋𝛿𝑓 is the duration of the excitation, 𝑓𝑙𝑜 and 𝑓ℎ𝑖 are respectively
the lower and upper frequency limits of the excitation, 𝐻 is the Heaviside function, and 𝛿𝑓 and 𝑢 together control the
steepness of the frequency spectrum near 𝑓𝑙𝑜 and 𝑓ℎ𝑖. The ratio of the frequency space current source amplitude for
frequencies outside the interval [𝑓𝑙𝑜 − 𝛿𝑓, 𝑓ℎ𝑖 + 𝛿𝑓] to those inside the interval can be specified by the parameter 𝑢
with the following table:

Ratio 𝑢
10−4 2.76
10−5 3.13
10−6 3.46
10−7 3.77
10−8 4.06

586 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.9: Time and frequency space plots of current source

The input option --beginDump should be set to a dump for which 𝑡 > 𝜏 .

Frequency Option

There are some rough guidelines for choosing a suitable value of the parameter 𝛿𝑓 :

• If examining the low end of a spectrum, where the mode density is not too high, 𝛿𝑓 ≈ 𝑓𝑙𝑜/4 is reasonable.

• If examining a narrow range of frequencies at the high end of a spectrum, 𝛿𝑓 ≈ (𝑓ℎ𝑖 − 𝑓𝑙𝑜) /4 is reasonable.

• If intentionally trying to exclude modes outside of, but close to, the nominal spectrum from 𝑓𝑙𝑜 to 𝑓ℎ𝑖, a smaller
value of 𝛿𝑓 may be necessary. If 𝛿𝑓 is too small, however, heavily damped modes may disappear entirely.

• If anticipating modes with loss parameter 𝑄𝑚 near frequency 𝑓𝑚, 𝛿𝑓 should satisfy 𝛿𝑓 ≥ 2𝑓𝑚/𝑄𝑚 to ensure
the modes are present after the excitation turns off.

• For loss-less systems where 𝑄 → ∞, 𝛿𝑓 may be as small as desired.

• Missing modes may occur if the duration of the simulation is too large, causing modes with finite decay to
disappear (in which case, 𝛿𝑓 should be increased).

Dump Interval and Number of Dumps

The following are some guidelines for choosing the dump interval and number of dumps, --endDump -
--beginDump.

• The dump interval should be smaller than half a period of the highest frequency present.

• The number of dumps should cover at least one cycle of the smallest frequency present.

• There should be at least three times as many dumps as the number of modes found.

5.2. Available Analyzers 587

VSim Reference Manual, Release 11.0.1-r3016

5.2.42 extractModesViaOperator.py

This analyzer extracts the frequencies and modes of a field from time-series data using the Filter Diagonalization
Method (FDM) from [?]. This script is useful for simulations in which one has modes of well defined frequencies, and
where only a modest number (<~20) of modes are excited. An example simulation would be that of electromagnetic
oscillations rung up by a narrow frequency band of excitation current. The simulation must have been run with
uniformly-spaced dumps or with dumps in groups of three for calculation of d / dt or d^2 / dt^2. For example,
dumpSteps = [1000 1001 1002 1500 1501 1502 2000 2001 2002 . . .] Mode extraction appears to work best when
dump groups are spaced at nearly the oscillation period of one of the modes being sought.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> contains the comma-separated name(s) of the simulation(s) on which modes extraction will be
performed.

-O <outname>, --outputSimName=<outname>
(string, optional)

<outname> is the chosen name for the files output with common data.

-R <R>, --realFields=<R>
(string, required)

<R> contains the comma-separated name(s) of the real field(s) from which to extract modes. For the d2dt2
operator, fields are treated individually. For the ddt operator, fields are treated as pairs, and so each pair of the
list must represent a state vector, e.g., E,B.

-I <I>, --imagFields=<I>
(string, optional)

<I> contains the comma-separated name(s) of the imaginary field(s) from which to extract modes. For the d2dt2
operator, fields are treated individually. For the ddt operator, fields are treated as pairs, and so each pair of the
list must represent a state vector, e.g., EI,BI.

-F <F>, --secondFieldFactor=<F>
(float, optional)

For ddt operator only, <F> is the factor to multiply second fields by so that they are of comparable magnitude to
the first fields.

-o <op>, --operator=<op>
(string, required, default = ddt)

<op> is one of [d2dt2, ddt]. This is the operator used to extract the modes.

-d <dr>, --dumpRange=<dr>
(string, required, default = 1 :)

<dr> is the dump range over which to perform mode extraction (in python slice format, but inclusive of the last
number).

For example, 1 : 20. If format is e.g. 1 :, the final dump will be detected.

-S <cs>, --cellSamples=<cs>
(string, required, default = : , : , :)

<cs>, contains the numpy slices for structured field sample selection; for example, 0 , : , : .

-c <cut>, --cutoff=<cut>
(float, required, default = 1.0e-12)

<cut> is the smallest singular value (relative to largest singular value) to keep.

588 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-M <M>, --maxNumModes=<M>
(int, optional, default = 0)

<M> is the maximum number of modes to find. -1 means as many as possible.

-N <N>, --initialModeNumber=<N>
(int, optional, default = 0)

<N> is the index to use for the first mode found.

-D, --normalizeModes
(int, optional, default = 1)

Normalize modes to the peak value.

-t, --testing
(int, optional)

Whether using test data or not.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

First, the script prints the singular values of the basis formed by the midpoint dumps (e.g. dumps 1001, 1501, 2001, . . .
from the example above). If the singular values of the dump basis fall to machine precision, mode extraction can be
expected to work; otherwise, more dump groups may be required. Second, the script prints eigenmode frequencies and
wavelengths (c divided by frequencies), along with extraction errors for each mode found. Extraction errors indicate
how well extracted eigenmodes approximate a true eigenmode of the chosen operator. Frequencies are printed to this
precision for convenience. Third, if the construct parameter was set to 1, the script writes eigenmode fields to vsh5
files that may be viewed in the VSimComposer Visualize tab. Look for scalar and vector data with names like E
(EigenmodeReal).

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Usage Recommendations

Current Source

It is recommended that the current source used to excite a cavity take the following form

𝐼 (𝑡) = 𝐼0

{︂
sin [2𝜋𝑓ℎ𝑖 (𝑡− 𝜏/2)] − sin [2𝜋𝑓𝑙𝑜 (𝑡− 𝜏/2)]

2𝜋 (𝑓ℎ𝑖 − 𝑓𝑙𝑜) (𝑡− 𝜏/2)

}︂
exp

[︁
− (𝛿𝑓)

2
(𝑡− 𝜏/2)

2
]︁
𝐻 (𝜏 − 𝑡)

as depicted in Fig. 5.10

𝐼0 = 𝐼 (𝜏/2) is the maximum current, 𝜏 = 2𝑢2/𝜋𝛿𝑓 is the duration of the excitation, 𝑓𝑙𝑜 and 𝑓ℎ𝑖 are respectively
the lower and upper frequency limits of the excitation, 𝐻 is the Heaviside function, and 𝛿𝑓 and 𝑢 together control the

5.2. Available Analyzers 589

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.10: Time and frequency space plots of current source

steepness of the frequency spectrum near 𝑓𝑙𝑜 and 𝑓ℎ𝑖. The ratio of the frequency space current source amplitude for
frequencies outside the interval [𝑓𝑙𝑜 − 𝛿𝑓, 𝑓ℎ𝑖 + 𝛿𝑓] to those inside the interval can be specified by the parameter 𝑢
with the following table:

Ratio 𝑢
10−4 2.76
10−5 3.13
10−6 3.46
10−7 3.77
10−8 4.06

The input parameter initialDump should be set to a dump for which 𝑡 > 𝜏 .

Frequency Parameter

There are some rough guidelines for choosing a suitable value of the parameter 𝛿𝑓 :

• If examining the low end of a spectrum, where the mode density is not too high, 𝛿𝑓 ≈ 𝑓𝑙𝑜/4 is reasonable.

• If examining a narrow range of frequencies at the high end of a spectrum, 𝛿𝑓 ≈ (𝑓ℎ𝑖 − 𝑓𝑙𝑜) /4 is reasonable.

• If intentionally trying to exclude modes outside of, but close to, the nominal spectrum from 𝑓𝑙𝑜 to 𝑓ℎ𝑖, a smaller
value of 𝛿𝑓 may be necessary. If 𝛿𝑓 is too small, however, heavily damped modes may disappear entirely.

• If anticipating modes with loss parameter 𝑄𝑚 near frequency 𝑓𝑚, 𝛿𝑓 should satisfy 𝛿𝑓 ≥ 2𝑓𝑚/𝑄𝑚 to ensure
the modes are present after the excitation turns off.

• For loss-less systems where 𝑄 → ∞, 𝛿𝑓 may be as small as desired.

• Missing modes may occur if the duration of the simulation is too large, causing modes with finite decay to
disappear (in which case, 𝛿𝑓 should be increased).

590 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Dump Interval and Number

The following are some guidelines for choosing the dump interval and number of dumps, endingDump -
initialDump.

