USimReferenceManual

Release 3.0.1

Tech-X Corporation

May 03, 2018
1 Introduction 1
2 Macros 3
2.1 Mathphys Macro 3
2.2 Grid Macro 3
2.3 Euler Macro 8
2.4 Ideal MHD Macro 15
2.5 Anisotropic Conductivity Macro 21
3 Grid 25
3.1 cart (1d, 2d, 3d) 25
3.2 bodyFitted (1d, 2d, 3d) 26
3.3 unstructured 28
4 DataStruct 31
4.1 bin 31
4.2 dynVector 32
4.3 nodalArray 32
5 DataStructAlias 33
6 UpdateStep 35
7 UpdateSequence 37
8 Updater 39
8.1 initialize (1d, 2d, 3d) 39
8.2 linearCombiner (1d, 2d, 3d) 41
8.3 uniformCombiner (1d, 2d, 3d) 41
8.4 combiner (1d, 2d, 3d) 42
8.5 dynVectorOperator 43
8.6 equation (1d, 2d, 3d) 45
8.7 computePrimitiveState(1d, 2d, 3d) 45
8.8 vertexJetUpdater (1d, 2d, 3d) 46
8.9 firstOrderMusclUpdater (1d, 2d, 3d) 48
8.10 classicMusclUpdater (1d, 2d, 3d) 50
8.11 unstructMusclUpdater (1d, 2d, 3d) 52
8.12 thirdOrderMusclUpdater (1d, 2d, 3d) 54
8.13 vector (1d, 2d, 3d) 56
8.14 diffusion (1d, 2d, 3d) 58
8.15 navierStokesViscousOperator (1d, 2d, 3d) 60
8.16 kOmegaOperator (1d, 2d, 3d) 63
8.17 kEpsilonOperator (1d, 2d, 3d) 65
8.18 generalizedOhmsLaw (1d, 2d, 3d) 67
8.19 resitiveOperator (1d, 2d, 3d) 69
8.20 multiUpdater (1d, 2d, 3d) 71
8.21 implicitMultiUpdater (1d, 2d, 3d) 72
8.22 localOdeIntegrator (1d, 2d, 3d) 76
8.23 timeStepRestrictionUpdater (1d, 2d, 3d) 77
8.24 boundaryEntityGenerator (1d, 2d, 3d) 79
8.25 characteristicCellLength (1d, 2d, 3d) 79
8.26 entityGenerator (1d, 2d, 3d) 80
8.27 minDistanceToWall (1d, 2d, 3d) 80
8.28 operatorEntityGenerator (1d, 2d, 3d) 81
8.29 paintEntity (1d, 2d, 3d) 82
8.30 binCells (1d, 2d, 3d) 82
8.31 fieldAtPoint (1d, 2d, 3d) 83
8.32 intCombinedFields (1d, 2d, 3d) 83
8.33 lineIntegral (1d, 2d, 3d) 84
8.34 maxCombinedFields (1d, 2d, 3d) 85
8.35 surfaceIntegral (1d, 2d, 3d) 86
8.36 surfaceVariables (1d, 2d, 3d) 87
8.37 nanChecker (1d, 2d, 3d) 89
8.38 pressureDensityCorrector (1d, 2d, 3d) 90
8.39 valueCorrector (1d, 2d, 3d) 91
9 Time Integrator 93
10 Preconditioner 95
11 Hyperbolic Equations 97
11.1 eulerEqn 97
11.2 realGasEqn 99
11.3 realGasEosEqn 100
11.4 tenMomentEqn 101
11.5 multiSpeciesSingleVelocityEqn 103
11.6 mhdDednerEqn 104
11.7 mhdDednerEosEqn 108
11.8 gasDynamicMhdDednerEqn 112
11.9 simpleTwoTemperatureMhdDednerEqn 117
11.10 twoTemperatureMhdDednerEqn 122
11.11 maxwellEqn 127
11.12 maxwellDednerEqn 129
11.13 gasDynamicMaxwellDednerEqn 132
11.14 twoFluidEqn 138
11.15 userDefinedEqn 139
12 Algebraic Equations 143
12.1 eulerSym 144
12.2 mhdSym 148
12.3 maxwellSym 150
12.4 multiSpeciesSym 151
12.5 twoFluidSym 152
12.6 exprHyperSrc 153
12.7 mhdSrc 154
12.8 tenMomentFluidSrc 158
12.9 twoFluidSrc 160
12.10 idealGasVariables 166
12.11 idealGasComputeVariables 167
12.12 propaceosVariables 169
12.13 propaceosComputeVariables 171
12.14 sesameVariables 173
12.15 sesameComputeVariables 175
12.16 vanDerWaalsVariables 177
12.17 vanDerWaalsComputeVariables 179
12.18 bremsPowerSrc 180
12.19 radiationAbsorption 181
12.20 radiationEmission 182
12.21 coilFieldEqn 182
12.22 current 183
12.23 lorentzForce 184
12.24 wireFieldEqn 186
12.25 computeChargeError 187
12.26 hyperbolicCleanSym 188
12.27 collisionFrequency 188
12.28 conductivityTensor 191
12.29 momentumEnergyExchange 192
12.30 NFluidSrc 194
12.31 reactionTableRhs 195
12.32 temperatureRelaxation 197
12.33 transportCoeffSrc 198
13 Boundary Conditions 207
13.1 copy (1d, 2d, 3d) 207
13.2 eulerBc (1d, 2d, 3d) 208
13.3 functionBc (1d, 2d, 3d) 208
13.4 generalBc (1d, 2d, 3d) 209
13.5 maxwellBc (1d, 2d, 3d) 210
$13.6 \mathrm{mhdBc}(1 \mathrm{~d}, 2 \mathrm{~d}, 3 \mathrm{~d})$ 210
13.7 periodicCartBc (1d, 2d, 3d) 211
13.8 simpleBc (1d, 2d, 3d) 211
13.9 sufaceEvaporation (1d, 2d, 3d) 212
13.10 tenMomentBc (1d, 2d, 3d) 212
14 Time Step Restriction 215
14.1 cyclotronFrequency (1d, 2d, 3d) 215
14.2 frequency ($1 \mathrm{~d}, 2 \mathrm{~d}, 3 \mathrm{~d}$) 216
14.3 hyperbolic (1d, 2d, 3d) 217
14.4 plasmaFrequency ($1 \mathrm{~d}, 2 \mathrm{~d}, 3 \mathrm{~d}$) 260
14.5 positiveValue (1d, 2d, 3d) 261
14.6 quadratic (1d, 2d, 3d) 262
14.7 whistlerWave (1d, 2d, 3d) 263
15 Multi-Species Data Files 265
15.1 Multi-Species Chemical Reactions 265
15.2 Multi-Species Specific Heat At Constant Pressure 267
15.3 Multi-Species Energy of Formation, Molecular Weight, Molecular Diameter and Degrees of Freedom 269
Index 271

INTRODUCTION

USim Reference is a quick-reference manual for USim users to look up specific USim features and code block syntax for use in editing a USim input file. To learn about the complete USim simulation process, including details regarding input file format and the USim tutorials, or see examples of using USim to simulate real-world physics models, please refer to USim-in-depth.

MACROS

2.1 Mathphys Macro

This macro can be imported to an input file with \$ import mathphys
mathphys: In many of the input file examples that are supplied in USimComposer, you will see macros from mathphys invoked. Macros available in mathphys define a series of physical and mathematical constants that are commonly used in simulations. Refer to the mathphys file under Macros in USimComposer to see which constants are available.

2.2 Grid Macro

This macro file can be imported to an input file with \$ import grid.mac.
This collection of macros can be used to add different types of grids to the input file.

Contents

- addGrid Macro
- addCylindricalGrid Macro
- addBodyFittedGrid Macro
- addCylindricalBodyFittedGrid Macro
- addExodusGrid Macro
- addExodusTetrahedralGrid Macro
- addCylindricalExodusTetrahedralGrid Macro
- addCylindricalExodusGrid Macro
- addGmshGrid Macro
- addGmshTetrahedralGrid Macro
- addCylindricalGmshGrid Macro
- addCylindricalGmshTetrahedralGrid Macro
- addGridVariable Macro
- addGridPreExpression Macro
- addGridExpression Macro
- addEntityMaskVariable Macro
- addEntityMaskPreExpression Macro
- addEntityMaskExpression Macro
- createNewEntityFromMask (newEntityNameVar) Macro
- createNewEntityFromMask (newEntityNameVar, entityToCreateFromVar) Macro

2.2.1 addGrid Macro

addGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a structured Cartesian grid

addGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds $=[$ XMIN YMIN ZMIN $]$
upperBounds: Vector of coordinates for upper edge of grid, upperBounds $=$ [XMAX YMAX ZMAX]
numCells: Vector of number of cells in grid, numCells $=[$ NX NY NZ $]$
periodicDirections: List of directions that are periodic

```
periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ llll l (x,y,z-directions periodic)
```


2.2.2 addCylindricalGrid Macro

addCylindricalGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a structured cylindrical grid

addCylindricalGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds $=$ [XMIN YMIN ZMIN]
upperBounds: Vector of coordinates for upper edge of grid, upperBounds $=$ [XMAX YMAX ZMAX]
numCells: Vector of number of cells in grid, numCells $=[\mathrm{NX}$ NY NZ $]$
periodicDirections: List of directions that are periodic

```
periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ llll l ( 
```


2.2.3 addBodyFittedGrid Macro

addBodyFittedGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a body-fitted cartesian grid

addBodyFittedGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds $=[$ XMIN YMIN ZMIN $]$
upperBounds: Vector of coordinates for upper edge of grid, upperBounds $=[$ XMAX YMAX ZMAX]
numCells: Vector of number of cells in grid, numCells $=[$ NX NY NZ $]$
periodicDirections: List of directions that are periodic

```
periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections }=[\begin{array}{llll}{0}&{1}&{2}\end{array}] (x,y,z-directions periodic
```


2.2.4 addCylindricalBodyFittedGrid Macro

addCylindricalBodyFittedGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a body-fitted cylindrical grid

addCylindricalBodyFittedGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds $=$ [XMIN YMIN ZMIN]
upperBounds: Vector of coordinates for upper edge of grid, upperBounds $=$ [XMAX YMAX ZMAX]
numCells: Vector of number of cells in grid, numCells $=[\mathrm{NX}$ NY NZ $]$
periodicDirections: List of directions that are periodic

```
periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ 0 1 2 ] (x,y,z-directions periodic)
```


2.2.5 addExodusGrid Macro

addExodusGrid (name): Add a unstructured grid in ExodusII format
addExodusGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.6 addExodusTetrahedraIGrid Macro

addExodusTetrahedralGrid (name): Add a unstructured grid composed of tetrahedra in ExodusII format addExodusTetrahedralGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.7 addCylindricalExodusTetrahedralGrid Macro

addCylindricalExodusTetrahedralGrid (name): Add a unstructured cylindrical grid composed of tetrahedra in ExodusII format
addCylindricalExodusTetrahedralGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.8 addCylindricalExodusGrid Macro

addCylindricalExodusGrid (name): Add a unstructured cylindrical grid in ExodusII format
addCylindricalExodusGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.9 addGmshGrid Macro

addGmshGrid (name): Add a unstructured grid in Gmsh format
addGmshGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.10 addGmshTetrahedralGrid Macro

addGmshTetrahedralGrid (name): Add a unstructured grid composed of tetrahedra in Gmsh format

addGmshTetrahedralGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.11 addCylindricalGmshGrid Macro

addCylindricalGmshGrid (name): Add a unstructured cylindrical grid in Gmsh format
addCylindricalGmshGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.12 addCylindricalGmshTetrahedraIGrid Macro

addCylindricalGmshTetrahedralGrid (name): Add a unstructured cylindrical grid composed of tetrahedra in Gmsh format
addCylindricalGmshTetrahedralGrid Macro Parameters
name: Name of grid WITHOUT extension

2.2.13 addGridVariable Macro

addGridVariable (varName, varValue): Specify a variable for defining a body-fitted grid

addGridVariable Macro Parameters

varName: Name to assign quantity that is independent of grid position
varValue: Value to assign quantity that is independent of grid position

2.2.14 addGridPreExpression Macro

addGridPreExpression (expression): Specify a preExpression for defining a body-fitted grid

addGridPreExpression Macro Parameters

expression: A mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

2.2.15 addGridExpression Macro

addGridExpression (expression): Specify an Expression for defining a body-fitted grid addGridExpression Macro Parameters
expression: A mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.2.16 addEntityMaskVariable Macro

addEntityMaskVariable (newEntityNameVar, varName, varValue): Specify a variable for defining a mask on the grid

addEntityMaskVariable Macro Parameters

newEntityNameVar: Name of the new entity
varName: Name to assign quantity that is independent of grid position varValue: Value to assign quantity that is independent of grid position

2.2.17 addEntityMaskPreExpression Macro

addEntityMaskPreExpression (newEntityNameVar, expression): Specify a preExpression for defining a mask on the grid
addEntityMaskPreExpression Macro Parameters
expression: A mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

2.2.18 addEntityMaskExpression Macro

addEntityMaskExpression (newEntityNameVar, expression): Specify an Expression for defining a mask on the grid
addEntityMaskExpression Macro Parameters
expression: A mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

2.2.19 createNewEntityFromMask (newEntityNameVar) Macro

createNewEntityFromMask (newEntityNameVar): Create a new entity within the grid based on mask function
createNewEntityFromMask Macro Parameters
newEntityNameVar: Name of the new entity

2.2.20 createNewEntityFromMask (newEntityNameVar, entityToCreateFromVar) Macro

createNewEntityFromMask (newEntityNameVar, entityToCreateFromVar): Create a new entity within the grid based on mask function
createNewEntityFromMask Macro Parameters
newEntityNameVar: Name of the new entity
entityToCreateFromVar: Name of the entity to create the new entity from

2.3 Euler Macro

This macro file can be imported to an input file with \$ import euler.mac.
This collection of macros can be used to define quantities required for the Euler equations to input files.

Contents

- initializeFluidSimulation Macro
- createFluidSimulation Macro
- addVariable Macro
- addPreExpression Macro
- addExpression Macro
- finiteVolumeScheme Macro
- addGravitationalAcceleration Macro
- addBoundaryConditionVariable (name, varName, varValue) Macro
- addBoundaryConditionVariable (name, entityName, varName, varValue) Macro
- addBoundaryConditionPreExpression (name, expression) Macro
- addBoundaryConditionPreExpression (name, entityName, expression) Macro
- addBoundaryConditionExpression (name, expression) Macro
- addBoundaryConditionExpression (name, entityName, expression) Macro
- boundaryCondition (type) Macro
- boundaryCondition (type, entityName) Macro
- boundaryCondition (name, type, entityName) Macro
- timeAdvance Macro
- diffusionTimeAdvance Macro
- implicitTimeAdvance Macro
- addOutputDiagnostic (name) Macro
- addOutputDiagnostic (name, numberOfComponents, isVector) Macro
- addOutputDiagnosticParameter Macro
- addOutputDiagnosticPreExpression Macro
- addOutputDiagnosticExpression Macro
- runFluidSimulation Macro

2.3.1 initializeFluidSimulation Macro

initializeFluidSimulation (dimensionality,tStart,tEnd,numFrames,cflNum,gammaIn,writeRestartIn,debugIn): Define quanties required for the Euler equations.

initializeFluidSimulation Macro Parameters

dimensionality: $1,2,3$. Number of dimensions for the simulation
tStart: Start time for simulation
tEnd: End time for simulation
numFrames: Number of data outputs
cflNum: Cfl limit, typically $\Delta t=c f l N u m * \Delta x / V_{\max }$
gammaIn: Adiabatic index for ideal gas eqn. of state. Pressure $=($ gammaIn -1.0$) *$ density $*$ internal energy
writeRestartIn: Output data required for simulation restart
debugIn: Run simulation in debug mode

2.3.2 createFluidSimulation Macro

createFluidSimulation (): Define and add the various data structures, initial conditions and primitive variable computations required for the Euler equations.

2.3.3 addVariable Macro

addVariable (varName, varValue): Specify a variable in the initial condition

addVariable Macro Parameters

varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.3.4 addPreExpression Macro

addPreExpression (expression): Specify a preExpression in the initial condition

addPreExpression Macro Parameters

expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable,t,x,y,z)

2.3.5 addExpression Macro

addExpression (expression): Specify an Expression in the initial condition

addExpression Macro Parameters

expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

2.3.6 finiteVolumeScheme Macro

finteVolumeScheme (diffusive): Add a finite volume scheme for solving the Euler equations
finiteVolumeScheme Macro Parameters
diffusive: True/False. Utilize a diffusive, but robust scheme to solve the system

2.3.7 addGravitationalAcceleration Macro

addGravitationalAcceleration (gravitationalAcceleration): Add a gravitational acceleration source block to the finiteVolumeScheme
addGravitationalAccleration Macro Parameters
gravitationalAcceleration: Acceleration to apply in negative y-direction

2.3.8 addBoundaryConditionVariable (name, varName, varValue) Macro

addBoundaryConditionVariable (name, varName, varValue): Specify a variable on a userSpecified boundary condition on the ghost entity
addBoundaryConditionVariable Macro Parameters
name: The type of the boundary condition to apply. Must be userSpecified. varName: Name to assign the quantity that is independent of grid position varValue: Value to assign the quantity that is independent of grid position

2.3.9 addBoundaryConditionVariable (name, entityName, varName, varValue) Macro

addBoundaryConditionVariable (name, entityName, varName, varValue): Specify a variable on a userSpecified boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
entityName: The boundary entity to apply boundary condition on
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.3.10 addBoundaryConditionPreExpression (name, expression) Macro

addBoundaryConditionPreExpression (name, expression): Specify a preExpression on a userSpecified boundary condition on the ghost entity.

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified. expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression,variable,t,x,y,z)

2.3.11 addBoundaryConditionPreExpression (name, entityName, expression) Macro
 addBoundaryConditionPreExpression (name, entityName, expression): Specify a preExpression on a userSpecified boundary condition on the ghost entity.

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
entityName: The boundary entity to apply boundary condition on
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable,t,x,y,z)

2.3.12 addBoundaryConditionExpression (name, expression) Macro

addBoundaryConditionExpression (name, expression): Specify an Expression on a userSpecified boundary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, variable,t,x,y,z)

2.3.13 addBoundaryConditionExpression (name, entityName, expression) Macro

addBoundaryConditionExpression (name, entityName, expression): Specify an Expression on a userSpecified boundary condition on the ghost entity.
addBoundaryConditionExpression Macro Parameters
name: The type of the boundary condition to apply. Must be userSpecified.
entityName: The boundary entity to apply boundary condition on expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.3.14 boundaryCondition (type) Macro

boundaryCondition (type): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall, noInflow, noSlip.

2.3.15 boundaryCondition (type, entityName) Macro

boundaryCondition (type, entityName): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall, noInflow, noSlip.
entityName: The boundary entity to apply boundary condition on

2.3.16 boundaryCondition (name, type, entityName) Macro

boundaryCondition (name, type, entityName): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

name: The name to assign to the boundary condition
type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall, noInflow, noSlip.
entityName: The boundary entity to apply boundary condition on

2.3.17 timeAdvance Macro

timeAdvance (order): Advance simulation in time using an explicit Runge-Kutta method

timeAdvance Macro Parameters

order: The order of explicit Runge-Kutta method. Can be first, second, third, fourth

2.3.18 diffusionTimeAdvance Macro

diffusionTimeAdvance (order): Advance simulation in time using an explicit Super-Time Step method for diffusion problems

diffusionTimeAdvance Macro Parameters

order: The order of explicit Super-Time Step method. Can be first, second

2.3.19 implicitTimeAdvance Macro

implicitTimeAdvance (order): Advance simulation in time using an implicit method for Poisson type problems
implicitTimeAdvance Macro Parameters
order: The order of implicit method. Currently only None is supported

2.3.20 addOutputDiagnostic (name) Macro

addOutputDiagnostic (name): Add a scalar output diagnostic
addOutputDiagnostic Macro Parameters
name: The name of the output diagnostic

2.3.21 addOutputDiagnostic (name, numberOfComponents, isVector) Macro

addOutputDiagnostic (name, numberOfComponents, isVector): Add a multi-component output diagnostic

addOutputDiagnostic Macro Parameters

name: The name of the output diagnostic
numberOfComponents: The number of components for the output diagnostic
isVector: True/False. Is the output diagnostic a vector quantity.

2.3.22 addOutputDiagnosticParameter Macro

addOutputDiagnosticParameter (name, varName, varValue): Specify a paramter in an output diagnostic

addOutputDiagnosticParameter Macro Parameters

name: The type of the output diagnostic
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.3.23 addOutputDiagnosticPreExpression Macro

addOutputDiagnosticPreExpression (name, expression): Specify a preExpression in an output diagnostic. Available pre-defined quantities are

```
preDefined = [rho rhoVx rhoVy rhoVz En Vx Vy Vz P ]
```


addOutputDiagnosticPreExpression Macro Parameters

name: The type of the output diagnostic
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, preDefined, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.3.24 addOutputDiagnosticExpression Macro

addOutputDiagnosticExpression (name, expression): Specify an Expression in an output diagnostic.
Available pre-defined quantities are
preDefined $=$ [rho rhoVx rhoVy rhoVz En Vx Vy Vz P]

addOutputDiagnosticExpression Macro Parameters

name: The type of the output diagnostic
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, preDefined, variable,t,x,y,z)

2.3.25 runFluidSimulation Macro

runFluidSimulation (): Evaluate all macros added to the .pre file and generate the in file

2.4 Ideal MHD Macro

This macro file can be imported to an input file with \$ import idealmhd.mac.
This collection of macros can be used to define quantities required for the MHD equations.

Contents

- initializeFluidSimulation Macro
- createFluidSimulation Macro
- addVariable Macro
- addPreExpression Macro
- addExpression Macro
- finiteVolumeScheme (diffusive) Macro
- finiteVolumeScheme (diffusive,basementPressureIn,basementDensityIn) Macro
- addGravitationalAcceleration Macro
- addBoundaryConditionVariable (name, varName, varValue) Macro
- addBoundaryConditionVariable (name, entityName, varName, varValue) Macro
- addBoundaryConditionPreExpression (name, expression) Macro
- addBoundaryConditionPreExpression (name, entityName, expression) Macro
- addBoundaryConditionExpression (name, expression) Macro
- addBoundaryConditionExpression (name, entityName, expression) Macro
- boundaryCondition (type) Macro
- boundaryCondition (type, entityName) Macro
- timeAdvance Macro
- diffusionTimeAdvance Macro
- implicitTimeAdvance Macro
- addOutputDiagnostic (name) Macro
- addOutputDiagnostic (name, numberOfComponents, isVector) Macro
- addOutputDiagnosticParameter Macro
- addOutputDiagnosticPreExpression Macro
- addOutputDiagnosticExpression Macro
- runFluidSimulation Macro

2.4.1 initializeFluidSimulation Macro

initializeFluidSimulation (dimensionality,tStart,tEnd,numFrames,cflNum,gammaIn,muIn,writeRestartIn,debugIn):
Define quanties required for the Euler equations.

initializeFluidSimulation Macro Parameters

dimensionality: $1,2,3$. Number of dimensions for the simulation
tStart: Start time for simulation
tEnd: End time for simulation
numFrames: Number of data outputs
cflNum: Cfl limit, typically $\Delta t=c f l N u m * \Delta x / V_{\max }$
gammaIn: Adiabatic index for ideal gas eqn. of state. Pressure $=($ gammaIn -1.0$) *$ density $*$ internal energy
muIn: Permeability of free space
writeRestartIn: Output data required for simulation restart
debugIn: Run simulation in debug mode

2.4.2 createFluidSimulation Macro

createFluidSimulation (): Define and add the various data structures, initial conditions and primitive variable computations required for the MHD equations.

2.4.3 addVariable Macro

addVariable (varName, varValue): Specify a variable in the initial condition

addVariable Macro Parameters

varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.4.4 addPreExpression Macro

addPreExpression (expression): Specify a preExpression in the initial condition

addPreExpression Macro Parameters

expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression,variable,t,x,y,z)

2.4.5 addExpression Macro

addExpression (expression): Specify an Expression in the initial condition

addExpression Macro Parameters

expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.4.6 finiteVolumeScheme (diffusive) Macro

finteVolumeScheme (diffusive): Add a finite volume scheme for solving the MHD equations

finiteVolumeScheme Macro Parameters

diffusive: True/False. Utilize a diffusive, but robust scheme to solve the system

2.4.7 finiteVolumeScheme (diffusive,basementPressureln,basementDensityln) Macro

finteVolumeScheme (diffusive,basementPressureIn,basementDensityIn): Add a finite volume scheme for solving the MHD equations with a density, pressure floor

finiteVolumeScheme Macro Parameters

diffusive: True/False. Utilize a diffusive, but robust scheme to solve the system
basementPressureIn: Floor value for pressure
basementDensityIn: Floor value for density

2.4.8 addGravitationalAcceleration Macro

addGravitationalAcceleration (gravitationalAcceleration): Add a gravitational acceleration source block to the finiteVolumeScheme
addGravitationalAcceleration Macro Parameters
gravitationalAcceleration: Acceleration to apply in negative y-direction

2.4.9 addBoundaryConditionVariable (name, varName, varValue) Macro

addBoundaryConditionVariable (name, varName, varValue): Specify a variable on a userSpecified boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.4.10 addBoundaryConditionVariable (name, entityName, varName, varValue) Macro

addBoundaryConditionVariable (name, entityName, varName, varValue): Specify a variable on a userSpecified boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
entityName: The boundary entity to apply boundary condition on
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.4.11 addBoundaryConditionPreExpression (name, expression) Macro

addBoundaryConditionPreExpression (name, expression): Specify a preExpression on a userSpecified boundary condition on the ghost entity.
addBoundaryConditionPreExpression Macro Parameters
name: The type of the boundary condition to apply. Must be userSpecified.
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.4.12 addBoundaryConditionPreExpression (name, entityName, expression) Macro

addBoundaryConditionPreExpression (name, entityName, expression): Specify a preExpression on a userSpecified boundary condition on the ghost entity.

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
entityName: The boundary entity to apply boundary condition on
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.4.13 addBoundaryConditionExpression (name, expression) Macro

addBoundaryConditionExpression (name, expression): Specify an Expression on a userSpecified boundary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression, variable,t,x,y,z)

2.4.14 addBoundaryConditionExpression (name, entityName, expression) Macro

addBoundaryConditionExpression (name, entityName, expression): Specify an Expression on a userSpecified boundary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.
entityName: The boundary entity to apply boundary condition on
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,variable,t,x,y,z)

2.4.15 boundaryCondition (type) Macro

boundaryCondition (type): Apply a boundary condition for the MHD equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall, noInflow, noSlip.

2.4.16 boundaryCondition (type, entityName) Macro

boundaryCondition (type, entityName): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall, noInflow, noSlip.
entityName: The boundary entity to apply boundary condition on

2.4.17 timeAdvance Macro

timeAdvance (order): Advance simulation in time using an explicit Runge-Kutta method

timeAdvance Macro Parameters

order: The order of explicit Runge-Kutta method. Can be first, second, third, fourth

2.4.18 diffusionTimeAdvance Macro

diffusionTimeAdvance (order): Advance simulation in time using an explicit Super-Time Step method for diffusion problems

diffusionTimeAdvance Macro Parameters

order: The order of explicit Super-Time Step method. Can be first, second

2.4.19 implicitTimeAdvance Macro

implicitTimeAdvance (order): Advance simulation in time using an implicit method for Poisson type problems

implicitTimeAdvance Macro Parameters

order: The order of implicit method. Currently only None is supported

2.4.20 addOutputDiagnostic (name) Macro

addOutputDiagnostic (name): Add a scalar output diagnostic
addOutputDiagnostic Macro Parameters
name: The name of the output diagnostic

2.4.21 addOutputDiagnostic (name, numberOfComponents, isVector) Macro

addOutputDiagnostic (name, numberOfComponents, isVector): Add a multi-component output diagnostic

addOutputDiagnostic Macro Parameters

name: The name of the output diagnostic
numberOfComponents: The number of components for the output diagnostic
isVector: True/False. Is the output diagnostic a vector quantity.

2.4.22 addOutputDiagnosticParameter Macro

addOutputDiagnosticParameter (name, varName, varValue): Specify a paramter in an output diagnostic

addOutputDiagnosticParameter Macro Parameters

name: The type of the output diagnostic
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.4.23 addOutputDiagnosticPreExpression Macro

addOutputDiagnosticPreExpression (name, expression): Specify a preExpression in an output diagnostic. Available pre-defined quantities are

$$
\text { preDefined }=\text { [rho rhoVx rhoVy rhoVz En Vx Vy Vz P Pb divB Jx Jy Jz] }
$$

addOutputDiagnosticPreExpression Macro Parameters

name: The type of the output diagnostic
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression,preDefined, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.4.24 addOutputDiagnosticExpression Macro

addOutputDiagnosticExpression (name, expression): Specify an Expression in an output diagnostic.
Available pre-defined quantities are
preDefined $=$ [rho rhoVx rhoVy rhoVz En Vx Vy Vz P Pb divB Jx Jy Jz]

addOutputDiagnosticExpression Macro Parameters

name: The type of the output diagnostic
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}($ preExpression,preDefined,variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

2.4.25 runFluidSimulation Macro

runFluidSimulation (): Evaluate all macros added to the .pre file and generate the .in file

2.5 Anisotropic Conductivity Macro

This macro file can be imported to an input file with \$ import anisotropicConductivity.mac.
This collection of macros can be used to add the computation of anisotropic conductivity tensor to MHD input files.

Contents

- addAnisotropicConductivity () Macro
- addAnisotropicConductivity (DIFFUSION_CFL) Macro
- addKPerpendicularParameter Macro
- addKPerpendicularPreExpression Macro
- addKPerpendicularExpression Macro
- addKParallelParameter Macro
- addKParallelPreExpression Macro
- addKParallelExpression Macro
- anisotropicDiffusionScheme Macro
- diffusionTimeAdvance Macro

2.5.1 addAnisotropicConductivity () Macro

addAnisotropicConductivity (): Adds computation of anisotropic conductivity tensor to MDH input files.

2.5.2 addAnisotropicConductivity (DIFFUSION_CFL) Macro

addAnisotropicConductivity (DIFFUSION_CFL): Adds computation of anisotropic conductivity tensor to MDH input files.

addAnisotropicConductivity Macro Parameters

DIFFUSION_CFL: Apply a separate CFL condition to the diffusion solve, specified by the value of DIFFUSION_CFL

2.5.3 addKPerpendicularParameter Macro

addKPerpendicularParameter (varName, varValue): Specify a variable for computing kPerpendicular addKPerpendicularParameter Macro Parameters
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.5.4 addKPerpendicularPreExpression Macro

addKPerpendicularPreExpression (expression): Specify a preExpression for computing kPerpendicular addKPerpendicularPreExpression Macro Parameters
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression,variable,t,x,y,z)

2.5.5 addKPerpendicularExpression Macro

addKPerpendicularExpression (expression): Specify an Expression for computing kPerpendicular addKPerpendicularExpression Macro Parameters
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (expression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.5.6 addKParalleIParameter Macro

addKParallelParameter (varName, varValue): Specify a variable for computing kParallel
addKParalleIParameter Macro Parameters
varName: Name to assign the quantity that is independent of grid position
varValue: Value to assign the quantity that is independent of grid position

2.5.7 addKParalleIPreExpression Macro

addKParallelPreExpression (expression): Specify a preExpression for computing kParallel addKParalleIPreExpression Macro Parameters
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (preExpression,variable,t,x,y,z)

2.5.8 addKParalleIExpression Macro

addKParallelExpression (expression): Specify an Expression for computing kParallel
addKParallelExpression Macro Parameters
expression: The mathematical expression to evaluate. $\mathrm{f}=\mathrm{f}$ (expression, variable, $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

2.5.9 anisotropicDiffusionScheme Macro

anisotroipcDiffusionScheme (): Add a finite volume discretization of an anisotropic diffusion operator, $\nabla \cdot \kappa \nabla \Phi$

2.5.10 diffusionTimeAdvance Macro

diffusionTimeAdvance (order): Add an explicit Super-Time Step scheme for evolving the total energy of the gas with an anisotropic conductivity tensor
diffusionTimeAdvance Macro Parameters
order: Order of the method. Can be 'first', 'second'.

Defines the simulation grid for USim. An example Grid block is shown below:

```
<Grid domain>
    kind = cart1d
    ghostLayers = 2
    lower = [0.0]
    upper = [1.0]
    cells = [512]
</Grid>
```

The common parameters accepted by this updater block are listed below:
kind (string) All Grid blocks take a string kind that species the type of USim simulation grid. The different kinds of grid available in USim are:

3.1 cart (1d, 2d, 3d)

Used for defining a grid with regular spacing in the x, y, and z directions.

3.1.1 Parameters

lower (float vector) Defines the lower x, y, z coordinates in the form lower=[XLOWER, YLOWER, ZLOWER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra components are ignored.
upper (float vector) Defines the upper $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates in the form upper=[XUPPER, YUPPER, ZUPPER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra components are ignored.
cells (integer vector) Defines the number of cells in the domain, cells=[CELLSX, CELLSY, CELLSZ]. Extra components are ignored, and in 1D only the first component is used, similarly in 2D only the first 2 components are used and in 3D the first 3 components are used.
isRadial (boolean) Defines whether or not coordinates are radial ($\mathrm{r}, \theta, \mathrm{z}$) or Cartesian ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
periodicDirs (integer vector) Define the directions where periodic boundary conditions will be applied. perioddicDirs $=[0,1]$ tells USim that the grid is periodic in the X and Y directions if a periodicCartBc is called.
ghostLayers (integer) Tell USim how many ghost layers the grid should use. The default value is 1 .
writeGeom (boolean) Tell USim whether or not to write out geometrical data. Defaults to false.
writeConn (boolean) Tell USim whether or not to write out connectivity data. Defaults to false.
writeHalos (boolean) Tell USim whether the halo data and grid should be dumped. Defaults to false. Useful for debugging.

3.1.2 Example

Sample code block

```
<Grid domain>
    kind = cart2d
    ghostLayers = 2
    lower = [0.0, 0.0]
    upper = [1.0, 1.0]
    cells = [CELLX, CELLSY]
    periodicDirs = [0]
    isRadial = false
</Grid>
```


3.2 bodyFitted (1d, 2d, 3d)

Used for defining block structured body fitted grid by defining the vertices of each cell. Maps a regular Cartesian grid to a more complex grid with curved boundaries. Instructions on generating body fitted meshes are given in usimbase-tutorial-lesson-4.

3.2.1 Parameters

Vertices (block) Defines the coordinates of the vertices of the grid
lower (float vector) Defines the lower mapping $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates in the form lower=[XLOWER, YLOWER, ZLOWER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra components are ignored.
upper (float vector) Defines the upper mapping x, y, z coordinates in the form upper=[XUPPER, YUPPER, ZUPPER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra components are ignored.

When combined with the Vertex, kind = funcVertCalc, the vertex mapping in the x direction ranges from XLOWER to XUPPER and the true x position is $\mathrm{xnew}=\mathrm{f}(\mathrm{x})$ for x between XLOWER and XUPPER
cells (integer vector) Defines the number of cells in the domain, cells=[CELLSX, CELLSY, CELLSZ]. Extra components are ignored, and in 1D only the first component is used, similarly in 2D only the first 2 components are used and in 3D the first 3 components are used.
isRadial (boolean) Defines whether or not coordinates are radial ($\mathrm{r}, \theta, \mathrm{z}$) or Cartesian ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Defaults to false or cartesian coordinates
ghostLayers (integer) Tell USim how many ghost layers the grid should use. The default value is 1 .
writeGeom (boolean) Tell USim whether or not to write out geometrical data. Defaults to false.
writeConn (boolean) Tell USim whether or not to write out connectivity data. Defaults to false.
writeHalos (boolean) Tell USim whether the halo data and grid should be dumped. Defaults to false. Useful for debugging.

3.2.2 Example

Sample code block

```
<Grid domain>
    kind = bodyFitted2d
    lower = [0.0, 0.0]
    upper = [1.0, 1.0]
    cells = [R_CELLS, $Z_INLET_CELLS+Z_CURVE_CELLS$]
    ghostLayers = 2
    isRadial = 1
    <Vertices vertices>
        kind = funcVertcalc
        <Function f>
            kind = exprFunc
            z_inlet = Z_INLET
            z_inlet_cells = $Z_INLET_CELLS*1.0$
            z_curve_cells = $Z_CURVE_CELLS*1.0$
            r_inner = R_INNER
            r_outer = R_OUTER
            r_cells = $R_CELLS*1.0$
            dz_inlet = $Z_INLET/Z_INLET_CELLS$
            circ_rad = CIRC_RAD
            # cell spacings in computational space
            dzc = $1.0/(Z_INLET_CELLS+Z_CURVE_CELLS)$
            drc = $1.0/R_CELLS$
            zc_inlet = $1.0*Z_INLET_CELLS/(Z_INLET_CELLS+Z_CURVE_CELLS)$
            preExprs = [ \
            "r = x", \
            "z = y", \
            "iz = rint(z/dzc)", \
            "ir = rint(r/drc)", \
            "zp_inlet = if (iz<=z_inlet_cells, dz_inlet*iz, 0.0)", \
            "rp_inlet = if (iz<=z_inlet_cells, r_inner+ir*(r_outer-r_inner)/r_cells, 0.0)", \
            "rr = r_inner + r*(r_outer-r_inner)", \
            "zz = 0.5*_pi*(z-zc_inlet)/(1.0-zc_inlet)", \
            "rp_curve = if (iz>z_inlet_cells, rr*cos(zz), 0.0)", \
            "zp_curve = if (iz>z_inlet_cells, rr*sin(zz) + z_inlet, 0.0)", \
            "rp = rp_curve+rp_inlet", \
            "zp = zp_curve+zp_inlet" \
            ]
            exprs = ["rp", "zp"]
        </Function>
    </Vertices>
</Grid>
```


3.3 unstructured

Reads an unstructured grid generated by an external tool into USim. Currently USim does not do its own decomposition so it is assumed that the decomposition data is stored in the grid. Details on generating grids using GMSH and CUBIT/Trelis are given in usimbase-tutorial-lesson-5.