• The dump interval should be smaller than half a period of the highest frequency present.

• The number of dumps should cover at least one cycle of the smallest frequency present.

• There should be at least three times as many dumps as the number of modes found.

5.2.43 hfssToVsh5.py

This analyzer converts a field file created in ANSYS/HFSS (.fld format) into a h5 file that can then be externally
imported into VSim.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation folder/directory where the HFSS file is located.

-F <refFName>, --fileName=<refFName>
(string, required)

<refFName> is the name of the HFSS file to be converted.

-c <centerOpt>, --centering=<centerOpt>
(string, optional, default = none)

<centerOpt> Type of data centering on the mesh, e.g, none, edge, or face. Default = none.

-o <outFld>, --outputField=<outFld>
(string, required)

<outFld> is the name of the reference field. The only available options are E or B.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Input

When exporting a field file from ANSYS/HFSS, the user chooses the grid settings: minimum and maximum values,
as well as the spacing. The units that should be used are: cm, mm, meter, um, nm, km. The user must make sure the
grid size and number of cells are consistent with those in the VSim Setup window as shown in Fig. 5.11.

Output

The output will be a vizschema compatible h5 field file, that can be imported in the Setup Window.

If you are running this analyzer from the GUI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

5.2. Available Analyzers 591

VSim Reference Manual, Release 11.0.1-r3016

Fig. 5.11: Grid settings (size and units) for exporting a field file from HFSS/ANSYS. For converting to VSim field
files, the units that shoudl be used are cm, mm, meter, un, nm, and km. IMPORTANT: these grid settings must be
consistent with the Grid settings in the Grids element tree in the VSim setup window.

592 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.44 performLowPassFilter.py

This is a useful script that can be used to smooth high frequency noise out of any time series history. For example, if
you have an absorbed current history, an output power history, etc. with large fluctuations on a short timescale, this
low-pass filter will attenuate high frequency noise and smooth the signal.

The low-pass filter performs the operation

𝑠𝑛+1 =

(︂
1 − 𝛿𝑡

𝜏

)︂
𝑠𝑛 +

𝛿𝑡

𝜏
ℎ𝑛+1

where 𝑠 is the smoothed signal, ℎ is the original time series history, 𝛿𝑡 is the timestep, and 𝜏 is a time period related to
the cutoff frequency (i.e. 𝜏 = 1

𝑓𝑐𝑜
). In continuous, integral form this looks like

𝑠(𝑡) =
1

𝜏

∫︁ 𝑡

−∞
ℎ(𝑡′)𝑒(𝑡

′−𝑡)/𝜏𝑑𝑡′.

Essentially the operation is analogous to doing a Fourier transform, attenuating the high frequency components to the
signal, and transforming back.

When supplying a cutoff frequency for the analysis, try to estimate the frequency of the noise and pick a lower value.
The user is encouraged to experiment with different frequency values to achieve the desired smoothing. Lower values
for the cutoff frequency will correspond to more extreme smoothing, which will weight older/earlier values from the
time series more heavily, possibly causing important transient affects to be smoothed over.

The output is a new time series as amplitude vs. time for the filtered signal.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-f, --frequency
(float, required)

The frequency at which history will be analyzed.

-H, --historyName
(string, required)

The history to analyze.

-O <outname>, --outputFileName=<outname>
(string, optional, default = SIMULATIONNAME_lowPassFilterFREQ)

Replace <outname> with the name of the file into which the transformed time series will be written.

-c <comp>, --component=<comp>
(int, optional, default = 0)

<comp> is the component to select within a multi-component dataset.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists

5.2. Available Analyzers 593

VSim Reference Manual, Release 11.0.1-r3016

Output

This script prints out formatted text in two columns representing the transformed time series after the low-pass filter has
been applied. The first column is the time axis in seconds, and the second column is the amplitude of the time series.
n It also creates a VizSchema compliant HDF5 file that contains the transformed time series that can be visualized in
Composer. The name of the new dataset is simulationName_lowPassFilterFREQ.vsh5, where FREQ is the low-pass
filter frequency with periods replaced by underscores.

The data will be visualize-able through the 1-D fields option from the Data View drop-down menu.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.45 performTwoHistoryArithmetic.py

This analyzer allows mathematical operations between two histories from the same simulation and writes the results
(addition, multiplication, division, subtraction) to a third history. First we will look for histories in individual vsh5 files
named baseName_history.vsh5 and if we do not find them we’ll check the regular history file. This behavior reduces
problems on restart.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --history1Name=<histname>
(string, required)

<histname> is the first history to use in the mathematical operation, H1.

-I <histname>, --history2Name=<histname>
(string, required)

<histname> is the second history to use in the mathematical operation, H2.

-o <histname>, --newhistoryName=<histname>
(string, optional)

<histname> is the history name in which to record the result, H3.

-x <a/s/m/d>, --operation=<a/s/m/d>
(string, required, default = a)

<a/s/m/d> is the mathematical operation to be applied where one of the following is chosen:

a: H3=H1+H2

s: H3=H1-H2

m: H3=H1*H2

d: H3=H1/H2

594 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

The output is a VizSchema compatible history file called simulationName_newHistoryName.vsh5 containing the result.
This result should be available in VSimComposer.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example

Consider the case where you have two different particle species incident on a wall, and separate absorbers for both.
You may include histories for just the individual species within the simulation input, and combine them using this
analyzer to determine the net current afterwards.

5.2.46 putFieldOnSurfaceMesh.py

This analyzer reads a range of VSim output field dump files and an associated geometry file, and creates field data on
an unstructured mesh representing the values of the field components on the surface of the geometry.

Appropriate boundary conditions are inferred depending on the type of field (electric or magnetic). Only those ele-
ments of the field projected on the conducting surface will be displayed. A common use of this tool is to view the
surface currents on an object.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-g <geometry>, --geometryName=<geometry>
(string, required)

<geometry> is the name of the conducting geometry.

-f <fldname>, --fieldName=<fldname>
(string, required)

<fldname> is the name of the field to be painted on the grid boundary.

-b <bd>, --beginDump=<bd>
(int, required, default = 0)

<bd> is the first memory dump to process.

5.2. Available Analyzers 595

VSim Reference Manual, Release 11.0.1-r3016

-e <ed>, --endDump=<ed>
(int, required, default = 0)

<ed> is the last memory dump to process.

-O <outname>, --outputFieldName=<outname>
(string, optional)

<outname> is the file name of the files into which the surface field data should be written. If specified, then
output files will have the form simulationName_outputFieldName_dumpNumber.vsh5. If not specified, then files
are created as simulationName_geometryNamefieldName_dumpNumber.vsh5, where geometryNamefieldName
is the concatenation of the string values passed for the -g and -f command line options.

Output

VizSchema compatible output dump files are created that contain (possibly multi-dimensional) fields and the sur-
face mesh on which they are defined. Naming conventions are such that the new output files are named simula-
tionName_geometryNamefieldName_dumpNumber.vsh5. Optionally, users can specify the output file names indepen-
dently if so desired.

The fields can be found in the Visualize tab of VSimComposer and can be visualized in Scalar Data. If the Visualize
tab has already been opened the Reload Data button must be clicked in order to load the new files. If the prefile
generates a magnitude field, this will be available for the “painted” field.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.47 removePtclComponent.py

This analyzer removes additional particle components, for example those representing kinetic energy in eV, or those
associated with cylindrical coordinates.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-S <species>, --speciesName=<species>
(string, required)

Replace <species> with the name of the species on which to operate.

-o <outspname>, --outputSpeciesName=<outspname>
(string, optional)

Replace <outspname> with the name of the species to write. Will construct filename from this species name,
otherwise will use the same file.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

596 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

Output

This analyzer removes the last column from the data.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.48 subselectParticles.py

This analysis script, selects particles within a range.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation with the particle files. The file extension should NOT be included in
this text field.

-S <spname>, --speciesName=<spname>
(string, required)

<spname> is the name of the species to be subselected.

-o <outspname>, --outputSpeciesName=<outspname>
(string, required, default = subselection)

<outspname> is the name of the species that will be the result of the subselection.

-c <comp>, --component=<comp>
(int, required, default = 0)

<comp> is the component index integer to filter. Depends on species kind and dimensionality.

-l <lb>, --lowerBounds=<lb>
(float, optional)

Minimum value of the component for keeping a particle.

-u <ub>, --upperBounds=<ub>
(float, optional)

Maximum value of the component for keeping a particle.

-f <fl>, --flipLimits=<fl>
(int, required, default = 0)

Where upper and lower bounds are both provided, this allows subselecting particles outside the range, rather
than inside.

-m,--move RESERVED for future use
(int, optional)

Setup for moving window calculation - will set the velocity of the 0th component.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

5.2. Available Analyzers 597

VSim Reference Manual, Release 11.0.1-r3016

Output

This analysis script outputs a set of VizSchema compatible HDF5 files readable in VSimComposer, VisIt and other
tools containing a filtered set of particles.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

5.2.49 truncateHistory.py

This analyzer truncates a scalar history, removing records from start and end. This might be used, for example, to only
use data after a model is at a quasi-steady state (eg the frequency of a magnetron, excluding the moding at startup).

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-H <histname>, --historyName=<histname>
(string, required)

<histname> is the name of the history to truncate.

-o <newhistname>, --newHistoryName=<newhistname>
(string, required)

<newhistname> is the name of the new truncated history you are creating.

-m <M>, --multiplier=<M>
(float, required, default = 1.0)

<M> is the factor, variable of integration, eg dt, that you can multiply your history by, if you choose.

-b <time>, --beginTime=<time>
(float, optional)

<time> is the time at which to start truncating.

-e <time>, --endTime=<time>
(float, optional)

<time> is the time at which to end truncating.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

An additional “history” vizschema file is output, containing a portion of the data from another history. At present this
will be visible under 1D fields, where the ordinate is time and the abcissa is whatever was used for the original history.

598 Chapter 5. Analyzers

VSim Reference Manual, Release 11.0.1-r3016

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

Example of Usage

Run the 2D magnetron example (VSim MD -> Radiation generation). Select “all annotations” in the annotation level
setting in bottom left corner of data overview pane. You will see it takes ~100k steps for the spokes to start to form,
corresponding with 300ns into the simulation. Observe that around dump 240ns there appear to be four spokes, instead
of the desired five. A measure of frequency there will give an incorrect result, and adversely affect the accuracy of the
FFT calculated.

(show FFT of cavity1Voltage history)

Truncate using beginTime = 240e-9.

(show FFT of cavity1Voltage history)

See also computeSpectrogram.py.

5.2.50 writeCutCellField.py

This analyzer helps with visualizing the cells excluded from a geometry.

-s <simname>, --simulationName=<simname>
(string, required)

<simname> is the name of the simulation to be analyzed. The file extension should NOT be included in this text
field.

-G <geometry>, --geometryName=<geometry>
(string, required)

<geometry> is the name of the gridBoundary on which we wish to analyze the cut cells.

-w, --overwrite
(flag)

Whether a dataset or group should be overwritten if it already exists.

Output

This analyzer produces two vizschema Hdf5 compatible field files, one with values assigned to cut cells that will be
stairstepped in the simulation for the [specified in simulation input] values of the Dey-Mittra fraction, and one with
values assigned to those which will be retained as cut cells. The values assigned represent the ‘sides’ of the cells
affected by the cut cells - for example in Cartesian coordinates whether they are cut in x (add 1), in y (add 2), in z (add
4). Consequently we can see which edges will be treated as cut by looking at cells with specific values of this field.

If you are running this analyzer from the UI, and the output dataset file already exists, then it will be overwritten
each time the analyzer is run, unless you uncheck the Overwrite Existing Files box near the bottom of the Analysis
Results pane.

5.2. Available Analyzers 599

VSim Reference Manual, Release 11.0.1-r3016

If you are running the analyzer from the command line, the dataset will not be overwritten unless the -w, or
--overwrite flag is specified on the command line.

The results of your analyzer may not be written into the output file if you have not specified the overwrite option to be
True.

600 Chapter 5. Analyzers

CHAPTER

SIX

TRADEMARKS AND LICENSING

• Vorpal™ © 1999-2002 University of Colorado. All rights reserved.

• Vorpal™ © 2002-2021 University of Colorado and Tech-X Corporation. All rights reserved.

• VSim™ except for Vorpal™ is © 2012-2021 Tech-X Corporation. All rights reserved.

For VSim™ licensing details please email sales@txcorp.com. All trademarks are the property of their
respective owners. Redistribution of any VSim™ input files from the VSim™ installation or the VSim™
document set, including VSim Installation, VSim Examples, VSim User Guide, VSim Reference, and VSim
Customization, is allowed provided that this Copyright statement is also included with the redistribution.