3.3.1 Parameters

Creator (block) Defines the what type of grid will be read in. USim currently supports 2 different types of grids: Exodus meshes (frequently generated by CUBIT or Trelis):

```
<Creator ctor>
    kind = exodus
    ndim = 3
    file = NElementCube_1000.g
</Creator>
```

or

```
<Creator ctor>
    kind = exodus
    ndim = 3
    file = NElementCube_1000.exo
</Creator>
```

and meshes generated with gmsh:

```
<Creator ctor>
    kind = gmsh
        ndim = 2
        file = rampgeom.msh
</Creator>
```

isRadial (boolean) Defines whether or not coordinates are radial ($\mathrm{r}, \theta, \mathrm{z}$) or Cartesian ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Defaults to false or cartesian coordinates
ghostLayers (integer) Tell USim how many ghost layers the grid should use. The default value is 1.
writeGeom (boolean) Tell USim whether or not to write out geometrical data. Defaults to false.
writeConn (boolean) Tell USim whether or not to write out connectivity data. Defaults to false.
writeHalos (boolean) Tell USim whether the halo data and grid should be dumped. Defaults to false. Useful for debugging.

3.3.2 Example

Sample code block

```
<Grid domain>
    kind = unstructured
    ghostLayers = 2
    <Creator ctor>
        kind = gmsh
        ndim = 2
```

```
file = rampgeom.msh
    </Creator>
    </Grid>
```


DATASTRUCT

Basic data structure of USim. Updaters perform operations on DataStructs and write out to DataStructs. An example DataStruct block is shown below:

```
<DataStruct q>
    kind = nodalArray
    onGrid = domain
    numComponents = 9
</DataStruct>
```

The parameters accepted by this updater block are listed below:
onGrid (string) All data structures take a string that tells the data structure which grid it is defined on.
writeOut (boolean) Tells USim whether to write out data from the DataStruct or not.
kind (string) All DataStruct blocks take a string kind that specifies the type of DataStruct. The different kinds of DataStruct available in USim are:

4.1 bin

A bin is a data structure for grouping unstructured grid elements into a regular grid. The bin superimposes a regular grid over a structured or unstructured grid. Each element of the bin stores data about which cells within the structured or unstructured grid are contained within its boundaries. The data structure is used for such things as computing line integrals on unstructured meshes since it reduces the search time for finding what cell a particular point belong in.

4.1.1 Parameters

scale (float) Estimate for how much larger (in length) a typical bin element is than the average grid size. If domain is a regular grid with size 100 X 100 and scale $=2.0$ then the bin would be a regular grid with size 50X50 with the same extents as the domain.

4.1.2 Example

```
<DataStruct cellBin>
    kind = bin
    onGrid = domain
    scale = 2.0
</DataStruct>
```


4.2 dynVector

A dynVector is a single vector that has the same value on all processor domains. The dynVector changes with time and its value is recorded at every time step in the output files when writeOut = true. An example of the use of of the dynVector would be storing the total energy of the system at every time step.

4.2.1 Parameters

numComponents (integer) Defines the number of components in the dynVector.

4.2.2 Example

```
<DataStruct totalMass>
    kind = dynVector
    onGrid = domain
    numComponents = 1
</DataStruct>
```


4.3 nodalArray

A nodalArray is a distributed array. This means during parallel runs the array is distributed across the different MPI domains. The nodalArray knows how to synchronize domain boundaries.

4.3.1 Parameters

numComponents (integer) Defines the number of components in the distributed array. Solving the Euler equations requires 5 variables per grid point so in this case numComponents $=5$.
useEpetraVector (boolean) Use an Epetra compatible version of the nodal component array. Required if the data structured is used as an input/output vector for implicitMultiUpdater (1d, 2d, 3d)

4.3.2 Example

```
<DataStruct q>
    kind = nodalArray
    onGrid = domain
    numComponents = 18
</DataStruct>
```


DATASTRUCTALIAS

DataStructAlias is a pointer to a DataStruct. The DataStructAlias can be used everywhere a DataStruct can be used. An example DataStructAlias block is shown below:

```
<DataStructAlias electronDensity>
    kind = nodalArray
    target = q
    componentRange = [0,1]
    writeOut = false
</DataStructAlias>
```

The parameters accepted by this updater block are listed below:
kind (string) The kind of DataStruct. This must be nodalArray.
target (string) The DataStruct that the DataStructAlias is pointing to. DataStructAlias only works with DataStruct of kind = nodalArray
componentRange (integer vector) The vector must have 2 components. The first component specifies the starting index of DataStruct that the DataStructAlias points to. The second value is the upper limit that the DataStructAlias points to - DataStructAlias can access up to, but not included the index of the second component.

An example follows. Suppose we have the DataStruct

```
<DataStruct q>
        kind = nodalArray
        onGrid = domain
        numComponents = 9
    </DataStruct>
```

with DataStructAlias

```
<DataStructAlias electronDensity>
    kind = nodalArray
    target = q
    componentRange = [3,5]
    writeOut = false
    </DataStructAlias>
```

The DataStructAlias points to element 3, 4 of DataStruct.
writeOut (boolean) Tells USim whether to write out data from the DataStructAlias or not.

UPDATESTEP

Defines an update step. An update step is a sequence of updaters with a possible synchronization that occurs at the end of the update steps. Synchronization is used in parallel runs for updating ghost cell values along the specified domains. An example UpdateStep code block is given below:

```
<UpdateStep bcStep>
    updaters = [bcLeft, bcRight, bcTop, bcBottomIon, bcBottomElectron, bcBottomEm]
    syncVars = [qnew]
</UpdateStep>
```

In this code block all the boundary condition updaters are called then "qnew" is synchronized across MPI barriers. The parameters for this UpdateStep have the following meanings:
updaters (string vector, required) Defines the list of updaters called in this update step. The updaters are called in the order they are presented in the list.
syncVars (string vector, optional) Defines a list of nodalArrays that are synchronized accross MPI boundaries at the completion of the update step.
operation (string, optional) Used in combination with multiUpdater (1d, 2d, 3d) and implicitMultiUpdater (1d, $2 d, 3 d)$. Accepted values are integrate or operate. When integrate is used, integration is performed imediately after it is called. When operate is called an operation is performed on the newly integrated values (for each sub step of the runge-kutta method). If operation is not used then the updaters are simply evaluated.

UPDATESEQUENCE

Update sequence takes a series of update steps and processes them in order. An example UpdateSequence is shown below:

```
<UpdateSequence sequence>
    startOnly = [initStep]
    restartOnly = [restoreStep]
    loop = [restrictions, hyperStep, correctionStep, bcStep, copyStep]
    writeOnly = [pressureStep]
</UpdateSequence>
```

The parameters for this UpdateSequence have the following meanings:
startonly (string vector) Defines a list of UpdateSteps to apply only at the beginning of the simulation.
restartonly (string vector) Defines a list of UpdateSteps to apply only in the restore phase of a restarted simulation.
loop (string vector) Defines a list of UpdateSteps that are continually looped over until the simulation completes. writeOnly (string vector) Defines a list of UpdateSteps to apply only at data output time.

UPDATER

Updaters are the fundamental computation infrastructure in USim. Given a set of input data structures, in, an Updater computes a set of output data structures out according to a set of rules defined by the kind of Updater. A simple updater based on a combiner ($1 d, 2 d, 3 d$) Updater for computing the gas and magnetic pressure of a magnetohydrodynamic plasma is given below:

```
<Updater pressCalc>
    kind = combiner1d
    onGrid = domain
# input array
    in = [q]
# ouput data-structures
    out = [pressure]
# labels for components in the input q array
    indVars_q = ["rho", "rhou", "rhov", "rhow", "Er","bx","by","bz", "psi"]
# Adiabatic index, or ratio of specific heats
    gasGamma = $GAS_GAMMA$
# Permeability of free space
    muO = $MU0$
    preExprs = ["pr = (gasGamma-1)*(Er - (0.5*(rhou^2+rhov^2+rhow^2)/rho) - \
                                (0.5/mu0)*(bx*bbx+by*by+bz*bz))", \
            "pm=(0.5/mu0)*(bx*bx+by*by+bz*bz)" ]
    exprs = ["pr", "pm"]
</Updater>
```

The following parameters are common to all Updater blocks:
onGrid (string, required) All updaters take a string that says which grid the updater is applied to. This grid corresponds to that which the input nodalArray is defined on
kind (string, required) All updater blocks take a string kind that species the type of updater block.
The following Updater kind attributes can be specified to perform simple operations (initialize, copy, transform) on nodalArray and dynVector data structures:

8.1 initialize (1d, 2d, 3d)

Initializes a nodalArray according to a user specified function block.

8.1.1 Data

out (string vector, required) Outputs 1 to N are nodalArrays which are initialized according to the function of this updater. If multiple outs are specified, then each nodalArray must have the same number components.

8.1.2 Parameters

There are no additional parameters for this kind of Updater

8.1.3 Sub-Blocks

Function (block, required) exprFunc for specifying the initial condition.

8.1.4 Example

The following code block specificies the initial condition for a magnetized shock tube for a two temperature plasma:

```
<Updater init>
    kind = initializeld
    onGrid = domain
    out = [q]
    <Function func>
        kind = exprFunc
        pr = 1.0
        pl = 0.1
        rhor = 1.0
        rhol = 0.125
        muO = MUO
        gas_gamma = GAMMA
        preExprs = [ \
        "rho = if (x > 0.0, rhol, rhor)", \
        "P = if(x > 0.0, pl, pr)", \
        "bx = 0.75*sqrt(mu0)", \
        "by = if(x>0.0, -1.0*sqrt(mu0), 1.0*sqrt(mu0))", \
        "bz = 0.0",\
        "phi = 0.0",\
    ]
        exprs = ["rho", "0.0", "0.0", "0.0", \
                        "P/(gas_gamma-1) + (0.5/mu0) * (bx*bx+by*by)", \
                        "bx","by","bz","phi", "0.5*P/(gas_gamma-1)"]
    </Function>
</Updater>
```


8.2 linearCombiner (1d, 2d, 3d)

Sum a user specified list of input nodalArrays, where each component can be scaled by a scalar factor and store the ouput in a single user-specifed nodalArray. All input and output data structures must have the same number of components.

The linearCombiner accepts the following parameters, in addition to those required by Updater:

8.2.1 Data

in (string vector, required) Input 1 to N are input nodalArrays to be summed. Each component can be scaled by a scalar factor.
out (string vector, required) Output is a nodalArray which will contain the sum of the inputs.

8.2.2 Parameters

coeffs (float vector, required) A vector of n scalars, such that out $=\sum_{s=0}^{n-1} c_{s} \operatorname{in}_{s}$

8.2.3 Example

The following code block copies input nodalArray qnew to output nodalArray q :

```
<Updater copier>
    kind = linCombinerUpdater
    onGrid = domain
    in = [qnew]
    out = [q]
    coeffs = [1.0]
</Updater>
```


8.3 uniformCombiner (1d, 2d, 3d)

Performs an identical arithmetic operation on all components of a set of input nodalArrays and stores the ouput in a single user-specifed nodalArray using an expression evaluator. All input and output data structures must have the same number of components. The expression evaluator recognizes positions x, y, z and time t, along with the current timestep, $d t$, and the cell volume, d Volume. The expression evaluator checks the user supplied expression for validity and errors on finding undefined expressions.

The uniformCombiner accepts the following parameters, in addition to those required by Updater:

8.3.1 Data

in (string vector, required) Inputs 1 to N are input nodalArrays which will be supplied to the expression evaluator.
out (string vector, required) Output is a nodalArray which will contain the evaluation.

8.3.2 Parameters

indVars_inName (string vector, required) For each input variable an "indVars" string vector must be defined. So if in $=[q 1, k 2]$ where $q 1$ and electricField are both nodalArray then the uniformCombiner block must define indVars_q1 = ["q1"] and indVars_k2 = [" $k 2 "]$. Note that the labels " $q 1$ " and " $k 2$ " are arbitrary; the requirement is that there is a single unique name for each input data structure, irrespective of the number of components of that data structure.
exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the output array. Only one string can be supplied; this same expression is applied to all components of the input arrays uniformly. Available command are defined by the muParser (http://muparser.sourceforge.net/)
preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs.

8.3.3 Example

The code block below demonstrates the addition of two input nodalArray and placing the result into one single output nodalArray:

```
<Updater computeQ2>
    kind = uniformCombiner1d
    onGrid = domain
    in = [q1, k2]
    out = [q2]
    indVars_q1 = ["q1"]
    indVars_k2 = ["k2"]
    exprs = ["q1+dt*k2"]
</Updater>
```


8.4 combiner (1d, 2d, 3d)

Performs arithmetic operations on a set of input nodalArrays and stores the ouput in a single user-specifed nodalArray using an expression evaluator. The expression evaluator recognizes positions x, y, z and time t, along with the current $d t$ and the cell volume, d Volume. The expression evaluator checks the user supplied expression for validity and errors on finding undefined expressions.

The combiner accepts the following parameters, in addition to those required by Updater:

8.4.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the expression evaluator.
dynVectors (string vector) Input 1 to N are input dynVectors which will be supplied to the expression evaluator.
out (string vector, required) Output is a nodalArray which will contain the output of the evaluation.

8.4.2 Parameters

indVars_inName (string vector, required) For each input variable an "indVars" string vector must be defined. So if in = [magneticField, electricField] where magneticField and electricField are each 3component nodalArrays then the combiner block must define indVars_magneticField = ["bx", "by", " $b z "]$ and indVars_electricField = ["ex", "ey", "ez"]. Note that the labels " $b x$ ", " $b y$ ", " $b z$ " and "ex", "ey", " $e z$ " are arbitrary; the requirement is that there is a unique name for each component of each input data structure.
dynVars_ (string vector) For each dynVector variable a "dynVars" string vector must be defined. So if $d y n-$ Vectors $=[a, b]$ where a and b are each 3-component dynVectors then the combine block must define dynVectorVars_ $a=[" a 1 ", " a 2 ", " a 3 "]$ and dynVectorVars_ $b=[" b 1 ", " b 2 ", " b 3 "]$. Note that the labels " $a 1$ "," $a 2$ "," $a 3$ " and " $b 1$ "," $b 2$ "," $b 3$ " are arbitrary; the requirement is that there is a unique name for each component of each input data structure.
exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the output array. The number of strings must be identical to the number of components in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs.

8.4.3 Example

The following code block demonstrates the use of a combiner to compute the cross product of two 3-component nodalArrays (magneticField and electricField) using preExprs, and store the output multiplied by a userspecifed constant (factor) in a 3-component nodalArray (eCrossB)

```
<Updater computeECrossB>
    kind = combiner2d
    onGrid = domain
    in = [magneticField, electricField]
    out = [eCrossB]
    indVars_magneticField = ["bx", "by", "bz"]
    indVars_electricField = ["ex", "ey", "ez"]
    factor = 10.0
    preExprs = ["Sx = (ey*bz-ez*by)", "Sy = (ez*bx-ex*bz)", "Sz =
    (ex*by-ey*bx)"]
    exprs = ["factor*Sx", "factor*Sy", "factor*Sz"]
</Updater>
```


8.5 dynVectorOperator

Performs arithmetic operations on a set of input dynVectors and stores the ouput in a single user-specifed dynVector using an expression evaluator. The expression evaluator recognizes time t, along with the current timestep
$d t$. The expression evaluator checks the user supplied expression for validity and errors on finding undefined expressions.
The dynVectorOperator accepts the following parameters, in addition to those required by Updater:

8.5.1 Data

in (string vector, required) Input 1 to N are input dynVectors which will be supplied to the expression evaluator.
out (string vector, required) Output is a dynVector which will contain the evaluation.

8.5.2 Parameters

indVars_inName (string vector, required) For each input variable an indVars string vector must be defined. So if in = [charge, current] where charge and current are each 1-component dynVectors then the dynVectorOperator block must define indVars_charge $=[" Q "]$ and indVars_current $=[" I "]$. Note that the labels " Q " and " I " are arbitrary; the requirement is that there is a unique name for each component of each input data structure.
exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the output array. The number of strings must be identical to the number of components in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs.

8.5.3 Example

The following code block demonstrates the use of a dynVectorOperator to compute update the current associated with the flow of charge. Two input dynVectors (charge and current) are combined in an exprs and the output is stored in a dynVector (current). Note that a dynVector can be both an input data structure and and output data structure for this updater.

```
<Updater integrateCurrent>
    kind = dynVectorOperator
    in = [charge, current]
    out = [current]
    indVars_charge = ["Q"]
    indVars_current = ["I"]
    C = CAPACITANCE
    bgL = L0
    exprs = ["I-dt*(1.0/bgL)*(Q/C)"]
</Updater>
```

The following Updater kind attributes can be specified to perform more advanced operations based on predefined USim capabilities:

8.6 equation (1d, 2d, 3d)

The equation updater is used to update a Algebraic Equations and evaluates a set of input nodalArrays and stores the ouput in one or more user-specified nodalArrays. The number of inputs and outputs are defined by the kind of Algebraic Equations being used for the Equation.
The equation updater accepts the following parameters, in addition to those required by Updater:

8.6.1 Data

in (string vector, required) Inputs 1 to N are nodalArrays which will be supplied to the source through the Equation block.
out (string vector, required) Outputs 1 to N are nodalArrays which will contain the output of the Source.

8.6.2 Parameters

There are no additional parameters for this kind of Updater.

8.6.3 Sub-Blocks

Equation Defines the kind of source being solved. Equation in this case is actually a kind of Algebraic Equations. If multiple <Equation> blocks are defined then the results are added together to produce the output.

8.6.4 Example

The following code block demonstrates the usage of the equation updater combined with the bremsPowerSrc source

```
<Updater radiationSourceUpdater>
    kind = equation1d
    onGrid = domain
    in = [elecNumDensity, temperature, zeffective]
    out = [radiationPower]
    <Equation Bremsstrahlung>
        kind = bremsPowerSrc
    </Equation>
</Updater>
```


8.7 computePrimitiveState(1d, 2d, 3d)

The computePrimitiveState updater computes a vector of primitive variables, $\mathbf{w}=\mathbf{w}(\mathbf{q})$, (e.g. density, velocity, pressure), given a vector of conserved variables \mathbf{q} (e.g. density, momentum, total energy) according to relationship specified by a Hyperbolic Equations.

The computePrimitiveState updater accepts the parameters below, in addition to those required by Updater.

8.7.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined by the choice of Hyperbolic Equations.
out (string vector, required) Output is a nodalArray which will contain $\mathbf{w}(\mathbf{q})$. The number of components is defined by the choice of Hyperbolic Equations.

8.7.2 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines $\mathbf{q}, \mathcal{F}(\mathbf{w}), \mathbf{w}=\mathbf{w}(\mathbf{q})$, along with the eigensystem associated with $\mathcal{F}(\mathbf{w})$.

8.7.3 Example

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with computePrimitiveState $(1 d, 2 d, 3 d)$ to compute $\mathbf{w}(\mathbf{q})$

```
<Updater computePrimitiveState>
    kind = computePrimitiveStateld
    onGrid = domain
# input data-structures
    in = [q,electricField,current,chargeState,resistivity]
# ouput data-structures
    out = [w]
    <Equation mhd>
        kind = twoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
        currentVector = "current"
    </Equation>
</Updater>
```


8.8 vertexJetUpdater (1d, 2d, 3d)

Initializes a fluid jet based on a tip location and the vector from a center point. Can be used to initialize multiple jets based on ideal gas laws or general equation of state using Propaceos tables. This updater was designed for simulating plasma jet merging experiments.

8.8.1 Data

out (string vector, required) The nodalArray in which to store the initialized fluid jet variables. If multiple out nodalArray are specified, then each nodalArray must have the same number components; each out data structure will be initialized according to this updater.

8.8.2 Parameters

width (float) The width of the initialization region. The jet is initialized in a region with width width which is perpendicular to the direction from the jet vertex to the origin.
length (float) The length of the initialization region. The jet is initialized in a region from the vertex to a distance length from the tip of the vertex away from the origin.
model (string) The equation system that should be used to model the jet. Model should be a fluid system such as eulerEqnEqn, idealMhdEqn, twoTemperatureMhdEqn, twoTemperatureMhdEosEqn. USim will request that values that need to be initialized in the individual models be initialized in this updater as well.
origin (float vector) The location where the jet points.
radialVelocity (float) Required only if the velocityFunction block is not specified. Provides a bulk velocity for the jet.
numberDensity (float) Characteristic number density of the fluid. If the normalizedDensityFunction has a peak value of 1 then the peak value of the number density of the jet will be numberDensity. Required if speciesMass is specified. This term is also required if a propaceos filename is specified.
speciesMass (float) Mass of the atomic species (in Kg). Required if numberDensity is specified. The parameter is also required if a propaceos filename is specified.
density (float) If neither numberDensity or speciesMass is specified then USim expects the characteristic mass density density to be specified.
pressure (float) The pressure of the jet (constant throughout the jet). Either the pressure or temperature for the jet must be defined. USim checks if the pressure is set first and if it is it uses that for initialization, otherwise it checks for temperature.
temperature (float) The temperature of the jet. Either the pressure or the temperature for the jet must be defined. USim checks if the pressure is set first and if it is it uses that for initialization, otherwise it checks for temperature.
vertex_n (float vector) vertex_n defines the tip of the nth jet. n must be a number from 0 to the number of jets in the simulation. If you skip a number the subsequent jets will be ignored. Each jet has the exact same properties, but different orientations. The jet points towards the origin.
xAxis (float vector) Allows the user to define an alternative xAxis. The coordinates for the jet vertex will be rotated to the new axis. Magnitude of the vector does not matter.
yAxis (float vector) If the user defines an xAxis they may also define a yAxis otherwise USim picks its own y Axis. The yAxis should be chosen perpendicular to the xAxis. The Magnitude of the vector does not matter.
filename (string) Name of the propaceos file to use if a general equation of state is required.
includeElectronTemperature (boolean) If filename is specified then you may or may not need to have the electron energy initialized by USim, depending on the model being used. A two-temperature model will need to set the electron energy along with the bulk energy.
electronTemperatureIndex (int) If the includeElectronTemperature is true then the user will need to specify the index in the in vector for the electron energy equation so USim knows where to initialize the electron energy.

8.8.3 Sub-Blocks

normalizedDensityFunction (block) The desired plasma jet density is scaled by the normalized density function. As a result the normalized density function should have values that range from 0 to 1 . The
density function is a function of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ where x is measured from the tip of the jet along its axis. y and z are perpendicular to this direction.
velocityFunction (block) The velocity function specifies the velocity of the jet as a function of space $\mathrm{x}, \mathrm{y}, \mathrm{z}$. The density function is a function of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ where x is measured from the tip of the jet along its axis. y and z are perpendicular to this direction.

8.8.4 Example

```
<Updater jetSet>
    kind = vertexJetUpdater3d
    origin = [0.0, 0.0, 0.0]
    width = 0.05
    length = 0.5
    radialVelocity = $-U$
    numberDensity = $RHO_JET/MI$
    speciesMass = MI
    temperature = TKELVIN
    <normalizedDensityFunction>
        kind = exprFunc
        preExprs = ["R=1.1e-2","zd=4.5e-2","r=sqrt(y*y+z*z)","alpha=3.8",\
                        "G=exp(-(r*r/(R*R)))","kappa=(x/(alpha*zd))^alpha"]
            exprs = ["max(1.0*G*kappa*exp(alpha-(x/zd)),1.0e-6)"]
        </normalizedDensityFunction>
    vertex0 = [0.25, 0.0, 0.0]
    vertex1 = [0.0, 0.25, 0.0]
    vertex2 = [0.0, 0.0, 0.25]
    model = idealMhdEosEqn
    muO = MUO
    onGrid = domain
    filename = Ar_Ni_1e^10_10group_NLTE_20110427.prp
    out = [q]
</Updater>
```

The following Updater kind attributes can be specified to compute finite volume discretizations of a range of vector calculus operators:

8.9 firstOrderMusclUpdater (1d, 2d, 3d)

The firstOrderMusclUpdater computes an first order upwind discretization of the spatial component of a nonlinear hyperbolic system, possibly with source terms:

$$
\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})
$$

where \mathbf{q} is a vector of conserved variables (e.g. density, momentum, total energy), $\mathcal{F}(\mathbf{w})$ is a non-linear flux tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), $\mathbf{w}=\mathbf{w}(\mathbf{q})$ and $\mathcal{S}(\mathbf{w})$ is some source term.

The firstOrderMuscl updater accepts the parameters below, in addition to those required by Updater.

8.9.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined by the choice of Hyperbolic Equations.
out (string vector, required) Output is a nodalArray which will contain $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})$. The number of components is defined by the choice of Hyperbolic Equations.
waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh required by some equation systems (e.g. mhdDednerEqn).

8.9.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation
numericalFlux (string, required) Defines the numerical flux need to compute an upwind approximation to the non-linear flux $\mathcal{F}(\mathbf{w})$
cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error code if this condition is violated during a timestep. Defaults to (\# of dimensions) ${ }^{-1}$.
checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should be set to false if combined with implicitMultiUpdater ($1 d, 2 d, 3 d$).
sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a Source block (see below).

8.9.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines $\mathbf{q}, \mathcal{F}(\mathbf{w}), \mathbf{w}=\mathbf{w}(\mathbf{q})$, along with the eigensystem associated with $\mathcal{F}(\mathbf{w})$.

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.9.4 Example

The following block demonstrates the firstOrderMuscl updater used in combination with the mhdDednerEqn to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=firstOrderMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
```

```
numericalFlux= hlldFlux
# CFL number to use
cfl=0.3
# list of equations to solve
equations=[mhd]
<Equation mhd>
    kind=mhdDednerEqn
    gasGamma=1.4
    externalBfield="backgroundB"
</Equation>
</Updater>
```


8.10 classicMuscIUpdater (1d, 2d, 3d)

The classicMusclUpdater computes an second order upwind discretization (that is suitable for use on good quality tetrahedral and hexahedral meshes) of the spatial component of a non-linear hyperbolic system, possibly with source terms:

$$
\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})
$$

where \mathbf{q} is a vector of conserved variables (e.g. density, momentum, total energy), $\mathcal{F}(\mathbf{w})$ is a non-linear flux tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), $\mathbf{w}=\mathbf{w}(\mathbf{q})$ and $\mathcal{S}(\mathbf{w})$ is some source term.

The classicMuscl updater accepts the parameters below, in addition to those required by Updater.

8.10.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined by the choice of Hyperbolic Equations.
out (string vector, required) Output is a nodalArray which will contain $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})$. The number of components is defined by the choice of Hyperbolic Equations.
waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh required by some equation systems (e.g. mhdDednerEqn).

8.10.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation
numericalflux (string, required) Defines the numerical flux need to compute an upwind approximation to the non-linear flux $\mathcal{F}(\mathbf{w})$
limiter (string vector, required) Defines the limiter to be applied to the input variables; one entry required per input variable.
variableForm (string, required) Whether the reconstruction will occur in primitive or conservative variables. All systems can be reconstructed in conservative form. A number of fluid systems can be also be solved in primitive form.
preservePositivity (boolean, optional) A number of equation systems can produce negative densities or pressures. The preservePositivity option checks whether the reconstructed values produce positive values for pressure and density. If they do not then it drops the order of reconstruction to first order.
cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error code if this condition is violated during a timestep. Defaults to (\# of dimensions) ${ }^{-1}$.
checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should be set to false if combined with implicitMultiUpdater ($1 d, 2 d, 3 d$).
sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a Source block (see below).

8.10.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines $\mathbf{q}, \mathcal{F}(\mathbf{w}), \mathbf{w}=\mathbf{w}(\mathbf{q})$, along with the eigensystem associated with $\mathcal{F}(\mathbf{w})$.

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.10.4 Example

The following block demonstrates the classicMuscl updater used in combination with the mhdDednerEqn to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind=mhdDednerEqn
        gasGamma=1.4
        externalBfield="backgroundB"
    </Equation>
```


8.11 unstructMuscIUpdater (1d, 2d, 3d)

The unstructMusclUpdater computes an second order upwind discretization (that is suitable for use on general unstructured tetrahedral and hexahedral meshes) of the spatial component of a non-linear hyperbolic system, possibly with source terms:

$$
\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})
$$

where \mathbf{q} is a vector of conserved variables (e.g. density, momentum, total energy), $\mathcal{F}(\mathbf{w})$ is a non-linear flux tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), w$=\mathbf{w}(\mathbf{q})$ and $\mathcal{S}(\mathbf{w})$ is some source term.

The unstructMuscl updater accepts the parameters below, in addition to those required by Updater.

8.11.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined by the choice of Hyperbolic Equations.
out (string vector, required) Output is a nodalArray which will contain $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})$. The number of components is defined by the choice of Hyperbolic Equations.
waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh required by some equation systems (e.g. mhdDednerEqn).

8.11.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation
numericalFlux (string, required) Defines the numerical flux need to compute an upwind approximation to the non-linear flux $\mathcal{F}(\mathbf{w})$
limiter (string vector, required) Defines the limiter to be applied to the input variables; one entry required per input variable.
variableForm (string, required) Whether the reconstruction will occur in primitive or conservative variables. All systems can be reconstructed in conservative form. A number of fluid systems can be also be solved in primitive form.
preservePositivity (boolean, optional) A number of equation systems can produce negative densities or pressures. The preservePositivity option checks whether the reconstructed values produce positive values for pressure and density. If they do not then it drops the order of reconstruction to first order.
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1 d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used. Defaults to 2 .
formulation (string, optional) Whether to use a reconstruction based on constant or spline interpolation. Defaults to constant.

If formulation $=$ "spline", then the following options can be specified:
leastSquaresBasis (string, optional) The spline basis to use for the least squares problem. Options are: wendland, wu and bumann. Defaults to buhmann.
leastSquaresBasisOrder (string, optional) Order of polynomial to use for the least squares basis. Can accept up to 6th order polynomials, dependent on the choice of spline basis.
cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error code if this condition is violated during a timestep. Defaults to (\# of dimensions) ${ }^{-1}$.
checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should be set to false if combined with implicitMultiUpdater ($1 d, 2 d, 3 d$).
sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a Source block (see below).

8.11.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines $\mathbf{q}, \mathcal{F}(\mathbf{w}), \mathbf{w}=\mathbf{w}(\mathbf{q})$, along with the eigensystem associated with $\mathcal{F}(\mathbf{w})$.

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.11.4 Example

The following block demonstrates the classicMuscl updater used in combination with the mhdDednerEqn to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
```

```
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind=mhdDednerEqn
        gasGamma=1.4
        externalBfield="backgroundB"
</Equation>
</Updater>
```


8.12 thirdOrderMuscIUpdater (1d, 2d, 3d)

The thirdOrderMusclUpdater uses third order accurate spatial reconstruction that is suitable for use on general unstructured tetrahedral and hexahedral meshes to compute an upwind discretization of the spatial component of a non-linear hyperbolic system, possibly with source terms:

$$
\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})
$$

where \mathbf{q} is a vector of conserved variables (e.g. density, momentum, total energy), $\mathcal{F}(\mathbf{w})$ is a non-linear flux tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), $\mathbf{w}=\mathbf{w}(\mathbf{q})$ and $\mathcal{S}(\mathbf{w})$ is some source term.

The thirdOrderMuscl updater accepts the parameters below, in addition to those required by Updater.

8.12.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined by the choice of Hyperbolic Equations.
out (string vector, required) Output is a nodalArray which will contain $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w})$. The number of components is defined by the choice of Hyperbolic Equations.
waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh required by some equation systems (e.g. mhdDednerEqn).

8.12.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation
numericalflux (string, required) Defines the numerical flux need to compute an upwind approximation to the non-linear flux $\mathcal{F}(\mathbf{w})$
limiter (string vector, required) Defines the limiter to be applied to the input variables; one entry required per input variable.
variableForm (string, required) Whether the reconstruction will occur in primitive or conservative variables. All systems can be reconstructed in conservative form. A number of fluid systems can be also be solved in primitive form.
preservePositivity (boolean, optional) A number of equation systems can produce negative densities or pressures. The preservePositivity option checks whether the reconstructed values produce positive values for pressure and density. If they do not then it drops the order of reconstruction to first order.
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used. Defaults to 2 .
formulation (string, optional) Whether to use a reconstruction based on constant or spline interpolation. Defaults to constant.

If formulation $=$ "spline", then the following options can be specified:
leastSquaresBasis (string, optional) The spline basis to use for the least squares problem. Options are: wendland, wu and bumann. Defaults to buhmann.
leastSquaresBasisOrder (string, optional) Order of polynomial to use for the least squares basis. Can accept up to 6th order polynomials, dependent on the choice of spline basis.
cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error code if this condition is violated during a timestep. Defaults to ($\#$ of dimensions) ${ }^{-1}$.
checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should be set to false if combined with implicitMultiUpdater ($1 d, 2 d, 3 d$).
sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a Source block (see below).

8.12.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines $\mathbf{q}, \mathcal{F}(\mathbf{w}), \mathbf{w}=\mathbf{w}(\mathbf{q})$, along with the eigensystem associated with $\mathcal{F}(\mathbf{w})$.

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.12.4 Example

The following block demonstrates the classicMuscl updater used in combination with the mhdDednerEqn to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
```

```
# output nodal component array
out=[qnew]
# input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]
# the numerical flux to use
numericalFlux= hlldFlux
# CFL number to use
cfl=0.3
# Form of variables to limit
variableForm= primitive
# Limiter; one per input nodal component array
limiter=[minmod minmod]
# list of equations to solve
equations=[mhd]
<Equation mhd>
    kind=mhdDednerEqn
    gasGamma=1.4
    externalBfield="backgroundB"
</Equation>
</Updater>
```


8.13 vector (1d, 2d, 3d)

The vector updater computes a range of first derivatives of quanties defined on the USim computational mesh using a least squares gradient method. This updater differs from the firstOrderMusclUpdater (1d, 2d, 3d), classicMusclUpdater (1d, 2d, 3d), unstructMusclUpdater (1d, 2d, 3d) and thirdOrderMusclUpdater (1d, 2d, $3 d$) updaters in that no upwinding is performed here. As such, the vector updater is only suitable for problems that do not require upwind stabilization.

The vector updater accepts the parameters below, in addition to those required by Updater.

8.13.1 Data

in (string vector, required) Defined by the choice of the derivative attribute, as detailed below.
out (string vector, required) Defined by the choice of the derivative attribute, as detailed below.

8.13.2 Parameters

orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of 1,2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used.
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion updater.
derivative (string, required) The type of derivative that will be performed. Available derivatives are:
gradient (derivative $=$ gradient) Computes $c \nabla \phi$ where ϕ is a scalar quantity defined on the grid and c is a constant coefficient. When derivative $=$ gradient is specified, the following input and output variables should be specified:
in ϕ (nodalArray, 1-component, required): scalar quantity to compute the gradient of.
out $c \nabla \phi$ (nodalArray, 3-components, required): gradient of ϕ
curl (derivative $=\boldsymbol{c u r l})$ Computes $c \nabla \times \mathbf{v}$ where \mathbf{v} is a vector quantity defined on the grid and c is a constant coefficient. When derivative $=c u r l$ is specified, the following input and output variables should be specified:
in \mathbf{v} (nodalArray, 3-components, required): vector quantity to compute the curl of.
out $c \nabla \times \mathbf{v}$ (nodalArray, 3-components, required): curl of \mathbf{v}
divergence (derivative $=$ divergence $)$ Computes $c \nabla \cdot \mathbf{v}$ where \mathbf{v} is a vector quantity defined on the grid and c is a constant coefficient. When derivative $=$ divergence is specified, the following input and output variables should be specified:
in \mathbf{v} (nodalArray, 3-components, required); vector quantity to compute the divergence of.
out $c \nabla \cdot \mathbf{v}$ (nodalArray, 3-components, required); divergence of \mathbf{v}

8.13.3 Example

The following code block demonstrates the least squares gradient operator for computing the gradient of a scalar quantity:

```
<Updater derivative>
    kind = vector2d
    derivative = gradient
    coefficient = 1.0
    numberOfInterpolationPoints = 8
    orderAccuracy = 2
    onGrid = domain
    in = [phi]
    out = [gradPhi]
</Updater>
```

The following code block demonstrates the least squares curl operator for computing the curl of a vector quantity:

```
<Updater copier>
    kind = vector2d
    onGrid = domain
    derivative = curl
    coefficient = 1.0
    orderAccuracy = 1
```

```
    numberOfInterpolationPoints = 5
in = [q]
out = [qnew]
</Updater>
```

The following code block demonstrates the least squares divergence operator for computing the divergence of a vector quantity:

```
<Updater copier>
    kind = vector2d
    onGrid = domain
    derivative = divergence
    orderAccuracy = 2
    coefficient = 1.0
    numberOfInterpolationPoints = 8 # 7 for lst degree polynomial
    in = [q]
    out = [qnew]
</Updater>
```


8.14 diffusion (1d, 2d, 3d)

The diffusion updater computes a range of second derivatives of quanties defined on the USim computational mesh using a least squares gradient method. The specific form of the operator can be chosen by derivative to the desired type, as detailed below.