601

mailto:sales@txcorp.com

VSim Reference Manual, Release 11.0.1-r3016

602 Chapter 6. Trademarks and licensing

INDEX

Symbols
-0, -offsetx0

computeTimeSeriesFrequency.py
command line option, 578

-1 <fldname> , -field1Name=<fldname>
computeFieldCrossProduct.py

command line option, 561
-1, -inSign

computeSParamsFromHists.py command
line option, 572

-1, -offsetx1
computeTimeSeriesFrequency.py

command line option, 578
-2 <fldname> , -field2Name=<fldname>

computeFieldCrossProduct.py
command line option, 561

-2, -outSign
computeSParamsFromHists.py command

line option, 573
-A <A>, -addRemoveFlag=<A>

addPtclComponentKEeV.py command
line option, 540

-A1 <LOWERANGLE>,
-lowerAngle=<LOWERANGLE>

computeAED.py command line option,
548

-A2 <UPPERANGLE>,
-upperAngle=<UPPERANGLE>

computeAED.py command line option,
548

-B <beta>, -beta=<beta>
computeTimeSeriesFrequency.py

command line option, 578
-B <outmag>, -outSlabB=<outmag>

computeSParamsFromHists.py command
line option, 573

-B <outslabB>, -outSlabB=<outslabB>
computeSParamsViaOverlapIntegral.py

command line option, 574
-C <comp>, -component=<comp>

annotateFieldOnLine.py command
line option, 541

-D <dir>, -outDirection=<dir>
computeSParamsFromHists.py command

line option, 572
-D <direction>, -fluxDir=<direction>

computeMassFlux.py command line
option, 565

-D <suffix>, -outputFileSuffix=<suffix>
computeSParamsViaOverlapIntegral.py

command line option, 574
-D <targetFld>, -targetField=<targetFld>

compareFields.py command line
option, 545

-D, -normalizeModes
extractModesViaOperator.py command

line option, 589
-E <N>, -nElements=<N>

computeS11Parameters.py command
line option, 571

-E <outelec>, -outSlabE=<outelec>
computeSParamsFromHists.py command

line option, 572
-E <outslabE>, -outSlabE=<outslabE>

computeSParamsViaOverlapIntegral.py
command line option, 574

-E1 <LOWERENERGY>,
-lowerEnergy=<LOWERENERGY>

computeAED.py command line option,
548

-E2 <UPPERENERGY>,
-upperEnergy=<UPPERENERGY>

computeAED.py command line option,
548

-F <F>, -secondFieldFactor=<F>
extractModesViaOperator.py command

line option, 588
-F <field>, -writeFieldProfile=<field>

computeWaveguideModes.py command
line option, 553

-F <firstout>, -firstStepOutSlab=<firstout>
computeSParamsViaOverlapIntegral.py

command line option, 574
-F <fldname>, -fieldName=<fldname>

603

VSim Reference Manual, Release 11.0.1-r3016

computeFieldMaxAmplitude.py
command line option, 562

computeFieldRelIntensityHilbert.py
command line option, 562

-F <max>, -maxFreq=<max>
computeSpectrogram.py command line

option, 575
-F <refFName>, -fileName=<refFName>

hfssToVsh5.py command line option,
591

-F <refFldName>, -fieldName=<refFldName>
compareFields.py command line

option, 545
-G <geometry>, -geometryName=<geometry>

writeCutCellField.py command line
option, 599

-H <HISTORYNAME>,
-historyName=<HISTORYNAME>

computeAED.py command line option,
548

-H <histname> , -historyName=<histname>
computePtclImpactSpectrum.py

command line option, 567
-H <histname>, -history1Name=<histname>

performTwoHistoryArithmetic.py
command line option, 594

-H <histname>, -historyName=<histname>
annnotateSpeciesDataOnPlane.py

command line option, 542
annotateFieldOnLine.py command

line option, 541
annotateSpeciesAbsPtclData2.py

command line option, 542
computeCumulativeSumHistory.py

command line option, 551
computeEmittanceOnPlane.py command

line option, 557
computeFarFieldRadiation.py

command line option, 560
computeGradient.py command line

option, 563
computeInverseQ.py command line

option, 564
computeMassFlux.py command line

option, 565
computeSpectrogram.py command line

option, 575
computeTimeSeriesAmplitude.py

command line option, 576
computeTimeSeriesFrequency.py

command line option, 577
truncateHistory.py command line

option, 598
-H, -historyName

performLowPassFilter.py command
line option, 593

-I <I>, -imagFields=<I>
extractModesViaOperator.py command

line option, 588
-I <histname>, -history2Name=<histname>

performTwoHistoryArithmetic.py
command line option, 594

-I, -integrate
computeMassFlux.py command line

option, 565
-L <maxl>, -maxWavelength=<maxl>

computeSParamsFromHists.py command
line option, 572

-L <steps>, -numSteps=<steps>
computeSParamsViaOverlapIntegral.py

command line option, 574
-L <vacwave>, -vacWavelength=<vacwave>

computeWaveguideModes.py command
line option, 553

-M <M>, -maxNumModes=<M>
extractModesViaOperator.py command

line option, 588
-M <max>, -maxDumpNum=<max>

computePtclNumDensity.py command
line option, 570

-M <maxlength>, -maxWavelength=<maxlength>
computeSParamsViaOverlapIntegral.py

command line option, 573
-N <N>, -initialModeNumber=<N>

extractModesViaOperator.py command
line option, 589

-N <avg>, -avgNxN=<avg>
computePtclNumDensity.py command

line option, 570
-N <files>, -numOutFiles=<files>

exportSpecies.py command line
option, 584

-Nang <NUMANGLEBINS>,
-numAngleBins=<NUMANGLEBINS>

computeAED.py command line option,
548

-Neng <NUMENGERYBINS>,
-numEnergyBins=<NUMENERGYBINS>

computeAED.py command line option,
548

-O <newhistname>,
-newHistoryName=<newhistname>

computeGradient.py command line
option, 563

-O <offset>, -stepOffset=<offset>
computeSParamsFromHists.py command

line option, 572
-O <outname>, -outputFieldName=<outname>

604 Index

VSim Reference Manual, Release 11.0.1-r3016

putFieldOnSurfaceMesh.py command
line option, 596

-O <outname>, -outputFileName=<outname>
computeInverseQ.py command line

option, 564
computePtclLimits.py command line

option, 568
computeTimeSeriesAmplitude.py

command line option, 576
computeTimeSeriesFrequency.py

command line option, 577
exportSpecies.py command line

option, 584
performLowPassFilter.py command

line option, 593
-O <outname>, -outputSimName=<outname>

extractModesViaOperator.py command
line option, 588

-P <PERPDIR>, -perpDir=<PERPDIR>
computeAED.py command line option,

549
-P, -applyPeriod

exportSpecies.py command line
option, 584

-P1 <LOWERPOS>, -lowerPos=<LOWERPOS>
computeAED.py command line option,

548
-P2 <UPPERPOS>, -upperPos=<UPPERPOS>

computeAED.py command line option,
548

-R <R>, -realFields=<R>
extractModesViaOperator.py command

line option, 588
-R, -randomizePtcls

exportSpecies.py command line
option, 584

-S <SPECIESNAME>,
-SpeciesName=<SPECIESNAME>

computeAED.py command line option,
547

-S <cs>, -cellSamples=<cs>
extractModesViaOperator.py command

line option, 588
-S <minl>, -minWavelength=<minl>

computeSParamsFromHists.py command
line option, 572

-S <species>, -speciesName=<species>
removePtclComponent.py command

line option, 596
-S <spname>, -speciesName=<spname>

addPtclComponentKEeV.py command
line option, 540

annnotateSpeciesDataOnPlane.py
command line option, 542

computeDebyeLength.py command line
option, 552

computeEmittanceFromDump.py
command line option, 553

computeEmittanceOnPlane.py command
line option, 557

computePtclBalance.py command line
option, 566

computePtclLimits.py command line
option, 568

computePtclNumDensity.py command
line option, 570

convertPtclComponentsCartToCylX.py
command line option, 580

convertPtclComponentsCartToCylZ.py
command line option, 581

createMissingPtclsDumps.py command
line option, 582

createParticleTracks.py command
line option, 583

exportSpecies.py command line
option, 584

subselectparticles.py command line
option, 597

-T <N> , -threshold=<N>
computePtclImpactSpectrum.py

command line option, 567
-T <slice>, -transverseSlice=<slice>

computeWaveguideModes.py command
line option, 552

-T <thresh>, -threshold=<thresh>
annotateSpeciesAbsPtclData2.py

command line option, 542
-T <timeint>, -timeInterval=<timeint>

computeMassFlux.py command line
option, 565

-T1 <STARTTIME>, -startTime=<STARTTIME>
computeAED.py command line option,

547
-T2 <ENDTIME>, -endTime=<ENDTIME>

computeAED.py command line option,
547

-W <windowfunc>, -windowType=<windowfunc>
computeSpectrogram.py command line

option, 575
-X <N2>, -x2plane=<N2>

computeEmittanceFromDump.py
command line option, 553

-a <offset>, -positionOffset=<offset>
annotateFieldOnLine.py command

line option, 541
-a, -axis

computeTimeSeriesFrequency.py
command line option, 578

Index 605

VSim Reference Manual, Release 11.0.1-r3016

-b <bd>, -beginDump=<bd>
computeCavityG.py command line

option, 550
computeTimeSeriesFrequency.py

command line option, 578
extractModes.py command line

option, 585
putFieldOnSurfaceMesh.py command

line option, 595
-b <inmag>, -inSlabB=<inmag>

computeSParamsFromHists.py command
line option, 572

-b <inslabB>, -inSlabB=<inslabB>
computeSParamsViaOverlapIntegral.py

command line option, 574
-b <time>, -beginTime=<time>

truncateHistory.py command line
option, 598

-c <centerOpt>, -centering=<centerOpt>
hfssToVsh5.py command line option,

591
-c <center>, -center=<center>

compute2DantennaGainAndPhase.py
command line option, 546

-c <comp>, -component=<comp>
computeBeam2ModeCoupling.py

command line option, 549
computeInverseQ.py command line

option, 564
computePtclImpactSpectrum.py

command line option, 567
computeSpectrogram.py command line

option, 575
computeTimeSeriesAmplitude.py

command line option, 576
computeTimeSeriesFrequency.py

command line option, 577
performLowPassFilter.py command

line option, 593
subselectparticles.py command line

option, 597
-c <cut>, -cutoff=<cut>

extractModesViaOperator.py command
line option, 588

-c <step>, -dt=<step>
computeS11Parameters.py command

line option, 571
-c, -construct

extractModes.py command line
option, 586

-d <dir>, -inDirection=<dir>
computeSParamsFromHists.py command

line option, 572
-d <dr>, -dumpRange=<dr>

extractModesViaOperator.py command
line option, 588

-d <gapwidth>, -gapWidth=<gapwidth>
compute2DantennaGainAndPhase.py

command line option, 546
-d <num>, -dumpNum=<num>

exportSpecies.py command line
option, 584

-d, -density
computeMassFlux.py command line

option, 565
-dn <dnr>, -dumpNr=<dnr>

compute2DantennaGainAndPhase.py
command line option, 546

-dt <dt>, -dt=<dt>
compute2DantennaGainAndPhase.py

command line option, 547
-e <N>, -numTheta=<N>

computeFarFieldRadiation.py
command line option, 560

-e <ed>, -endDump=<ed>
computeCavityG.py command line

option, 550
computeTimeSeriesFrequency.py

command line option, 578
extractModes.py command line

option, 585
putFieldOnSurfaceMesh.py command

line option, 595
-e <inelec>, -inSlabE=<inelec>

computeSParamsFromHists.py command
line option, 572

-e <inslabE>, -inSlabE=<inslabE>
computeSParamsViaOverlapIntegral.py

command line option, 574
-e <pts>, -nPoints=<pts>

computeS11Parameters.py command
line option, 571

-e <time>, -endTime=<time>
truncateHistory.py command line

option, 598
-f <ANGULARFREQUENCY>,

-angularFrequency=<ANGULARFREQUENCY>
computeAED.py command line option,

548
-f <first>, -firstStep=<first>

computeSParamsFromHists.py command
line option, 572

-f <firstin>, -firstStepInSlab=<firstin>
computeSParamsViaOverlapIntegral.py

command line option, 574
-f <fl>, -flipLimits=<fl>

subselectparticles.py command line
option, 597

606 Index

VSim Reference Manual, Release 11.0.1-r3016

-f <fld>, -field=<fld>
extractModes.py command line

option, 585
-f <fldname>, -fieldName=<fldname>

putFieldOnSurfaceMesh.py command
line option, 595

-f <freq>, -freq=<freq>
compute2DantennaGainAndPhase.py

command line option, 547
-f <freq>, -frequency=<freq>

computeBeam2ModeCoupling.py
command line option, 549

computeFarFieldFromKirchhoffBox.py
command line option, 558

-f <size>, -fourierTransSize=<size>
computeSpectrogram.py command line

option, 575
-f, -FieldName

convertFieldComponentCartToCylZ.py
command line option, 580

-f, -fieldName
convertFieldComponentCartToCylX.py

command line option, 579
-f, -frequency

computeInverseQ.py command line
option, 564

computeTimeSeriesAmplitude.py
command line option, 576

computeTimeSeriesFrequency.py
command line option, 577

performLowPassFilter.py command
line option, 593

-g <FC>, -getFourierComponent=<FC>
computeFarFieldFromKirchhoffBox.py

command line option, 558
-g <geometry>, -geometryName=<geometry>

computeCavityG.py command line
option, 550

putFieldOnSurfaceMesh.py command
line option, 595

-g, -normalize
computeFarFieldRadiation.py

command line option, 560
-i <I>, -iterateAvg=<I>

computePtclNumDensity.py command
line option, 570

-i, -simpsonIntegration
computeFarFieldFromKirchhoffBox.py

command line option, 559
-j <curdenfield>, -jName=<curdenfield>

computeBeam2ModeCoupling.py
command line option, 549

-l <fldlabel>, -fieldLabel=<fldlabel>
computeFarFieldFromKirchhoffBox.py

command line option, 558
-l <last>, -lastStep=<last>

computeSParamsFromHists.py command
line option, 572

-l <lb>, -lowerBounds=<lb>
subselectparticles.py command line

option, 597
-m <M>, -multiplier=<M>

computeCumulativeSumHistory.py
command line option, 551

computeFieldCrossProduct.py
command line option, 561

truncateHistory.py command line
option, 598

-m <mass>, -mass=<mass>
computeMassFlux.py command line

option, 565
-m <maxnodes>, -nModes=<maxnodes>

computeWaveguideModes.py command
line option, 553

-m <min>, -minDumpNum=<min>
computePtclNumDensity.py command

line option, 570
-m <minlength>, -minWavelength=<minlength>

computeSParamsViaOverlapIntegral.py
command line option, 573

-m <nummodes>, -nModes=<nummodes>
extractModes.py command line

option, 585
-m, -magnitude

addPtclComponentKEeV.py command
line option, 540

-m,-move RESERVED for future use
subselectparticles.py command line

option, 597
-n <S>, -numSlices=<S>

computeEmittanceFromDump.py
command line option, 554

-n <Z>, -nZeros=<Z>
computeS11Parameters.py command

line option, 571
-n <nlambda>, -nlambda=<nlambda>

compute2DantennaGainAndPhase.py
command line option, 546

-n <num>, -numBins=<num>
computePtclImpactSpectrum.py

command line option, 567
-n <outname>, -outputFileName=<outname>

computeSParamsFromHists.py command
line option, 573

-n <overlap>, -noOverlap=<overlap>
computeSpectrogram.py command line

option, 575
-n <stepstride>, -timeStepStride=<stepstride>

Index 607

VSim Reference Manual, Release 11.0.1-r3016

computeFarFieldFromKirchhoffBox.py
command line option, 558

-n, -SLL
computeFarFieldRadiation.py

command line option, 560
-ndim <NDIM>, -NDIM=<NDIM>

computeAED.py command line option,
548

-o <histname>, -newhistoryName=<histname>
performTwoHistoryArithmetic.py

command line option, 594
-o <newhistname>,

-newHistoryName=<newhistname>
computeCumulativeSumHistory.py

command line option, 551
truncateHistory.py command line

option, 598
-o <op>, -operator=<op>

extractModesViaOperator.py command
line option, 588

-o <outFld>, -outputField=<outFld>
hfssToVsh5.py command line option,

591
-o <outbasename>,

-outputBaseName=<outbasename>
exportSpecies.py command line

option, 584
-o <outfield>, -outputField=<outfield>

compareFields.py command line
option, 545

-o <outfldname>, -outputFieldName=<outfldname>
computeFieldCrossProduct.py

command line option, 561
computeFieldRelIntensityHilbert.py

command line option, 562
-o <outhistname>,

-outputHistoryName=<outhistname>
computeFieldMaxAmplitude.py

command line option, 562
-o <outname>, -outputHistoryName=<outname>

computePtclBalance.py command line
option, 566

-o <outspname>, -outputSpeciesName=<outspname>
addPtclComponentKEeV.py command

line option, 540
annnotateSpeciesDataOnPlane.py

command line option, 543
convertPtclComponentsCartToCylX.py

command line option, 580
convertPtclComponentsCartToCylZ.py

command line option, 581
removePtclComponent.py command

line option, 596
subselectparticles.py command line

option, 597
-p <N>, -numPhi=<N>

computeFarFieldRadiation.py
command line option, 560

-p <histpat>, -historyPATCH=<histpat>
computeS11Parameters.py command

line option, 571
-p <num>, -numPhi=<num>

computeFarFieldFromKirchhoffBox.py
command line option, 558

-p, -ptclIndex
createParticleTracks.py command

line option, 583
-r <R>, -farFieldRadius=<R>

computeFarFieldFromKirchhoffBox.py
command line option, 558

-r <maxranks>, -maxRanksToReport=<maxranks>
computePtclBalance.py command line

option, 566
-r <ranpts>, -numberRandomPts=<ranpts>

extractModes.py command line
option, 585

-s <simname>, -simulationName=<simname>
addPtclComponentKEeV.py command

line option, 539
annnotateSpeciesDataOnPlane.py

command line option, 542
annotateFieldOnLine.py command

line option, 541
annotateSpeciesAbsPtclData2.py

command line option, 542
compareFields.py command line

option, 545
compute2DantennaGainAndPhase.py

command line option, 546
computeAED.py command line option,

547
computeBeam2ModeCoupling.py

command line option, 549
computeCavityG.py command line

option, 550
computeCumulativeSumHistory.py

command line option, 551
computeDebyeLength.py command line

option, 552
computeEmittanceFromDump.py

command line option, 553
computeEmittanceOnPlane.py command

line option, 557
computeFarFieldFromKirchhoffBox.py

command line option, 558
computeFarFieldRadiation.py

command line option, 560
computeFieldCrossProduct.py

608 Index

VSim Reference Manual, Release 11.0.1-r3016

command line option, 561
computeFieldMaxAmplitude.py

command line option, 562
computeFieldRelIntensityHilbert.py

command line option, 562
computeGradient.py command line

option, 563
computeInverseQ.py command line

option, 564
computeMassFlux.py command line

option, 565
computePtclBalance.py command line

option, 566
computePtclImpactSpectrum.py

command line option, 567
computePtclLimits.py command line

option, 568
computePtclNumDensity.py command

line option, 570
computeS11Parameters.py command

line option, 571
computeSParamsFromHists.py command

line option, 572
computeSParamsViaOverlapIntegral.py

command line option, 573
computeSpectrogram.py command line

option, 575
computeTimeSeriesAmplitude.py

command line option, 576
computeTimeSeriesFrequency.py

command line option, 577, 578
computeWaveguideModes.py command

line option, 552
convertFieldComponentCartToCylX.py

command line option, 579
convertFieldComponentCartToCylZ.py

command line option, 579
convertPtclComponentsCartToCylX.py

command line option, 580
convertPtclComponentsCartToCylZ.py

command line option, 581
createMissingPtclsDumps.py command

line option, 582
createParticleTracks.py command

line option, 583
exportSpecies.py command line

option, 584
extractModes.py command line

option, 585
extractModesViaOperator.py command

line option, 588
hfssToVsh5.py command line option,

591
performLowPassFilter.py command

line option, 593
performTwoHistoryArithmetic.py

command line option, 594
putFieldOnSurfaceMesh.py command

line option, 595
removePtclComponent.py command

line option, 596
subselectparticles.py command line

option, 597
truncateHistory.py command line

option, 598
writeCutCellField.py command line

option, 599
-t <histcal>, -historyCAL=<histcal>

computeS11Parameters.py command