The diffusion updater accepts the parameters below, in addition to those required by Updater.

8.14.1 Data

in (string vector, required) Defined by the choice of the derivative attribute, as detailed below.
out (string vector, required) Defined by the choice of the derivative attribute, as detailed below.

8.14.2 Parameters

orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of 1,2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used.
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion updater.
derivative (string, required) The type of derivative that will be performed. Available derivatives are:
diffusion (derivative $=$ diffusion) Computes $c \nabla \cdot(\kappa \nabla \phi)$ where ϕ and κ are scalar quantities defined on the grid and c is a constant coefficient. When derivative $=$ diffusion is specified, the following input and output variables should be specified:

in

1. ϕ (nodalArray, n -components, required); scalar quantity to compute the Laplacian. If $n>1$ then the Laplacian of each component is computed independently.
2. κ (nodalArray, n-components, required); scalar diffusion coefficient. n must be the same as for ϕ
out
3. $c \nabla \cdot(\kappa \nabla \phi)$ (nodalArray, n -components, required); Laplacian of $\phi . n$ must be the same as for ϕ
anisotropicDiffusion (derivative $=$ anisotropicDiffusion) Computes $c \nabla \cdot(\mathcal{K} \nabla \phi)$ where ϕ is a scalar quantity and \mathcal{K} is a tensor quantity defined on the grid and c is a constant coefficient. When derivative $=$ anisotropicDiffusion is specified, the following input and output variables should be specified:
in
4. ϕ (nodalArray, 1 component, required); scalar quantity to compute the Laplacian.
5. \mathcal{K} (nodalArray, 9-components, required); 9-component diffusion tesnore. Note that in one- and two-dimensions, the ignorable coordinates will be multiplied by zero.
out
6. $c \nabla \cdot(\mathcal{K} \nabla \phi)$ (nodalArray, 1-component, required); Laplacian of ϕ.
gradientOfDivergence (derivative $=$ gradientOfDivergence) Computes $c \nabla(\kappa \nabla \cdot \mathbf{v})$ where \mathbf{v} is a vector quantity and κ is a scalar quantity defined on the grid and c is a constant coefficient. When derivative $=$ gradientOfDivergence is specified, the following input and output variables should be specified:
in
7. \mathbf{v} (nodalArray, 3-components, required); vector quantity to compute the Laplacian.
8. κ (nodalArray, 1-component, required); scalar diffusion coefficient.
out
9. $c \nabla(\kappa \nabla \cdot \mathbf{v})$ (nodalArray, 1-components, required); Laplacian of \mathbf{v}.

8.14.3 Example

The following code block demonstrates the least squares diffusion operator for computing the laplacian of a scalar quantity with a scalar diffusion coefficient:

```
<Updater leastSquaresDiffusion>
    kind = diffusion2d
    onGrid = domain
    derivative = diffusion
    numScalars = 2
    coefficient = 1.0
    numberOfInterpolationPoints = 8
    in = [q,D]
    out = [qnew]
</Updater>
```

The following code block demonstrates the least squares diffusion operator for computing the laplacian of a scalar quantity with a tensor diffusion coefficient:

```
<Updater computeDiffusion>
    kind = diffusion2d
    derivative = anisotropicDiffusion
    onGrid = domain
    numScalars = 3
    coefficient = 1.0
    orderAccuracy = 1
    numberOfInterpolationPoints = 8
    in = [temperature, conductivityTensor]
    out = [temperatureNew]
</Updater>
```

The following code block demonstrates the least squares diffusion operator for computing the laplacian of a vector quantity with a scalar diffusion coefficient:

```
<Updater derivative>
    kind = diffusion2d
    derivative = gradientOfDivergence
    coefficient = 1.0
    numberOfInterpolationPoints = 8
    orderAccuracy = 2
    onGrid = domain
    in = [q, diffusionCoefficient]
    out = [qnew]
</Updater>
```

The following Updater kind attributes can be specified can be used to compute finite volume discretizations of Navier-Stokes and RANS viscous operators:

8.15 navierStokesViscousOperator (1d, 2d, 3d)

The navierStokesViscousOperator computes the viscous stress and thermal conduction terms, with contributions from laminar (and optionally, turbulent) viscosity in the Navier Stokes equations using a conservative least squares interpolation scheme.

USim implements the viscous stress terms in the momentum and total energy equations in the Navier-Stokes operator using the form:

$$
\begin{array}{r}
\mathcal{S}(\mathbf{w})=\left[\begin{array}{c}
\mathcal{S}_{\rho \mathbf{u}}(\mathbf{w}) \\
S_{E}(\mathbf{w})
\end{array}\right]=\left[\begin{array}{c}
c \nabla \cdot \mathbb{S}(\mathbf{w}) \\
c \nabla \cdot\{\mathbb{S}(\mathbf{w}) \cdot \mathbf{u}\}
\end{array}\right] \\
\mathbb{S}(\mathbf{w})=2\left[\mu+\mu_{\text {turb }}\right]\left[\frac{\nabla \mathbf{u}+(\nabla \mathbf{u})^{\mathrm{T}}}{2}-\frac{\mathbb{I}}{3} \nabla \cdot \mathbf{u}\right]-\frac{2 \mathbb{I}}{3} \mu_{\mathrm{turb}} \rho k
\end{array}
$$

Here, \mathbf{w} is the primitive state vector, \mathbf{u} is the fluid velocity, μ is the laminar viscosity, $\mu_{\text {turb }}$ is the turbulent viscosity, ρ is the fluid density and k is the local local turbulent kinetic energy. The laminar viscosity can be computed through (e.g.) Sutherland's law:

$$
\mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{\frac{3}{2}}\left(\frac{T_{0}+S}{T_{0}+S}\right)
$$

where $\mu_{0}=1.716 \times 10^{-5} \mathrm{~kg}(\mathrm{~ms})^{-1}, T_{0}=491.6 R, S=198.6 R$.
USim implements the thermal conduction terms in the total energy equation in the Navier-Stokes operator using the form:

$$
S_{E}(\mathbf{w})=c \nabla \cdot\left[-\left(\kappa+\kappa_{\text {turb }}\right) \nabla T\right]
$$

where κ and $\kappa_{\text {turb }}$ are the laminar and turbulent heat conductivity, which can be modelled through:

$$
\kappa=\frac{c_{p} \mu}{\operatorname{Pr}} ; \quad \kappa_{\text {turb }}=\frac{c_{p} \mu_{\text {turb }}}{\operatorname{Pr}_{\text {turb }}}
$$

where c_{p} is the heat capacity at constant pressure and Pr and $\operatorname{Pr}_{\text {turb }}$ are the laminar and turbulent Prandtl numbers.

8.15.1 Data

in (string vector, required) Defined by the choice of the enableThermal, enableViscous, and enableTurbulence flags defined below in the Parameters section. Input variables must be in the order listed below. The rules for the which arrays should be included in the vector are as follows:

- fluid velocity: required if enableViscous $=$ true or enableTurbulence $=$ true
- total viscosity: required if enableViscous $=$ true or enableTurbulence $=$ true
- fluid temperature: required if enableThermal $=$ true or enableTurbulence $=$ true
- total thermal conductivity: required if enableThermal $=$ true or enableTurbulence $=$ true
- turbulence model: required if enableTurbulence $=$ true
- turbulence viscosity: required if enableTurbulence $=$ true

Note: If enableTurbulence is true and enableViscous is false, then enableTurbulence has no effect.
If enableTurbulence and enableThermal don't impact each other algorithmically.
If enableTurbulence is true, then the input variables are required to be present.

Fluid velocity (nodalArray, 3-components, optional) Vector of fluid velocities, required if enableViscous $=$ true: $0 . u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}:$ velocity in the $\hat{\mathbf{i}}$ direction $1 . u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction 2. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction

Total viscosity (nodalArray, 1-components, optional) Sum of the laminar and turbulent viscosities, $\mu+\mu_{\text {turb }}$ (if turbulence is not modelled, the latter can be ommitted). Required if enableViscous $=$ true:

Fluid Temperature (nodalArray, 1-components, optional) Required if enableThermal $=$ true.
Total thermal conductivity (nodalArray, 1-components, optional) Sum of the laminar and turbulent thermal conductivities, $\mu+\mu_{\text {turb }}$ (if turbulence is not modelled, the latter can be ommitted). Required if enableThermal $=$ true.

Turbulence model (nodalArray, 1-components, optional) Required if enableTurbulence $=$ true. One of:

```
Turbulent kinetic energy density }\rhok-\rho
Turbulent kinetic energy density dissipation rate \rhok - \rho\omega
```

Turbulent viscosity (nodalArray, 1-components, optional) Turbulent viscosities, $\mu_{\text {turb }}$ Required if enableTurbulence $=$ true:

out (string vector, required)

Vector of Fluxes (nodalArray, 4-components)
0. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)$: $\hat{\mathrm{i}}$ momentum flux

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)$: $\hat{\mathbf{k}}$ momentum flux
3. $\mathcal{S}(E)$: total energy flux

8.15.2 Parameters

The navierStokesViscousOperator updater accepts the parameters below, in addition to those required by Updater:
orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of 1,2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used.
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1 d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion updater.
enableThermal (boolean, optional) Tell USim whether to include the contribution from heat conduction. Default true.
enableViscous (boolean, optional) Tell USim whether to inclue the contribution from viscous stress. Default true.
enableTurbulence (boolean, optional) Tell USim whether to include the turbulence. Default false.

8.15.3 Examples

```
<Updater computeViscousSource>
    kind = navierStokesViscousOperator2d
    onGrid = domain
    coefficient = 1.0
    numberOfInterpolationPoints = 8
    orderAccuracy = 2
    enableThermal = false
    enableViscous = true
    in = [velocity, dynamicViscosity, temperature, thermalCoefficient]
```

```
    out = [viscousSource]
</Updater>
```

```
<Updater computeViscousSource>
    kind = navierStokesViscousOperator2d
    onGrid = domain
    isRadial = true
    coefficient = 1.0
    numberOfInterpolationPoints = 8
    enableThermal = false
    enableViscous = true
    enableTurbulence = true
    temperatureIndex = 0
    in = [velocity, totalVisc, avgTemp, totalCond, kEpsilon, turbulentViscosity]
    out = [viscousSource]
</Updater>
```


8.16 kOmegaOperator (1d, 2d, 3d)

The k OmegaOperator implements the right-hand side of the "Standard" Menter SST Two-Equation Model:

$$
\begin{array}{r}
\frac{\partial(\rho k)}{\partial t}+\nabla \cdot[\rho \mathbf{u} k]=P-\beta^{\star} \rho \omega k+\nabla \cdot\left[\left(\mu+\sigma_{k} \mu_{\mathrm{turb}}\right) \nabla k\right] \\
\frac{\partial(\rho \omega)}{\partial t}+\nabla \cdot[\rho \mathbf{u} \omega]=\frac{\gamma}{\nu_{\mathrm{turb}}} P-\beta^{\star} \rho \omega^{2}+\nabla \cdot\left[\left(\mu+\sigma_{k} \mu_{\mathrm{turb}}\right) \nabla \omega\right]+2\left(1-F_{1}\right) \frac{\rho \sigma_{\omega}}{\omega 2} \nabla k \nabla \omega
\end{array}
$$

The full details of this model, including the definition of the various constants, etc. can be found at http://turbmodels.larc.nasa.gov/sst.html
The kOmegaOperator operator computes the right-hand side of this model:

$$
\begin{array}{r}
\mathcal{S}_{\rho k}=P-\beta^{\star} \rho \omega k+\nabla \cdot\left[\left(\mu+\sigma_{k} \mu_{\mathrm{turb}}\right) \nabla k\right] \\
\mathcal{S}_{\rho \omega}=\frac{\gamma}{\nu_{\mathrm{turb}}} P-\beta^{\star} \rho \omega^{2}+\nabla \cdot\left[\left(\mu+\sigma_{k} \mu_{\mathrm{turb}}\right) \nabla \omega\right]+2\left(1-F_{1}\right) \frac{\rho \sigma_{\omega}}{\omega 2} \nabla k \nabla \omega
\end{array}
$$

The advective terms, $\nabla \cdot[\rho \mathbf{u} k]$ and $\nabla \cdot[\rho \mathbf{u} \omega]$ can be computed using classicMusclUpdater ($1 d, 2 d, 3 d$) combined with multiSpeciesSingleVelocityEqn.

8.16.1 Data

in (string vector of 7, required)

Fluid Model (nodalArray, 5-components, required) The vector of conserved quantities for the fluid model, \mathbf{q} has 5 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density

Turbulence model (nodalArray, 2-components, required) The vector of conserved quantities for the turbulence model:
0. ρk

1. $\rho \omega$

Fluid velocity (nodalArray, 3-components, required) Vector of fluid velocities, required if enableViscous = true:
0 . $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction

1. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
2. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction

Fluid Temperature (nodalArray, 1-components, required)
Dynamic Viscosity (nodalArray, 1-components, required)
Thermal Conductivity (nodalArray, 1-components, required)
Distance from Wall (nodalArray, 1-components, required)
out (string vector of 4, required) Vector of Fluid Model Source terms (nodalArray, 5components, required)
0. $\mathcal{S}(\rho)$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)$: total energy source

Vector of Turbulence Model Source terms (nodalArray, 2-components, required)
0. $\mathcal{S}(\rho k)$

1. $\mathcal{S}(\rho \omega)$

Turbulent viscosity (nodalArray, 1-component, required)
Maximum turbulent diffusion (nodalArray, 1-component, required)

8.16.2 Parameters

The k OmegaOperator updater accepts the parameters below, in addition to those required by Updater:
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1,2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used. Defaults to 2 .
turbulentPrandtlNumber (float, required) Prandtl number for turbulent flows, which is the ratio of eddy diffusivities of momentum and heat transfer

Cp (float, required) Specific heat at constant pressure

8.16.3 Example

```
<Updater computeRansSource>
    kind = kOmegaOperator2d
    onGrid = domain
    coefficient = 1.0
    numberOfInterpolationPoints = 16
    turbulentPrandtlNumber = 0.85
    Cp = CP
    in = [q, kOmega, velocity, temperature, visc, cond, distance]
    out = [dummySource, kOmegaSource, turbulentViscosity, maxTurbulentDiffusion]
</Updater>
```


8.17 kEpsilonOperator (1d, 2d, 3d)

Estimates the turbulent viscosity using k-epsilon model (http://turbmodels.larc.nasa.gov/ke-chien.html).
The kEpsilonOperator implements the right-hand side of the "Standard" Menter SST Two-Equation Model:

$$
\begin{array}{r}
\frac{\partial(\rho k)}{\partial t}+\nabla \cdot[\rho \mathbf{u} k]=P-\rho \epsilon+\nabla \cdot\left[\left(\mu+\frac{\mu_{\mathrm{turb}}}{\sigma_{k}}\right) \nabla k\right]+\rho L_{k} \\
\frac{\partial(\rho \epsilon)}{\partial t}+\nabla \cdot[\rho \mathbf{u} \epsilon]=\frac{C_{\epsilon_{1}} f_{1} \epsilon}{k} P-\frac{C_{\epsilon_{2}} f_{2} \rho \epsilon^{2}}{k}+\nabla \cdot\left[\left(\mu+\frac{\mu_{\mathrm{turb}}}{\sigma_{\epsilon}}\right) \nabla \epsilon\right]+\rho L_{\epsilon}
\end{array}
$$

The full details of this model, including the definition of the various constants, etc. can be found at (http://turbmodels.larc.nasa.gov/ke-chien.html)

The kEpsilonOperator operator computes the right-hand side of this model:

$$
\begin{array}{r}
\mathcal{S}_{\rho k}=P-\rho \epsilon+\nabla \cdot\left[\left(\mu+\frac{\mu_{\mathrm{turb}}}{\sigma_{k}}\right) \nabla k\right]+\rho L_{k} \\
\mathcal{S}_{\rho \omega}=\frac{C_{\epsilon_{1}} f_{1} \epsilon}{k} P-\frac{C_{\epsilon_{2}} f_{2} \rho \epsilon^{2}}{k}+\nabla \cdot\left[\left(\mu+\frac{\mu_{\mathrm{turb}}}{\sigma_{\epsilon}}\right) \nabla \epsilon\right]+\rho L_{\epsilon}
\end{array}
$$

The advective terms, $\nabla \cdot[\rho \mathbf{u} k]$ and $\nabla \cdot[\rho \mathbf{u} \omega]$ can be computed using classicMusclUpdater ($1 \mathrm{~d}, 2 d, 3 d$) combined with multiSpeciesSingleVelocityEqn.

8.17.1 Data

in (string vector of 7, required)

Fluid Model (nodalArray, 5-components, required) The vector of conserved quantities for the fluid model, \mathbf{q} has 5 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density

Turbulence model (nodalArray, 2-components, required) The vector of conserved quantities for the turbulence model:
0. ρk

1. $\rho \epsilon$

Fluid velocity (nodalArray, 3-components, required) Vector of fluid velocities, required if enableViscous = true:
0. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction

1. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
2. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction

Fluid Temperature (nodalArray, 1-components, required)
Dynamic Viscosity (nodalArray, 1-components, required)
Thermal Conductivity (nodalArray, 1-components, required)
Distance from Wall (nodalArray, 1-components, required)
out (string vector of 4, required) Vector of Fluid Model Source terms (nodalArray, 5components, required)
0. $\mathcal{S}(\rho)$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)$: total energy source

Vector of Turbulence Model Source terms (nodalArray, 2-components, required)
0. $\mathcal{S}(\rho k)$

1. $\mathcal{S}(\rho \epsilon)$

Turbulent viscosity (nodalArray, 1-component, required)
Maximum turbulent diffusion (nodalArray, 1-component, required)

8.17.2 Parameters

The kEpsilonOperator updater accepts the parameters below, in addition to those required by Updater:
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used. Defaults to 2.
turbulentPrandt lNumber (float, required) Prandtl number for turbulent flows, which is the ratio of eddy diffusivities of momentum and heat transfer

Cp (float, required) Specific heat at constant pressure
minDt (float, required) The dissipation time step is proportion to k / ϵ, which can go to infinity. We limit this ratio to the value specified by minDt.
computeViscosity (bool, required) Whether to compute the turbulent viscosity
computeSource (bool, required) Whether to compute source terms for the turbulence model.

8.17.3 Example

```
<Updater computeRansSource>
    kind = kEpsilonOperator2d
    onGrid = domain
    coefficient = 1.0
    numberOfInterpolationPoints = 16
    turbulentPrandtlNumber = 0.85
    minDt = MINDT
    computeViscosity = false
    computeSource = true
    Cp = CP
    in = [q, kEpsilon, velocity, temperature, visc, cond, distance]
    out = [dummySource, kEpsilonSource, turbulentViscosity, maxTurbulentDiffusion]
</Updater>
```

The following Updater kind attributes can be specified can be used to compute the generalized Ohm's law for an ionized plasma:

8.18 generalizedOhmsLaw (1d, 2d, 3d)

The generalizedOhmsLaw updater computes the electric field determined by parameters in the generalized Ohm's law.

$$
\begin{equation*}
\mathbf{E}=\eta \mathbf{J}+\left[-\left(\mathbf{J}-\mathbf{J}_{\mathrm{ion}}\right) \times \mathbf{B}+\nabla P_{e}\right]\left(n_{e} q_{e}\right)^{-1} \tag{8.-12}
\end{equation*}
$$

8.18.1 Data

in (string vector of 3, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Current Density (nodalArray, 3-components, required) Vector of plasma currents:
0 . $J_{\hat{\mathbf{i}}}=\mathbf{J} \cdot \hat{\mathbf{i}}$: current in the $\hat{\mathbf{i}}$ direction

1. $J_{\hat{\mathbf{j}}}=\mathbf{J} \cdot \hat{\mathbf{j}}$: current in the $\hat{\mathbf{j}}$ direction
2. $J_{\hat{\mathbf{k}}}=\mathbf{J} \cdot \hat{\mathbf{k}}$: current in the $\hat{\mathbf{k}}$ direction

Charge State (nodalArray, 1-component, required) Z, the ionization state.
out (string vector, required)
Electric field (nodalArray, 3-components, required) Vector of electric fields:
0 . $E_{\hat{\mathbf{i}}}=\mathbf{E} \cdot \hat{\mathbf{i}}$: electric field in the $\hat{\mathbf{i}}$ direction

1. $E_{\hat{\mathbf{j}}}=\mathbf{E} \cdot \hat{\mathbf{j}}$: electric field in the $\hat{\mathbf{j}}$ direction
2. $E_{\hat{\mathbf{k}}}=\mathbf{E} \cdot \hat{\mathbf{k}}$: electric field in the $\hat{\mathbf{k}}$ direction
resistivity (nodalArray, 1-component, optional) Scalar resistivity: if this term exists, then the resistive term is included in the evaluation of E.
electronPressureDerivative (nodalArray, 3-components, optional) ∇P_{e} If this term is set then the diamagnetic drift term is used in determining the electric field.

8.18.2 Parameters

The generalizedOhmsLaw updater accepts the parameters below, in addition to those required by Updater:
idealTerm (boolean) Set to false if the ideal term $\mathbf{u} \times \mathbf{B}$ should be ignored, otherwise set to true. Defaults to true.
hallTerm (boolean) Set to false if the Hall term should be ignored, otherwise set to true. Defaults to false.
fundamentalCharge (float) The charge of a proton
ionMass (float) mass of the ion. Currently assumes only one ion species
electronMass (float) mass of the electron.
boltzmannConstant (float) boltzmann's constant

8.18.3 Example

```
<Updater computeE>
    kind = generalizedOhmsLaw1d
    onGrid = domain
    in = [q, J, Zbar]
    out = [E]
    electronPressureDerivative = gradPe
    resistivity = etaJ
    hallTerm = true
    fundamentalCharge = CHARGE
    ionMass = MI
    electronMass = ME
    boltzmannConstant = KB
</Updater>
```


8.19 resitiveOperator (1d, 2d, 3d)

The resistiveOperator computes sources terms for the MHD equations using a conservative least squares gradient method:

$$
\begin{array}{r}
\mathcal{S}(\mathbf{w})=\left[\begin{array}{c}
S_{E}(\mathbf{w}) \\
S_{\mathbf{B}}(\mathbf{w})
\end{array}\right]=\left[\begin{array}{c}
\nabla \cdot\left(\mu_{0}^{-1} \mathbf{E}_{\text {Extended }} \times \mathbf{B}\right) \\
\nabla \times \mathbf{E}_{\text {Extended }}
\end{array}\right] \\
\mathbf{E}_{\text {Extended }}=\mu_{0}^{-1}\left[\eta_{\text {Ohmic }} \nabla \times \mathbf{B}-\eta_{\text {Hall }}(\nabla \times \mathbf{B}) \times \mathbf{B}\right] \\
\eta_{\text {Hall }}=-\left(\frac{\rho Q Z}{m_{\text {ion }}}\right)^{-1}
\end{array}
$$

Here, $\eta_{\text {Ohmic }}$ is the Ohmic resistvity, $\eta_{\text {Hall }}$ is the Hall coefficient, rho is the fluid density, Q is the charge on a proton, Z is the ion charge state and $m_{\text {ion }}$ is the ion mass.

8.19.1 Data

in (string vector of 4 , required)
Magnetic field (nodalArray, 3-components, required)
0 . $B_{\hat{\mathbf{i}}}=\mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field in the $\hat{\mathbf{i}}$ direction

1. $B_{\hat{\mathbf{j}}}=\mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field in the $\hat{\mathbf{j}}$ direction
2. $B_{\hat{\mathbf{k}}}=\mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field in the $\hat{\mathbf{k}}$ direction

Ohmic Resistivity (nodalArray, 1-components, optional) Scalar ohmic resistivity, $\eta_{\text {Ohmic }}$; required if enableOhmicTerm = true (see below).
Mass density (nodalArray, 1-components, optional) Fluid mass density, ρ; required if enableHallTerm $=$ true (see below).

Charge State (nodalArray, 1-components, optional) Fluid charge state, Z; required if enablePartiallyIonized $=$ true (see below).

8.19.2 Parameters

The resistiveOperator updater accepts the parameters below, in addition to those required by Updater:
orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of 1,2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order varies on the problem type and the mesh used.
numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least squares fit. This parameter varies from mesh to mesh and should be determined by computing a known function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the polynomial approximation. This means that in 1 d the value is 4 , in 2D the value is at least 6 and in 3D the value is at least 10 .

These choices do not guarantee that a matrix inverse will be found. The following values though appear to be adequate in general: in 1D 4; in 2D 8 and in 3D 20.
coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion updater.
permeability (float, required) The permeability of free space, μ_{0}.
enableOhmicTerm (bool, optional) Include Ohmic resistivity, $\eta_{\text {Ohmic }} \nabla \times \mathbf{B}$ in the extended MHD electric field. Default: true.
enableHallTerm (bool, optional) Include the Hall effect, $\eta_{\text {Hall }}(\nabla \times \mathbf{B}) \times \mathbf{B}$ in the extended MHD electric field. Default: false.

If enableHallTerm $=$ true, then the following parameters are available:
ionMass (float, optional) The mass of an ion. Default value is 1.0.
fundamentalCharge (float, optional) The charge of a proton. Default value is 1.0.
enablePartiallyIonized (bool, optional) Whether to include the ion ionization state in the Hall effect. Default is false, in which case the ion is assumed to be singly ionized.

8.19.3 Example

```
<Updater computeResistiveSources>
    kind = resistiveOperator2d
    onGrid = domain
    coefficient = 1.0
    permeability = 1.0
    numberOfInterpolationPoints = 8
    in = [magneticField, resistivity]
    out = [source]
</Updater>
```

The following Updater kind attributes can be specified to perform operations related to time advance (time integration, time step restrictions):

8.20 multiUpdater (1d, 2d, 3d)

The multiUpdater references several updaters and uses them to perform an explicit time-integration. The multiUpdater typically used to advance systems of the form:

$$
\frac{\partial \mathbf{q}}{\partial t}+\nabla \cdot[\mathcal{F}(\mathbf{w})]=\mathcal{S}(\mathbf{w})
$$

Time integration schemes currently supported by multiUpdater include 1st, 2nd and 3rd order Runge-Kutta, subcycling and 1st, 2nd order accurate Super Time Step methods.

The multiUpdater updater accepts the parameters required by Updater.
The operations performed by the multiUpdater are specified using the UpdateStep and UpdateSequence pattern used for the main USim input file. Note that only the loop attribute for the UpdateSequence is used by the multiUpdater and that the attribute "operation = integrate" must be specified in the final UpdateStep in the loop in order for USim to perform the time integration.

The time integration scheme used by the multiUpdater is specified by the use of a Time Integrator block.

8.20.1 Data

in (string vector, required) Input 1 to N are input nodalArrays to be used in the updaters specified in the UpdateStep.
out (string vector, required) Output 1 to N are output nodalArrays resulting from the integration UpdateStep.

8.20.2 Sub-Blocks

TimeIntegrator Time Integrator Currently only one time integration scheme can be specified.
Time integration schemes currently supported by multiUpdater include 1st, 2nd and 3rd order RungeKutta, subcycling and 1st, 2nd order accurate Super Time Step methods.

UpdateSequence UpdateSequence This block is used to set the sequence of update steps
UpdateStep UpdateStep The steps used in the update

8.20.3 Example

The code block below demonstrates the use of a multiUpdater to solve a multi-species fluid problem with collision operators and boundary conditions:

```
<Updater rkUpdater>
    kind = multiUpdater1d
    onGrid = domain
    in = [q, q1, q2, q3]
    out = [qnew, qnew1, qnew2, qnew3]
    <TimeIntegrator rkIntegrator>
        kind = rungeKuttald
        ongrid = domain
        scheme = third
    </TimeIntegrator>
```

```
<UpdateSequence sequence>
    loop = [boundaries,hyper]
</UpdateSequence>
    <UpdateStep boundaries>
    updaters = [openBoundaries, openBoundaries1, openBoundaries2, openBoundaries3]
    syncVars = [q, q1, q2, q3]
</UpdateStep>
<UpdateStep hyper>
    operation = "integrate"
    updaters = [\
            computeN1, computeN2, computeN3, \
            computeT1, computeT2, computeT3, \
            computeV1, computeV2, computeV3, \
            collisionFrequency, \
            momentumSource, energySource,\
            hyper, hyper1, hyper2, hyper3, \
            addThermalRelaxation1, addThermalRelaxation2, addThermalRelaxation3
                ]
    syncVars = [qnew, qnew1, qnew2, qnew3]
</UpdateStep>
</Updater>
```


8.21 implicitMultiUpdater (1d, 2d, 3d)

The implicitMultiUpdater provides Jacobian Free Newton-Krylov methods with a range of non-linear and linear solvers and preconditioning strategies for solving elliptic or implicit hyperbolic problems. The implicitMultiUpdater casts these problems in residual form:

$$
\mathcal{R}(\mathbf{q})=0
$$

This formulation can then be used to solve linear problems, such as Poisson's equation:

$$
\mathcal{R}(\mathbf{q})=\nabla^{2} \phi-\sum_{\text {species }} Q_{\text {species }}
$$

or, non linear problems such as a backward Euler discretization of a non-linear hyperbolic equation:

$$
\mathcal{R}(\mathbf{q})=q^{n+1}-q^{n}+\Delta t\left\{\nabla \cdot\left[\mathcal{F}\left(\mathbf{w}^{n+1}\right)\right]-\mathcal{S}\left(\mathbf{w}^{n+1}\right)\right\}
$$

The operations performed by the implictMultiUpdater are specified using the UpdateStep and UpdateSequence pattern used for the main USim input file. Note that only the loop attribute for the UpdateSequence is used by the implicitMultiUpdater. If the implictMultiUpdater is being used to solve a system that includes a time discretization (e.g. the backward Euler example above), then the attribute "operation $=$ integrate" must be specified in the final UpdateStep in the loop in order for USim to perform the time integration. The UpdateStep attribute "operation $=$ operate" is not compatible with the implicitMultiUpdater.
The time integration scheme used by the multiUpdater is specified by the use of a Time Integrator block.
Preconditioning of the implictMultiUpdater can be specified by the addition of a Preconditioner block. one preconditioner can be specified.

8.21.1 Data

in (string vector, required) The implicitMultiUpdater accepts exactly one input variable:
Vector of Unknowns (nodalArray, n-components, required) The vector of unknowns, \mathbf{q} at time t^{n}. Must have the attribute useEpetraVector $=$ true defined in the associated dataStruct block.
out (string vector, required) The implicitMultiUpdater accepts exactly one output variable:
Vector of Unknowns (nodalArray, n-components, required) The vector of unknowns, \mathbf{q} at time t^{n+1}. Must have the attribute useEpetraVector $=$ true defined in the associated dataStruct block and have the same number of components as the input vector of unknows.
residual (string vector, optional) A string vector that specifies exactly one nodalArray to store the residual, $\mathcal{R}(\mathbf{q})$ at the end of the solve. The specified nodalArray must have the attribute useEpetraVector $=$ true defined in the associated dataStruct block.
solverPerf (string vector, optional) A string vector that specifies exactly one dynVector with 6 componets to store the solver performance. Data is appended to this data structure at each Newton iteration. The components correspond to:

0 . Number of non-linear iterations.

1. The residual norm.
2. The number of linear iterations.
3. The achieved tolerance.
4. Time to solve the linear system.
5. Time to construct the preconditioner.

8.21.2 Parameters

The implicitMultiUpdater updater accepts the parameters below, in addition to those required by Updater:
maxNonlinearIterations (integer, required) Maximum number of outer Newton steps the solver will take before returning an error code.
maxLinearIterations (integer, required) The maximum number of inner linear (Krylov) iterations to take at each Newton iteration.
numItersToStagnation (integer, optional) The number of iterations that the stagnation condition (see stagnationThreshold) is allowed to be violated for before the outer Newton solve exits. Defaults to maxNonlinearIterations/4
linearTolerance (float, required) The tolerance required to achieve convergence in the inner linear (Krylov) iterations for each Newton step.
relativeResidual (float, optional) The outer Newton problem converges when currentResidual \leq relativeResidual \times initialResidual. Required if convergenceCriteria $=$ [relativeResidual] is specified.
absoluteResidual (float, optional) The outer Newton problem converges when currentResidual \leq absoluteResidual. Required if convergenceCriteria $=$ [absoluteResidual] is specified.
stagnationThreshold (float, optional) Causes the outer Newton solve to exit if currentResidual > stagnationThreshold \times previousResidual for numItersToStagnation iterations. Defaults to 1.0.
convergenceTest (string vector, optional) List of convergence tests to determine when the outer Newton solve is converged. Options include:
relativeResidual The outer Newton problem converges when currentResidual \leq relativeResidual \times initialResidual.
absoluteResidual The outer Newton problem converges when currentResidual \leq absoluteResidual
normSolutionUpdate The outer Newton problem converges when the norm of the change in the solution vector falls below 1.0e-3.
rmsSolutionUpdate The outer Newton problem converges when the weighted root mean square norm fo the solution update satisfies

$$
\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\frac{\left(q_{i}^{k}-q_{i}^{k-1}\right)}{10^{-2}\left|q_{i}^{k-1}\right|+10^{-8}}\right)^{2}} \leq 1.0
$$

finiteResidual Causes the Newton solve to exit if NaN is encountered.
residualStagnation Causes the Newton solve to exit if currentResidual $>$ stagnationThreshold \times previousResidual for numItersToStagnation iterations.

8.21.3 Sub-Blocks

TimeIntegrator Time Integrator Currently only one time integration scheme can be specified.
Preconditioner Preconditioner Currently, only one preconditioner can be specified.
UpdateSequence UpdateSequence This block is used to set the sequence of update steps
UpdateStep UpdateStep The steps used in the update

8.21.4 Examples

The code block below demonstrates the implicitMultiUpdater for solving a three-dimensional Poisson problem using an algebraic multigrid preconditioner:

```
<Updater computeValues>
    kind = implicitMultiUpdater3d
    onGrid = domain
    in = [phi]
    out = [phiNew]
    residual = [f]
    solverPerf = [solverPerformance]
    maxNonlinearIterations = 4
    nonlinearTolerance = 1.e-12
    maxLinearIterations = 128
    linearTolerance = 1.e-14
    computePreconditioningMatrix = 1
    preconditioner = ML
    newtonForceMethod = Constant
    stencilUpdater = [computeNablaPhi]
    writePreconditioningMatrixToFile = 0
    <TimeIntegrator implicitUpdater>
        kind = implicit3d
        ongrid = domain
        scheme = none
    </TimeIntegrator>
```

```
<Preconditioner myPreconditioner>
    # None/ML/AztecOO/Ifpack/New Ifpack
    preconditioner=ML
    # if 0, use a FD preconditioner
    computePreconditioningMatrix = 1
    # write out the preconditioning matrix at startup
    writePreconditioningMatrixToFile = 0
    # maximum age of preconditioner in outer Newton steps (needs a better name)
    linearMaxPrecAge = 10
    # rebuild, reuse or recompute preconditioner (needs a better name)
    linearReusePolicy = Reuse
    mlStrategy=classicSA # SA/DD
    stencilUpdater = [computeNablaPhi]
    testPreconditioner = false
    #mlDampingFactor=0.0675
    #mlSmoother = BSGS-A
    # Block to allow arbitray parameters to be passed to the preconditioner XML list
    #<ParameterList ml>
    # increasing or decreasing = "increasing"
    #</ParameterList>
</Preconditioner>
    <UpdateSequence sequence>
    loop = [boundaries,hyper]
    </UpdateSequence>
    <UpdateStep hyper>
    updaters = [computeNablaPhi,poisson,copyBc]
    syncVars = [phiNew]
</UpdateStep>
    <UpdateStep boundaries>
    updaters = [dirchletBc]
    syncVars = [phi]
</UpdateStep>
</Updater>
```

The code block demonstrates the implicitMultiUpdater for solving a 2 or 3 dimensional compressible flow problem:

```
<Updater computeValues>
    kind = implicitMultiUpdater$NDIM$d
    onGrid = domain
    inpIndices = [0]
    in = [q]
    out = [qNew]
    residual = [f]
    solverPerf = [solverPerformance]
    maxNonlinearIterations = 100
    nonlinearTolerance = 1.e-6
    maxLinearIterations = 128
    linearTolerance = 1.e-4
    preconditioner = ML
    #aztecPreconditioner = ilut
    stencilUpdater = [hyper]
    newtonForceMethod = Constant
```

```
computePreconditioningMatrix = 0
<TimeIntegrator implicitUpdater>
    kind = implicit$NDIM$d
    ongrid = domain
    scheme = theta
    theta = 0.5 #Crank-Nicholson
    noInitialGuess = true
</TimeIntegrator>
<Preconditioner myPreconditioner>
    kind=autoPreconditioner$NDIM$d
    # None/ML/AztecOO/Ifpack/New Ifpack
    preconditioner=ML
    # if 0, use a FD preconditioner
    computePreconditioningMatrix = 1
    # write out the preconditioning matrix at startup
    writePreconditioningMatrixToFile = 0
    testPreconditioner = false
    # maximum age of preconditioner in outer Newton steps (needs a better name)
    linearMaxPrecAge = 10
    # rebuild, reuse or recompute preconditioner (needs a better name)
    linearReusePolicy = Reuse
    mlStrategy=DD # SA/DD
    #mlSmoother="symmetric Gauss Seidel"
    stencilUpdater = [hyper]
    #mlDampingFactor=0.125
    mlSmoother = BSGS-E
    # Block to allow arbitray parameters to be passed into the preconditioner XML list
    #<ParameterList ml>
    # increasing or decreasing = "increasing"
    #</ParameterList>
</Preconditioner>
<UpdateSequence sequence>
    loop = [boundaries,hyper]
</UpdateSequence>
<UpdateStep hyper>
    operation = "integrate"
    updaters = [hyper,periodicFlux, copyQnewToFlux]
    syncVars = [qNew]
</UpdateStep>
<UpdateStep boundaries>
    updaters = [periodicQ]
    syncVars = [q]
</UpdateStep>
</Updater>
```


8.22 localOdeIntegrator (1d, 2d, 3d)

The localOdeIntegrator is used to integrate a Algebraic Equations and evaluates a set of input nodalArrays and stores the ouput in one or more user-specified nodalArrays. The number of inputs and outputs are defined by
the kind of Algebraic Equations being used for the Equation.