line option, 571

-t <num>, -numTheta=<num>
computeFarFieldFromKirchhoffBox.py

command line option, 558
-t <num>, -numTime=<num>

computeFarFieldRadiation.py
command line option, 560

-t <samptype>, -sampleType=<samptype>
extractModes.py command line

option, 585
-t <time>, -startTime=<time>

computeBeam2ModeCoupling.py
command line option, 549

computeMassFlux.py command line
option, 565

-t, -testing
extractModesViaOperator.py command

line option, 589
-u <ub>, -upperBounds=<ub>

subselectparticles.py command line
option, 597

-u <unipts>, -numberUniformPts=<unipts>
extractModes.py command line

option, 585
-v, -varyingRadiusMesh

computeFarFieldFromKirchhoffBox.py
command line option, 559

-w, -overwrite
addPtclComponentKEeV.py command

line option, 540
annnotateSpeciesDataOnPlane.py

command line option, 543
annotateFieldOnLine.py command

line option, 541
annotateSpeciesAbsPtclData2.py

command line option, 542
compareFields.py command line

option, 546
compute2DantennaGainAndPhase.py

Index 609

VSim Reference Manual, Release 11.0.1-r3016

command line option, 547
computeAED.py command line option,

549
computeBeam2ModeCoupling.py

command line option, 550
computeCumulativeSumHistory.py

command line option, 551
computeDebyeLength.py command line

option, 552
computeEmittanceFromDump.py

command line option, 554
computeEmittanceOnPlane.py command

line option, 557
computeFarFieldFromKirchhoffBox.py

command line option, 559
computeFarFieldRadiation.py

command line option, 560
computeFieldCrossProduct.py

command line option, 561
computeFieldMaxAmplitude.py

command line option, 562
computeFieldRelIntensityHilbert.py

command line option, 562
computeGradient.py command line

option, 563
computeInverseQ.py command line

option, 564
computeMassFlux.py command line

option, 565
computePtclBalance.py command line

option, 566
computePtclImpactSpectrum.py

command line option, 567
computePtclLimits.py command line

option, 568
computePtclNumDensity.py command

line option, 570
computeS11Parameters.py command

line option, 571
computeSParamsFromHists.py command

line option, 573
computeSParamsViaOverlapIntegral.py

command line option, 574
computeSpectrogram.py command line

option, 575
computeTimeSeriesAmplitude.py

command line option, 576
computeTimeSeriesFrequency.py

command line option, 577, 578
computeWaveguideModes.py command

line option, 553
convertFieldComponentCartToCylX.py

command line option, 579
convertFieldComponentCartToCylZ.py

command line option, 580
convertPtclComponentsCartToCylX.py

command line option, 581
convertPtclComponentsCartToCylZ.py

command line option, 582
createMissingPtclsDumps.py command

line option, 582
createParticleTracks.py command

line option, 583
exportSpecies.py command line

option, 584
extractModes.py command line

option, 586
extractModesViaOperator.py command

line option, 589
hfssToVsh5.py command line option,

591
performLowPassFilter.py command

line option, 593
performTwoHistoryArithmetic.py

command line option, 594
removePtclComponent.py command

line option, 596
subselectparticles.py command line

option, 597
truncateHistory.py command line

option, 598
writeCutCellField.py command line

option, 599
-x <N1>, -x1plane=<N1>

computeEmittanceFromDump.py
command line option, 553

-x <a/s/m/d> , -operation=<a/s/m/d>
performTwoHistoryArithmetic.py

command line option, 594
-x <dir>, -zeroPhiDirection=<dir>

computeFarFieldFromKirchhoffBox.py
command line option, 559

-x <multiplier>, -positionMultiplier=<multiplier>
annotateFieldOnLine.py command

line option, 541
-x <outsufx>, -outputSuffix=<outsufx>

computeSParamsFromHists.py command
line option, 573

-x, -outputXcomponent
addPtclComponentKEeV.py command

line option, 540
-y, -outputYcomponent

addPtclComponentKEeV.py command
line option, 540

-z <dir>, -zeroThetaDirection=<dir>
computeFarFieldFromKirchhoffBox.py

command line option, 559
-z, -outputZcomponent

610 Index

VSim Reference Manual, Release 11.0.1-r3016

addPtclComponentKEeV.py command
line option, 540

A
addBaseSolver() (built-in function), 527
addBeamEmitter() (built-in function), 503, 504
addBinaryCombinationHistory() (built-in

function), 516
addBoundaryLauncher() (built-in function), 509
addChildLangmuirEmitter() (built-in function),

523
addChirpWavePulseSTFuncBlock() (built-in

function), 527
addConductor() (built-in function), 526
addConstantProbabilitySecondaryElectronEmitter()

(built-in function), 525
addCosineFlattopSTFuncBlock() (built-in

function), 527
addCosineRampSTFuncBlock() (built-in func-

tion), 527
addCurrentDistribution() (built-in function),

529
addDielectric() (built-in function), 526
addDipoleCurrentDistribution() (built-in

function), 529
addElectricBoundary() (built-in function), 509
addElectricFieldEnergyHistory() (built-in

function), 515
addElectronNeutralFluidCollisions()

(built-in function), 505
addElectronNeutralFluidElasticCollision()

(built-in function), 506
addElectronNeutralFluidExcitationCollision()

(built-in function), 506
addElectronNeutralFluidIonizationCollision()

(built-in function), 507
addEMFieldEnergyHistory() (built-in function),

514, 515
addEsDirichletBC() (built-in function), 510, 511
addEsNeumannBC() (built-in function), 511
addFarFieldBoxHistory() (built-in function),

516
addFarFieldHistory() (built-in function), 516
addFeedbackSTFuncBlock() (built-in function),

528
addFieldEnergyAtPositionHistory() (built-

in function), 515
addFieldInitialCondition() (built-in func-

tion), 519
addFowlerNordheimEmitter() (built-in func-

tion), 523
addGaussianPulseSTFuncBlock() (built-in

function), 527

addGaussianSTFuncBlock() (built-in function),
528

addHalfSinePulseSTFuncBlock() (built-in
function), 528

addInitialCondition() (built-in function), 519
addInteriorSecondaryElectronEmitter()

(built-in function), 524
addIonNeutralFluidChargeExchangeCollision()

(built-in function), 507, 508
addIonNeutralFluidCollisions() (built-in

function), 505
addIonNeutralFluidMomentumExchangeCollision()

(built-in function), 508
addKirchhoffSurfaceIntegral() (built-in

function), 517
addLeakyChannelSTFuncBlock() (built-in func-

tion), 528
addMacroParticleCountHistory() (built-in

function), 514
addMagneticBoundary() (built-in function), 509
addMagneticFieldEnergyHistory() (built-in

function), 515
addMalBoundary() (built-in function), 509
addNeutralGas() (built-in function), 512
addOpenBoundary() (built-in function), 509
addParticleAbsorberCurrentHistory()

(built-in function), 514
addParticleAbsorberEnergyHistory()

(built-in function), 514
addParticleAbsorberLog() (built-in function),

513
addParticleEmitterCurrentHistory()

(built-in function), 514
addParticleEnergyHistory() (built-in func-

tion), 514
addParticleMomentumHistory() (built-in func-

tion), 513
addParticleSpecies() (built-in function), 520
addParticleSpeciesLoader() (built-in func-

tion), 520, 521
addParticleSpeciesSink() (built-in function),

521
addPhysicalParticleCountHistory() (built-

in function), 514
addPhysicsSetFluxEmitterSource() (built-in

function), 522
addPlaneWavePulseSTFuncBlock() (built-in

function), 528
addPoyntingHistory() (built-in function), 516
addProductFunctionSTFuncBlock() (built-in

function), 528
addPseudoPotentialHistory() (built-in func-

tion), 516
addPtclComponentKEeV.py command line

Index 611

VSim Reference Manual, Release 11.0.1-r3016

option
-A <A>, -addRemoveFlag=<A>, 540
-S <spname>, -speciesName=<spname>,

540
-m, -magnitude, 540
-o <outspname>,

-outputSpeciesName=<outspname>,
540

-s <simname>, -simulationName=<simname>,
539

-w, -overwrite, 540
-x, -outputXcomponent, 540
-y, -outputYcomponent, 540
-z, -outputZcomponent, 540

addRadialCosineChannelSTFuncBlock()
(built-in function), 528

addRichardsonDushmanEmitter() (built-in
function), 523

addSecondaryElectronEmitter() (built-in
function), 523

addShape() (built-in function), 526
addSimpleSecondaryElectronEmitter()

(built-in function), 524
addSinePlaneWaveSTFuncBlock() (built-in

function), 528
addSputterEmitter() (built-in function), 525
addSumFunctionSTFuncBlock() (built-in func-

tion), 528
addTimeDependence() (built-in function), 531
annnotateSpeciesDataOnPlane.py command

line option
-H <histname>,

-historyName=<histname>, 542
-S <spname>, -speciesName=<spname>,

542
-o <outspname>,

-outputSpeciesName=<outspname>,
543

-s <simname>, -simulationName=<simname>,
542

-w, -overwrite, 543
annotateFieldOnLine.py command line

option
-C <comp>, -component=<comp>, 541
-H <histname>,

-historyName=<histname>, 541
-a <offset>, -positionOffset=<offset>,

541
-s <simname>, -simulationName=<simname>,

541
-w, -overwrite, 541
-x <multiplier>,

-positionMultiplier=<multiplier>,
541

annotateSpeciesAbsPtclData2.py command
line option

-H <histname>,
-historyName=<histname>, 542

-T <thresh>, -threshold=<thresh>,
542

-s <simname>, -simulationName=<simname>,
542

-w, -overwrite, 542
applyNumericalCerenkovFilter() (built-in

function), 510

C
compareFields.py command line option

-D <targetFld>,
-targetField=<targetFld>, 545

-F <refFldName>,
-fieldName=<refFldName>, 545

-o <outfield>,
-outputField=<outfield>, 545

-s <simname>, -simulationName=<simname>,
545

-w, -overwrite, 546
compute2DantennaGainAndPhase.py

command line option
-c <center>, -center=<center>, 546
-d <gapwidth>,

-gapWidth=<gapwidth>, 546
-dn <dnr>, -dumpNr=<dnr>, 546
-dt <dt>, -dt=<dt>, 547
-f <freq>, -freq=<freq>, 547
-n <nlambda>, -nlambda=<nlambda>,