8.22.1 Data

in (string vector, required) Inputs 1 to N are nodalArrays which will be supplied to the source through the Equation block.
out (string vector, required) Outputs 1 to N are nodalArrays which will contain the output of the Source.

8.22.2 Parameters

relativeErrorTolerance (float) The allowable error.
integrationScheme Integration scheme to use. Allowable types are bulirschStoer, rk5 and rosenbrock. The integrations schemes are described in the boost, odeint library.

8.22.3 Sub-Blocks

Equation Defines the kind of source being solved. Equation in this case is actually a kind of Algebraic Equations. If multiple <Equation> blocks are defined then the results are added together to produce the output.

8.22.4 Example

The following code block demonstrates the usage of the 'localOdeIntegrator combined with the exprHyperSrc source:

```
<Updater integrator>
    kind = localOdeIntegratorld
    integrationScheme = bulirschStoer
    onGrid = domain
    relativeErrorTolerance = 0.1
    in = [q]
    out = [qnew]
    <Equation gravity>
        kind = exprHyperSrc
        indVars = ["a","b"]
        exprs = ["-x*b","x*a"]
    </Equation>
</Updater>
```


8.23 timeStepRestrictionUpdater (1d, 2d, 3d)

The timeStepRestrictionUpdater computes the minimum time step and fastest wave speed based on specified restrictions. This data can both be used to determine the time step that the simulation will be advanced over and (optionally) store this data in a dynVector that can be passed to, e.g Time Integrator or classicMusclUpdater (1d, $2 d, 3 d$).

8.23.1 Data

in (string vector, required) Inputs 1 to N are nodalArrays which will be supplied to the time step restriction. Defined by the choice of Time Step Restriction.
timeSteps (string, optional) At most one dynVector that will contain the time step associated with each of the Time Step Restriction blocks. The dynVector must have the same number of components as the number of Time Step Restriction blocks.
waveSpeeds (string, optional) At most one dynVector that will contain the fastest wave speed associated with each of the Time Step Restriction blocks. The dynVector must have the same number of components as the number of Time Step Restriction blocks.

8.23.2 Parameters

courantCondition (float, required) The CFL condition to apply to the time-step restrictions computed by this updater.
restrictions (string vector, required) Names of 1 to N time step restrictions to compute using this updater. The names must correspond to the names of Time Step Restriction subblocks specified in this updater.

8.23.3 Sub-Blocks

TimeStepRestriction (block) The Time Step Restriction that defines the time-step and fastest wave speed to be computed by this updater. At least one Time Step Restriction must be specifed and This updater requires at least one TimeStepRestriction block. Each of the block names used should be put into the restrictions list.

8.23.4 Example

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), hyperbolic $(1 d, 2 d, 3 d)$ and quadratic $(1 d, 2 d, 3 d)$ to compute $d t_{\min }, d t_{\text {diff }}$ and $c_{\text {fast }}$ for resistive two-temperature MHD:

```
<Updater getHypDT>
    kind = timeStepRestrictionUpdaterld
        in = [q,electricField,current,chargeState,resistivity]
    onGrid = domain
    waveSpeeds = [waveSpeed]
    timeSteps = [diffDT]
    restrictions = [idealMhd,quadratic]
    courantCondition = CFL
    <TimeStepRestriction idealMhd>
        kind = hyperbolicld
        cfl = CFL
        model = twoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        correctNans = true
        correct = true
        correctNans = true
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
```

```
        currentVector = "current"
        storeTimeStep = False
    </TimeStepRestriction>
    <TimeStepRestriction quadratic>
        kind = quadraticld
        in = [resistivity]
        cfl = CFL
    </TimeStepRestriction>
</Updater>
```

The following Updater kind attributes can be specified to perform operations on the grid:

8.24 boundaryEntityGenerator (1d, 2d, 3d)

Generates ghost cells for a particular entity so that an updater requiring ghost cells can be used on a subset of the full domain.

8.24.1 Parameters

onEntity (string) The entity which will be used to construct ghost layers around. This can be considered the interior region
boundaryName (string) The name of the new entity that contains the boundary ghost cells of the interior region
layers (integer) The number of ghost layers to define

8.24.2 Example

```
<Updater generateVacuumBoundary>
    kind = boundaryEntityGenerator2d
    onGrid = domain
    layers = 2
    boundaryName = vacuumBoundary
    onEntity = vacuum
</Updater>
```


8.25 characteristicCellLength (1d, 2d, 3d)

Computes a characteristic cell length scale for every cell in the domain. This length scale is similar to the shortest side side length of a cell and can be used to determine maximum stable diffusion terms.

8.25.1 Data

out (string vector, required) The output is a nodalArray containing the characteristic length for each cell in the domain. This value is computed from geometry alone so no Inputs are required.

8.25.2 Parameters

coefficient (float) A constant factor that is multiplied by every component of the output vector

8.25.3 Example

```
<Updater computeCellDx>
    kind = characteristicCellLength2d
    onGrid = domain
    out = [cellDx]
    coefficient = 1.0
</Updater>
```


8.26 entityGenerator (1d, 2d, 3d)

Generates entities which can be used in defining regions for boundary conditions.

8.26.1 Parameters

onEntity (string) The entity generator will be a subset of the entity reference by onEntity. For boundary conditions this onEntity $=$ ghost or a subset of ghost
newEntityName (string) The name of the newEntity that can then be used in updaters that are applied to entities.

8.26.2 Sub-Blocks

Function (block) Function which defines the entity. Wherever the function is positive and belongs the entity onEntity is defined the entity newEntityName will be defined.

8.26.3 Example

```
<Updater generateOpen>
    kind = entityGenerator2d
    onGrid = domain
    newEntityName = openBoundary
    onEntity = ghost
    <Function mask>
            kind = exprFunc
            exprs = ["if( (x>0.001) and (y>0.34),1.0,-1.0)"]
        </Function>
</Updater>
```


8.27 minDistanceToWall (1d, 2d, 3d)

Calculates the shortest distance from the grid boundary to each cell in the domain.

8.27.1 Parameters

entity (string) The name of the grid boundary
computeUt (boolean) Specify whether to compute the shear velocity. If true, out vector must be of size 2 .

8.27.2 Data

in (string vector of 3 , required)

- input 1 is fluid vector
- input 2 is gradient of the velocity-magnitude
- input 3 is laminar viscosity
out (string vector, required) out is a single vector consisting of the shortest distance in component-1. If computeUt=true, shear velocity will be stored in component-2.

8.27.3 Example

```
<Updater computeDistancesToPlate>
    kind = minDistanceToWall2d
    onGrid = domain
    entity = plate
    computeUt = true
    in = [q, gradU, visc]
    out = [distance]
</Updater>
```


8.28 operatorEntityGenerator (1d, 2d, 3d)

Performs logical operations (not, and, or) on a list of entities to produce a new entity.

8.28.1 Data

entities (string vector) A list of entities that the logical operation will be performed on to produce the new entity.

8.28.2 Parameters

entityName (string) The name of the new entity resulting from the logical operations.
operation (string) The operation to be performed on the list of entities. The operation can have values (not, and, or).

8.28.3 Example

```
<Updater generatePlasma>
    kind = operatorEntityGenerator2d
    onGrid = domain
    operation = not
    entityName = plasma
    entities = [vacuum]
</Updater>
```


8.29 paintEntity (1d, 2d, 3d)

Sets the output variable to 0 everywhere the entity is not defined and 1 everywhere it is defined. This is useful for debugging boundary conditions.

8.29.1 Data

out (string vector) A nodalArray where the domain of the entity is stored. If you are looking at boundary conditions make sure to set writeHalos=true in the grid.

8.29.2 Example

```
<Updater init>
    kind = paintEntity2d
    onGrid = domain
    out = [q]
    entity = ghost
</Updater>
```

The following Updater kind attributes can be specified to compute output diagnostics from a simulation:

8.30 binCells (1d, 2d, 3d)

Initializes a bin dataStruct by storing cell data inside the bin structure. Every cell partially or completely inside the bin is stored in the bin.

8.30.1 Data

out (string vector) output bin where the cell binning data is stored

8.30.2 Example

```
<Updater fillBin>
    kind = binCells2d
        onGrid = domain
        out = [cellBin]
    </Updater>
```


8.31 fieldAtPoint (1d, 2d, 3d)

Record a field at a particular point in space

8.31.1 Data

in (string vector, required)

Sampled Data The first variable is the data we will be sampling
bin The second variable is the bin used to determine what cell the point is located in.
out (string vector, required) Output dynVector where the result of the operation is stored

8.31.2 Parameters

point (vector float) This is the point where the data will be computed
inpIndices (vector integer) These are the indexes of the input array that will be stored in the output vector

8.31.3 Example

```
<Updater computeValues>
    kind = fieldAtPoint1d
    onGrid = domain
    point = [-0.25,0.0,0.0]
    inpIndices = [0, 1, 2]
    in = [em, cellBin]
    out = [E]
</Updater>
```


8.32 intCombinedFields (1d, 2d, 3d)

Integrates a quantity over the volume of the domain and writes to a dynVector

8.32.1 Data

in (string vector) Input 1 to N are input nodalArrays on which operations will be performed. Example in $=$ [E, B]
out (string vector) output dynVector where the result of the operation is stored

8.32.2 Parameters

indVars_name (string vector) For each input variable an "indVars" array must be defined. So if in = [E, B] then indVars_E and indVars_B must be defined. If indVars_E = ["Ex",'Ey",''Ez"] then operations are performed on "Ex","Ey" and "Ez" in the expression evaluator.
preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs

Also, the updater has predefined variables including x, y, z representing the spatial location of the cell and t the time.

8.32.3 Example

```
<Updater computeTotalE>
    kind = intCombinedFields2d
    onGrid = domain
    in = [qnew]
    out = [totalE]
    mi = MI
    muO = MUO
    gamma = GAMMA
    k=KB
    indVars_qnew = ["rho","mx","my", "mz","en","bx","by","bz","phi"]
    exprs = ["en"]
</Updater>
```


8.33 lineIntegral (1d, 2d, 3d)

Performs operations on a set of input nodalArray to produce a dynVector by integrating along a specified trajectory. Uses an expression updater to evaluate the expression. The expression evaluator recognizes positions " x "," y "," z " and time " t " and these can be used to evaluate functions of time and space.

8.33.1 Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in $=[\mathrm{E}$, B]
out (string) output dynVector where the result of the operation is stored
layout (string) The name of the bin to use when constructing the line integral. The line integral requires that a bin be constructed. The updater binCells $(1 d, 2 d, 3 d)$ can be used to initialize a bin dataStruct.

8.33.2 Parameters

startPosition The starting position of the line integral
endPosition The end position of the line integral
numberOfSamples The number of sample points along the line to be used in computing the line integral
indVars_inName For each input variable an "indVars" array must be defined. So if in $=[\mathrm{E}, \mathrm{B}]$ then indVars_E and indVars_B must be defined. If indVars_E = ["Ex","Ey",'Ez"] then operations are performed on "Ex","Ey" and "Ez" in the expression evaluator.
preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs

Also, the combiner has predefined variables including $\mathrm{x}, \mathrm{y}, \mathrm{z}$ representing the spatial location of the cell, t and dt , representing time and time step and dVolume representing the volume of a cell.

8.33.3 Example

```
<Updater computeLineIntegral>
    kind = lineIntegral2d
    onGrid = domain
    startPosition = [0.0, 0.0]
    endPosition = [0.5, 0.5]
    numberOfSamples = 100
    layout = [cellBin]
    in = [potential]
    indVars_potential = ["phi"]
    exprs = ["phi"]
    out = [lineIntegralPhi]
</Updater>
```


8.34 maxCombinedFields (1d, 2d, 3d)

Computes the maximum value (pressure or energy for example) over the domain. The value is stored in a dynVector.

8.34.1 Data

in (string vector) Input 1 to N are input nodalArrays on which operations will be performed. Example in $=$ [E, B]
out (string vector) output dynVector where the result of the operation is stored

8.34.2 Parameters

indVars_name (string vector) For each input variable an "indVars" array must be defined. So if in = [E, B] then indVars_E and indVars_B must be defined. If indVars_E = ["Ex","Ey",'Ez"] then operations are performed on "Ex","Ey" and "Ez" in the expression evaluator.
preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs

Also, the updater has predefined variables including x, y, z representing the spatial location of the cell and t the time.

8.34.3 Example

```
<Updater computeMaxP>
    kind \(=\) maxCombinedFields2d
    onGrid = domain
    in \(=\) [qnew]
    out \(=[\operatorname{maxP}]\)
    \(\mathrm{mi}=\mathrm{MI}\)
    \(\mathrm{muO}=\mathrm{MUO}\)
    gamma = GAMMA
    \(\mathrm{k}=\mathrm{KB}\)
    indVars_qnew = ["rho", "mx", "my", "mz", "en", "bx", "by", "bz", "phi"]
    exprs \(=["(g a m m a-1) *(e n-(0.5 / m u 0) *(b x * b x+b y * b y+b z * b z)-0.5 *(m x * m x+m y * m y+m z * m z) / r h o)] "]\)
</Updater>
```


8.35 surfaceIntegral (1d, 2d, 3d)

Computes a surface integral as a function of nodalArray values and dumps the results in a dynVector.

8.35.1 Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in $=[E$, B]
out (string vector) The dynVector where the result of the surface integral is stored.

8.35.2 Parameters

onEntity (string) Name of the entity on which the surface integral will be applied.
indVars_name (string vector) For each input variable an "indVars" array must be defined. So if in = [E, B] then indVars_E and indVars_B must be defined. If indVars_E = ["Ex","Ey",' Ez " $]$ then operations are performed on "Ex","'Ey" and "Ez" in the expression evaluator. This expression evaluator takes, "x", "y", "z", "NormalX", "NormalY" and "NormalZ" as parameters, where "Normal" are the component normals to the surface location.
preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs
Also, the updater has predefined variables including $\mathrm{x}, \mathrm{y}, \mathrm{z}$ representing the spatial location of the surface, t representing time and NormalX, NormalY and NormalZ representing the surface normal to the boundary.

8.35.3 Example

```
<Updater computeSurfaceCurrent>
    kind = surfaceIntegral2D
    onGrid = domain
    entity = ghost
    length = LENGTH
    in = [J]
    out = [surfaceCurrent]
    indVars_J = ["Jx","Jy","Jz"]
    exprs = ["2*3.14159*x*Jx"]
</Updater>
```


8.36 surfaceVariables (1d, 2d, 3d)

Obtains the variables such as temperature, heat flux, evaporation flux etc at the solid fluid interface. The interface can be specified using domain boundary entities of interest. The standard updater block is given below:

```
<Updater SurfaceVariable>
    kind = surfaceVariables2d
    onGrid = domain
    variablesType = ablation
    storeSurfaceProperty = 1
    in = [surfTemp]
    out = [abSurfProp]
    entity = left
</Updater>
```

The parameters required by this updater block are listed below:

```
storeSurfaceProperty (boolean)
```

Store the surfaceVariables in the first row of cells along the boundary entity

```
entity(string)
```

Name of the boundary on which surfaceVariables have to be evaluated.

```
variablesType (string)
```

The type of surface variable to compute. Currently implemented surfaceVariables are

8.36.1 ablation (1d, 2d, 3d)

Computes the surface evaporation parameters for a given material. The description of the parameters specific to ablation is given blelow:

Parameters

variablesType = ablation
storeSurfaceProperty $=1$. This should be true to vizulaize and utilize the evaluated variables in boundary conditions
in $=$ vector containing the surface temperature
ablationModel option to chose the type of ablation model. currently implemented model is sonic, which assumes the vapor expands to sonic speed at the fluid interface.
numConstituents (integer) is the number of material elements present inside the compound material.
satPressure (real) The material specific variables of Claussius-Clapeyron equation to obtain the saturation pressure at a given temperature. Each element requires 3 constants reference pressure $(P a)$, enthalpy of evaporation $(J / m o l)$ and reference temperature (K). If there are two elements in the cmpound material, the constants of the second element should be entered right after the first element.
moleFraction (real) Molefractions of the constiTuents
averageMolecularWeight (real) average molecular weight of the compound material
out the result vector consisting of Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, velocity $(\mathrm{m} / \mathrm{s})$, temperature (K), pressure $(P a)$, saturation pressure $(P a)$, and number density $\left(1 / m^{3}\right)$ of the compound material.

Example

Code block

```
    <Updater computeAbSurfProp>
    kind = surfaceVariables2d
    onGrid = domain
    variablesType = ablation
    storeSurfaceProperty = 1
    dynVectors = []
    in = [surfTemp]
    ablationModel = sonic
    numConstituents = 2
    satPressure = [p01 dh1 T01 p02 dh2 T02]
    moleFraction = [MolF1 MolF2]
    averageMolecularWeight = MWAvg
    out = [abSurfProp]
    entity = left
</Updater>
```


8.36.2 temperatureAndHeatFlux (1d, 2d, 3d)

Evaluates the temperature and heatflux on the boundary of interest. The description of specific parameters is given blelow:

Parameters

variablesType $=$ temperatureAndHeatFlux
storeSurfaceProperty $=1$. This should be true to vizulaize and utilize the evaluated variables in boundary conditions
in $=$ vectors containing the thermal conductivity and temperature gradient. Note that temperature gradient vector will have three components.
heatFluxBalanceModel option to chose the type of heat flux balance. currently implemented model is radiationEquilibrium.
emissivity (real) is the surface emissivity.
baseTemperature (real) minimum possible surface temperature.
averageMolecularWeight (float) average molecular weight of the compound material
out the result vector consisting of surface temperature (K) and surface heat flux $\left(W / m^{2}\right)$

Example

Code block

```
<Updater computeSurfTemp>
    kind = surfaceVariables2d
    onGrid = domain
    variablesType = temperatureAndHeatFlux
    storeSurfaceProperty = 1
    dynVectors = []
    in = [D,gradTemp]
    heatFluxBalanceModel = radiationEquilibrium
    emissivity = 0.9
    baseTemperature = BASETEMP
    out = [surfTemp]
    entity = ghost
</Updater>
```

The following Updater kind attributes can be specified to fix unphysical behaviour (e.g. NaN, negative density, pressures) in a simulation:

8.37 nanChecker (1d, 2d, 3d)

Checks a nodalArray to see if any of the numbers are undefined nan, inf etc... Throws an exception of a nan is found and provides the index.

8.37.1 Data

in The nodalArray that will be searched for nans

8.37.2 Example

```
<Updater init>
    kind = nanChecker2d
    onGrid = domain
    out = [q]
</Updater>
```


8.38 pressureDensityCorrector (1d, 2d, 3d)

Computes the pressure and density in a nodalArray and modifies the pressure and density if they are below basement values. This is a simple way to prevent pressures and densities from becoming too small but is also non-conservative.

8.38.1 Data

out (string vector) Output 1 stores the nodalArray that will have its pressure and density corrected. The nodalArray must have the same number of components as is required by the chosen model.

8.38.2 Parameters

model (string) The model equation used for determining how to compute pressure and density. The model must be a fluid model such as eulerEqn. Will not work with maxwellEqn since no pressure or density is defined. When the model is initialized it will request additional variables required by that model, for example gasGamma and $m u 0$ for MHD type equations.
basementDensity (float) basementDensity used in determining when to switch between accurate and positive solutions. Default is 0.0.
basementPressure (float) basementPressure used in determining when to switch between accurate and positive solutions. Default is 0.0 .

8.38.3 Example

```
<Updater correct>
    kind = pressureDensityCorrector2d
    model = eulerEqn
    basementDensity = BASEMENT_DENSITY
    basementPressure = BASEMENT_PRESSURE
    gasGamma = GAS_GAMMA
    onGrid = domain
    out = [q]
</Updater>
```


8.39 valueCorrector (1d, 2d, 3d)

Cleans a nodalArray of "bad" values. If a value in the array is below a basment value or is undefined (nan,inf etc), the value corrector sets the value to the basement value. Cleans every value in the output vector so if your output is length 6 it cleans all 6 components.

8.39.1 Data

out (string vector) The variable that will be modified

8.39.2 Parameters

basementValue (float) Minimum value the nodalArray is allowed to have. If the value drops below this then it will be reset to basementValue

8.39.3 Example

```
<Updater init>
    kind = valueCorrectorld
        onGrid = domain
        out = [q]
        basementValue = 1.0
</Updater>
```


TIME INTEGRATOR

Time integrators in USim allow updaters such as multiUpdater ($1 d, 2 d, 3 d$) and implicitMultiUpdater (1d, 2d, 3d) to discretize partial differential equations in time. USim provides support for total variation diminsighing explicit Runge-Kutta schemes at up to fourth order; super-time-step schemes at first and second order, subcycling methods and implicit discretizations at up to second order.

An example demonstrating an explicit third order Runge-Kutta scheme is below:

```
<TimeIntegrator rkIntegrator>
    kind = rungeKuttald
    ongrid = domain
    scheme = third
</TimeIntegrator>
```

The following parameters are common to all TimeIntegrator blocks:
kind (string, required) Specifies the time-integration scheme to use: Available options are:
rungeKutta (1d,2d,3d) Specifices explicit Runge Kutta integration methods in 1,2 or 3 dimensions. Appropriate for hyperbolic problems.
superTimeStep (1d,2d,3d) Specifices explicit super time step integration methods in 1,2 or 3 dimensions. Appropriate for diffusion problems.
implicit (1d,2d,3d) Specifices implicit integration methods in 1, 2 or 3 dimensions.
onGrid (string, required) The Grid the time integration is performed on.
scheme (string, required) The order of the time integration method to use. Available options are:
None Do not integrate in time. Only available for kind $=\operatorname{implicit}(1 d, 2 d, 3 d)$. Used for solving problems that are not discretized in time, e.g. Poisson's equation.
thet a Only available for kind $=\operatorname{implicit}(1 d, 2 d, 3 d)$. Provides an implicit discretization of the form

$$
\mathbf{q}^{n+1}-\mathbf{q}^{n}-\Delta t \theta\left[\nabla \cdot \mathcal{F}\left(\mathbf{w}^{n+1}\right)-\mathcal{S}\left(\mathbf{w}^{n+1}\right)\right]-\Delta t[1-\theta]\left[\nabla \cdot \mathcal{F}\left(\mathbf{w}^{n}\right)-\mathcal{S}\left(\mathbf{w}^{n}\right)\right]^{‘}
$$

Here, $\theta=1$ corresponds to backwards Euler, $\theta=1 / 2$ corresponds to Crank-Nicholson and $\theta=0$ corresponds to forward Euler. I
zeroth First order subcycling scheme. Only available for kind $=\operatorname{superTimeStep}(1 d, 2 d, 3 d)$.
first First order accurate schemes. Only available for kind $=$ rungeKutta $(1 d, 2 d, 3 d)$, kind $=$ superTimeStep $(1 d, 2 d, 3 d)$.
second Second order accurate schemes. Only available for kind $=$ rungeKutta $(1 d, 2 d, 3 d)$, kind $=$ superTimeStep $(1 d, 2 d, 3 d)$.
third Third order accurate schemes. Only available for kind $=$ rungeKutta($1 d, 2 d, 3 d$).
fourth Fourth order accurate schemes. Only available for kind $=$ rungeKutta $(1 d, 2 d, 3 d)$.
timeStepRestrictions (string vector, optional) List of dynVector that holds the timestep associated with the diffusion operator that forms the right-hand side of the equation. Required if kind $=\operatorname{superTimeStep}(1 d, 2 d, 3 d)$.
theta (float, optional) Specifies θ for implicit discretizations. Required if kind $=\operatorname{implicit}(1 d, 2 d, 3 d)$ and scheme $=$ theta.

PRECONDITIONER

Preconditioner blocks are used in combination with implicitMultiUpdater ($1 d, 2 d, 3 d$). They allow USim to solve linear systems in an efficient, scalable fashion. An example Preconditioner block is given below

```
<Preconditioner myPreconditioner>
    preconditioner = ML # None/ML/AztecOO/Ifpack/New Ifpack
    computePreconditioningMatrix = 1 # if 0, use a FD preconditioner
    writePreconditioningMatrixToFile = 0 # write out the preconditioning matrix at startup
    linearMaxPrecAge = 10 # maximum age of preconditioner in outer Newton steps
    linearReusePolicy = Reuse # rebuild, reuse or recompute preconditioner
    stencilUpdater = [computeNablaPhi]
    mlStrategy=classicSA # SA/DD
</Preconditioner>
```

The following parameters are common to all Preconditioner blocks.
kind (string, required) Specify the method for computing the matrix for preconditioning the linear system. Available options are:
preconditioner $(1,2,3)$ d With this choice, USim computes the matrix through the stencil supplied by a single updater specied by the stencilUpdater parameter. This option is useful when the operator to be solved has a simple signature (e.g. the Laplacian ∇^{2})
autoPreconditioner $(1,2,3)$ d With this choice, USim uses an efficient finite difference method to compute the matrix for the system of equations specified by the UpdateSequence block in the implicitMultiUpdater ($1 d, 2 d, 3 d$). This option is useful for systems that solve multiphysics problems.
preconditioner (string, required) Options are None, ML, AztecOO, Ifpack and New Ifpack. ML (Multi-Level) preconditioners are the preferred option for USim due to the highly anisotropic nature of the matrix produced by USim operators. These preconditioner are based on the ML package (https://trilinos.org/packages $/ \mathrm{ml} /$). Other options include preconditioners based on the AztecOO package (https://trilinos.org/packages/aztecoo/) and Ifpack (https://trilinos.org/packages/ifpack/)
computePreconditioningMatrix (int, required) If computePreconditioningMatrix $=1$, then compute a matrix based on a user-specified updater (if kind $=$ preconditioner $(1,2,3) d$) or using an efficient finite difference method (if kind $=$ autoPreconditioner $(1,2,3) d$. If computePreconditioningMatrix $=0$, then the matrix is determined using a (slow) finite-difference computation. This latter option, allows for debugging the system of equations.
writePreconditioningMatrixToFile (int, required) If writePreconditioningMatrixToFile $=1$, then the matrix used to precondition the non-linear problem is written out each time it is filled in Matrix Market format. This option is expensive, both in terms of simulation time and storage space and so it is recommended that writePreconditioningMatrixToFile $=0$ except if needing to debug the simulation.
stencilUpdater (string vector, optional) Tell the solver which updater to compute the matrix to use as a preconditioner. Required if kind $=$ preconditioner $(1,2,3) d$ and computePreconditioningMatrix $=1$. Currently, only
accepts one entry.
linearMaxPrecAge (int, required) The number of outer Newton steps to take between each update of the preconditioner. Determining this value is problem dependent and requires careful experimentation by the user.
The following options are available if preconditioner $=M L$:
testPreconditioner (bool) Test the ability of the preconditioner to invert the matrix
testSmoother (bool) Test the ability of the range of smoothers available in ML to invert the matrix.
mlStrategy (string) Determines whether or not to use smoothed aggregation or domain decomposition for the multi-level solver. Available options are:

SA Specify smoothed aggregation methods.
DD Specify domain decomposition methods.
classicSA Specify smoothed aggregation methods appropriate for diffusion-type problems.
classicDD Specify domain decomposition methods appropriate for diffusion-type problems.
mlSmoother (string) Specify the smoother strategy used to compute the ML hierarcy when Options include:

```
Jacobi
block Gauss-Seidel
symmetric Gauss-Seidel
BSGS-A
BSGS-E
```

The choice of smoother is best determined for a given problem by first running the problem with testPreconditioner $=$ true and testSmoother $=$ true. This combination of options will provide information about the ability of the different mlSmoother options to solve the matrix. The mlSmoother option can then be set appropriately and the testPreconditioner, testSmoother options can be set to false in order to improve efficiency.
mlNumPDE (int, optional) Specify the number of PDE's represented in the matrix. Typically, this option should match the number of components for the input nodalArray input to the implicitMultiUpdater (1d, $2 d, 3 d$).

The following subblocks can be supplied to the preconditioner:
ParameterList A ParameterList block can be supplied to any preconditioner block. The ParameterList block should contain options accepted by the Trilinos preconditioner specified by the preconditioner string parameter, documented at https://trilinos.org/packages/ml/, https://trilinos.org/packages/aztecoo/) and https://trilinos.org/packages/ifpack/

HYPERBOLIC EQUATIONS

An Equation block that describes a hyperbolic conservation law of the form:

$$
\frac{\partial \mathbf{q}}{\partial t}+\nabla \cdot[\mathcal{F}(\mathbf{w})]=0
$$

where \mathbf{q} is a vector of conserved variables (e.g. density, momentum, total energy), $\mathcal{F}(\mathbf{w})$ is a non-linear flux tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), $\mathbf{w}=\mathbf{w}(\mathbf{q})$. The choice of hyperbolic equation defines $\mathbf{q}, \mathcal{F}(\mathbf{w}), \mathbf{w}=\mathbf{w}(\mathbf{q})$, along with the eigensystem associated with $\mathcal{F}(\mathbf{w})$.
An Equation block is owned by an updater (e.g. classicMusclUpdater ($1 d, 2 d, 3 d$)). The updater that owns the Equation sets the input, output and any additional data structures that are required by the Equation system.
The following parameters are common to all Equation blocks:
kind (string) All Equation blocks take a string kind that species the type of hyperbolic equation. The following equations can be used to simulate neutral plasmas:

11.1 eulerEqn

Defines the equations of inviscid compressible hydrodynamics:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P=\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats).

11.1.1 Parameters

gasGamma (float) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to 5/3.
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

11.1.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of conserved quantities, \mathbf{q} has 5 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density
out (string vector, required) For the eulerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater (1d, $2 d, 3 d)$), primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (timeStepRestrictionUpdater (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 5-components) When combined with an updater that computes ∇. $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux

Vector of Primitive States (nodalArray, 5-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure

Time Step (dynVector, 1-component) When combined with the kind=hyperblic, model=eulerEqn timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), and storeTimeStep is true, the equation system returns the time step consistent with the CFL condition across the entire simulation domain.
Fastest Wave Speed (dynVector, 1-component) When combined with the kind=hyperbolic, model=eulerEqn timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), and storeWaveSpeed is true, the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.1.3 Example

The following block demonstrates the eulerEqn used in combination with classicMusclUpdater ($1 d, 2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    timeIntegrationScheme=none
    numericalFlux=roeFlux
    limiter=[muscl]
    variableForm=primitive
    in=[q]
    out=[qnew]
    cfl=0.3
    equations=[euler]
    <Equation euler>
        kind=eulerEqn
        gasGamma=1.4
        basementDensity = 1.0e-5
        basementPressure = 1.0e-6
    </Equation>
</Updater>
```


11.2 realGasEqn

Real gas using a real gas equation of state. Requires the computation of specific heat and temperature and assignment of zero point energy outside of the equation. Assumes single temperature. The equations are solved in conservative form.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
e
\end{array}\right)+\nabla \cdot\left(\begin{array}{ccc}
\rho u_{x} & \rho u_{y} & \rho u_{z} \\
\rho u_{x}^{2}+P & \rho u_{x} u_{y} & \rho u_{x} u_{z} \\
\rho u_{y} u_{x} & \rho u_{y} u_{y}+P & \rho u_{y} u_{z} \\
\rho u_{z} u_{x} & \rho u_{z} u_{y} & \rho u_{z} u_{z}+P \\
u_{x}(e+P) & u_{y}(e+P) & u_{z}(e+P)
\end{array}\right)=0
$$

The energy is given by

$$
\begin{equation*}
e=\frac{1}{2} \rho\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)+\sum_{i} n_{i}\left(C v_{i} T+e_{0 i}\right) \tag{11.-2}
\end{equation*}
$$

11.2.1 Parameters

numSpecies (float) The number of species modeled in the real gas system.
basementPressure (float) The minimum pressure allowed. Defaults to 0 .
basementDensity (float) The minimum density allowed. Defaults to 0 .
Note: basementPressure and basementDensity are only used if correct=true
correct (boolean) Tells whether or not densities or pressures should be corrected when the fall below basement pressures or basement densities. When set to true pressure=max (basementPressure, pressure) and density $=\max$ (basementDensity, density). Defaults to false.

Note: Setting correctNans or correct to true can lead to energy conservation errors

11.2.2 Parent Updater Data

in (string vector, required)

Vector of conserved quantities

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density

2nd variable ($\mathbf{3 n + 1}$) $3 n+1$ auxiliary variables with n the number of species
0 . variables $0-(\mathrm{n}-1) . n_{i}$ species number density

1. variables $\mathrm{n}-(2 \mathrm{n}-1) . C v_{i}$ species specific heat at constant volume
2. variables $\mathrm{n}-(3 \mathrm{n}-1) . e_{0 i}$ species zero point energy density
3. variables 3 n . T Temperature in Kelvin

11.2.3 Example

An example realGas equation block is given below

```
<Equation realGas>
    kind = realGasEqn
    numSpecies = 7
</Equation>
```


11.3 realGasEosEqn

Gas dynamics with a general equation of state. The equations are solved in conservative form.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
e
\end{array}\right)+\nabla \cdot\left(\begin{array}{ccc}
\rho u_{x} & \rho u_{y} & \rho u_{z} \\
\rho u_{x}^{2}+P & \rho u_{x} u_{y} & \rho u_{x} u_{z} \\
\rho u_{y} u_{x} & \rho u_{y} u_{y}+P & \rho u_{y} u_{z} \\
\rho u_{z} u_{x} & \rho u_{z} u_{y} & \rho u_{z} u_{z}+P \\
u_{x}(e+P) & u_{y}(e+P) & u_{z}(e+P)
\end{array}\right)=0
$$

11.3.1 Parameters

basementPressure (float) The minimum pressure allowed. Default is 0 .
basementDensity (float) The minimum density allowed. Default is 0 .
Note: basementPressure and basementDensity are only used if correct=true
correct (boolean) Tells whether or not densities or pressures should be corrected when the fall below basement pressures or basement densities. When set to true pressure=max(basementPressure, pressure) and density $=\max ($ basementDensity, density $)$

11.3.2 Parent Updater Data

in (string vector, required)

```
Vector of conserved quantities (5 components)
```

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density

fluid pressure (1 component)

0. P total fluid pressure (not magnetic pressure included)

gas dynamic sound speed (1 component)

0. a estimate of the fluid sound speed

11.3.3 Example

An example realGasEos equation block is given below:

```
<Equation realGasEos>
    kind = realGasEosEqn
</Equation>
```


11.4 tenMomentEqn

Ideal compressible 10 moment fluid equations. The equations are solved in conservative form.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
\rho u_{x}^{2}+P_{x x} \\
\rho u_{x} u_{y}+P_{x y} \\
\rho u_{x} u_{z}+P_{x z} \\
\rho u_{y}^{2}+P_{y y} \\
\rho u_{y} u_{z}+P_{y z} \\
\rho u_{z}^{2}+P_{z z}
\end{array}\right)+\nabla \cdot P=0
$$

where P is defined as

$$
\left(\begin{array}{ccc}
\rho u_{x} & \rho u_{y} & \rho u_{z} \\
\rho u_{x}^{2}+P_{x x} & \rho u_{x} u_{y}+P_{x y} & \rho u_{x} u_{z}+P_{x z} \\
\rho u_{y} u_{x}+P_{x y} & \rho u_{y} u_{y}+P_{y y} & \rho u_{y} u_{z}+P_{y z} \\
\rho u_{z} u_{x}+P_{x z} & \rho u_{z} u_{y}+P_{y z} & \rho u_{z} u_{z}+P_{z z} \\
\rho u_{x}^{3}+3 u_{x} P_{x x} & \rho u_{y} u_{x}^{2}+u_{x} P_{y y}+2 u_{x} P_{x y} & \rho u_{z} u_{x}^{2}+u_{z} P_{x x}+2 u_{x} P_{x z} \\
\rho u_{x}^{2} u_{y}+2 u_{x} P_{x y}+u_{y} P_{x x} & 0 & 0 \\
\rho u_{x}^{2} u_{z}+2 u_{x} P_{x z}+u_{z} P_{x x} & 0 & 0 \\
\rho u_{x} u_{y}^{2}+u_{x} P_{y y}+2 u_{y} P_{x y} & \rho u_{y}^{3}+3 u_{y} P_{y y} & 0 \\
\rho u_{x} u_{y} u_{z}+u_{x} P_{y z}+u_{y} P_{x z}+u_{z} P_{x y} & 0 & 0 \\
\rho u_{x} u_{z}^{2}+u_{x} P_{z z}+2 u_{z} P_{x z} & 0 & \rho u_{z}^{3}+3 u_{z} P_{z z}
\end{array}\right)
$$

11.4.1 Parameters

basementPressure (float) The minimum pressure allowed. Defaults to 0 .
basementDensity (float) The minimum density allowed. Defaults to 0 .

11.4.2 Parent Updater Data

in (string vector, required)

1st variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. $\rho u_{x}^{2}+P_{x x} \mathrm{xx}$ energy density
5. $\rho u_{x} u_{y}+P_{x y}$ xy energy density
6. $\rho u_{x} u_{z}+P_{x z} \mathrm{xz}$ energy density
7. $\rho u_{y}^{2}+P_{y y}$ yy energy density
8. $\rho u_{y} u_{z}+P_{y z}$ yz energy density
9. $\rho u_{z}^{2}+P_{z z}$ zz energy density

11.4.3 Example

An example tenMoment equation block is given below:

```
<Equation tenMoment>
    kind = tenMomentEqn
</Equation>
```


11.5 multiSpeciesSingleVelocityEqn

This equation represents continuity equations for n species. The species continuity equation is given by

$$
\begin{equation*}
\frac{\partial n_{i}}{\partial t}+\nabla_{j}\left(n_{i} u_{j}\right)=0 \tag{11.-4}
\end{equation*}
$$

11.5.1 Parameters

basementNumberDensity (float) The minimum species number density allowed
basementDensity (float) The minimum auxiliary variable mass density allowed. Defaults to 0 .
numberOfSpecies (integer) The number of species that have continuity equations.
useParentEigenvalues (boolean) When set to true the eigenvalues of the parent system are used in computing dissipation in fluxes such as the localLaxFlux as well as time step restrictions. When set to false, the eigenvalue is simply u normal to the direction of interest.

11.5.2 Sub-Blocks

Equation (block) Defines the parent equation type of the system. The parent equation could be eulerEqn or idealMhdEqn for example. The first 4 components must be density, followed by the 3 components of momentum. This equation is used to compute the advection velocity and if useParentEigenvalues=true then the eigenvalues of this system are used to compute the level of dissipation in the flux functions.

11.5.3 Parent Updater Data

in (string vector, required)
Species densities Entries $1-N$ where N is the number of species
0 . variables $0-(\mathrm{N}-1) n_{i}$ number density of species i
Vector of conserved quantities Entries are determined by the Equation sub-block and only the first 4 entries are used in this equation. Entries $1-N$ where N the number variables in the parent equation
0. ρ species density

1. ρu_{x} species x momentum
2. ρu_{y} species y momentum
3. ρu_{z} species z momentum
4. all components beyond 3 are ignored.

11.5.4 Example

An example multiSpeciesSingleVelocity equation block is given below

```
<Equation speciesContinuity>
    kind = multiSpeciesSingleVelocityEqn
    useParentEigenvalues = true
    inputVariables = [qSpecies, q]
```

```
numberOfSpecies = NSPECIES
<Equation realGas>
    kind = realGasEqn
    inputVariables = [q, realGasVariables]
    numSpecies = NSPECIES
</Equation>
</Equation>
```

The following equations can be used to simulate ionized, quasi-neutral plasmas in the magnetohydrodynamic limit:

11.6 mhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P=\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats). The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

11.6.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
mu0 (float, optional) Optional value for the constant μ_{0}. Defaults to $4 \pi \times 10^{-7}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $\mathrm{e}^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

11.6.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional terms in the generalized Ohm's law, $\mathbf{E}^{\text {external }}$, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $\mathbf{e}^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional

 contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $b^{\text {external }}$ is specified by the "externalBField" option described below.0 . $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater $(1 d, 2 d, 3 d)$), primitive variables (computePrimitiveState $(1 d, 2 d, 3 d)$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇. $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater $(1 d, 2 d, 3 d)$), the equation system returns:
3. $\nabla \cdot \mathcal{F}(\rho)$: mass flux
4. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
5. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
6. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
7. $\nabla \cdot \mathcal{F}(E)$: total energy flux
8. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
9. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
10. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
11. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.6.3 Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d, 2d, $3 d)$ to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind=mhdDednerEqn
        gasGamma=1.4
        externalBfield="backgroundB"
    </Equation>
</Updater>
```

The following block demonstrates the mhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdaterld
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=1.0
    <TimeStepRestriction idealMhd>
        kind=hyperbolicld
        model=mhdDednerEqn
        gasGamma= 1.4
```

 externalBfield=True
 includeInTimeStep=False
 </TimeStepRestriction>
 </Updater>

11.7 mhdDednerEosEqn

Defines the equations of ideal compressible magnetohydrodynamics with and arbitrary equation of state (EOS) and divergence cleaning:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix and P is the pressure as specified by an external EOS. Updaters that compute all the data required from an EOS are found in vanDerWaalsComputeVariables, sesameComputeVariables and propaceosComputeVariables. The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

11.7.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
mu0 (float, optional) Optional value for the constant μ_{0}. Defaults to $4 \pi \times 10^{-7}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

11.7.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\rho \epsilon+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density where ϵ is the specific internal energy
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Pressure (nodalArray, 1-component, required) Value of the pressure as computed by the external EOS.

Sound speed squared (nodalArray, 1-component, required) Value of the sound speed squared as computed by the external EOS.
internal energy (nodalArray, 1-component, required) Value of the internal energy ($\rho \epsilon$) as computed by the external EOS.

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional terms in the generalized Ohm's law, $\mathbf{E}^{\text {external }}$, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $e^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEosEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater $(1 d, 2 d, 3 d)$), primitive variables (computePrimitiveState $(1 d, 2 d, 3 d)$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic ($1 d, 2 d, 3 d)$).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot$ $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater $(1 d, 2 d, 3 d)$), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.7.3 Examples

The following block demonstrates the mhdDednerEosEqn used in combination with classicMusclUpdater (1d, $2 d, 3 d)$ to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyper>
    kind = classicMuscl2d
    onGrid = domain
    # input nodal component arrays
    in=[q, pressure, soundSqr, intEnergy]
    # output nodal component arrays
    out = [qNew]
    # input dynVector containing fastest wave speed
    waveSpeeds = [waveSpeed]
    # the numerical flux to use
    numericalFlux = hlldFlux
    # CFL number to use
    cfl = 0.5
    # determines solve is conservative or primitive
    variableForm = conservative
    # Limiter; one per input nodal component array
    limiter=[muscl, muscl, muscl, muscl]
    # list of equations to solve
    equations = [mhd]
    <Equation mhd>
        kind=mhdDednerEosEqn
        mu0=1.0
    </Equation>
</Updater>
```

The following block demonstrates the mhdDednerEosEqn used in combination with timeStepRestrictionUpdater $(1 d, 2 d, 3 d)$ and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdater2d
    onGrid=domain
    # input nodal component arrays
    in=[q, pressure, soundSqr, intEnergy]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=0.5
    <TimeStepRestriction idealMhd>
        kind=hyperbolicld
        model=mhdDednerEosEqn
        mu0=1.0
```


11.8 gasDynamicMhdDednerEqn

Defines the equations of inviscid fluid dynamics coupled to pre-Maxwell's equations in source term form with divergence cleaning:

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}]=0 \\
\frac{\partial(\rho \mathbf{u})}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P\right]=\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right) \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}]=\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E}^{\text {species }} \\
\frac{\partial \mathbf{B}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{E}+\nabla \psi=0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right]=0
\end{array}
$$

Here, $q^{\text {species }}$ is the species charge density, $\mathbf{J}^{\text {species }}$ is the species current density, \mathbb{I} is the identity matrix, $P=$ $\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats). The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following standard identities (note that the use of these identities does not require an assumption of quasi-neutrality):

$$
\begin{array}{r}
\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right)=-\frac{\partial c^{-2} \mathbf{S}^{\mathrm{EM}}}{\partial t}+\nabla \cdot \mathcal{T}^{\mathrm{EM}} \\
\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E}=-\frac{\partial E^{\mathrm{EM}}}{\partial t}-\nabla \cdot \mathbf{S}^{\mathrm{EM}}
\end{array}
$$

Here, $\mathcal{T}^{\mathrm{EM}}$ is the electromagnetic stress tensor and \mathbf{S}^{EM} is the electromagnetic energy (Poynting) flux vector, which are defined as:

$$
\begin{array}{r}
\mathcal{T}^{\mathrm{EM}}=\frac{1}{\mu_{0}}\left(\frac{\mathbf{E E}^{T}}{c^{2}}+\mathbf{B B}^{T}\right)+\mathbb{I} E_{\mathrm{EM}}=\frac{\mathbf{e e}^{T}}{c^{2}}+\mathbf{b b}^{T}+\mathbb{I} E_{\mathrm{EM}} \\
\mathbf{S}^{\mathrm{EM}}=\mu_{0}^{-1} \mathbf{E} \times \mathbf{B}=\mathbf{e} \times \mathbf{b} \\
E^{\mathrm{EM}}=\frac{1}{2 \mu_{0}}\left(\frac{|\mathbf{E}|^{2}}{c^{2}}+|\mathbf{B}|^{2}\right)=\frac{1}{2}\left(\frac{|\mathbf{e}|^{2}}{c^{2}}+|\mathbf{b}|^{2}\right)
\end{array}
$$

Here, E^{EM} is the electromagnetic energy density and the electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the pre-Maxwell equations.

With these identitifications, the gasDynamicMhdDednerEqn takes the form:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P-\mathcal{T}^{\mathrm{EM}}\right] & =0 \\
\frac{\partial\left(E+E^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[(E+P) \mathbf{u}+\mathbf{S}^{\mathrm{EM}}\right] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0
\end{aligned}
$$

This flux-conservative formulation is implemented in USim.

11.8.1 Parameters

lightSpeed (float, optional) The speed of light in m/s. Defaults to 2.99792458 e 8 .
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
externalefield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $\mathbf{e}^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

11.8.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{i}}$: total momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{j}}$: total momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{k}}$: total momentum density in the $\hat{\mathbf{k}}$ direction
4. $E+E^{\mathrm{EM}}=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+E^{\mathrm{EM}}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
Externally Computed Electric Field (nodalArray, 3-components, optional) Additional terms in the generalized Ohm's law, E External, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $e^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $b^{\text {external }}$ is specified by the "externalBField" option described below.
0. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$) , primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$)), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇. $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\text {EM }}\right): \hat{\mathbf{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState(1d,2d,3d)), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.8.3 Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d, 2d, 3d) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
```

```
<Equation mhd>
    kind=gasDynamicMhdDednerEqn
    gasGamma=1.4
    externalBfield="backgroundB"
    </Equation>
</Updater>
```

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdater1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=1.0
    <TimeStepRestriction idealMhd>
            kind=hyperbolic1d
            model=gasDynamicMhdDednerEqn
            gasGamma= 1.4
            externalBfield=True
            includeInTimeStep=False
            </TimeStepRestriction>
</Updater>
```


11.9 simpleTwoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an electron entropy equation:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P_{\text {tot }}+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0 \\
\frac{\partial S_{\text {electron }}}{\partial t}+\nabla \cdot\left[S_{\text {electron }} \mathbf{u}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P_{\text {tot }}=P_{\text {ion }}+P_{\text {electron }}=\rho_{\text {ion }} \epsilon_{\text {ion }}\left(\gamma_{\text {ion }}-1\right)+\rho_{\text {electron }} \epsilon_{\text {electron }}\left(\gamma_{\text {electron }}-1\right)$ is the total plasma pressure, $\epsilon_{\text {ion,electron }}$ is the specific internal energy of ions and electrons and $\gamma_{\text {ion,electron }}$ is the adiabatic index (ratio of specific heats) for the ions and electrons. The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

$$
S_{\text {electron }}=P_{\text {electron }} n_{\text {electron }}^{-\left(\gamma_{\text {electron }}+1\right)} ; \quad n_{\text {electron }}=\frac{\rho}{m_{\text {electron }}+\frac{m_{\text {ion }}}{Z}}
$$

Here, $n_{\text {electron }}$ is the electron number density, $m_{\text {electron }}$ is the electron mass, $m_{\text {ion }}$ is the ion mass and Z is the ion charge state. with the fluid velocity, u. In order to advect the electron entropy with the electron velocity, refer to twoTemperatureMhdDednerEqn. The method provided by simpleTwoTemperatureMhdDednerEqn is generally more robust and has lower computational cost than that provided by twoTemperatureMhdDednerEqn. If, for example, heating of electrons by (for example) magnetic dissipation is required, then this can be accomplished by adding source terms of the electron entropy equation, see, e.g. mhdSrc.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

11.9.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure, γ. Defaults to $5 / 3$.
electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the electrons, $\gamma_{\text {electron }}$. Defaults to $5 / 3$.

ionMass (float, optional) Specifies the ion mass, m_{ion}. Defaults to 1 .
chargeState (float, optional) Specifies the charge on an ion, Z. Defaults to 1 .
currentVector (string, required) Specifies the name of the data structure containing the total (ion + electron) plasma current, $\mathbf{J}^{\text {plasma }}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

11.9.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector of conserved quantities, \mathbf{q} has 10 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $S_{\text {electron }}$: electron entropy

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
Externally Computed Electric Field (nodalArray, 3-components, optional) Additional terms in the generalized Ohm's law, E External, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $\mathrm{e}^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0 . $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater $(1 d, 2 d, 3 d)$), primitive variables (computePrimitiveState $(1 d, 2 d, 3 d)$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot$ $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathrm{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux
9. $\nabla \cdot \mathcal{F}\left(S_{\text {electron }}\right):$ electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState ($1 d, 2 d, 3 d$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $P_{\text {electron }}$: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.9.3 Examples

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with classicMusclUpdater ($1 d, 2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$

```
<Updater hyper>
    kind = classicMusclld
    onGrid = domain
# input data-structures
    in = [q,electricField]
# output data-structures
    out = [qnew]
# the time integration scheme, rk1 for first order runge-kutta
    timeIntegrationScheme = none
# the numerical flux to use
    numericalFlux = roeFlux
# CFL number to use
    cfl = 0.4
# Form of variables to limit
    variableForm = primitive
# Limiter to use
    limiter = [muscl,muscl]
    waveSpeeds = [waveSpeed]
# list of equations to solve
    equations = [mhd]
    <Equation mhd>
        kind = simpleTwoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
    </Equation>
</Updater>
```

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with computePrimitiveState ($1 d, 2 d, 3 d$) to compute \mathbf{w} (\mathbf{q})

```
<Updater computePrimitiveState>
    kind = computePrimitiveState1d
    onGrid = domain
```

```
# input data-structures
    in = [q,electricField]
# ouput data-structures
    out = [w]
    <Equation mhd>
        kind = simpleTwoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
        </Equation>
</Updater>
```

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), hyperbolic ($1 d, 2 d, 3 d$) and quadratic ($1 d, 2 d, 3 d$) to compute $d t_{\mathrm{min}}$, $d t_{\text {diff }}$ and $c_{\text {fast }}$ for resistive two-temperature MHD:

```
<Updater getHypDT>
    kind = timeStepRestrictionUpdater1d
        in = [q,electricField]
        onGrid = domain
        waveSpeeds = [waveSpeed]
        timeSteps = [diffDT]
        restrictions = [idealMhd]
        courantCondition = CFL
        <TimeStepRestriction idealMhd>
            kind = hyperbolicld
            cfl = CFL
            model = simpleTwoTemperatureMhdDednerEqn
            gasGamma = GAS_GAMMA
            electronGamma = $ELECTRON_GAMMA$
            correctNans = true
            correct = true
            correctNans = true
            basementDensity = $BASEMENT_DENSITY$
            basementPressure = $BASEMENT_PRESSURE$
            externalEfield = "electricField"
            storeTimeStep = False
        </TimeStepRestriction>
</Updater>
```


11.10 twoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an electron entropy equation:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P_{\text {tot }}+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0 \\
\frac{\partial S_{\text {electron }}}{\partial t}+\nabla \cdot\left[S_{\text {electron }} \mathbf{u}_{\text {electron }}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P_{\text {tot }}=P_{\text {ion }}+P_{\text {electron }}=\rho_{\text {ion }} \epsilon_{\text {ion }}\left(\gamma_{\text {ion }}-1\right)+\rho_{\text {electron }} \epsilon_{\text {electron }}\left(\gamma_{\text {electron }}-1\right)$ is the total plasma pressure, $\epsilon_{\text {ion, electron }}$ is the specific internal energy of ions and electrons and $\gamma_{\text {ion,electron }}$ is the adiabatic index (ratio of specific heats) for the ions and electrons. The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

$$
S_{\text {electron }}=P_{\text {electron }} n_{\text {electron }}^{-\left(\gamma_{\text {electron }}+1\right)} ; \quad n_{\text {electron }}=\frac{\rho}{m_{\text {electron }}+\frac{m_{\text {ion }}}{Z}}
$$

Here, $n_{\text {electron }}$ is the electron number density, $m_{\text {electron }}$ is the electron mass, $m_{\text {ion }}$ is the ion mass and Z is the ion charge state. The electron entropy is advected by the electron velocity, $\mathbf{u}_{\text {electron }}$, computed as:

$$
\mathbf{u}_{\text {electron }}=-\frac{\mathbf{J}^{\text {plasma }}-q Z m_{\text {ion }}^{-1} \rho \mathbf{u}}{q n_{\text {electron }}} ; \mathbf{J}^{\text {plasma }}=\mu_{0}^{-1 / 2} \nabla \times \mathbf{b}^{\text {plasma }}=\mu_{0}^{-1} \nabla \times \mathbf{B}^{\text {plasma }}
$$

Here, $\mathbf{J}^{\text {plasma }}$ is the total (ion+electron) plasma current and q is the fundamental change ($-q$ is the charge on an electron). As defined above, the electron entropy is advected with the electron density. If, for example, heating of electrons by (for example) magnetic dissipation is required, then this can be accomplished by adding source terms of the electron entropy equation, see, e.g. mhdSrc.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

11.10.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure, γ. Defaults to $5 / 3$.
electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the electrons, $\gamma_{\text {electron }}$. Defaults to $5 / 3$.
electronMass (float, optional) Specifies the electron mass, $m_{\text {electron. }}$. Defaults to $(1836)^{-1}$.
ionMass (float, optional) Specifies the ion mass, $m_{\text {ion }}$. Defaults to 1 .
chargeState (float, optional) Specifies the charge on an ion, Z. Defaults to 1 .
currentVector (string, required) Specifies the name of the data structure containing the total (ion + electron) plasma current, $\mathbf{J}^{\text {plasma }}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

11.10.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, $\mathbf{1 0}$-components, required) The vector of conserved quantities, \mathbf{q} has 10 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}:$ magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $S_{\text {electron }}$: electron entropy

Current Density (nodalArray, 3-components, required) The total (ion and electron) current in the plasma, typically calculated from from pre-Maxwell form of Ampere's law, $\mathbf{J}^{\text {plasma }}=\mu_{0}^{1 / 2} \nabla \times$ $\mathbf{b}^{\text {plasma }}$, which can be computed through, e.g. vector $(1 d, 2 d, 3 d)$. The data structure containing $\mathbf{J}^{\text {plasma }}$ is specified by the "currentVector" option described below.
0 . $J_{\hat{\mathbf{i}}}^{\text {plasma }}=\mathbf{J}^{\text {plasma }} \cdot \hat{\mathbf{i}}$: total (ion and electron) current in the plasma in the $\hat{\mathbf{i}}$ direction.

1. $J_{\hat{\mathbf{j}}}^{\text {plasma }}=\mathbf{J}^{\text {plasma }} \cdot \hat{\mathbf{j}}$: total (ion and electron) current in the plasma in the $\hat{\mathbf{j}}$ direction
2. $J_{\hat{\mathbf{k}}}^{\text {plasma }}=\mathbf{J}^{\text {plasma }} \cdot \hat{\mathbf{k}}$: total (ion and electron) current in the plasma in the $\hat{\mathbf{k}}$ direction

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional terms in the generalized Ohm's law, E $\mathbf{E}^{\text {external }}$, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing e external is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $b^{\text {external }}$ is specified by the "externalBField" option described below.
0. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater $(1 d, 2 d, 3 d)$), primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$), the time step associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇. $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater ($1 d, 2 d, 3 d)$), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathrm{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux
9. $\nabla \cdot \mathcal{F}\left(S_{\text {electron }}\right)$: electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}:$ velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $P_{\text {electron }}$: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.10.3 Examples

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with classicMusclUpdater ($1 d, 2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$, including resistive effects

```
<Updater hyper>
    kind = classicMusclld
    onGrid = domain
# input data-structures
    in = [q,electricField,current,chargeState,resistivity]
# output data-structures
    out = [qnew]
# the time integration scheme, rk1 for first order runge-kutta
    timeIntegrationScheme = none
# the numerical flux to use
    numericalFlux = roeFlux
# CFL number to use
    cfl = 0.4
# Form of variables to limit
    variableForm = primitive
# Limiter to use
    limiter = [muscl,muscl,muscl,muscl,muscl]
    waveSpeeds = [waveSpeed]
# list of equations to solve
    equations = [mhd]
# list of sources to add
    source = [mhdSource]
```

```
<Equation mhd>
    kind = twoTemperatureMhdDednerEqn
    gasGamma = GAS_GAMMA
    electronGamma = $ELECTRON_GAMMA$
    basementDensity = $BASEMENT_DENSITY$
    basementPressure = $BASEMENT_PRESSURE$
    externalEfield = "electricField"
    currentVector = "current"
</Equation>
<Source mhdSource>
    kind = mhdSrc
    model = twoTemperatureMhdDednerEqn
    externalEfield = true
    inputVariables = [q, electricField,current,chargeState,resistivity]
    ionMass = ION_MASS
    fundamentalCharge = FUNDAMENTAL_CHARGE
</Source>
</Updater>
```

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with computePrimitiveState ($1 d, 2 d, 3 d$) to compute $\mathbf{w}(\mathbf{q})$

```
<Updater computePrimitiveState>
    kind = computePrimitiveState1d
    onGrid = domain
# input data-structures
    in = [q,electricField,current,chargeState,resistivity]
# ouput data-structures
            out = [w]
    <Equation mhd>
            kind = twoTemperatureMhdDednerEqn
            gasGamma = GAS_GAMMA
            electronGamma = $ELECTRON_GAMMA$
            basementDensity = $BASEMENT_DENSITY$
            basementPressure = $BASEMENT_PRESSURE$
            externalEfield = "electricField"
            currentVector = "current"
    </Equation>
</Updater>
```

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), hyperbolic ($1 d, 2 d, 3 d$) and quadratic $(1 d, 2 d, 3 d)$ to compute $d t_{\text {min }}, d t_{\text {diff }}$ and $c_{\text {fast }}$ for resistive two-temperature MHD:

```
<Updater getHypDT>
    kind = timeStepRestrictionUpdaterld
    in = [q,electricField,current,chargeState,resistivity]
    onGrid = domain
    waveSpeeds = [waveSpeed]
    timeSteps = [diffDT]
    restrictions = [idealMhd,quadratic]
    courantCondition = CFL
```

```
    <TimeStepRestriction idealMhd>
    kind = hyperbolicld
    cfl = CFL
    model = twoTemperatureMhdDednerEqn
    gasGamma = GAS_GAMMA
    electronGamma = $ELECTRON_GAMMA$
    correctNans = true
    correct = true
    correctNans = true
    basementDensity = $BASEMENT_DENSITY$
    basementPressure = $BASEMENT_PRESSURE$
    externalEfield = "electricField"
    currentVector = "current"
    storeTimeStep = False
    </TimeStepRestriction>
    <TimeStepRestriction quadratic>
        kind = quadraticld
        in = [resistivity]
        cfl = CFL
    </TimeStepRestriction>
</Updater>
```

The following equations can be used to simulate Maxwell's equations and non-neutral plasmas:

11.11 maxwellEqn

Fluxes and eigensystem for Maxwell's equations in vacuum with divergence cleaning.

$$
\begin{aligned}
\frac{\partial \mathbf{E}}{\partial t}+c^{2} \nabla \times \mathbf{B}+\nabla \Phi & =0 \\
\frac{\partial \mathbf{B}}{\partial t}-\nabla \times \mathbf{E}+\nabla \psi & =0 \\
\frac{\partial \Phi}{\partial t}+\nabla \cdot\left[c_{\mathrm{fast}}^{2} \mathbf{E}\right] & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\mathrm{fast}}^{2} \mathbf{B}\right] & =0
\end{aligned}
$$

Coupling of Maxwell's equations to a plasma is accomplished using current.

11.11.1 Parameters

c0 (float) The speed of light
gamma (float) Magnetic correction potential propagation factor. γc_{0} is the magnetic correction potential propagation speed.
chi (float) Electric correction potential propagation factor. χc_{0} is the correction propagation speed.

11.11.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 8-components, required) The vector of conserved quantities, \mathbf{q} has 8 entries:
0. $E_{\hat{\mathbf{i}}}=\mathbf{E} \cdot \hat{\mathbf{i}}$: electric field in the $\hat{\mathbf{i}}$ direction.

1. $E_{\hat{\mathbf{j}}}=\mathbf{E} \cdot \hat{\mathbf{j}}$: electric field in the $\hat{\mathbf{j}}$ direction
2. $E_{\hat{\mathbf{k}}}=\mathbf{E} \cdot \hat{\mathbf{k}}$: electric field in the $\hat{\mathbf{k}}$ direction
3. $B_{\hat{\mathbf{i}}}=\mathbf{B} \cdot \hat{\mathbf{i}}$ magnetic field in the $\hat{\mathbf{i}}$ direction
4. $B_{\hat{\mathbf{j}}}=\mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field in the $\hat{\mathbf{j}}$ direction
5. $B_{\hat{\mathbf{k}}}=\mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field in the $\hat{\mathbf{k}}$ direction
6. Φ electric field correction potential
7. Ψ magnetic field correction potential
out (string vector, required) For the maxwellEqn, one of three output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater (1 d, $2 d, 3 d)$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇. $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater ($1 d, 2 d, 3 d$), the equation system returns:
8. $\nabla \cdot \mathcal{F}\left(E_{\hat{i}}\right)$: $\hat{\mathbf{i}}$ electric field flux
9. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{j}}}\right): \hat{\mathrm{i}}$ electric field flux
10. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{k}}}\right): \hat{\mathbf{j}}$ electric field flux
11. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{i}}}\right)$: $\hat{\mathrm{i}}$ magnetic field flux
12. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{j}}}\right): \hat{\mathrm{i}}$ magnetic field flux
13. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{k}}}\right): \hat{\mathbf{j}}$ magnetic field flux
14. $\nabla \cdot \mathcal{F}(\psi)$: electric correction potential flux
15. $\nabla \cdot \mathcal{F}(\psi)$: magnetic correction potential flux

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.11.3 Example

The following block demonstrates the maxwellEqn used in combination with classicMusclUpdater (1d, 2d, 3d) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyperEm>
    kind = classicMuscl3d
    onGrid = domain
    timeIntegrationScheme = none
    numericalFlux = fWaveFlux
    limiterType = component
    limiter = [minmod, none, none]
    variableForm = conservative
```

```
in = [em, electrons, ions]
out = [emNew]
cfl = CFL
equations = [maxwell]
<Equation maxwell>
    kind = maxwellEqn
    c0 = SPEED_OF_LIGHT
    gamma = BP
    chi = 0.0
</Equation>
</Updater>
```

The following block demonstrates the maxwellEqn used in combination with timeStepRestrictionUpdater (1d, $2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$:

```
<Updater getWaveSpeed>
    kind = timeStepRestrictionUpdater2d
    in = [q]
    waveSpeeds = [waveSpeed]
    onGrid = domain
    restrictions = [hyperbolic]
    cfl = CFL
    courantCondition = CFL
    <TimeStepRestriction hyperbolic>
    kind = hyperbolic2d
    model = maxwellEqn
    cfl = CFL
    c0 = SPEED_OF_LIGHT
    gamma = 0.0
    chi = 0.0
    includeInTimeStep = False
</TimeStepRestriction>
</Updater>
```


11.12 maxwellDednerEqn

Fluxes and eigensystem for Maxwell's equations in vacuum with divergence cleaning.

$$
\begin{aligned}
\frac{\partial \mathbf{E}}{\partial t}+c^{2} \nabla \times \mathbf{B}+\nabla \Phi & =0 \\
\frac{\partial \mathbf{B}}{\partial t}-\nabla \times \mathbf{E}+\nabla \psi & =0 \\
\frac{\partial \Phi}{\partial t}+\nabla \cdot\left[c_{\mathrm{fast}}^{2} \mathbf{E}\right] & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\mathrm{fast}}^{2} \mathbf{B}\right] & =0
\end{aligned}
$$

Coupling of Maxwell's equations to a plasma is accomplished using current.

11.12.1 Parameters

mu0 (float, optional) Permeability of free space. Default value is $1.256 \mathrm{e}-06$.
epsilon0 (float, optional) Permittivity of free space. Default value is $8.854 \mathrm{e}-12$.
cfl (float, optional) CFL number. Default value is 1.0.

11.12.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 8-components, required) The vector of conserved quantities, \mathbf{q} has 8 entries:
0 . $E_{\hat{\mathbf{i}}}=\mathbf{E} \cdot \hat{\mathbf{i}}$: electric field in the $\hat{\mathbf{i}}$ direction.

1. $E_{\hat{\mathbf{j}}}=\mathbf{E} \cdot \hat{\mathbf{j}}$: electric field in the $\hat{\mathbf{j}}$ direction
2. $E_{\hat{\mathbf{k}}}=\mathbf{E} \cdot \hat{\mathbf{k}}$: electric field in the $\hat{\mathbf{k}}$ direction
3. $B_{\hat{\mathbf{i}}}=\mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field in the $\hat{\mathbf{i}}$ direction
4. $B_{\hat{\mathbf{j}}}=\mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field in the $\hat{\mathbf{j}}$ direction
5. $B_{\hat{\mathbf{k}}}=\mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field in the $\hat{\mathbf{k}}$ direction
6. Φ electric field correction potential
7. Ψ magnetic field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
out (string vector, required) For the maxwellDednerEqn, one of three output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater (1d, 2d, 3d)), the time step associated with the CFL condition (timeStepRestrictionUpdater (1d, $2 d, 3 d)$) or the fastest wave speed in the grid (hyperbolic ($1 d, 2 d, 3 d$)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇. $\mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
0. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ electric field flux

1. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{j}}}\right): \hat{\mathbf{i}}$ electric field flux
2. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{k}}}\right): \hat{\mathbf{j}}$ electric field flux
3. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
4. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{j}}}\right): \hat{\mathbf{i}}$ magnetic field flux
5. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{k}}}\right): \hat{\mathbf{j}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}(\psi)$: electric correction potential flux
7. $\nabla \cdot \mathcal{F}(\psi)$: magnetic correction potential flux

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.12.3 Example

The following block demonstrates the maxwellDednerEqn used in combination with classicMusclUpdater (1d, $2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyper>
    kind=classicMuscl2d
    onGrid=domain
    timeIntegrationScheme=none
    numericalFlux=hlleFlux
    limiter=[none]
    variableForm=conservative
    preservePositivity=false
    in=[q]
    out=[qNew]
    waveSpeeds=[waveSpeed]
    cfl=0.4
    equations=[maxwell]
    <Equation maxwell>
            kind=maxwellDednerEqn
            epsilon0=1.0
            mu0=1.0
            cfl=0.4
        </Equation>
    </Updater>
```

The following block demonstrates the maxwellDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdater2d
    in=[q]
    waveSpeeds=[waveSpeed]
    onGrid=domain
    restrictions=[hyperbolic]
    cfl=0.4
    courantCondition=0.4
    <TimeStepRestriction hyperbolic>
            kind=hyperbolic2d
            model=maxwellEqn
            cfl=0.4
            c0=1.0
            gamma=0.0
            chi=0.0
            includeInTimeStep=False
    </TimeStepRestriction>
</Updater>
```


11.13 gasDynamicMaxwellDednerEqn

Defines the equations of inviscid fluid dynamics coupled to Maxwell's equations in source term form with divergence cleaning:

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}]=0 \\
\frac{\partial(\rho \mathbf{u})}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P\right]=\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right) \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}]=\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E} \\
\frac{\partial \mathbf{B}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{E}+\nabla \Psi=0 \\
\frac{\partial \mathbf{E}^{\text {plasma }}}{\partial t}-c^{2} \nabla \times \mathbf{B}+\nabla \Phi=-\epsilon_{0}^{-1} \sum_{\text {species }} \mathbf{J}^{\text {species }} \\
\frac{\partial \Psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{B}^{\text {plasma }}\right]=0 \\
\frac{\partial \Phi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{E}^{\text {plasma }}\right]=\sum_{\text {species }} q^{\text {species }}
\end{array}
$$

Here, $q^{\text {species }}$ is the species charge density, $\mathbf{J}^{\text {species }}$ is the species current density, \mathbb{I} is the identity matrix, $P=$ $\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats). The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following standard identities (note that the use of these identities does not require an assumption of quasi-neutrality):

$$
\begin{array}{r}
\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right)=-\frac{\partial c^{-2} \mathbf{S}^{\mathrm{EM}}}{\partial t}+\nabla \cdot \mathcal{T}^{\mathrm{EM}} \\
\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E}=-\frac{\partial E^{\mathrm{EM}}}{\partial t}-\nabla \cdot \mathbf{S}^{\mathrm{EM}}
\end{array}
$$

Here, $\mathcal{T}^{\mathrm{EM}}$ is the electromagnetic stress tensor and \mathbf{S}^{EM} is the electromagnetic energy (Poynting) flux vector, which are defined as:

$$
\begin{array}{r}
\mathcal{T}^{\mathrm{EM}}=\frac{1}{\mu_{0}}\left(\frac{\mathbf{E E} \mathbf{E}^{T}}{c^{2}}+\mathbf{B} \mathbf{B}^{T}\right)+\mathbb{I} E_{\mathrm{EM}}=\frac{\mathbf{e e}^{T}}{c^{2}}+\mathbf{b b}^{T}+\mathbb{I} E_{\mathrm{EM}} \\
\mathbf{S}^{\mathrm{EM}}=\mu_{0}^{-1} \mathbf{E} \times \mathbf{B}=\mathbf{e} \times \mathbf{b} \\
E^{\mathrm{EM}}=\frac{1}{2 \mu_{0}}\left(\frac{|\mathbf{E}|^{2}}{c^{2}}+|\mathbf{B}|^{2}\right)=\frac{1}{2}\left(\frac{|\mathbf{e}|^{2}}{c^{2}}+|\mathbf{b}|^{2}\right)
\end{array}
$$

Here, E^{EM} is the electromagnetic energy density and the electromagnetic fields are defined as:

$$
\begin{aligned}
\mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) & =\mu_{0}^{-1 / 2} \mathbf{B} \\
\mathbf{e}=\mathbf{e}^{\text {plasma }}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{E}^{\text {plasma }}+\mathbf{E}^{\text {external }}\right) & =\mu_{0}^{-1 / 2} \mathbf{E}
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma, $\mathbf{e}^{\text {plasma }}$ is the electric field associated with net charge in the plasma, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to Maxwell's
equations inside the plasma. With these identitifications, the fluid part of the gasDynamicMaxwellDednerEqn takes the form:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P-\mathcal{T}^{\mathrm{EM}}\right] & =0 \\
\frac{\partial\left(E+E^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[(E+P) \mathbf{u}+\mathbf{S}^{\mathrm{EM}}\right] & =0
\end{aligned}
$$

The electromagnetic part of the system is solved in USim as:

$$
\begin{array}{r}
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}-\nabla \times \mathbf{e}+\nabla \psi=0 \\
\frac{\partial \mathbf{e}^{\text {plasma }}}{\partial t}+f^{2} c_{\text {fast }}^{2} \nabla \times \mathbf{b}+\nabla \phi=-f^{2} c_{\text {fast }}^{2} \mu_{0}^{1 / 2} \sum_{\text {species }} \mathbf{J}^{\text {species }} \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}^{\text {plasma }}\right]=0 \\
\frac{\partial \phi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{e}^{\text {plasma }}\right]=\mu_{0}^{-1 / 2} \sum_{\text {species }} q^{\text {species }}
\end{array}
$$

Here, we have written $c^{2}=f^{2} c_{\text {fast }}^{2}=\left(\epsilon_{0} \mu_{0}\right)^{-1}$, where f is a dimensionless number that defines the ratio of the speed of light to the fatest wave in the mesh and we have further defined $\psi=\mu_{0}^{-1 / 2} \Psi$ and $\Phi=\mu_{0}^{-1 / 2} \Phi$.
In order to close the electromagnetic part of the equations, a model for the current density and charge is required. An example of such a model that is provided with USim is $m h d S r c$. However, the user is also free to construct their own closure that returns:

$$
\mu_{0}^{-1 / 2} \sum_{\text {species }} q^{\text {species }} ; \mu_{0}^{1 / 2} \sum_{\text {species }} \mathbf{J}^{\text {species }}
$$

11.13.1 Parameters

lightSpeed (float, optional) The speed of light in m / s. Used to specify the speed of light in the fluid momentum and energy equations. Defaults to 2.99792458 e 8.
lightSpeedFactor (float, optional) Dimensionless number, used to specify the ratio of the speed of light to the fastest wave speed in the grid. Defaults to 1.0e3.
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $\mathbf{e}^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