546
-s <simname>, -simulationName=<simname>,

546
-w, -overwrite, 547

computeAED.py command line option
-A1 <LOWERANGLE>,

-lowerAngle=<LOWERANGLE>, 548
-A2 <UPPERANGLE>,

-upperAngle=<UPPERANGLE>, 548
-E1 <LOWERENERGY>,

-lowerEnergy=<LOWERENERGY>, 548
-E2 <UPPERENERGY>,

-upperEnergy=<UPPERENERGY>, 548
-H <HISTORYNAME>,

-historyName=<HISTORYNAME>, 548
-Nang <NUMANGLEBINS>,

-numAngleBins=<NUMANGLEBINS>,
548

-Neng <NUMENGERYBINS>,
-numEnergyBins=<NUMENERGYBINS>,
548

612 Index

VSim Reference Manual, Release 11.0.1-r3016

-P <PERPDIR>, -perpDir=<PERPDIR>,
549

-P1 <LOWERPOS>,
-lowerPos=<LOWERPOS>, 548

-P2 <UPPERPOS>,
-upperPos=<UPPERPOS>, 548

-S <SPECIESNAME>,
-SpeciesName=<SPECIESNAME>, 547

-T1 <STARTTIME>,
-startTime=<STARTTIME>, 547

-T2 <ENDTIME>, -endTime=<ENDTIME>,
547

-f <ANGULARFREQUENCY>,
-angularFrequency=<ANGULARFREQUENCY>,
548

-ndim <NDIM>, -NDIM=<NDIM>, 548
-s <simname>, -simulationName=<simname>,

547
-w, -overwrite, 549

computeBeam2ModeCoupling.py command
line option

-c <comp>, -component=<comp>, 549
-f <freq>, -frequency=<freq>, 549
-j <curdenfield>,

-jName=<curdenfield>, 549
-s <simname>, -simulationName=<simname>,

549
-t <time>, -startTime=<time>, 549
-w, -overwrite, 550

computeCavityG.py command line option
-b <bd>, -beginDump=<bd>, 550
-e <ed>, -endDump=<ed>, 550
-g <geometry>,

-geometryName=<geometry>, 550
-s <simname>, -simulationName=<simname>,

550
computeCumulativeSumHistory.py command

line option
-H <histname>,

-historyName=<histname>, 551
-m <M>, -multiplier=<M>, 551
-o <newhistname>,

-newHistoryName=<newhistname>,
551

-s <simname>, -simulationName=<simname>,
551

-w, -overwrite, 551
computeDebyeLength.py command line

option
-S <spname>, -speciesName=<spname>,

552
-s <simname>, -simulationName=<simname>,

552
-w, -overwrite, 552

computeEmittanceFromDump.py command
line option

-S <spname>, -speciesName=<spname>,
553

-X <N2>, -x2plane=<N2>, 553
-n <S>, -numSlices=<S>, 554
-s <simname>, -simulationName=<simname>,

553
-w, -overwrite, 554
-x <N1>, -x1plane=<N1>, 553

computeEmittanceOnPlane.py command
line option

-H <histname>,
-historyName=<histname>, 557

-S <spname>, -speciesName=<spname>,
557

-s <simname>, -simulationName=<simname>,
557

-w, -overwrite, 557
computeFarFieldFromKirchhoffBox.py

command line option
-f <freq>, -frequency=<freq>, 558
-g <FC>, -getFourierComponent=<FC>,

558
-i, -simpsonIntegration, 559
-l <fldlabel>,

-fieldLabel=<fldlabel>, 558
-n <stepstride>,

-timeStepStride=<stepstride>,
558

-p <num>, -numPhi=<num>, 558
-r <R>, -farFieldRadius=<R>, 558
-s <simname>, -simulationName=<simname>,

558
-t <num>, -numTheta=<num>, 558
-v, -varyingRadiusMesh, 559
-w, -overwrite, 559
-x <dir>, -zeroPhiDirection=<dir>,

559
-z <dir>, -zeroThetaDirection=<dir>,

559
computeFarFieldRadiation.py command

line option
-H <histname>,

-historyName=<histname>, 560
-e <N>, -numTheta=<N>, 560
-g, -normalize, 560
-n, -SLL, 560
-p <N>, -numPhi=<N>, 560
-s <simname>, -simulationName=<simname>,

560
-t <num>, -numTime=<num>, 560
-w, -overwrite, 560

computeFieldCrossProduct.py command

Index 613

VSim Reference Manual, Release 11.0.1-r3016

line option
-1 <fldname> ,

-field1Name=<fldname>, 561
-2 <fldname> ,

-field2Name=<fldname>, 561
-m <M>, -multiplier=<M>, 561
-o <outfldname>,

-outputFieldName=<outfldname>,
561

-s <simname>, -simulationName=<simname>,
561

-w, -overwrite, 561
computeFieldMaxAmplitude.py command

line option
-F <fldname>, -fieldName=<fldname>,

562
-o <outhistname>,

-outputHistoryName=<outhistname>,
562

-s <simname>, -simulationName=<simname>,
562

-w, -overwrite, 562
computeFieldRelIntensityHilbert.py

command line option
-F <fldname>, -fieldName=<fldname>,

562
-o <outfldname>,

-outputFieldName=<outfldname>,
562

-s <simname>, -simulationName=<simname>,
562

-w, -overwrite, 562
computeGradient.py command line option

-H <histname>,
-historyName=<histname>, 563

-O <newhistname>,
-newHistoryName=<newhistname>,
563

-s <simname>, -simulationName=<simname>,
563

-w, -overwrite, 563
computeInverseQ.py command line option

-H <histname>,
-historyName=<histname>, 564

-O <outname>, -outputFileName=<outname>,
564

-c <comp>, -component=<comp>, 564
-f, -frequency, 564
-s <simname>, -simulationName=<simname>,

564
-w, -overwrite, 564

computeMassFlux.py command line option
-D <direction>,

-fluxDir=<direction>, 565

-H <histname>,
-historyName=<histname>, 565

-I, -integrate, 565
-T <timeint>, -timeInterval=<timeint>,

565
-d, -density, 565
-m <mass>, -mass=<mass>, 565
-s <simname>, -simulationName=<simname>,

565
-t <time>, -startTime=<time>, 565
-w, -overwrite, 565

computePtclBalance.py command line
option

-S <spname>, -speciesName=<spname>,
566

-o <outname>, -outputHistoryName=<outname>,
566

-r <maxranks>,
-maxRanksToReport=<maxranks>,
566

-s <simname>, -simulationName=<simname>,
566

-w, -overwrite, 566
computePtclImpactSpectrum.py command

line option
-H <histname> ,

-historyName=<histname>, 567
-T <N> , -threshold=<N>, 567
-c <comp>, -component=<comp>, 567
-n <num>, -numBins=<num>, 567
-s <simname>, -simulationName=<simname>,

567
-w, -overwrite, 567

computePtclLimits.py command line
option

-O <outname>, -outputFileName=<outname>,
568

-S <spname>, -speciesName=<spname>,
568

-s <simname>, -simulationName=<simname>,
568

-w, -overwrite, 568
computePtclNumDensity.py command line

option
-M <max>, -maxDumpNum=<max>, 570
-N <avg>, -avgNxN=<avg>, 570
-S <spname>, -speciesName=<spname>,

570
-i <I>, -iterateAvg=<I>, 570
-m <min>, -minDumpNum=<min>, 570
-s <simname>, -simulationName=<simname>,

570
-w, -overwrite, 570

computeS11Parameters.py command line

614 Index

VSim Reference Manual, Release 11.0.1-r3016

option
-E <N>, -nElements=<N>, 571
-c <step>, -dt=<step>, 571
-e <pts>, -nPoints=<pts>, 571
-n <Z>, -nZeros=<Z>, 571
-p <histpat>, -historyPATCH=<histpat>,

571
-s <simname>, -simulationName=<simname>,

571
-t <histcal>, -historyCAL=<histcal>,

571
-w, -overwrite, 571

computeSParamsFromHists.py command
line option

-1, -inSign, 572
-2, -outSign, 573
-B <outmag>, -outSlabB=<outmag>, 573
-D <dir>, -outDirection=<dir>, 572
-E <outelec>, -outSlabE=<outelec>,

572
-L <maxl>, -maxWavelength=<maxl>,

572
-O <offset>, -stepOffset=<offset>,

572
-S <minl>, -minWavelength=<minl>,

572
-b <inmag>, -inSlabB=<inmag>, 572
-d <dir>, -inDirection=<dir>, 572
-e <inelec>, -inSlabE=<inelec>, 572
-f <first>, -firstStep=<first>, 572
-l <last>, -lastStep=<last>, 572
-n <outname>, -outputFileName=<outname>,

573
-s <simname>, -simulationName=<simname>,

572
-w, -overwrite, 573
-x <outsufx>, -outputSuffix=<outsufx>,

573
computeSParamsViaOverlapIntegral.py

command line option
-B <outslabB>,

-outSlabB=<outslabB>, 574
-D <suffix>, -outputFileSuffix=<suffix>,

574
-E <outslabE>,

-outSlabE=<outslabE>, 574
-F <firstout>,

-firstStepOutSlab=<firstout>,
574

-L <steps>, -numSteps=<steps>, 574
-M <maxlength>,

-maxWavelength=<maxlength>, 573
-b <inslabB>, -inSlabB=<inslabB>,

574

-e <inslabE>, -inSlabE=<inslabE>,
574

-f <firstin>, -firstStepInSlab=<firstin>,
574

-m <minlength>,
-minWavelength=<minlength>, 573

-s <simname>, -simulationName=<simname>,
573

-w, -overwrite, 574
computeSpectrogram.py command line

option
-F <max>, -maxFreq=<max>, 575
-H <histname>,

-historyName=<histname>, 575
-W <windowfunc>,

-windowType=<windowfunc>, 575
-c <comp>, -component=<comp>, 575
-f <size>, -fourierTransSize=<size>,

575
-n <overlap>, -noOverlap=<overlap>,

575
-s <simname>, -simulationName=<simname>,

575
-w, -overwrite, 575

computeTimeSeriesAmplitude.py command
line option

-H <histname>,
-historyName=<histname>, 576

-O <outname>, -outputFileName=<outname>,
576

-c <comp>, -component=<comp>, 576
-f, -frequency, 576
-s <simname>, -simulationName=<simname>,

576
-w, -overwrite, 576

computeTimeSeriesFrequency.py command
line option

-0, -offsetx0, 578
-1, -offsetx1, 578
-B <beta>, -beta=<beta>, 578
-H <histname>,

-historyName=<histname>, 577
-O <outname>, -outputFileName=<outname>,

577
-a, -axis, 578
-b <bd>, -beginDump=<bd>, 578
-c <comp>, -component=<comp>, 577
-e <ed>, -endDump=<ed>, 578
-f, -frequency, 577
-s <simname>, -simulationName=<simname>,

577, 578
-w, -overwrite, 577, 578

computeWaveguideModes.py command line
option

Index 615

VSim Reference Manual, Release 11.0.1-r3016

-F <field>, -writeFieldProfile=<field>,
553

-L <vacwave>, -vacWavelength=<vacwave>,
553

-T <slice>, -transverseSlice=<slice>,
552

-m <maxnodes>, -nModes=<maxnodes>,
553

-s <simname>, -simulationName=<simname>,
552

-w, -overwrite, 553
convertFieldComponentCartToCylX.py

command line option
-f, -fieldName, 579
-s <simname>, -simulationName=<simname>,

579
-w, -overwrite, 579

convertFieldComponentCartToCylZ.py
command line option

-f, -FieldName, 580
-s <simname>, -simulationName=<simname>,

579
-w, -overwrite, 580

convertPtclComponentsCartToCylX.py
command line option

-S <spname>, -speciesName=<spname>,
580

-o <outspname>,
-outputSpeciesName=<outspname>,
580

-s <simname>, -simulationName=<simname>,
580

-w, -overwrite, 581
convertPtclComponentsCartToCylZ.py

command line option
-S <spname>, -speciesName=<spname>,

581
-o <outspname>,

-outputSpeciesName=<outspname>,
581

-s <simname>, -simulationName=<simname>,
581

-w, -overwrite, 582
CoordProdSTFuncStencilElementMacro()

(built-in function), 518
createMissingPtclsDumps.py command

line option
-S <spname>, -speciesName=<spname>,

582
-s <simname>, -simulationName=<simname>,

582
-w, -overwrite, 582

createParticleTracks.py command line
option

-S <spname>, -speciesName=<spname>,
583

-p, -ptclIndex, 583
-s <simname>, -simulationName=<simname>,

583
-w, -overwrite, 583

E
entryToBool() (built-in function), 501
exportSpecies.py command line option

-N <files>, -numOutFiles=<files>,
584

-O <outname>, -outputFileName=<outname>,
584

-P, -applyPeriod, 584
-R, -randomizePtcls, 584
-S <spname>, -speciesName=<spname>,

584
-d <num>, -dumpNum=<num>, 584
-o <outbasename>,

-outputBaseName=<outbasename>,
584

-s <simname>, -simulationName=<simname>,
584

-w, -overwrite, 584
extractModes.py command line option

-b <bd>, -beginDump=<bd>, 585
-c, -construct, 586
-e <ed>, -endDump=<ed>, 585
-f <fld>, -field=<fld>, 585
-m <nummodes>, -nModes=<nummodes>,

585
-r <ranpts>, -numberRandomPts=<ranpts>,

585
-s <simname>, -simulationName=<simname>,

585
-t <samptype>,

-sampleType=<samptype>, 585
-u <unipts>, -numberUniformPts=<unipts>,

585
-w, -overwrite, 586

extractModesViaOperator.py command
line option

-D, -normalizeModes, 589
-F <F>, -secondFieldFactor=<F>, 588
-I <I>, -imagFields=<I>, 588
-M <M>, -maxNumModes=<M>, 588
-N <N>, -initialModeNumber=<N>, 589
-O <outname>, -outputSimName=<outname>,

588
-R <R>, -realFields=<R>, 588
-S <cs>, -cellSamples=<cs>, 588
-c <cut>, -cutoff=<cut>, 588
-d <dr>, -dumpRange=<dr>, 588

616 Index

VSim Reference Manual, Release 11.0.1-r3016

-o <op>, -operator=<op>, 588
-s <simname>, -simulationName=<simname>,

588
-t, -testing, 589
-w, -overwrite, 589

F
finalize() (built-in function), 529
finalizeParticles() (built-in function), 522
finalizeUpdaters() (built-in function), 530

G
getBoundaryOffsets() (built-in function), 503

H
hfssToVsh5.py command line option

-F <refFName>,
-fileName=<refFName>, 591

-c <centerOpt>,
-centering=<centerOpt>, 591

-o <outFld>, -outputField=<outFld>,
591

-s <simname>, -simulationName=<simname>,
591

-w, -overwrite, 591

I
isEqualString() (built-in function), 501
isNotEqualInt() (built-in function), 501

P
performLowPassFilter.py command line

option
-H, -historyName, 593
-O <outname>, -outputFileName=<outname>,

593
-c <comp>, -component=<comp>, 593
-f, -frequency, 593
-s <simname>, -simulationName=<simname>,

593
-w, -overwrite, 593

performTwoHistoryArithmetic.py command
line option

-H <histname>,
-history1Name=<histname>, 594

-I <histname>,
-history2Name=<histname>, 594

-o <histname>,
-newhistoryName=<histname>, 594

-s <simname>, -simulationName=<simname>,
594

-w, -overwrite, 594
-x <a/s/m/d> ,

-operation=<a/s/m/d>, 594

putFieldOnSurfaceMesh.py command line
option

-O <outname>, -outputFieldName=<outname>,
596

-b <bd>, -beginDump=<bd>, 595
-e <ed>, -endDump=<ed>, 595
-f <fldname>, -fieldName=<fldname>,

595
-g <geometry>,

-geometryName=<geometry>, 595
-s <simname>, -simulationName=<simname>,

595

R
removePtclComponent.py command line

option
-S <species>, -speciesName=<species>,

596
-o <outspname>,

-outputSpeciesName=<outspname>,
596

-s <simname>, -simulationName=<simname>,
596

-w, -overwrite, 596

S
setGridData() (built-in function), 512, 513
setTimingData() (built-in function), 501
StencilElementMacro() (built-in function), 517
STFuncStencilElementMacro() (built-in func-

tion), 518
subselectparticles.py command line

option
-S <spname>, -speciesName=<spname>,

597
-c <comp>, -component=<comp>, 597
-f <fl>, -flipLimits=<fl>, 597
-l <lb>, -lowerBounds=<lb>, 597
-m,-move RESERVED for future use,

597
-o <outspname>,

-outputSpeciesName=<outspname>,
597

-s <simname>, -simulationName=<simname>,
597

-u <ub>, -upperBounds=<ub>, 597
-w, -overwrite, 597

T
truncateHistory.py command line option

-H <histname>,
-historyName=<histname>, 598

-b <time>, -beginTime=<time>, 598
-e <time>, -endTime=<time>, 598

Index 617

VSim Reference Manual, Release 11.0.1-r3016

-m <M>, -multiplier=<M>, 598
-o <newhistname>,

-newHistoryName=<newhistname>,
598

-s <simname>, -simulationName=<simname>,
598

-w, -overwrite, 598

W
write1CellVolume() (built-in function), 502
writeCutCellField.py command line

option
-G <geometry>,

-geometryName=<geometry>, 599
-s <simname>, -simulationName=<simname>,

599
-w, -overwrite, 599

writeIndicesFromCoords() (built-in function),
502

writeMovingWindow() (built-in function), 529

618 Index

	Overview
	The Structure of the Reference Manual

	Visual Setup
	Description
	Constants
	Parameters
	Basic Settings
	Functions
	SpaceTimeFunctions
	Materials
	Geometries
	Grids
	Field Dynamics
	Particle Dynamics
	Collisions
	Histories

	Text Setup
	Global Variables
	Grid
	Decomposition
	GridBoundary
	EM Field
	ComboEmField Block
	Multifield
	ScalarDepositor and VectorDepositor
	SumRhoJ
	Fluid
	Species
	Reactions
	ImpactCollider / ImpactCollision
	Monte Carlo Interactions (DEPRECATED)
	History
	Feedback
	External Circuit Model
	Functions
	Slab Block
	Macros
	Postprocessing Tools

	Engine (Vorpal) Execution
	Vorpal Command Line Options
	Customizing Environment Variables

	Analyzers
	Guide to Analyzers
	Available Analyzers

	Trademarks and licensing
	Index