11.13.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 12-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{i}}$: total momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{j}}$: total momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{k}}$: total momentum density in the $\hat{\mathbf{k}}$ direction
4. $E+E^{\mathrm{EM}}=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+E^{\mathrm{EM}}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}:$ magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. $e_{\hat{\mathbf{i}}}=\mathbf{e} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{i}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
9. $e_{\hat{\mathbf{j}}}=\mathbf{e} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{j}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
10. $e_{\hat{\mathbf{k}}}=\mathbf{e} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{k}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
11. ψ : magnetic field correction potential
12. ϕ : electric field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
Externally Computed Electric Field (nodalArray, 3-components, optional) Additional contribution to the electric field, $\mathrm{e}^{\text {external }}$, which is not evolved by Ampere's equation, but does contribution to the induction equation, the Lorentz force and the work done on the plasma. The data structure containing e external is specified by the "externalEField" option described below.
0. $e_{\mathrm{i}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$. "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\mathbf{j}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$ "'externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to Ampere's equation, the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
3. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the \mathbf{i} direction
4. $b_{\mathbf{j}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
5. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$), primitive variables (computePrimitiveState($1 d, 2 d, 3 d$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 12-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater ($1 d, 2 d, 3 d)$), the equation system returns:
$0 . \nabla \cdot \mathcal{F}(\rho)$: mass flux
6. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{i}}+c^{-2} S_{\hat{i}}^{\mathrm{EM}}\right): \hat{\mathbf{i}}$ momentum flux
7. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}\right): \hat{\mathbf{j}}$ momentum flux
8. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}\right): \hat{\mathbf{k}}$ momentum flux
9. $\nabla \cdot \mathcal{F}(E)$: total energy flux
10. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right)$: $\hat{\mathrm{i}}$ magnetic field flux
11. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
12. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
13. $\nabla \cdot \mathcal{F}\left(e_{\hat{\mathbf{i}}}\right): \hat{\mathrm{i}}$ electric field flux
14. $\nabla \cdot \mathcal{F}\left(e_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ electric field flux
15. $\nabla \cdot \mathcal{F}\left(e_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ electric field flux
16. $\nabla \cdot \mathcal{F}(\psi)$: magnetic correction potential flux
17. $\nabla \cdot \mathcal{F}(\phi)$: electric correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState ($1 d, 2 d, 3 d$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathrm{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. $e_{\hat{\mathbf{i}}}=\mathbf{e} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{i}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
9. $e_{\hat{\mathbf{j}}}=\mathbf{e} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{j}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
10. $e_{\hat{\mathbf{k}}}=\mathbf{e} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{k}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
11. ψ : magnetic field correction potential
12. ϕ : electric field correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

11.13.3 Examples

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with classicMusclUpdater (1d, 2d, 3d) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMusclld
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind = gasDynamicMaxwellDednerEqn
        gasGamma = GAS_GAMMA
        lightSpeedFactor =LIGHT_SPEED_FACTOR
        externalBfield = EXTERNAL_FIELD
        basementPressure = BASEMENT_PRESSURE
        basementDensity = BASEMENT_DENSITY
    </Equation>
    <Source mhdSrc>
```

```
        kind = gasDynamicMhdDednerSrc
        scalarConductivity = $1.0/OHMIC_RESISTIVITY$
    </Source>
    <Source mhdClean>
        kind = mhdSrc
        model = mhdDednerEqn
        momentumEnergySource = 1
        inputVariables = [q,divB,gradPsi]
    </Source>
</Updater>
```

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with computePrimitiveState ($1 d, 2 d, 3 d$) to compute \mathbf{w} :

```
<Updater computePrimitiveState>
    kind = computePrimitiveState$NDIM$d
    onGrid = domain
    # input array
    in = [q]
    # ouput data-structures
    out = [w]
    <Equation fluid>
            kind = gasDynamicMaxwellDednerEqn
            gasGamma = GAS_GAMMA
            lightSpeedFactor =LIGHT_SPEED_FACTOR
            externalBfield = EXTERNAL_FIELD
            basementPressure = BASEMENT_PRESSURE
            basementDensity = BASEMENT_DENSITY
    </Equation>
</Updater>
```

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdaterld
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=1.0
<TimeStepRestriction idealMhd>
    kind = hyperbolicld
```

```
    model = gasDynamicMaxwellDednerEqn
    gasGamma = GAS_GAMMA
    lightSpeedFactor =LIGHT_SPEED_FACTOR
    externalBfield = EXTERNAL_FIELD
    basementPressure = BASEMENT_PRESSURE
    basementDensity = BASEMENT_DENSITY
</TimeStepRestriction>
</Updater>
```


11.14 twoFluidEqn

Two fluid equations written as total mass density, momentum density, total charge density total current density and ion and electron energy. The two-fluid equations can also be written as two separate sets of euler equations, however, this form has the advantage that numerical diffusion is applied to the total charge density so that quasi-neutrality is enforced numerically.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
\rho_{c} \\
j_{x} \\
j_{y} \\
j_{z} \\
e_{i} \\
e_{e}
\end{array}\right)+\nabla \cdot P=0
$$

where P is defined as

$$
\left(\begin{array}{ccc}
\rho_{i} u_{x i}+\rho_{i} u_{x e} & \rho_{i} u_{y i}+\rho_{e} u_{y e} & \rho_{i} u_{z i}+\rho_{e} u_{z e} \\
\rho_{i} u_{x i}^{2}+P_{i}+\rho_{e} u_{x e}^{2}+P_{e} & \rho_{i} u_{x i} u_{y i}+\rho_{e} u_{x e} u_{y e} & \rho_{i} u_{x i} u_{z i}+\rho_{e} u_{x e} u_{z e} \\
\rho_{i} u_{y i} u_{x i}+\rho_{e} u_{y e} u_{x e} & \rho_{i} u_{y i} u_{y i}+P_{i}+\rho_{e} u_{y e} u_{y e}+P_{e} & \rho_{i} u_{y i} u_{z i}+\rho_{e} u_{y e} u_{z e} \\
\rho_{i} u_{z i} u_{x i}+\rho_{e} u_{z e} u_{x e} & \rho_{i} u_{z i} u_{y i}+\rho_{e} u_{z e} u_{y e} & \rho_{i} u_{z i} u_{z i}+P_{i}+\rho_{e} u_{z e} u_{z e}+P_{e} \\
\rho_{i} u_{x i}+\rho_{i} u_{x e} & \rho_{i} u_{y i}+\rho_{e} u_{y e} & \rho_{i} u_{z i}+\rho_{e} u_{z e} \\
r_{i}\left(\rho_{i} u_{x i}^{2}+P_{i}\right)+r_{e}\left(\rho_{e} u_{x e}^{2}+P_{e}\right) & r_{i} \rho_{i} u_{x i} u_{y i}+r_{e} \rho_{e} u_{x e} u_{y e} & r_{i} \rho_{i} u_{x i} u_{z i}+r_{e} \rho_{e} u_{x e} u_{z e} \\
r_{i} \rho_{i} u_{y i} u_{x i}+r_{e} \rho_{e} u_{y e} u_{x e} & r_{i}\left(\rho_{i} u_{y i} u_{y i}+P_{i}\right)+r_{e}\left(\rho_{e} u_{y e} u_{y e}+P_{e}\right) & r_{i} \rho_{i} u_{y i} u_{z i}+r_{e} \rho_{e} u_{y e} u_{z e} \\
r_{i} \rho_{i} u_{z i} u_{x i}+r_{e} \rho_{e} u_{z e} u_{x e} & r_{i} \rho_{i} u_{z i} u_{y i}+r_{e} \rho_{e} u_{z e} u_{y e} & r_{i}\left(\rho_{i} u_{z i} u_{z i}+P_{i}\right)+r_{e}\left(\rho_{e} u_{z e} u_{z e}+P_{e}\right) \\
u_{x i}\left(e_{i}+P_{i}\right) & u_{y i}\left(e_{i}+P_{i}\right) & u_{z i}\left(e_{i}+P_{i}\right) \\
u_{x e}\left(e_{e}+P_{e}\right) & u_{y e}\left(e_{e}+P_{e}\right) & u_{z e}\left(e_{e}+P_{e}\right)
\end{array}\right.
$$

With $r_{i}=q_{i} / m_{i}$ and $r_{e}=q_{e} / m_{e}$ where q_{e} is the electron charge, q_{i} is the ion charge, m_{e} is the electron mass and m_{i} is the ion mass. In addition the variables $\left(\rho_{\alpha}, u_{x \alpha}, u_{y \alpha}, u_{x \alpha}, e_{\alpha}, P_{\alpha}\right)$ are the species mass density, species x velocity, species y velocity, species z velocity, species total energy density, and species pressure respectively. In this case α represents the species, either e for electron or i for ion.

11.14.1 Parameters

ionGamma (float) Specific heat ratio for the ions
electronGamma (float) Specific heat ratio for the electrons. Defaults to $5 / 3$
ionMass (float) ion mass
electronMass (float) electron mass
ionCharge (float) ion charge
electronCharge electron charge
basementPressure (float) The minimum pressure allowed. Defaults to 0 .
basementDensity (float) The minimum density allowed for the ions. Defaults to 0. The electron basement density is determined by multiplying by the mass ratio, therefore basementDensityElectrons $=$ (me/mi)basementDensity

11.14.2 Parent Updater Data

in (string vector, required)

1st Input Variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. ρ_{c} total charge density
5. $j_{x} \mathrm{x}$ current density
6. j_{y} y current density
7. $j_{z} \mathrm{z}$ current density
8. e_{i} ion energy density
9. e_{e} electron energy density

11.14.3 Example

An example twoFluidEqn equation block is given below:

```
<Equation twoFluid>
    kind = twoFluidEqn
    ionGamma = GAS_GAMMA
    electronGamma = GAS_GAMMA
    ionMass = ION_MASS
    electronMass = ELECTRON_MASS
    ionCharge = ION_CHARGE
    electronCharge = ELECTRON_CHARGE
    basementDensity = BASEMENT_DENSITY
    basementPressure = BASEMENT_PRESSURE
</Equation>
```

The following equation can be used to implement a hyperbolic equation system at the input file level:

11.15 userDefinedEqn

Define an arbitrary hyperbolic system. Built in hyperbolic equations should be used when they are available as they are faster.

11.15.1 Parameters

indVars_inName For each input variable an "indVars" array must be defined. So if in $=[\mathrm{E}, \mathrm{B}]$ then indVars_E and indVars_B must be defined. If indVars_E = ["Ex","Ey",'Ez"] then operations are performed on "Ex","Ey" and "Ez" in the expression evaluator.
transform_inName For each variable there must be a vector that tells how the data is transformed upon rotation. For example, for an electric field E , the transform would be transform_E $=$ [vector] so that USim knows the input data is a vector. If the input data is density, momentum, energy as in the euler equations then we would have transform_q = [scalar, vector, scalar] which assumes that momentum has 3 components. The previous example transforms the first variable as if it were a scalar, then the next 3 variables as if they were part of a tensor and then the last variable as if it were a scalar. Available options are scalar, vector and tensor. It is assumed that vector has 3 components even in 1D and 2D simulations. Also it's assumed that tensor has 6 components in the order Txx, Txy, Tx, Tyy, Tyz, Tzz and that the remaining components are symmetric so are redundant.
preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
flux (string vector) Strings must be put in quotes. The strings are used to evaluate the flux in the x-direction. The fluxes in other directions are obtained through rotation of the input vector. Available command are defined by the muParser (http://muparser.sourceforge.net/)
eigenvalues (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array and are used to define the set of eigenvalues for the system. The eigenvalues are technically the eigenvalues in the x -direction and values in other directions are obtained through rotation. Available command are defined by the muParser (http://muparser.sourceforge.net/)
other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and flux and eigenvalues.

11.15.2 Parent Updater Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in $=[\mathrm{E}$, B]
out (string vector) output nodalArray where the result of the operation is stored

11.15.3 Example

```
<Updater hyper>
    kind = classicMuscl1d
    onGrid = domain
    in = [q]
    out = [qnew]
    timeIntegrationScheme = none
    numericalFlux = $RIEMANN_SOLVER$
    cfl = CFL
    variableForm = $VARIABLE_FORM$
    limiter = [$LIMITER$]
    equations = [euler]
    <Equation euler>
```

```
kind = userDefinedEqn
        indVars_q = ["rho","mx","my","mz","en"]
        transform_q = [scalar, vector, scalar]
        gamma = GAS_GAMMA
        preExprs = ["p=(gamma-1.0)*(en-0.5*((mx*mx+my*my+mz*mz)/rho))"]
        flux = ["mx","(mx*mx/rho) +p","(mx*my/rho)","(mx*mz/rho)","(mx/rho)*(en+p)"]
        eigenvalues = ["sqrt(p*gamma/rho)+(mx/rho)"]
    </Equation>
</Updater>
```


ALGEBRAIC EQUATIONS

A Source or Equation block in USim that defines a local non-linear algebraic transformation of a set of input nodalArrays, $\mathbf{q}_{\text {Input }}$ into a single output nodalArray through:

$$
\mathbf{q}_{\text {Output }}=\mathcal{S}\left(\mathbf{q}_{\text {Input }}, x, y, z, t\right)
$$

where $\mathcal{S}\left(\mathbf{q}_{\text {Input }}, x, y, z, t\right)$ represents a non-linear algebraic transformation that is applied locally, i.e. $\mathcal{S}\left(\mathbf{q}_{\text {Input }}, x, y, z, t\right)$ only depends on the data in an indiviudal element in the Grid and not on elements adjacent to that element.

Source and Equation blocks can be used for a range of purposes in USim. One particular example is the addition of terms to the right-hand side of a hyperbolic equation system

$$
\frac{\partial \mathbf{q}}{\partial t}+\nabla \cdot[\mathcal{F}(\mathbf{w})]=\mathcal{S}(\mathbf{w}, x, y, z, t)
$$

A specific example of a source block that can be used in this way is the exprHyperSrc to apply a gravitational acceleration to a neutral fluid:

```
<Source gravity>
    kind = exprHyperSrc
    gravity = GRAVITY
    indVars = ["rho", "rhou", "rhov", "rhow", "Er"]
    exprs = ["0.0", "0.0", "-rho*gravity", "0.0", "-gravity*rhov"]
</Source>
```

Note: Any kind listed below can be used as an Equation block in the localOdeIntegrator (1d, 2d,3d) Updater or the equation (1d, 2d, 3d) Updater.

Note: The firstOrderMusclUpdater (1d, 2d, 3d), classicMusclUpdater (1d, 2d, 3d), unstructMusclUpdater (1d, 2d, $3 d)$, and thirdOrderMusclUpdater ($1 d, 2 d, 3 d$) Updaters are the only updaters that use the following kinds as Source blocks.

Note: None of the kinds listed below can be used as Equation blocks in the muscl updaters. The Equation blocks in the muscle updaters are Hyperbolic Equations

The following parameters are common to all Source blocks:
kind (string) All Source and Equation blocks take a string kind that specifies the type of source.
The following kinds can be combined with Hyperbolic Equations to enable the use of curvilinear coordinates for hyperbolic problems:

12.1 eulerSym

The eulerSym source computes additional (source) terms associated with curvilinear (cylindrical and spherical) coordinate systems for inviscid compressible hydrodynamics. The eulerSym source is combined with (e.g.) classicMusclUpdater ($1 d, 2 d, 3 d$) and one of eulerEqn, eulerTwoTemp, eulerThreeTemp or realGasEosEqn. Note that formulation of the cylindrical source term assumes axisymmetry and so can be used in 1- and 2dimensions, while the formulation of spherical coordinates assumes spherical symmetry and so can only be used in one-dimension.

12.1.1 Parameters

symmetryType (string, required) The curvilinear cordinate system to be used. Available options are cylindrical or spherical
model (string, required) Determines the equation that the source term will be computed for. Available options are:
eulerEqn Compute curvilinear source terms associated with eulerEqn.
realGasEosEqn Compute curvilinear source terms associated with realGasEosEqn.
eulerTwo Temp Compute curvilinear source terms associated with eulerTwoTemp.
eulerThreeTemp Compute curvilinear source terms associated with eulerThreeTemp.
gasGamma (float, required if model=eulerEqn) Specifies the adiabatic index (ratio of specific heats), γ.

12.1.2 Parent Updater Data

in (string vector, required) The number and form of the input variables for eulerSym depends on the choice of the parameter model.

```
model = eulerEqn (1 input variable)
```

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of conserved quantities, \mathbf{q} has 5 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density
model $=$ realGasEosEqn (2 input variables)
Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of conserved quantities, \mathbf{q} has 5 entries:
5. ρ : mass density
6. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
7. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
8. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
9. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density

Gas Pressure (nodalArray, 1-component, required) The gas pressure, P.
model $=$ eulerTwoTemp (3 input variables)
Vector of Conserved Quantities (nodalArray, 6-components, required) The vector of conserved quantities, \mathbf{q} has 6 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P_{\text {heavy }}}{\gamma_{\text {heavy }}-1}+\frac{P_{\text {electron }}}{\gamma_{\text {electron }}-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density
5. $E_{\text {electron }}=\frac{P_{\text {electron }}}{\gamma_{\text {electron }}-1}$: electron internal energy density

Total Gas Pressure (nodalArray, 1-component, required) The total gas pressure, $P_{\text {heavy }}+$ $P_{\text {electron }}$.

Electron Pressure (nodalArray, 1-component, required) The electron pressure, $P_{\text {electron }}$. model $=$ eulerThreeTemp (3 input variables)

Vector of Conserved Quantities (nodalArray, 7-components, required) The vector of conserved quantities, \mathbf{q} has 7 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P_{\text {heavy }}}{\gamma_{\text {heavy }}-1}+\frac{P_{\text {electron }}}{\gamma_{\text {electron }}-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density
5. $E_{\text {electron }}=\frac{P_{\text {electron }}}{\gamma_{\text {electron }}-1}$: electron internal energy density
6. $E_{\text {vibr }}$: vibrational energy density

Total Gas Pressure (nodalArray, 1-component, required) The total gas pressure, $P_{\text {heavy }}+$ $P_{\text {electron }}$.

Electron Pressure (nodalArray, 1-component, required) The electron pressure, $P_{\text {electron }}$.
out (string vector, required) The form of the output variables for eulerSym depends on the choice of the parameter model and symmetryType:
model $=$ eulerEqn
Vector of Source terms (nodalArray, 5-components) When symmetryType $=$ cylindrical, the output source vector has components:
0. $\mathcal{S}(\rho)=-r^{-1} \rho u_{\hat{\mathbf{i}}}$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-r^{-1}\left(\rho u_{\hat{\mathbf{i}}}^{2}+\rho u_{\hat{\mathbf{j}}}^{2}\right): \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-2 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-r^{-1} u_{\hat{\mathbf{i}}}(E+P)$: total energy source

When symmetryType $=$ spherical, the output source vector has components:
0. $\mathcal{S}(\rho)=-2 r^{-1} \rho u_{\hat{\mathrm{i}}}$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-2 r^{-1} \rho u_{\hat{\mathbf{i}}}^{2}+\rho u_{\mathbf{j}}^{2}: \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\mathbf{j}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-2 r^{-1} u_{\hat{\mathbf{i}}}(E+P)$: total energy source

model $=$ realGasEosEqn

Vector of Source terms (nodalArray, 5-components) When symmetryType $=$ cylindrical, the output source vector has components:
0. $\mathcal{S}(\rho)=-r^{-1} \rho u_{\hat{i}}$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-r^{-1} \rho u_{\mathbf{i}}^{2}+\rho u_{\hat{\mathbf{j}}}^{2}: \hat{\mathrm{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-2 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-r^{-1} u_{\hat{\mathrm{i}}}(E+P)$: total energy source

When symmetryType $=$ spherical, the output source vector has components:
0. $\mathcal{S}(\rho)=-2 r^{-1} \rho u_{\hat{i}^{2}}$: mass source

1. $\mathcal{S}\left(\rho u_{\mathbf{i}}\right)=-2 r^{-1} \rho u_{\hat{i}}^{2}+\rho u_{\mathbf{j}}^{2}: \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-2 r^{-1} u_{\hat{\mathrm{i}}}(E+P)$: total energy source
model $=$ eulerTwoTemp
Vector of Source terms (nodalArray, 6-components) When symmetryType $=$ cylindrical, the output source vector has components:
5. $\mathcal{S}(\rho)=-r^{-1} \rho u_{\mathbf{i}}$: mass source
6. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-r^{-1} \rho u_{\hat{\mathbf{i}}}^{2}+\rho u_{\hat{\mathrm{j}}}^{2}: \hat{\mathbf{i}}$ momentum source
7. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-2 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
8. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
9. $\mathcal{S}(E)=-r^{-1} u_{\hat{\mathrm{i}}}(E+P)$: total energy source
10. $\mathcal{S}\left(E_{\text {electron }}\right)=-r^{-1} u_{\hat{\mathbf{i}}}\left(E_{\text {electron }}+P_{\text {electron }}\right)$: electron internal energy source

When symmetryType $=$ spherical, the output source vector has components:
0. $\mathcal{S}(\rho)=-2 r^{-1} \rho u_{\mathrm{i}}$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{i}}\right)=-2 r^{-1} \rho u_{\hat{i}}^{2}+\rho u_{\mathbf{j}}^{2}: \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-2 r^{-1} u_{\hat{\mathbf{i}}}(E+P)$: total energy source
5. $\mathcal{S}\left(E_{\text {electron }}\right)=-2 r^{-1} u_{\hat{\mathbf{i}}}\left(E_{\text {electron }}+P_{\text {electron }}\right)$: electron internal energy source
model $=$ eulerThreeTemp
Vector of Source terms (nodalArray, 7-components) When symmetryType $=$ cylindrical, the output source vector has components:
6. $\mathcal{S}(\rho)=-r^{-1} \rho u_{\hat{\mathbf{i}}}$: mass source
7. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-r^{-1} \rho u_{\hat{\mathbf{i}}}^{2}+\rho u_{\hat{\mathbf{j}}}^{2}: \hat{\mathbf{i}}$ momentum source
8. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-2 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
9. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
10. $\mathcal{S}(E)=-r^{-1} u_{\hat{\mathbf{i}}}(E+P)$: total energy source
11. $\mathcal{S}\left(E_{\text {electron }}\right)=-r^{-1} u_{\hat{\mathbf{i}}}\left(E_{\text {electron }}+P_{\text {electron }}\right)$: electron internal energy source
12. $\mathcal{S}\left(E_{\text {vibr }}\right)=-r^{-1} u_{\hat{\mathbf{i}}} E_{\text {vibr }}$: vibrational energy source

When symmetryType $=$ spherical, the output source vector has components:
0. $\mathcal{S}(\rho)=-2 r^{-1} \rho u_{\hat{\mathrm{i}}}$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-2 r^{-1} \rho u_{\hat{\mathbf{i}}}^{2}+\rho u_{\hat{\mathbf{j}}}^{2}: \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}: \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-3 r^{-1} \rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}: \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-2 r^{-1} u_{\hat{\mathbf{i}}}(E+P)$: total energy source
5. $\mathcal{S}\left(E_{\text {electron }}\right)=-2 r^{-1} u_{\hat{\mathbf{i}}}\left(E_{\text {electron }}+P_{\text {electron }}\right)$: electron internal energy source
6. $\mathcal{S}\left(E_{\text {vibr }}\right)=-2 r^{-1} u_{\hat{\mathbf{i}}} E_{\text {vibr }}$: vibrational energy source

12.1.3 Example

The following block demonstrates eulerSym used in combination with classicMusclUpdater ($1 \mathrm{~d}, 2 d, 3 d$) and eulerEqn to compute $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w}, x, y, z, t)$:

```
<Updater hyper>
    kind = classicMuscl1d
    onGrid = domain
    timeIntegrationScheme = none
    variableForm = conservative
    preservePositivity = true
    in = [q]
    out = [qnew]
    cfl=0.5
    limiter = [minmod]
    numericalFlux = hllcEulerFlux
    equations = [euler]
    sources = [geometricSrc]
```

```
<Equation euler>
    kind = eulerEqn
    gasGamma = GAMMA # gas constant
</Equation>
    <Source geometricSrc>
    kind = eulerSym
    symmetryType = spherical
    model = eulerEqn
    gasGamma = GAMMA
    </Source>
</Updater>
```


12.2 mhdSym

The mhdSym source computes additional (source) terms associated with curvilinear coordinate systems for magnetohydrodynamics. Currently only cylindrical coordinates are supported. The mhdSym source is combined with classicMusclUpdater ($1 d, 2 d, 3 d$) and mhdDednerEqn. Note that formulation of the cylindrical source term assumes axisymmetry and so can be used in 1- and 2-dimensions.

12.2.1 Parameters

symmetryType (string, required) The curvilinear cordinate system to be used. Available options are cylindrical.
model (string, required) Determines the equation that the source term will be computed for. Available options are:
mhdDednerEqn Compute curvilinear source terms associated with mhdDednerEqn.
gasGamma (float, required) Specifies the adiabatic index (ratio of specific heats), γ.
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value. Defaults to zero.

12.2.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

out (string vector, required)

model $=$ mhdDednerEqn

Vector of Source terms (nodalArray, 9-components, required) When symmetryType $=$ cylindrical, the output source vector has components:
0. $\mathcal{S}(\rho)=-r^{-1} \rho u_{\hat{\mathbf{i}}}$: mass source

1. $\mathcal{S}\left(\rho u_{\hat{\mathbf{i}}}\right)=-r^{-1}\left(\rho u_{\hat{\mathbf{i}}}^{2}-b_{\hat{\mathbf{i}}}^{2}+\rho u_{\hat{\mathbf{j}}}^{2}-b_{\hat{\mathbf{j}}}^{2}+|\mathbf{b} \cdot \mathbf{b}|\right): \hat{\mathbf{i}}$ momentum source
2. $\mathcal{S}\left(\rho u_{\hat{\mathbf{j}}}\right)=-2 r^{-1}\left(\rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{j}}}-b_{\hat{\mathbf{i}}} b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum source
3. $\mathcal{S}\left(\rho u_{\hat{\mathbf{k}}}\right)=-r^{-1}\left(\rho u_{\hat{\mathbf{i}}} u_{\hat{\mathbf{k}}}-b_{\hat{\mathbf{i}}} b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum source
4. $\mathcal{S}(E)=-r^{-1}\left[u_{\hat{\mathbf{i}}}(E+P)+(\mathbf{e} \times \mathbf{b}) \cdot \hat{\mathbf{i}}\right]:$ total energy source
5. $\mathcal{S}\left(b_{\hat{\mathbf{i}}}\right)=0$: $\hat{\mathbf{i}}$ magnetic field source
6. $\mathcal{S}\left(b_{\hat{\mathbf{j}}}\right)=0: \hat{\mathbf{j}}$ magnetic field source
7. $\mathcal{S}\left(b_{\hat{\mathbf{k}}}\right)=-e_{\hat{\mathbf{j}}}: \hat{\mathbf{k}}$ magnetic field source
8. $\mathcal{S}(\psi)=-c_{\text {fast }}^{2} b_{\hat{\mathbf{i}}}$: correction potential source

12.2.3 Example

The following block demonstrates the mhdSym source used in combination with classicMusclUpdater ($1 d, 2 d$, $3 d)$ and $m h d D e d n e r E q n$ to compute $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w}, x, y, z, t)$:

```
<Updater hyper>
    kind = classicMuscl2d
    timeIntegrationScheme = none
    onGrid = domain
    limiter = [muscl, none, none]
    variableForm = primitive
    numericalFlux = roeFlux
    preservePositivity = true
    correctUnphysicalCells = false
    orderAccuracy = 3
    numberOfInterpolationPoints = 20
    formulation = spline
    leastSquaresBasisOrder = 6
    in = [q,divB,gradPsi]
    out = [qnew]
    waveSpeeds = [waveSpeed]
    Cfl = CFL
```

```
equations = [mhd]
sources = [axisymmetricSource]
<Equation mhd>
    kind = mhdDednerEqn
    mu0 = 1.0
    gasGamma = ADIABATIC_INDEX
    correctionSpeed = CORRECTION_SPEED
    basementdensity = BASEMENTDENSITY
    basementpressure = BASEMENTPRESSURE
</Equation>
    <Source axisymmetricSource>
        kind = mhdSym
        symmetryType = cylindrical
        model = mhdDednerEqn
        gasGamma = ADIABATIC_INDEX
        correctionSpeed = CORRECTION_SPEED
    </Source>
</Updater>
```


12.3 maxwellSym

Computes axisymmetric source term for the conservative form of the perfectly hyperbolic Maxwell's equations. The source term can be used as a source in a hyperbolic algorithm to solve axisymmetric problems.

$$
s=\frac{1}{r}\left(\begin{array}{c}
0 \\
0 \\
c^{2} B_{y} \\
0 \\
0 \\
-E_{y} \\
-\chi E_{x} \\
-\gamma c^{2} B_{x}
\end{array}\right)
$$

Where c is the speed of light, χ is electric correction potential speed factor, γ is the magnetic field correction potential speed factor, E_{x} is x electric field, E_{y} is the y electric field, B_{x} is x magnetic field, B_{y} is the y magnetic field and r is the radial position.

12.3.1 Parameters

speedOfLight (float) speed of light
gamma (float) Magnetic field divergence error correction speed factor, speed=gamma*c0
chi (float) Electric field poisson error correction speed factor, speed=chi* ${ }^{*} 0$

12.3.2 Example

```
<Source emAxisymmetricSource>
    kind = maxwellSym
    speedOfLight = SPEEDOFLIGHT
```

```
gamma = BP
chi = EP
</Source>
```


12.4 multiSpeciesSym

The multiSpeciesSym provides symmetry sources for the multi species continuity equations (multiSpeciesSingleVelocity) for example. Choices are cylindrical and spherical symmetry. For a set of n continuity equations the cylindrical source is given by

$$
s_{i}=-\frac{1}{r}\left(n_{i} u_{x}\right)
$$

and the spherical symmetry source by

$$
s_{i}=-\frac{2}{r}\left(n_{i} u_{x}\right)
$$

12.4.1 Parameters

basementDensity (float) If the number density is below basementDensity then the density is set to the basementNumber density in evaluating this source.
numberOfSpecies (int) The number of species
symmetryType (string) Either cylindrical or spherical

12.4.2 Parent Updater Data

in (string vector, required)

1st Variable (nodalArray) There are n species number densities
0. n_{i} species number density

2nd Variable (density and momentum) (nodalArray)

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density

12.4.3 Example

```
<Source multiSpeciesAxiSrc>
    kind = multiSpeciesSym
    symmetryType = cylindrical
    numberOfSpecies = NSPECIES
</Source>
```


12.5 twoFluidSym

Computes symmetry source term for the conservative for of the combined two-fluid equations. The source just converts the combined two-fluid into two separate euler fluids and computes the source for each fluid separately. The result is then transformed back into the combined fluid.

12.5.1 Parameters common to all systems

model (string) The model whose source term will be computed
symmetryType (string) The symmetry type that will be used. This can be either cylindrical or spherical

12.5.2 Parameters (twoFluidEqn)

ionGamma (float) Specific heat ratio of the ions
electronGamma (float) Specific heat ratio of the electrons
mi (float) ion mass
me (float) electron mass
qi (float) ion charge
qe (float) electron charge
basementDensity (float) basement density of the ions. Basement density of the electrons is (me/me)*basementDensity.
basementPressure (float) basement pressure of the electrons and ions separately.

12.5.3 Parent Updater Data (twoFluidEqn)

in (string vector, required) $\mathbf{1 0}$ primary variables

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. ρ_{c} total charge density
5. $j_{x} \mathrm{x}$ current density
6. j_{y} y current density
7. $j_{z} \mathrm{z}$ current density
8. e_{i} ion energy density
9. e_{e} electron energy density

12.5.4 Example

```
<Source axiSymSource>
    kind = twoFluidSymSrc
    symmetryType = cylindrical
    model = twoFluidEqn
    ionGamma = 1.666
    electronGamma = 1.6666
    qi = ION_CHARGE
    qe = ELECTRON_CHARGE
    mi = ION_MASS
    me = ELECTRON_MASS
    basementDensity = 0.0
    basementPressure = 0.0
</Source>
```

The following kinds can be combined with Hyperbolic Equations to enable additional physics in hyperbolic problems:

12.6 exprHyperSrc

Computes a source term based on input variables from N nodalArrays in combination with geometric factors.

12.6.1 Parameters

indVars_inName (string vector, required) For each input variable an "indVars" string vector must be defined. So if in = [magneticField, electricField] where magneticField and electricField are each 3component nodalArrays then the combiner block must define indVars_magneticField $=[" b x "$ " "by", "bz"] and indVars_electricField = ["ex", "ey", "ez"]. Note that the labels " $b x ", " b y ", " b z "$ and "ex", "ey", "ez" are arbitrary; the requirement is that there is a unique name for each component of each input data structure.
exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the output array. The number of strings must be identical to the number of components in the output array. Available command are defined by the muParser (http://muparser.sourceforge.net/)
preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and exprs.

12.6.2 Parent Updater Data

in (string vector, required) Inputs 1 to N are input nodalArrays which will be supplied to the expression evaluator.
out (string vector, required) Output is a nodalArray which will contain evaluated source. The number of components in the output array must be equal to the number of expressions.

12.6.3 Example

The following block demonstrates exprHyperSrc used in combination with classicMusclUpdater (1d, 2d, 3d) and eulerEqn to compute $\nabla \cdot[\mathcal{F}(\mathbf{w})]-\mathcal{S}(\mathbf{w}, x, y, z, t)$:

```
<Updater hyper>
    kind = classicMuscl2d
    onGrid = domain
    timeIntegrationScheme = none
    numericalFlux = hllcEulerFlux
    limiter = [muscl]
    variableForm = primitive
    in = [q]
    out = [qnew]
    cfl = 0.3
    equations = [euler]
    sources = [gravity]
    <Equation euler>
        kind = eulerEqn
        correctNans = false
        gasGamma = GAMMA
    </Equation>
<Source gravity>
        kind = exprHyperSrc
        inpRange = [0,1,2,3,4]
        outRange = [0,1,2,3,4]
        gravity = GRAVITY # m/s^2
        indVars = ["rho", "rhou", "rhov", "rhow", "Er"]
        exprs = ["0.0", "0.0", "-rho*gravity", "0.0", "-gravity*rhov"]
</Source>
</Updater>
```


12.7 mhdSrc

Many of the MHD system require source terms as the hyperbolic part is not sufficient to describe the simple system. This source contains the source terms that should be added to these models.

Sources include:
The idealMHD source terms. The ideal MHD case only applies when one does not convert the source terms to a conservative flux. Note that we do not need separate source for general equation of state since the source terms
are independent of the relation between internal energy and pressure.

$$
s=\left(\begin{array}{c}
0 \\
J_{y} B_{z}-J_{z} B_{y} \\
J_{z} B_{x}-J_{x} B_{z} \\
J_{x} B_{y}-J_{y} B_{x} \\
J_{x} E_{x}+J_{y} E_{y}+J_{z} E_{z} \\
0 \\
0 \\
0
\end{array}\right)
$$

The gasDynamicMhdEqn source terms (which include an electron energy equation)

$$
s=\left(\begin{array}{c}
0 \\
J_{y} B_{z}-J_{z} B_{y} \\
J_{z} B_{x}-J_{x} B_{z} \\
J_{x} B_{y}-J_{y} B_{x} \\
J_{x} E_{x}+J_{y} E_{y}+J_{z} E_{z} \\
0 \\
0 \\
0 \\
0 \\
J_{x e} E_{x}+J_{y e} E_{y}+J_{z e} E_{z}
\end{array}\right)
$$

The twoTemperatureMhdEqn source terms

$$
s=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
J_{x e} E_{x}+J_{y e} E_{y}+J_{z e} E_{z}
\end{array}\right)
$$

12.7.1 Parameters (twoTemperatureMhdEqn and twoTemperatureMhdEosEqn)

ionMass (float) The mass of an ion
fundamentalCharge proton charge

12.7.2 Parent Updater Data (idealMhd)

in (string vector, required) 1st Variable
0. ρ mass density

1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density
5. $B_{x} \mathrm{x}$ magnetic field
6. B_{y} y magnetic field
7. $B_{z} \mathrm{z}$ magnetic field

2nd Variable (current density)
0 . $J_{x} \mathrm{x}$ current density

1. $J_{y} y$ current density
2. $J_{z} \mathrm{z}$ current density

3rd Variable (electric field)
0. $e_{x} \mathrm{x}$ electric field

1. $e_{y} y$ electric field
2. $e_{z} \mathrm{z}$ electric field

12.7.3 Parent Updater Data (twoTemperatureMhdEqn and gasDynamicMhdEqn)

in (string vector, required) 1st Variable
0. ρ mass density

1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density
5. $B_{x} \mathrm{x}$ magnetic field
6. B_{y} y magnetic field
7. $B_{z} \mathrm{z}$ magnetic field
8. Phi correction potential
9. e_{e} electron energy

2nd Variable (current density)

0. $J_{x} \mathrm{x}$ current density
1. J_{y} y current density
2. $J_{z} \mathrm{z}$ current density

3rd Variable (electric field)

0. $e_{x} \mathrm{x}$ electric field
1. $e_{y} y$ electric field
2. $e_{z} \mathrm{z}$ electric field

4th Variable (charge state)
0. Z charge state

12.7.4 Parent Updater Data (twoTemperatureMhdEosEqn)

in (string vector, required) 1st Variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density
5. $B_{x} \mathrm{x}$ magnetic field
6. B_{y} y magnetic field
7. $B_{z} \mathrm{z}$ magnetic field
8. e_{e} electron energy equation

2nd Variable (current density)
0. $J_{x} \mathrm{x}$ current density

1. J_{y} y current density
2. $J_{z} \mathrm{z}$ current density

3rd Variable (electric field)
0. $e_{x} \mathrm{x}$ electric field

1. $e_{y} y$ electric field
2. $e_{z} \mathrm{z}$ electric field

4th Variable (charge state)
0. Z charge state

12.7.5 Example

```
<Source axisymmetricSource>
    kind = mhdSrc
    model = gasDynamicMhdSrc
</Source>
```


12.8 tenMomentFluidSrc

Computes the "lorentz force" for a 10 moment fluid given, particle mass, charge and permittivity.

$$
s=\left(\begin{array}{c}
0 \\
r \rho\left(E_{x}+u_{y} B_{z}-u_{z} B_{y}\right) \\
r \rho\left(E_{y}+u_{z} B_{x}-u_{x} B_{z}\right) \\
r \rho\left(E_{z}+u_{x} B_{y}-u_{y} B_{x}\right) \\
2 r \rho u_{x} E_{x}+2 r\left(B_{z} \mathbf{P}_{\mathbf{x} \mathbf{y}}-B_{y} \mathbf{P}_{\mathbf{x z}}\right) \\
r \rho\left(u_{x} E_{y}+u_{y} E_{x}\right)+r\left(B_{z} \mathbf{P}_{\mathbf{y} \mathbf{y}}+B_{y} \mathbf{P}_{\mathbf{y} \mathbf{z}}-B_{z} \mathbf{P}_{\mathbf{x x}}+B_{x} \mathbf{P}_{\mathbf{x} \mathbf{z}}\right) \\
r \rho\left(u_{x} E_{z}+u_{z} E_{x}\right)+r\left(B_{z} \mathbf{P}_{\mathbf{y z}}+B_{y} \mathbf{P}_{\mathbf{x} \mathbf{x}}-B_{y} \mathbf{P}_{\mathbf{x x}}-B_{x} \mathbf{P}_{\mathbf{y} \mathbf{y}}\right) \\
2 r \rho u_{y} E_{y}+2 r\left(B_{x} \mathbf{P}_{\mathbf{y z}}-B_{z} \mathbf{P}_{\mathbf{x} \mathbf{y}}\right) \\
r \rho\left(u_{y} E_{z}+u_{z} E_{y}\right)+r\left(B_{y} \mathbf{P}_{\mathbf{x} \mathbf{y}}-B_{z} \mathbf{P}_{\mathbf{x} \mathbf{z}}+B_{x} \mathbf{P}_{\mathbf{z \mathbf { z }}}-B_{x} \mathbf{P}_{\mathbf{y} \mathbf{y}}\right) \\
2 r \rho u_{z} E_{z}+2 r\left(B_{y} \mathbf{P}_{\mathbf{x} \mathbf{z}}-B_{x} \mathbf{P}_{\mathbf{y} \mathbf{z}}\right)
\end{array}\right)
$$

where q is the species charge, m is the species mass ϵ_{0} is the permittivity, ρ is the fluid mass density, u_{x} is the fluid x velocity, u_{y} is the fluid y velocity, u_{z} is the fluid z velocity, E_{x} is the x electric field, E_{y} is the y electric field, E_{z} is the z electric field, B_{x} is the x magnetic field, B_{y} is the y magnetic field and B_{z} is the z magnetic field. $\mathbf{P}_{\mathbf{i} \mathbf{j}}=P_{i j}+\rho u_{i} u_{j}$ with $P_{i j}$ the pressure tensor and ρ the mass density and $r=q / m$ the charge to mass ratio.

12.8.1 Parameters

mass (float) The mass of the fluid species
charge (float) The charge of the fluid species
type (string, default='unsplit') One of either split or unsplit

12.8.2 Data

```
inputVariables (string vector)
    1st Variable (nodalArray)
```

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. $\rho u_{x}^{2}+P_{x x} \mathrm{xx}$ energy density
5. $\rho u_{x} u_{y}+P_{x y}$ xy energy density
6. $\rho u_{x} u_{z}+P_{x z}$ xz energy density
7. $\rho u_{y}^{2}+P_{y y}$ yy energy density
8. $\rho u_{y} u_{z}+P_{y z}$ yz energy density
9. $\rho u_{z}^{2}+P_{z z}$ zz energy density

2nd Variable (nodaArray)
0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. B_{y} y magnetic field
5. B_{z} z magnetic field

12.8.3 Parent Updater Data

in (string vector, required) The nodalArrays should match the inputVariables in the source block.

```
1st Variable (nodalArray)
```

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. $\rho u_{x}^{2}+P_{x x} \mathrm{xx}$ energy density
5. $\rho u_{x} u_{y}+P_{x y}$ xy energy density
6. $\rho u_{x} u_{z}+P_{x z} \mathrm{xz}$ energy density
7. $\rho u_{y}^{2}+P_{y y}$ yy energy density
8. $\rho u_{y} u_{z}+P_{y z}$ yz energy density
9. $\rho u_{z}^{2}+P_{z z}$ zz energy density

2nd Variable (nodaArray)
$0 . E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. B_{y} y magnetic field
5. B_{z} z magnetic field
out (string vector, required) The output nodalArray is a length 10 vector, but the first component is 0 so that it works simply as a fluid source for the ten moment equations.

12.8.4 Example

```
<Updater hyperIons>
    kind = classicMuscl2d
    onGrid = domain
    timeIntegrationScheme = none
    numericalFlux = hlleFlux
    preservePositivity = true
    limiter = [mc,none]
    variableForm = conservative
    in = [ions, em]
```

```
out = [ionsNew]
    cfl = CFL
    equations = [euler]
    sources = [lorentz]
    <Equation euler>
        kind = tenMomentEqn
        basementDensity = BASEMENT_DENSITY
        basementPressure = BASEMENT_PRESSURE
    </Equation>
    <Source lorentz>
        kind = tenMomentFluidSrc
        type = split
    inputVariables = [ions, em]
    mass = ION_MASS
    charge = ION_CHARGE
</Source>
</Updater>
```


12.9 twoFluidSrc

Applies the implicit source operator to the 5 moment two-fluid (ion, electron, EM) system or the two-fluid system written as combined variables twoFluidEqn or the $10-5$ system which is 10 moment ions and 5 moment electrons and EM.

We want to solve the hyperbolic part of the multi-fluid equations explicitly and the source term implicitly. For a first order scheme the discretization becomes.

$$
\begin{equation*}
Q^{n+1}=Q^{n}+\Delta t \nabla f^{n}+\Delta t \psi^{n+1} \tag{12.-9}
\end{equation*}
$$

In the case of the two-fluid and 10 moment systems ψ^{n+1} can be re-written exactly as $A^{n+1} Q^{n+1}$ where A is a matrix. As a result the equation can be re-written

$$
\begin{equation*}
\left(1-\Delta t A^{n+1}\right) Q^{n+1}=\Delta t \nabla f^{n} \tag{12.-9}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
Q^{n+1}=\left(1-\Delta t A^{n+1}\right)^{-1} \Delta t \nabla f^{n} \tag{12.-9}
\end{equation*}
$$

Now, for a Runge-Kutta scheme this update is performed for each substep and Δt is replaced by $\alpha \Delta t$ where α is the fractional Δt for each substep. The result is a high order time accurate implicit integration of the source terms.

For the 5 moment system (and combined system) only one call to this source term is required. For the 10-5 system the update must be performed in 2 steps. Examples are given below. The technique used was originally described for the 5 moment two-fluid system in

Kumar, Harish, and Siddhartha Mishra. "Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations." Journal of Scientific Computing 52.2 (2012): 401-425.

12.9.1 Parameters (All types)

type string Specifies the type of implicit matrix. Options are 5 Moment for the 5 moment two-fluid system, 10MomentIonsStep1 for the first step of the 10 moment ion, 5 moment electron system. 10MomentIonStep2 for the second step of the 10 moment ion, 5 moment electron two-fluid system.

12.9.2 Parameters (5Moment or 5MomentCombined or 10MomentlonStep1)

useImposedField (bool) Tell USim if there will be an imposed magnetic field applied to the model. If true an imposed field will be assumed, if false there is no imposed field.
electronCharge (float) The charge of the electron
electronMass (float) The mass of the electron
ionCharge (float) The charge of the ion
ionMass (float) The mass of the ion
epsilon0 Permittivity of free space

12.9.3 Parameters (10MomentlonStep2)

ionCharge (float) The charge of the ion
ionMass (float) The mass of the ion

12.9.4 Parent Updater Data (5Moment)

in (string vector, required) 1st Variable

0. ρ electron mass density
1. ρu_{x} electron x momentum density
2. ρu_{y} electron y momentum density
3. ρu_{z} electron z momentum density
4. e electron energy density

2nd Variable

0. ρ ion mass density
1. ρu_{x} ion x momentum density
2. ρu_{y} ion y momentum density
3. ρu_{z} ion z momentum density
4. e ion energy density

3rd Variable
$0 . E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential

4th Variable (if useImposedField = true)
This term stores the perturbed field (the total field - the imposed field)
0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \times$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential
out (string vector, required) In all cases the output is Q^{n+1}. For the 5 moment system there are 3 outputs corresponding to electrons, ions and em (in that order).

12.9.5 Parent Updater Data (5Moment Combined)

in (string vector, required) 1st Variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. ρ_{c} total charge density
5. $j_{x} \mathrm{x}$ current density
6. j_{y} y current density
7. $j_{z} \mathrm{z}$ current density
8. e_{i} ion energy density
9. e_{e} electron energy density

2nd Variable

0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. $B_{y} y$ magnetic field
5. B_{z} z magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential

3rd Variable (if useImposedField = true)
This term stores the externally imposed field
$0 . E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \times$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential
out (string vector, required) In all cases the output is Q^{n+1}. For the combined 5 moment systems there are 2 outputs, one for the combined fluid and the other for em (in that order).

12.9.6 Parent Updater Data (10MomentlonsStep1)

in (string vector, required) 1st Variable
0. ρ electron mass density

1. ρu_{x} electron x momentum density
2. ρu_{y} electron y momentum density
3. ρu_{z} electron z momentum density
4. e electron energy density

2nd Variable

0. ρ ion mass density
1. ρu_{x} ion x momentum density
2. ρu_{y} ion y momentum density
3. ρu_{z} ion z momentum density
4. $\rho u_{x}^{2}+P_{x x}$ ion xx energy density
5. $\rho u_{x} u_{y}+P_{x y}$ ion xy energy density
6. $\rho u_{x} u_{z}+P_{x z}$ ion xz energy density
7. $\rho u_{y}^{2}+P_{y y}$ ion yy energy density
8. $\rho u_{y} u_{z}+P_{y z}$ ion yz energy density
9. $\rho u_{z}^{2}+P_{z z}$ ion zz energy density

3rd Variable

0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field

4th Variable (if useImposedField = true)
This term stores the externally imposed field
0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \times$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential
out (string vector, required) In all cases the output is Q^{n+1}. For the 5 moment electron, 10 moment ion system in the case where type $=10 \mathrm{MomentIonStep} 1$ the output is 5 moment electrons, 10 moment ions and 8 component EM system.

12.9.7 Parent Updater Data (10MomentlonsStep2)

in (string vector, required) 1st Variable

0. ρ ion mass density
1. ρu_{x} ion x momentum density
2. ρu_{y} ion y momentum density
3. ρu_{z} ion z momentum density
4. $\rho u_{x}^{2}+P_{x x}$ ion xx energy density
5. $\rho u_{x} u_{y}+P_{x y}$ ion xy energy density
6. $\rho u_{x} u_{z}+P_{x z}$ ion xz energy density
7. $\rho u_{y}^{2}+P_{y y}$ ion yy energy density
8. $\rho u_{y} u_{z}+P_{y z}$ ion yz energy density
9. $\rho u_{z}^{2}+P_{z z}$ ion zz energy density

2nd Variable

0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field

3rd Variable (if useImposedField = true)

This term stores the externally imposed field
0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. $B_{y} \mathrm{y}$ magnetic field
5. $B_{z} \mathrm{z}$ magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential
out (string vector, required) In all cases the output is Q^{n+1}. In the case where type=10MomentIonStep2 the output is 10 moment ions.

12.9.8 Example

```
<Equation twofluidLorentz>
    kind = twoFluidSrc
    type = 5Moment
    electronCharge = ELECTRON_CHARGE
    electronMass = ELECTRON_MASS
    ionCharge = ION_CHARGE
    ionMass = ION_MASS
    epsilon0 = EPSILONO
</Equation>
<Equation twofluidLorentz>
    kind = twoFluidSrc
    type = 5MomentCombined
    useImposedField = false
    electronCharge = ELECTRON_CHARGE
    electronMass = ELECTRON_MASS
    ionCharge = ION_CHARGE
    ionMass = ION_MASS
    epsilon0 = EPSILONO
</Equation>
<Equation twofluidLorentz>
    kind = twoFluidSrc
    type = 10MomentIonsStep1
    electronCharge = ELECTRON_CHARGE
    electronMass = ELECTRON_MASS
    ionCharge = ION_CHARGE
    ionMass = ION_MASS
    epsilon0 = EPSILONO
</Equation>
<Equation twofluidLorentz>
    kind = twoFluidSrc
    type = 10MomentIonsStep2
    ionCharge = ION_CHARGE
    ionMass = ION_MASS
</Equation>
```

The following kinds can be used to couple fluid models with equations of state:

12.10 idealGasVariables

This source allows the user to compute specific internal energy (ϵ), pressure (P), density (ρ), and temperature (T) from the ideal gas law,

$$
\rho \epsilon=P /(\Gamma-1)=\rho k_{B} T / m_{i}(\Gamma-1) .
$$

Here Γ is the adiabatic gas index, m_{i} is the species mass and k_{B} is the Boltzmann constant.
This updater is intended for usage as an example. As many equation updaters in USim assume an ideal gas equation of state use of this updater is redundant and largely unnecessary. Rather, this is updater is used to provide examples of EOS usage when EOS tables are not available.

12.10.1 Parameters

operations (string vector, required) The operation(s) to be performed. The standard direct operation is "computeEOSFromTemperatureAndDensity" where "EOS" should be replaced by one of the following values (the first word of each option should be used, the remainder offers a brief description and the default units after conversion):

- energy - $\left(\mathrm{Jkg}^{-1}\right)$
- pressure - ($P a$)

To compute an inverse operation, simply permute the string to be "computeTemperatureFromEOSAndDensity" or "computeDensityFromTemperatureAndEOS". The input is not case sensitive.
gasGamma (float, required) Specifies the adiabatic index (ratio of specific heats), Γ.
speciesMass (float, required) Specifies the species mass in kg .
kboltz (float, optional) Specifies the Boltzmann constant. Defaults to $1.3806 \times 10^{-23}(\mathrm{~J} / \mathrm{K})$.
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

12.10.2 Parent Updater Data

in (string vector, required)
input variables (nodalArray, 1-component each, 2 required)
The specific input variables and order depend on the operations input option. For direct EOS evaluation, the input variables should be in = [temperature, density]. The order is critical where temperature
must be the first input and density must be the second input. For inverse operations, the temperature, if an input, must be the first input and the density, if an input, must be the second input. The EOS input should be placed in the correspondingly empty input location. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, required)
The number of out variables should be the same as the number of entries into the list of operations. The result of each operation will be placed into the corresponding output variable, respectively. Outputs are of type nodalArray with one component each.

12.10.3 Example

```
<Updater computeEOS>
    kind=equation2d
    onGrid=domain
    in=[temperature, density]
    out=[energy, pressure]
    <Equation thisGas>
        kind=idealGasVariables
        operations=["computeEnergyFromDensityAndTemperature", \
                        "computePressureFromDensityAndTemperature"]
    </Equation>
</Updater>
```


12.11 idealGasComputeVariables

This source allows the user to compute specific internal energy (ϵ), pressure (P), density (ρ), and temperature (T) from the ideal gas law,

$$
\rho \epsilon=P /(\Gamma-1)=\rho k_{B} T / m_{i}(\Gamma-1) .
$$

Here Γ is the adiabatic gas index, m_{i} is the species mass and k_{B} is the Boltzmann constant.
In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

$$
c_{s}^{2}=\frac{\partial P}{\partial \epsilon} \frac{P}{\rho^{2}}+\frac{\partial P}{\partial \rho}
$$

This updater is intended for usage as an example. As many equation updaters in USim assume an ideal gas equation of state use of this updater is redundant and largely unnecessary. Rather, this is updater is used to provide examples of EOS usage when EOS tables are not available.

12.11.1 Parameters

gasGamma (float, required) Specifies the adiabatic index (ratio of specific heats), Γ.
speciesMass (float, required) Specifies the species mass in kg .
kboltz (float, optional) Specifies the Boltzmann constant. Defaults to $1.3806 \times 10^{-23}(\mathrm{~J} / \mathrm{K})$.
delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor determines the relative width of the stencil. The default is 10^{-6}.
soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared.
The default is 0 .
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with respect to specific energy divided by the density, $\rho^{-1} \partial P / \partial \epsilon$, is output. This output is required to compute the EOS system eigenvectors. The default is false.

12.11.2 Parent Updater Data

in (string vector, required)

```
input variables (nodalArray, 1-component each, 2 required)
```

The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, 2 required and 3rd optional)
The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is true, a third output variable that is the partial derivative of the pressure with respect to specific energy divided by the density $\rho^{-1} \partial P / \partial \epsilon$. This output is required to compute the EOS system eigenvectors. Outputs are of type nodalArray with one component each.

12.11.3 Example

```
<Updater computePressureAndSoundSpeedSquared>
    kind=equation2d
    onGrid=domain
    in=[rho, intEnergy]
    out=[pressure, soundSqr]
    <Equation thisGas>
        kind=idealGasComputeVariables
        delta=1.e-5
        speciesMass=MI
        gasGamma=1.667
    </Equation>
</Updater>
```


12.12 propaceosVariables

This source allows the user to read in data from a PROPACEOS table and then compute energy, density, temperature and single group and multi-group emissivities. PROPACEOS tables can be obtained from Prism Computational Sciences (PROPACEOS link). Alternatively the PROPACEOS format can be used to create your own tables. Tables specify an equation of state (EOS) for energy, single group and multi-group emissivities as a function of temperature and density. To solve for temperature or density as a function of the EOS table value an inverse operation must be applied. This operation holds the input temperature or density constant and assumes the EOS table data is a monotonic function of the dependent variables (density and temperature). If these assumptions do not hold, incorrect results may be produced.

A note on units. Units in USim are all MKS units. However, the PROPACEOS tables use CGS units and eV for temperature. These units are converted to MKS by USim. This is important if one writes their own PROPACEOS tables. The ability to specify custom unit conversion factors is available as an optional input.

Before running any case using the PROPACEOS EOS tables, it is prudent to make basic sanity checks by running a modified version of the verifyEOSTable example with the specific PROPACEOS table that is intended for use.

12.12.1 Parameters

filename (string, required) Name of file that contains the PROPACEOS formatted table.
operations (string vector, required) The operation(s) to be performed. The standard direct operation is "computeEOSTableFromTemperatureAndDensity" where "EOSTable" is computed from the PROPACEOS tables and should be replaced by one of the following values (the first word of each option should be used, the remainder offers a brief description and the default units after conversion):

- Zbar - the charge state
- Eint - Total internal energy $\left(\mathrm{Jkg}^{-1}\right)$
- Eion - Ion internal energy $\left(\mathrm{Jkg}^{-1}\right)$
- Eele - Electron internal energy $\left(\mathrm{Jkg}^{-1}\right)$
- Pion - Ion pressure ($P a$)
- Pele - Electron pressure ($P a$)
- Ptot - Pion+Pele ($P a$)
- IntRosseland - Integrated Rosseland Mean Opacity ($\mathrm{m}^{2} \mathrm{~kg}^{-1}$)
- IntAbsPlanck - Integrated Planck Mean Opacity $\left(\mathrm{m}^{2} \mathrm{~kg}^{-1}\right)$
- IntEmisPlank - Integrated Planck Mean Opacity $\left(\mathrm{m}^{2} \mathrm{~kg}^{-1}\right)$
- Zeffective - effective Z for Bremstrahlung radiation
- Rosseland - Rosseland mean opacity for frequency group ($\mathrm{m}^{2} \mathrm{~kg}^{-1}$)
- AbsPlanck - absorption Planck mean opacity for frequency group $\left(m^{2} \mathrm{~kg}^{-1}\right)$
- EmisPlanck - emission Planck mean opacity for frequency group ($m^{2} \mathrm{~kg}^{-1}$)
- IonizationFraction - the ionization fraction

To compute an inverse operation, simply permute the string to be "computeTemperatureFromEOSTableAndDensity" or "computeDensityFromTemperatureAndEOSTable". The input is not case sensitive.
speciesMass (float, required) Mass of the species as required to convert from number to mass density.
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
element (string, optional) Element name used for computing ionization fraction.
elementList (string vector, optional) List of elements used in the table for computing Zeffective.

fixRanges (int vector, optional)

Whether the variables should be allowed to go beyond the table ranges or not. fixRanges = [1] means that the first variable cannot go beyond the table ranges and if it does, it's value is set to the maximum (or minimum) of the table value. The default is false.

logInterpolation (int vector, optional)

Whether to use logarithmic interpolation when evaluating EOS table values. The default is false.

```
densityConversionCoefficient (float, optional)
```

Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

```
temperatureConversionCoefficient (float, optional)
```

Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

```
conversionCoefficients (float vector, optional)
```

Custom unit conversion factors for EOS table values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

12.12.2 Parent Updater Data

in (string vector, required)
input variables (nodalArray, 1-component each, 2 required)
The specific input variables and order depend on the operations input option. For direct EOS evaluation, the input variables should be in = [temperature, density]. The order is critical where temperature must be the first input and density must be the second input. For inverse operations, the temperature, if an input, must be the first input and the density, if an input, must be the second input. The EOS input should be placed in the correspondingly empty input location. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, required)
The number of out variables should be the same as the number of entries into the list of operations. The result of each operation will be placed into the corresponding output variable, respectively. Outputs are of type nodalArray with one component each.

12.12.3 Example

```
<Updater computeZavg>
    kind = equation3d
    onGrid = domain
    in = [temperature, density]
    out = [zAvg, intEmisPlanck]
    <Equation thisGas>
        kind = propaceosVariables
        fixRanges = [1, 1]
        filename = Ar_Ni_1e^10_10group_NLTE_20110427.prp
        operations = ["computeZbarFromTemperatureAndDensity" \
                            "computeIntEmisPlanckFromTemperatureAndDensity"]
        speciesMass=MI
        elementList = [Ar]
    </Equation>
</Updater>
```


12.13 propaceosComputeVariables

This source allows the user to read in data from a PROPACEOS table and then compute pressure and the sound speed squared from density and the internal energy. PROPACEOS tables can be obtained from Prism Computational Sciences (PROPACEOS link). Alternatively the PROPACEOS format can be used to create your own tables. Tables specify an equation of state (EOS) for energy and pressure as functions of temperature and density. Thus to solve for temperature, as an intermediate step, as a function of the internal energy an inverse operation must be applied. This operation holds the input temperature or density constant and assumes the EOS table data is a monotonic function of the dependent variables (density and temperature). If these assumptions do not hold, incorrect results may be produced.

In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

$$
c_{s}^{2}=\frac{\partial P}{\partial \epsilon} \frac{P}{\rho^{2}}+\frac{\partial P}{\partial \rho}
$$

A note on units. Units in USim are all MKS units. However, the PROPACEOS tables use CGS units and eV for temperature. These units are converted to MKS by USim. This is important if one writes their own PROPACEOS tables. The ability to specify custom unit conversion factors is available as an optional input.

Before running any case using the PROPACEOS EOS tables, it is prudent to make basic sanity checks by running a modified version of the verifyEOSTable example with the specific PROPACEOS table that is intended for use.

12.13.1 Parameters

filename (string, required) Name of file that contains the PROPACEOS formatted table.
speciesMass (float, required) Mass of the species as required to convert from number to mass density.
delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor determines the relative width of the stencil. The default is 10^{-6}.
soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared. The default is 0 .
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
fixRanges (int vector, options) Whether the variables should be allowed to go beyond the table ranges or not. fixRanges $=[1]$ means that the first variable cannot go beyond the table ranges and if it does, it's value is set to the maximum (or minimum) of the table value. The default is false.
logInterpolation (int vector, optional) Whether to use logarithmic interpolation when evaluating EOS table values. The default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS table values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with respect to specific energy divided by the density, $\rho^{-1} \partial P / \partial \epsilon$, is output. This output is required to compute the EOS system eigenvectors. The default is false.

12.13.2 Parent Updater Data

in (string vector, required)
input variables (nodalArray, 1-component each, 2 required)
The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, 2 required and 3rd optional)
The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is true, a third output variable that is the partial derivative of the pressure with respect to specific energy divided by the density $\rho^{-1} \partial P / \partial \epsilon$. This output is required to compute the EOS system eigenvectors. Outputs are of type nodalArray with one component each.

12.13.3 Example

```
<Updater computePressureAndSoundSpeedSquared>
    kind=equation2d
    onGrid=domain
    in=[rho, intEnergy]
    out=[pressure, soundSqr]
    <Equation thisGas>
        kind=propaceosComputeVariables
        filename=propaceos.prp
        delta=1.e-5
```

 speciesMass=MI
 </Equation>
 </Updater>

12.14 sesameVariables

This source allows the user to read in data from a SESAME table and then compute energy, pressure, density, temperature and conductivity. SESAME tables can be obtained from Los Alamos National Laboratory (SESAME link). Alternatively the SESAME format can be used to create your own tables. Tables specify an equation of state (EOS) for energy, pressure, conductivities and opacity as a function of temperature and density. To solve for temperature or density as a function of the EOS table value an inverse operation must be applied. This operation holds the input temperature or density constant and assumes the EOS table data is a monotonic function of the dependent variables (density and temperature). If these assumptions do not hold, incorrect results may be produced.

A note on units. Units in USim are all MKS units. However, the SESAME tables use alternative units. These units are converted to MKS by USim. This is important if one writes their own SESAME tables. The ability to specify custom unit conversion factors is available as an optional input.

Before running any case using the SESAME EOS tables, it is prudent to make basic sanity checks by running a modified version of the verifyEOSTable example with the specific SESAME table that is intended for use.

12.14.1 Parameters

filename (string, required) Name of file that contains the SESAME formatted table.
operations (string vector, required) The operation(s) to be performed. The standard direct operation is "computeEOSTableFromTemperatureAndDensity" where "EOSTable" is computed from the SESAME tables and should be replaced by one of the following values (the first word of each option should be used, the remainder offers a brief description and the default units after conversion):

- 301energy - $\left(\mathrm{Jkg}^{-1}\right)$
- 301 freeenergy - $\left(\mathrm{Jkg}^{-1}\right)$
- 301pressure - (Pa)
- 303energy - $\left(\mathrm{Jkg}^{-1}\right)$
- 303freeenergy - $\left(\mathrm{Jkg}^{-1}\right)$
- 303pressure - (Pa)
- 304energy - $\left(\mathrm{Jkg}^{-1}\right)$
- 304freeenergy - $\left(\mathrm{Jkg}^{-1}\right)$
- 304pressure - (Pa)
- 305energy - $\left(\mathrm{Jkg}^{-1}\right)$
- 305freeenergy - $\left(\mathrm{Jkg}^{-1}\right)$
- 305pressure - (Pa)
- 306energy - $\left(\mathrm{Jkg}^{-1}\right)$
- 306freeenergy - $\left(\mathrm{Jkg}^{-1}\right)$
- 306pressure - (Pa)
- 601 - Mean Ion Charge (free electrons per atom)
- 602 - Electrical Conductivity $\left(s^{-1}\right)$
- 603 - Thermal Conductivity $\left(m^{-1} s^{-1}\right)$
- 604 - Thermoelectric Coefficient $\left(m^{-1} s^{-1}\right)$
- 605 - Electron Conductive Opacity $\left(m^{2} \mathrm{~kg}^{-1}\right)$

Tables 301, and 303-306, which are decomposed into energy, freeenergy and pressure above are described as follows:

- 301 - Total EOS (304+305+306)
- 303 - Ion EOS Plus Cold Curve (305+306)
- 304 - Electron EOS
- 305 - Ion EOS (Including Zero Point)
- 306 - Cold Curve (No Zero Point)

To compute an inverse operation, simply permute the string to be "computeTemperatureFromEOSTableAndDensity" or "computeDensityFromTemperatureAndEOSTable". The input is not case sensitive.
materialID (int, required) Identifying material ID in the SESAME table.
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
speciesMass (float, optional) Mass of the species (in kg) is required to convert if useParticleDensity=true.
fixRanges (int vector, options) Whether the variables should be allowed to go beyond the table ranges or not. fixRanges $=[1]$ means that the first variable cannot go beyond the table ranges and if it does, it's value is set to the maximum (or minimum) of the table value. The default is false.
logInterpolation (int vector, optional) Whether to use logarithmic interpolation when evaluating EOS table values. The default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS table values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

12.14.2 Parent Updater Data

in (string vector, required)
input variables (nodalArray, 1-component each, 2 required)
The specific input variables and order depend on the operations input option. For direct EOS evaluation, the input variables should be in = [temperature, density]. The order is critical where temperature must be the first input and density must be the second input. For inverse operations, the temperature,
if an input, must be the first input and the density, if an input, must be the second input. The EOS input should be placed in the correspondingly empty input location. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, required)
The number of out variables should be the same as the number of entries into the list of operations. The result of each operation will be placed into the corresponding output variable, respectively. Outputs are of type nodalArray with one component each.

12.14.3 Example

```
<Updater computeEOS>
    kind=equation2d
    onGrid=domain
    in=[temperature, density]
    out=[energy, pressure]
    <Equation thisGas>
        kind=sesameVariables
        filename=sesame.ses
        materialID=58501
        operations=["compute301EnergyFromDensityAndTemperature", \
            "compute301PressureFromDensityAndTemperature"]
    </Equation>
</Updater>
```


12.15 sesameComputeVariables

This source allows the user to read in data from a SESAME table and then compute pressure and the sound speed squared from density and the internal energy. SESAME tables can be obtained from Los Alamos National Laboratory (SESAME link). Alternatively the SESAME format can be used to create your own tables. Tables specify an equation of state (EOS) for energy and pressure as functions of temperature and density. Thus to solve for temperature, as an intermediate step, as a function of the internal energy an inverse operation must be applied. This operation holds the input temperature or density constant and assumes the EOS table data is a monotonic function of the dependent variables (density and temperature). If these assumptions do not hold, incorrect results may be produced.

In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

$$
c_{s}^{2}=\frac{\partial P}{\partial \epsilon} \frac{P}{\rho^{2}}+\frac{\partial P}{\partial \rho}
$$

A note on units. Units in USim are all MKS units. However, the SESAME tables use alternative units. These units are converted to MKS by USim. This is important if one writes their own SESAME tables. The ability to specify custom unit conversion factors is available as an optional input.

Before running any case using the SESAME EOS tables, it is prudent to make basic sanity checks by running a modified version of the verifyEOSTable example with the specific SESAME table that is intended for use.

12.15.1 Parameters

filename (string, required) Name of file that contains the SESAME formatted table.
materialID (int, required) Identifying material ID in the SESAME table.
delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor determines the relative width of the stencil. The default is 10^{-6}.
soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared. The default is 0 .
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
speciesMass (float, optional) Mass of the species (in kg) is required to convert if useParticleDensity=true.
fixRanges (int vector, options) Whether the variables should be allowed to go beyond the table ranges or not. fixRanges $=[1]$ means that the first variable cannot go beyond the table ranges and if it does, it's value is set to the maximum (or minimum) of the table value. The default is false.
logInterpolation (int vector, optional) Whether to use logarithmic interpolation when evaluating EOS table values. The default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS table values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with respect to specific energy divided by the density, $\rho^{-1} \partial P / \partial \epsilon$, is output. This output is required to compute the EOS system eigenvectors. The default is false.

12.15.2 Parent Updater Data

in (string vector, required)
input variables (nodalArray, 1-component each, 2 required)
The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, 2 required and 3rd optional)
The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is true, a third output variable that is the partial derivative of the pressure with respect to specific energy divided by the density $\rho^{-1} \partial P / \partial \epsilon$. This output is required to compute the EOS system eigenvectors. Outputs are of type nodalArray with one component each.

12.15.3 Example

```
<Updater computePressureAndSoundSpeedSquared>
    kind=equation2d
    onGrid=domain
    in=[rho, intEnergy]
    out=[pressure, soundSqr]
    <Equation thisGas>
        kind=sesameComputeVariables
        filename=sesame.ses
        materialID=58501
        delta=1.e-5
    </Equation>
</Updater>
```


12.16 vanDerWaalsVariables

This source allows the user to compute specific internal energy (ϵ), pressure (P), density (ρ), and temperature (T) from the Van Der Waals gas law,

$$
P=\frac{R}{C_{V}}\left(\epsilon+\eta_{a} \rho\right) \frac{\rho}{1-\eta_{b} \rho}-\eta_{a} \rho^{2}
$$

Here R is the gas constant, C_{V} is the specific heat at constant volume and η_{a} and η_{b} are constants accounting for the intermolecular forces and the molecular size, respectively.

12.16.1 Parameters

operations (string vector, required) The operation(s) to be performed. The standard direct operation is "computeEOSFromTemperatureAndDensity" where "EOS" should be replaced by one of the following values (the first word of each option should be used, the remainder offers a brief description and the default units after conversion):

- energy - $\left(J k g^{-1}\right)$
- pressure - $(P a)$

To compute an inverse operation, simply permute the string to be "computeTemperatureFromEOSAndDensity" or "computeDensityFromTemperatureAndEOS". The input is not case sensitive.
Rr (float, required) Specifies the gas constant, R.
Cv (float, required) Specifies the gas specific heat at constant volume, C_{V}.
etaA (float, required) Specifies the intermolecular force constant, η_{a} in units of $m^{3} \mathrm{~kg}^{-1}$.
etaB (float, required) Specifies the molecular size constant, η_{b} in units of $m^{5} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.
speciesMass (float, required) Specifies the species mass in kg .
kboltz (float, optional) Specifies the Boltzmann constant. Defaults to $1.3806 \times 10^{-23}(J / K)$.
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

12.16.2 Parent Updater Data

in (string vector, required)
input variables (nodalArray, 1-component each, 2 required)
The specific input variables and order depend on the operations input option. For direct EOS evaluation, the input variables should be in $=$ [temperature, density]. The order is critical where temperature must be the first input and density must be the second input. For inverse operations, the temperature, if an input, must be the first input and the density, if an input, must be the second input. The EOS input should be placed in the correspondingly empty input location. Inputs are of type nodalArray with one component each.
out (string vector, required)
output variables (nodalArray, 1-component each, required)
The number of out variables should be the same as the number of entries into the list of operations. The result of each operation will be placed into the corresponding output variable, respectively. Outputs are of type nodalArray with one component each.

12.16.3 Example

```
<Updater computeEOS>
    kind=equation2d
    onGrid=domain
    in=[temperature, density]
    out=[energy, pressure]
    <Equation thisGas>
        kind=vanDerWaalsVariables
        Rr=2.0769
        Cv=3.1156
        etaA=0.0346
        etaB=0.0238
        speciesMass=6.64e-27
        operations=["computeEnergyFromDensityAndTemperature", \
                                "computePressureFromDensityAndTemperature"]
    </Equation>
</Updater>
```


12.17 vanDerWaalsComputeVariables

This source allows the user to compute pressure (P) and the sound speed squared $\left(c_{s}^{2}\right)$ from density (ρ) and the internal energy $(\rho \epsilon)$ with the Van Der Waals gas law,

$$
P=\frac{R}{C_{V}}\left(\epsilon+\eta_{a} \rho\right) \frac{\rho}{1-\eta_{b} \rho}-\eta_{a} \rho^{2}
$$

Here R is the gas constant, C_{V} is the specific heat at constant volume and η_{a} and η_{b} are constants accounting for the intermolecular forces and the molecular size, respectively.
In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

$$
c_{s}^{2}=\frac{\partial P}{\partial \epsilon} \frac{P}{\rho^{2}}+\frac{\partial P}{\partial \rho}
$$

12.17.1 Parameters

Rr (float, required) Specifies the gas constant, R.
$\mathbf{C v}$ (float, required) Specifies the gas specific heat at constant volume, C_{V}.
etaA (float, required) Specifies the intermolecular force constant, η_{a} in units of $\mathrm{m}^{3} \mathrm{~kg}^{-1}$.
etaB (float, required) Specifies the molecular size constant, η_{b} in units of $m^{5} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.
speciesMass (float, required) Specifies the species mass in kg .
kboltz (float, optional) Specifies the Boltzmann constant. Defaults to $1.3806 \times 10^{-23}(\mathrm{~J} / \mathrm{K})$.
delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor determines the relative width of the stencil. The default is 10^{-6}.
soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared. The default is 0 .
useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is false.
densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion to MKS mass density $\left(\mathrm{kgm}^{-3}\right)$ is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor. Conversion to MKS temperature (K) is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.
outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with respect to specific energy divided by the density, $\rho^{-1} \partial P / \partial \epsilon$, is output. This output is required to compute the EOS system eigenvectors. The default is false.

12.17.2 Parent Updater Data

in (string vector, required)

```
input variables (nodalArray, 1-component each, 2 required)
```

The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are of type nodalArray with one component each.
out (string vector, required)

```
output variables (nodalArray, 1-component each, 2 required and 3rd optional)
```

The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is true, a third output variable that is the partial derivative of the pressure with respect to specific energy divided by the density $\rho^{-1} \partial P / \partial \epsilon$. This output is required to compute the EOS system eigenvectors. Outputs are of type nodalArray with one component each.

12.17.3 Example

```
<Updater computePressureAndSoundSpeedSquared>
    kind=equation2d
    onGrid=domain
    in=[rho, intEnergy]
    out=[pressure, soundSqr]
    <Equation thisGas>
        kind=vanDerWaalsComputeVariables
        delta=1.e-5
        Rr=2.0769
        Cv=3.1156
        etaA=0.0346
        etaB=0.0238
        speciesMass=6.64e-27
    </Equation>
</Updater>
```

The following kinds can be used to couple fluid models with radiation models:

12.18 bremsPowerSrc

Computes the Bremsstrahlung the power density loss term.

$$
s=\left(\frac{n_{e}}{7.69 e 18}\right)^{2} T_{e V}^{1 / 2} Z_{e f f}
$$

Where n_{e} is the electron number density in $1 / m^{3}, T_{e V}$ is electron temperature in electron volts (note that the temperature is input in Kelvin), $Z_{e f f}$ is the effective ion charge state.

12.18.1 Parent Updater Data

in (string vector, required) 1st Variable
0. n number density

2nd Variable (1 component)

0. $T_{e V}$ electron temperature in Kelvin

3rd Variable (1 component)

0. $Z \mathrm{Z}$ effective

12.18.2 Example

<Source radiationSource>
kind = bremsPowerSrc
</Source>

12.19 radiationAbsorption

Computes the absorbed power for each radiation group given the absorption coefficient and ion number density

12.19.1 Parameters

ionMass (float) The mass of the ion species
numberOfGroup (int) The number of groups that should be considered

12.19.2 Parent Updater Data

in (string vector, required) 1st Variable

The ion number density for the species $1 / m^{3}$

2nd Variable

The group radiation energy density J / m^{3} for each group, each component represents a different frequency group

3rd Variable
The absorption coefficient $m^{2} / K g$ for each group, each component represents a different frequency group
out (string vector, required) The output is the absorbed power density in W / m^{3}

12.19.3 Example

```
<Updater name>
    kind = equation1d
    onGrid = domain
    in = [density, radiationEnergy, intAbsPlanck]
    out = [absorbedPower]
    <Equation thisGas>
        kind = radiationAbsorption
        numberOfGroups = 1
        ionMass = MI
    </Equation>
</Updater>
```


12.20 radiationEmission

Computes the the radiated power for a plasma given ion mass density, temperature and the emission coefficient.

$$
\begin{equation*}
C_{g}=6.493948 \pi k_{b}^{4} /\left(c^{2} h^{3}\right) \tag{12.-17}
\end{equation*}
$$

and the radiated power given by

$$
\begin{equation*}
P_{g}=C_{g} \sigma_{P} T_{e}^{4} n_{i} m_{i} \tag{12.-17}
\end{equation*}
$$

12.20.1 Parameters

ionMass (float) The mass of the ion species
numberOfGroup (int) The number of groups that should be considered. For now numberOfGroups=1.

12.20.2 Parent Updater Data

in (string vector, required) 1st Variable
The ion number density for the species $1 / m^{3}$
2nd Variable
The temperature is in Kelvin

3rd Variable

The planck emission coefficient $m^{2} / K g$
out (string vector, required) The output is the radiated power density in W / m^{3}

12.20.3 Example

```
<Updater emission>
    kind = equation1d
    onGrid = grid
    in = [density, temperature, intEmisPlanck]
    out = [radiationPower]
    <Equation thisGas>
        kind = radiationEmission
        numberOfGroups = 1
        ionMass = MI
        </Equation>
</Updater>
```

The following kinds can be used to couple fluid systems with electromagnetic systems:

12.21 coilFieldEqn

Computes the analytic magnetic field from a single coil

12.21.1 Parameters

center (vector float) center of the coil
current (float) current in the coil
mu0 (float) permeability of free space
normal (vector float) normal to the plane of the coil
radius (float) radius of the coil

12.21.2 Example

```
<Source coilSource>
    kind = coilFieldEqn
    mu0 = 1.26e-6
    center = [0.5, 0.5, 0.0]
    normal = [1.0, 0.0, 0.0]
    radius = 10.0
    current = 1.0
</Source>
```


12.22 current

Computes the fluid "current" given from fluid variables, particle mass, charge and permittivity. This current would be used as a source term for Maxwell's equations.

$$
s=-\frac{1}{\epsilon_{0}} \frac{q}{m}\left(\begin{array}{c}
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z}
\end{array}\right)
$$

where q is the species charge, m is the species mass ϵ_{0} is the permittivity, ρ is the fluid mass density, u_{x} is the fluid x velocity, u_{y} is the fluid y velocity and u_{z} is the fluid z velocity.

12.22.1 Parameters

epsilon0 (float) permittivity of free space
mass (float) The mass of the fluid particles
charge (float) The charge of the fluid particles
start Index (integer) Tells USim which variable in the input vector should be set to the zero position. For example, if you pass in q from the eulerEqn then startIndex would be 1 as the momentum density terms correspond to indexes $1,2,3$. In that case the 0 index corresponds to mass density. The default value for startIndex is 0 .

12.22.2 Parent Updater Data

in (string vector, required) 1st Variable
0. $\rho u_{x} \mathrm{x}$ momentum density

1. $\rho u_{y} \mathrm{y}$ momentum density
2. $\rho u_{z} \mathrm{Z}$ momentum density

12.22.3 Example

```
<Source ionCurrents>
    kind = current
    startIndex = 1
    charge = ION_CHARGE
    mass = ION_MASS
    epsilon0 = 1.0
</Source>
```


12.23 IorentzForce

Computes the lorentz force given from fluid variables, particle mass, charge and permittivity. This lorentz force would be used as a source term for fluid equations.

$$
s=\rho \frac{q}{m}\left(\begin{array}{c}
0 \\
E_{x}+u_{y} B_{z}-u_{z} B_{y} \\
E_{y}+u_{z} B_{x}-u_{x} B_{z} \\
E_{z}+u_{x} B_{y}-u_{y} B_{x} \\
u_{x} E_{x}+u_{y} E_{y}+u_{z} E_{z}
\end{array}\right)
$$

where q is the species charge, m is the species mass ϵ_{0} is the permittivity, ρ is the fluid mass density, u_{x} is the fluid x velocity, u_{y} is the fluid y velocity, u_{z} is the fluid z velocity, E_{x} is the x electric field, E_{y} is the y electric field, E_{z} is the z electric field, B_{x} is the x magnetic field, B_{y} is the y magnetic field and B_{z} is the z magnetic field.

In the case where the user wants the Lorentz term for the two-fluid form twoFluidEqn the source is written as

$$
s=\left(\begin{array}{c}
0 \\
\rho_{c} E_{x}+j_{y} B_{z}-j_{z} B_{y} \\
\rho_{c} E_{y}+j_{z} B_{x}-j_{x} B_{z} \\
\rho_{c} E_{z}+j_{x} B_{y}-j_{y} B_{x} \\
0 \\
\left(r_{i}^{2} \rho_{i}+r_{e}^{2} \rho_{e}\right) E_{x}+\left(r_{i}^{2} \rho_{i} u_{y i}+r_{e}^{2} \rho_{e} u_{y e}\right) B_{z}-\left(r_{i}^{2} \rho_{i} u_{z i}+r_{e}^{2} \rho_{e} u_{z e}\right) B_{y} \\
\left(r_{i}^{2} \rho_{i}+r_{e}^{2} \rho_{e}\right) E_{y}+\left(r_{i}^{2} \rho_{i} u_{z i}+r_{e}^{2} \rho_{e} u_{z e}\right) B_{x}-\left(r_{i}^{2} \rho_{i} u_{x i}+r_{e}^{2} \rho_{e} u_{x e}\right) B_{z} \\
\left(r_{i}^{2} \rho_{i}+r_{e}^{2} \rho_{e}\right) E_{z}+\left(r_{i}^{2} \rho_{i} u_{x i}+r_{e}^{2} \rho_{e} u_{x e}\right) B_{y}-\left(r_{i}^{2} \rho_{i} u_{y i}+r_{e}^{2} \rho_{e} u_{y e}\right) B_{x} \\
j_{x i} E_{x}+j_{y i} E_{y}+j_{z i} E_{z} \\
j_{x e} E_{x}+j_{y e} E_{y}+j_{z e} E_{z}
\end{array}\right)
$$

and this source can be chosen by choosing type=twoFluidEqn. The variables are defined as follows, $r_{i}=q_{i} / m_{i}$ and $r_{e}=q_{e} / m_{e}$ where q_{e} is the electron charge, q_{i} is the ion charge, m_{e} is the electron mass and m_{i} is the ion mass. In addition the variables $\left(\rho_{\alpha}, u_{x \alpha}, u_{y \alpha}, u_{x \alpha}\right)$ are the species mass density, species x velocity, species y velocity, and species z velocity. In this case α represents the species, either e for electron or i for ion. In addition $\left(j_{x}, j_{y}, j_{z}\right)$ are the total current densities in the x, y and z directions.

12.23.1 Parameters common to all systems

type (string) The type of source is split5 (the default), or twoFluidEqn

12.23.2 Parameters (type=split5)

mass (float) The mass of the fluid species
charge (float) The charge of the fluid species

12.23.3 Parameters (type=twoFluidEqn)

electronMass (float) The electron mass
ionMass (float) The ion mass
electronCharge (float) The electron charge
ionCharge (float) The ion charge

12.23.4 Parent Updater Data (type=split5) Default

in (string vector, required) 1st Variable
0. ρ mass density

1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density

2nd Variable

0. $e_{x} \mathrm{x}$ electric field
1. $e_{y} \mathrm{y}$ electric field
2. $e_{z} \mathrm{z}$ electric field
3. $b_{x} \mathrm{x}$ magnetic field
4. $b_{y} y$ magnetic field
5. $b_{z} \mathrm{z}$ magnetic field
out (string vector, required) The output variable is a length 5 vector, but the first component is 0 so that it works simply as a fluid source for the euler equations.

1st Variable

0. 0.0 mass density. No contribution from Lorentz force
1. $L_{x} \mathrm{x}$ momentum density contribution of Lorentz force
2. $L_{y} \mathrm{y}$ momentum density contribution of Lorentz force
3. $L_{z} \mathrm{z}$ momentum density contribution of Lorentz force
4. $E \cdot J$ energy density contribution of Lorentz force

12.23.5 Parent Updater Data (type=twoFluidEqn)

in (string vector, required) 1st Variable
0. ρ mass density

1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. ρ_{c} total charge density
5. $j_{x} \mathrm{x}$ current density
6. $j_{y} y$ current density
7. j_{z} z current density
8. e_{i} ion energy density
9. e_{e} electron energy density

2nd Variable

0. $e_{x} \mathrm{x}$ electric field
1. $e_{y} y$ electric field
2. $e_{z} \mathrm{z}$ electric field
3. $b_{x} \mathrm{x}$ magnetic field
4. $b_{y} y$ magnetic field
5. $b_{z} \mathrm{z}$ magnetic field

12.23.6 Example

```
<Source lorentzIon>
    kind = lorentzForce
    mass = ION_MASS
    charge = ION_CHARGE
</Source>
<Source lorentz>
    kind = lorentzForce
    type = twoFluidEqn
    ionMass = ION_MASS
    electronMass = ELECTRON_MASS
    ionCharge = ION_CHARGE
    electronCharge = ELECTRON_CHARGE
</Source>
```


12.24 wireFieldEqn

Computes the analytic magnetic field from a single wire

12.24.1 Parameters

point (vector float) a point that the wire passes through
current (float) current in the wire
mu0 (float) permeability of free space
normal (vector float) direction of the wire through the point

12.24.2 Example

```
<Source coilSource>
    kind = wireFieldEqn
    point = [0.0, 0.0, 1.0]
    mu0 = 1.26e-6
    normal = [1.0, 0.0,0.0]
    current = 1.0
</Source>
```

The following kinds can be used to control divergence errors in electromagnetic problems:

12.25 computeChargeError

Computes the simulation charge error which is measured as the difference in charge as computed from the divergence of the electric field and that computed using the continuity equation. This source does not compute $\nabla \cdot E$, instead this value is passed in.

$$
\delta=\nabla \cdot E-\frac{1}{\epsilon_{0}} \sum_{i} \frac{q_{i}}{m_{i}} \rho_{i}
$$

where E is the electric field, m_{i} is the species mass, q_{i} is the species charge, ϵ_{0} is the permittivity, ρ_{i} is the species mass density.

12.25.1 Parameters

speciesCharge (vector float) Species charge in the order they appear in the input list.
speciesMass (vector float) The charge of the fluid species.
epsilon0 (float) The permittivity of free space.

12.25.2 Parent Updater Data

in (string vector, required) 1st Variable
$0 . \nabla \cdot E$ The divergence of the electric field

Remaining variables

This source takes an arbitrary number of species mass variables, but requires at least 1 .
0. ρ species mass density
out (string vector, required) The output is the charge error

1st Variable

0 . δ The charge error.

12.25.3 Example

```
<Equation>
    kind = computeChargeError
    speciesCharge = [ELECTRON_CHARGE, ION_CHARGE]
    speciesMass = [ELECTRON_MASS, ION_MASS]
    epsilonO = EPSILONO
</Equation>
```


12.26 hyperbolicCleanSym

Provides the axisymmetric symmetry source terms for the hyperbolicCleanEqn

$$
s=-\frac{1}{r}\left(\begin{array}{c}
0 \\
0 \\
0 \\
\gamma^{2} B_{x}
\end{array}\right)
$$

where γ is the correction wave speed.

12.26.1 Parameters

waveSpeed (float) Correction wave speed

12.26.2 Parent Updater Data

in (string vector, required) 4 primary variables

0 . $B_{x} \mathrm{x}$ magnetic field

1. B_{y} y magnetic field
2. $B_{z} \mathrm{z}$ magnetic field
3. Ψ correction potential

12.26.3 Example

```
<Source symSource>
    kind = hyperbolicCleanSym
    symmetryType = cylindrical
    waveSpeed = CORRECTIONSPEED
</Source>
```

The following kinds can be used for coupling together multi-species fluid models:

12.27 collisionFrequency

Computes the collision frequency matrix for multiple fluids species or the collision time matrix if the inverse quantities are stored. The two approaches used for collisions in fully ionized plasma are thermalSpecies which
ignores the relative drift of the fluids and ramboAndDenavit which takes into account the relative drift. thermalSpecies is identical to ramboAndDenavit with the velocities set to 0 . A description of this collision model is described in

Rambo, P. W., and J. Denavit. "Interpenetration and ion separation in colliding plasmas." Physics of Plasmas 1 (1994): 4050.

For neutrals collisions, the collision cross section is obtained using hard sphere model. The relative velocity includes thermal and bulk velocities. Collisions in partiallyIonized plasmas use ramboAndDenavit if both the colliding particles are charged and uses neutrals otherwise.

12.27.1 Parameters

type (string) type should be either thermalSpecies or ramboAndDenavit or neutrals or partiallyIonized. The thermalSpecies is the classical collision frequency assuming zero relative velocity between the fluids in consideration. ramboAndDenavit assumes that there may be a large relative velocity between species. neutrals uses the hard sphere model to compute collision cross section and the relative velocity includes both thermal and bulk velocitis.
speciesMass (vector float) The mass of each fluid species
speciesDia (vector float) The diameter of each fluid species
inverse (boolean) If inverse is false the the collision frequency is computed, if inverse is true then the collision time is computed.

12.27.2 Parent Updater Data (type $=$ thermalSpecies $)$

in (string vector, required) Each species has a Z, T and N variable that must be put into the in variable, so for 2 species in would be
in $=[\mathrm{Z} 1, \mathrm{~T} 1, \mathrm{~N} 1, \mathrm{Z} 2, \mathrm{~T} 2, \mathrm{~N} 2]$

1st Variable

0. Z Is the charge state of the species (positive value)

2nd Variable

0. T Is the temperature of the species

3rd Variable

$0 . N$ Is the number density of the species
out (string vector, required) The output is the collision matrix. The size of the matrix will be numSpecies*numSpecies where here numSpecies is the number of components in the speciesMass vector below.

12.27.3 Parent Updater Data (type = ramboAndDenavit)

in (string vector, required) Each species has a Z, T, N, V variable that must be put into the in variable, so for 2 species in would be
in $=[\mathrm{Z} 1, \mathrm{~T} 1, \mathrm{~N} 1, \mathrm{~V} 1, \mathrm{Z} 2, \mathrm{~T} 2, \mathrm{~N} 2, \mathrm{~V} 2]$

1st Variable

0. Z Is the charge state of the species (positive value)

2nd Variable

0. T Is the temperature of the species

3rd Variable

$0 . N$ Is the number density of the species

4th Variable

0 . $V x$ Is the velocity of the fluid in the X direction

1. $V y$ Is the velocity of the fluid in the Y direction
2. $V z$ Is the velocity of the fluid in the Z direction
out (string vector, required) The output is the collision matrix. The size of the matrix will be numSpecies*numSpecies where here numSpecies is the number of components in the speciesMass vector below.

12.27.4 Parent Updater Data (type $=$ neutrals)

in (string vector, required) Each species has a T, N, V variable that must be put into the in variable, so for 2 species in would be
in $=[\mathrm{T} 1, \mathrm{~N} 1, \mathrm{~V} 1, \mathrm{~T} 2, \mathrm{~N} 2, \mathrm{~V} 2]$

1st Variable

0. T Is the temperature of the species

2nd Variable

0. N Is the number density of the species

3rd Variable

0 . $V x$ Is the velocity of the fluid in the X direction

1. $V y$ Is the velocity of the fluid in the Y direction
2. $V z$ Is the velocity of the fluid in the Z direction
out (string vector, required) The output is the collision matrix. The size of the matrix will be numSpecies*numSpecies where here numSpecies is the number of components in the speciesMass vector below.

12.27.5 Parent Updater Data (type = partiallylonized)

in (string vector, required) Each species has a Z, T, N, V variable that must be put into the in variable, so for 2 species in would be

$$
\text { in }=[\mathrm{Z} 1, \mathrm{~T} 1, \mathrm{~N} 1, \mathrm{~V} 1, \mathrm{Z} 2, \mathrm{~T} 2, \mathrm{~N} 2, \mathrm{~V} 2]
$$

1st Variable

0. Z Is the charge state of the species (positive value)

2nd Variable

0. T Is the temperature of the species

3rd Variable

0. N Is the number density of the species

4th Variable

$0 . V x$ Is the velocity of the fluid in the X direction

1. $V y$ Is the velocity of the fluid in the Y direction
2. $V z$ Is the velocity of the fluid in the Z direction
out (string vector, required) The output is the collision matrix. The size of the matrix will be numSpecies*numSpecies where here numSpecies is the number of components in the speciesMass vector below.

12.27.6 Example

```
<Equation thisGas>
    inverse = false
    kind = collisionFrequency
    type = ramboAndDenavit
    speciesMass = [ELECTRON_MASS, ION_MASS, ION_MASS]
</Equation>
```


12.28 conductivityTensor

Specify a tensor that has different conductivity parallel and perpendicular to a given vector field. The Tensor is specified as
given an input vector field B that same field is used to generate a unit vector field b that is then used to define the tensor. Conductivity parallel to the magnetic field is specified as $K_{\|}$and perpendicular to the vector field as K_{\perp} and then the difference in conductivities $d K=K_{\|}-K_{\perp}$. The 9 tensor components are given as

$$
\left(\begin{array}{ccc}
K_{\perp}+d K b_{x}^{2} & K_{\|} b_{x} b_{y} & K_{\|} b_{x} b_{z} \\
K_{\|} b_{x} b_{y} & K_{\perp}+d K b_{y}^{2} & K_{\|} b_{y} b_{z} \\
K_{\|} b_{x} b_{z} & K_{\|} b_{y} b_{z} & K_{\perp}+d K b_{z}^{2}
\end{array}\right)
$$

12.28.1 Parent Updater Data

in (string vector, required) 1st Variable

$0 . V_{x} \mathrm{x}$ vector component

1. $V_{y} \mathrm{y}$ vector component
2. $V_{z} \mathrm{z}$ vector component

2nd Variable

0. $K_{\|}$parallel conductivity

3rd Variable

0. K_{\perp} perpendicular conductivity
out (string vector, required) The output variable is a length 9 vector containing the 9 components of the conductivity tensor

1st Variable

0. $T_{x x}$
1. $T_{x y}$
2. $T_{x z}$
3. $T_{y x}$
4. $T_{y y}$
5. $T_{y z}$
6. $T_{z x}$
7. $T_{z y}$
8. $T_{z z}$

12.28.2 Example

```
<Updater initConductivityTensor>
    kind = equation2d
    onGrid = domain
    in = [B, kParallel, kPerpendicular]
    out = [conductivityTensor]
    <Equation a>
        kind = conductivityTensor
    </Equation>
</Updater>
```


12.29 momentumEnergyExchange

Computes the momentum and energy exchange between multiple fluids due to 'friction'. The momentum and energy exchange terms are given by the RHS of the euler equations below. Note that this does NOT include thermal relaxation as that is part of the temperatureRelaxation source.
The source for the continuity equation is zero, but added for convenience.

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\nabla \cdot\left[\rho_{i} U_{i}\right]=0 \tag{12.-21}
\end{equation*}
$$

The momentum term contains the species exchange term R_{i}

$$
\begin{equation*}
\frac{\partial \rho_{i} U_{i}}{\partial t}+\nabla \cdot\left[\rho U_{i} U_{i}+P_{i}\right]=R_{i} \tag{12.-21}
\end{equation*}
$$

And the energy term has a source due to changes in momentum $V \cdot R_{i}$

$$
\begin{equation*}
\frac{\partial e_{i}}{\partial t}+\nabla \cdot\left[U_{i} \cdot\left(e_{i}+P_{i}\right)\right]=V \cdot R_{i} \tag{12.-21}
\end{equation*}
$$

Where V is the bulk velocity given by

$$
\begin{equation*}
V=\frac{\sum_{i} \rho_{i} U_{i}}{\sum_{i} \rho_{i}} \tag{12.-21}
\end{equation*}
$$

and the momentum exchange term as

$$
\begin{equation*}
R_{i}=-\sum_{j} n_{i} \mu_{i j} \tau_{i j}^{-1}\left(U_{i}-U_{j}\right) \tag{12.-21}
\end{equation*}
$$

Descriptions of this model can be found in
Zhdanov, Viktor Mikhailovich. "Transport processes in multicomponent plasma." Plasma Physics and Controlled Fusion 44.10 (2002): 2283.

12.29.1 Parameters

speciesMass (vector float) The particle mass of each fluid species

12.29.2 Parent Updater Data

in (string vector, required) 1st Variable
0. ρ mass density

1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{Z}$ momentum density
4. e total energy density, fluid and field

2nd Variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e total energy density, fluid and field

Nth Variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e total energy density, fluid and field

($\mathrm{N}+1$)th Variable

This variable is the collision frequency matrix that can be computed by the source collisionFrequency. The order of species should be the same as provided to collisionFrequency.
out (string vector, required) There are N outputs each at least length 5 corresponding to the source terms for the 1 st through Nth inputs. The first component (corresponding to mass density) is always 0 while the remaining 4 components have non-zero values.

12.29.3 Example

```
<Equation thisGas>
    kind = momentumEnergyExchange
    speciesMass = [ELECTRON_MASS, ION_MASS, ION_MASS]
</Equation>
```


12.30 NFluidSrc

Applies the implicit source operator to the 5 moment N -fluid (ion, electron, EM) system. This operator should only really be applied to charged species as all the source terms are zero for neutral species so it can result in an excessively large matrix if neutral species are included. The approach is described for the two-fluid system in,

Kumar, Harish, and Siddhartha Mishra. "Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations." Journal of Scientific Computing 52.2 (2012): 401-425.

The algorithm in USim though can be applied to an arbitrary number of charged species (anywhere from 1 to N species!). A two-fluid version of this source is also in USIM twoFluidSrc and should be used when only two charged species are required since the algorithm will be slightly faster.

12.30.1 Parameters (All types)

type string Specifies the type of implicit matrix. Options are 5Moment for the 5 moment two-fluid system.

12.30.2 Parameters (5Moment)

speciesCharge (float vector) List of species charges in the same order as the species in variables. There should be the same number of charges as there are species.
speciesMass (float) List of species masses in the same order as the species in variables. There should be the same number of masses as there are species.
epsilon0 Permittivity of free space

12.30.3 Parent Updater Data (5Moment)

in (string vector, required) 1st Variable

0. ρ electron mass density
1. ρu_{x} electron x momentum density
2. ρu_{y} electron y momentum density
3. ρu_{z} electron z momentum density
4. e electron energy density

2nd Variable

0. ρ ion mass density
1. ρu_{x} ion x momentum density
2. ρu_{y} ion y momentum density
3. ρu_{z} ion z momentum density
4. e ion energy density

Nth Variable

0. ρ ion mass density
1. ρu_{x} ion x momentum density
2. ρu_{y} ion y momentum density
3. ρu_{z} ion z momentum density
4. e ion energy density

($\mathbf{N}+1$)th Variable

0 . $E_{x} \mathrm{x}$ electric field

1. E_{y} y electric field
2. $E_{z} \mathrm{z}$ electric field
3. $B_{x} \mathrm{x}$ magnetic field
4. B_{y} y magnetic field
5. $B_{z} \mathrm{z}$ magnetic field
6. Ψ_{E} electric field correction potential
7. Ψ_{B} magnetic field correction potential
out (string vector, required) In all cases the output is Q^{n+1}. For the 5 moment system there are $\mathrm{N}+1$ outputs corresponding to each of the fluids (the same order as the input) and em field (in that order).

12.30.4 Example

```
<Updater NFluidLorentz>
    kind = equation1d
        onGrid = domain
        in = [electronsNew, ionsNew, emNew]
        out = [electronsNew, ionsNew, emNew]
        #operation = add
    <Equation fluidLorentz>
        kind = NFluidSrc
        type = 5Moment
        speciesCharge = [ELECTRON_CHARGE, ION_CHARGE]
        speciesMass = [ELECTRON_MASS, ION_MASS]
        epsilon0 = 1.0
    </Equation>
</Updater>
```


12.31 reactionTableRhs

Computes the right hand side of the reaction rate equation and the reaction energy change rate. This can then be used in a time integration scheme. Any number of reactions can be added for a given set of species.

$$
\begin{aligned}
& \frac{d n_{i}}{d t}=s_{i} \\
& \frac{d e}{d t}=s_{r e}
\end{aligned}
$$

12.31.1 Parameters

species (string vector) List of species to include in the reactions.
fileName Input file containing the reaction rate constants data (REACTIONS), specific heats data (CP) and energy of formation ($E O F$). Refer to SpeciesDataFile for the input data format.
maxRate user specified value to limit the maximum rate of reactions.
outputEnergyRate option to specify whether to compute reaction energy using specific heats. NOTE: if the option is false, then in vector requires only first and second variable as inputs. out vector requires only first variable as input.

12.31.2 Parent Updater Data

in (string vector, required) 1st Variable

number densities of species m^{-3}

2nd Variable

average temperature of the fluid K

3rd Variable

specific heat at constant pressure of the species $\frac{J}{k g K}$
out (string vector, required) 1st Variable
time rate of change of species density $\frac{1}{\mathrm{~m}^{3} s}$

2nd Variable

time rate of change of energy $\frac{\mathrm{J}}{\mathrm{s}}$

12.31.3 Example

```
<Updater sourceUpdater>
    kind = equation1d
    onGrid = domain
    in = [speciesDensity, temperature, specificHeat]
    out = [speciesDensitySource, reactionEnergySource]
    equations = [reactionSource]
        <Equation reactionSource>
            kind = reactionTableRhs
            species = [N2, N, O2, O, NO, NO_p1, e]
            fileName = air7Species.txt
            maxRate = 1.0e28
            outputEnergyRate = 1
    </Equation>
</Updater>
```


12.32 temperatureRelaxation

Computes the relaxation of temperature between separate fluid species due to collisions. The term Q_{i} below is computed in this source and stored for each input species

The relaxation term is typically added to the energy equation below

$$
\begin{equation*}
\frac{\partial e_{i}}{\partial t}+\nabla \cdot\left[U_{i} \cdot\left(e_{i}+P_{i}\right)\right]=Q_{i} \tag{12.-22}
\end{equation*}
$$

and has the form

$$
\begin{equation*}
Q_{i}=-\sum_{j} 3 k n_{i}\left(\frac{\mu_{i j}}{m_{i}+m_{j}}\right) \tau_{i j}^{-1}\left(T_{i}-T_{j}\right) \tag{12.-22}
\end{equation*}
$$

Descriptions of this model can be found in
Zhdanov, Viktor Mikhailovich. "Transport processes in multicomponent plasma." Plasma Physics and Controlled Fusion 44.10 (2002): 2283.

12.32.1 Parameters

speciesMass (vector float) The particle mass of each fluid species
isNumberDensity (boolean) True if the densities being passed in are number densities, false if they are mass densities

12.32.2 Parent Updater Data

in (string vector, required) 1st Variable
0. ρ mass density or number density of the first species

2nd Variable

0. ρ mass density or number density of the second species

Nth Variable

0. ρ mass density or number density of the nth species

$(\mathbf{N}+1)$ th Variable

0. T temperature of the first species

($\mathrm{N}+2$)th Variable

0. T temperature of the second species

(N+N)th Variable

0. T temperature of the Nth species

(2N+1)th Variable

This variable is the collision frequency matrix that can be computed by the source collisionFrequency. The order of species should be the same as provided to collisionFrequency.
out (string vector, required) There are N outputs each of length 1 corresponding to the energy exchange source term for the 1 st through Nth inputs.

12.32.3 Example

```
<Equation thisGas>
    kind = temperatureRelaxation
    speciesMass = [ELECTRON_MASS, ION_MASS, ION_MASS]
</Equation>
```


12.33 transportCoeffSrc

Depending on the value of coeff, the transportCoeffsrc kind of Equation can have different outcomes.

```
coeff =
    - millikanWhiteParkVibTransRelaxationTime
    - mWpAverageVtRelaxationTime
    - binaryDiffusionCoeff
    - chemicalEnergy
    - tempAvgSpecicHeatCp
    - massFractionAvg
    - moleFractionAvg
    - molecularWeightAvg
```


12.33.1 millikanWhiteParkVibTransRelaxationTime

Average relaxtion time for vibration-translation mode of energy of species " 1 " in a gas mixture

$$
\tau_{l}=\frac{\sum_{m} x_{m}}{\sum_{l, m} x_{m} / \tau_{l, m}}
$$

$\tau_{l, m}$ is obtained using Millikan-White curvefit as follows

$$
\tau_{l, m}=\frac{1}{P / 101325} \exp \left[A_{l, m}\left(T^{-1 / 3}-B_{l, m}\right)-18.42\right]
$$

and

$$
A_{l, m}=0.00116 \mu_{l, m}^{1 / 2} \theta_{v, l}^{4 / 3}
$$

$$
B_{l, m}=0.015 \mu_{l, m}^{1 / 4}
$$

$$
\mu_{l, m}=\frac{M_{l} M_{m}}{M_{l}+M_{m}}
$$

Definitions

x_{m} mole fraction of species m
$\tau_{l, m}$ relaxation time of vibration-translation energy between specis l and m
$\theta_{v, l}$ characteristic temperature of vibration of species l (parameter thetaS)
M_{m} molecular weight of species m (parameter molecularWeight)
T translational temperature
P pressure of gas

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): millikanWhiteParkVibTransRelaxationTime (fixed)
numSpecies (int): number of species
molecularWeight (vector): molecular weight of species m
thetas (vector): characteristic temperature of vibration of species l. This is a material dependent constant that must be user supplied.
function (string): millikanWhiteParkVibTransRelaxationTime (fixed)

Parent Updater Data

in (string vector, required) 1st In Variable
average temperature of the species T

2nd In Variable

pressure of gas P

3rd In Variable

number density of the species n
out (string vector, required) the average relaxtion time for vibration-translation mode of energy of species " 1 " in a gas mixture

Example

```
<Equation vTrelaxationTime>
    kind = transportCoeffSrc
    coeff = millikanWhiteParkVibTransRelaxationTime
    numSpecies = 7
    molecularWeight = [M1 M2 M3 M4 M5 M6 M7]
    thetaS = [th1 th2 th3 th4 th5 th6 th7]
    function = millikanWhiteParkVibTransRelaxationTime
</Equation>
```


12.33.2 mWpAverageVtRelaxationTime

Average relaxtion time for vibration-traslation mode of energy of a gas mixture

$$
\tau=\frac{\sum_{l} x_{l}}{\sum_{l} x_{l} / \tau_{l}}
$$

Definitions

x_{l} mole fraction of species l
τ_{l} relaxtion time for vibration-translation mode of energy of species "l" in a gas mixture as calculated in coeff millikanWhiteParkVibTransRelaxationTime

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): mWpAverageVtRelaxationTime (fixed)
numSpecies (int): number of species
molecularWeight (vector): molecular weight of species m
thetas (vector): characteristic temperature of vibration of species l. This is a material dependent constant that must be user supplied.
function (string): mWpAverageVtRelaxationTime (fixed)

Parent Updater Data

in (string vector, required) 1st In Variable
average temperature of the species T

2nd In Variable

pressure of gas P

3rd In Variable

number density of the species n
out (string vector, required) the average relaxtion time for vibration-traslation mode of energy of a gas mixture

Example

```
<Equation vTrelaxationTime>
    kind = transportCoeffSrc
    coeff = mWpAverageVtRelaxationTime
    numSpecies = 7
    molecularWeight = [M1 M2 M3 M4 M5 M6 M7]
    thetaS = [th1 th2 th3 th4 th5 th6 th7]
    function = mWpAverageVtRelaxationTime
</Equation>
```


12.33.3 binaryDiffusionCoeff

Average mass diffusion coefficient of species " 1 " in a gas mixture
$D_{l}=\frac{\sum_{m} x_{m}}{\sum_{l, m} x_{m} / D_{l, m}}$
$D_{l, m}$ is obtained using hard sphere model
$D_{l, m}=\frac{2.63 \times-7}{\left(P /(101325) \sigma_{l, m}\right)}\left(\frac{T^{3}\left(M_{l}+M_{m}\right)}{2.0 M_{l} M_{m}}\right)^{1 / 2}$

Definitions

x_{m} mole fraction of species m
M_{m} molecular weight of species m
T translational temperature
P pressure of gas
$\sigma_{l, m}$ collision diameter between species l and m

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): binaryDiffusionCoeff (fixed)
numSpecies (int): number of species
molecularWeight (vector): molecular weight of species m
molecularDia (vector): molecular diameter of species m
function (string): binaryDiffusionCoeff (fixed)

Parent Updater Data

in (string vector, required) 1st In Variable
average temperature of the species T

2nd In Variable

 pressure of gas P
3rd In Variable

number density of the species n
out (string vector, required) the average mass diffusion coefficient of species "l" in a gas mixture

Example

```
<Equation diffusionCoeff>
    kind = transportCoeffSrc
    coeff = binaryDiffusionCoeff
    numSpecies = 7
    molecularWeight = [M1 M2 M3 M4 M5 M6 M7]
    molecularDia = [d1 d2 d3 d4 d5 d6 d7]
    function = binaryDiffusionCoeff
</Equation>
```


12.33.4 chemicalEnergy

Total energy of formation of a mixture

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): chemicalEnergy (fixed)
numSpecies (int): number of species
fileName (string): name of the SpeciesDataFile containing the energy of formation data.

Parent Updater Data

in (string vector, required) 1st In Variable

number densities of the species $1 / m^{3}$

2nd In Variable

specific heat at constant pressure of the species $J /(\mathrm{kgK})$

3rd In Variable

average temperature of the species K
out (string vector, required) the energy of formation in J / m^{3}

Example

```
<Updater computeChemEn>
    kind = equation2d
    onGrid = domain
    in = [speciesDens,cpR,temperature]
    out = [chemEn]
    <Equation cp>
        kind = transportCoeffSrc
        coeff = chemicalEnergy
        numSpecies = NSPECIES
        fileName = REACTIONS_ATOMIC_DATA
        </Equation>
</Updater>
```


12.33.5 tempAvgSpecicHeatCp

Specific heat at constant pressure

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): tempAvgSpecicHeatCp (fixed)
numSpecies (int): number of species
fileName (string): name of the SpeciesDataFile containing the cp data.
срType (string): currently allowed option is kineticTheory, which requires molecular data specified in the SpeciesDataFile. Defaults to Shomate polynomial type specificific heat, whch agian required polynomial data specified in the SpeciesDataFile. In case of using using Shomate polynomial, addition parameters lower, upper and steps should also be specified. These parameters specify the temperature range and the number of intervals to evaluate the specific heats.

Parent Updater Data

in (string vector, required) 1st In Variable
average temperature of the species K
out (string vector, required) the specific heat $J /(\mathrm{kgK})$

Example

```
<Updater computeCpR>
    kind = equation2d
    onGrid = domain
    in = [temperature]
    out = [cpR]
    <Equation cpR>
            kind = transportCoeffSrc
            coeff = tempAvgSpecicHeatCp
            fileName = REACTIONS_ATOMIC_DATA
            cpType = kineticTheory
            numSpecies = NSPECIES
            #lower = 300.0
            #upper = 30000.0
            #steps = 100
        </Equation>
</Updater>
```


12.33.6 massFractionAvg

Average mass fraction of the species

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): massFractionAvg (fixed)
numSpecies (int): number of species
fileName (string): name of the SpeciesDataFile containing the atomic data. Note that, massFractionAvg requires MOLECULARWEIGHT entered in the SpeciesDataFile.

Parent Updater Data

in (string vector, required) 1st In Variable
species number density $1 / m^{3}$
2nd In Variable
species property
out (string vector, required) the average mass fraction

Example

```
<Updater computeCpAvg>
    kind = equation2d
    onGrid = domain
    in = [speciesDens,cpR]
    out = [cpAvg]
    <Equation cp>
        kind = transportCoeffSrc
        coeff = massFractionAvg
        numSpecies = NSPECIES
        fileName = REACTIONS_ATOMIC_DATA
    </Equation>
</Updater>
```


12.33.7 moleFractionAvg

Average molecular fraction of species

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): moleFractionAvg (fixed)
numSpecies (int): number of species
fileName (string): name of the SpeciesDataFile containing the atomic data.

Parent Updater Data

in (string vector, required) 1st In Variable

species number density $1 / m^{3}$
2nd In Variable
species property
out (string vector, required) the average molecular fraction

Example

```
<Updater computeCpAvg>
    kind = equation2d
    onGrid = domain
    in = [speciesDens,cpR]
    out = [cpAvg]
    <Equation cp>
        kind = transportCoeffSrc
        coeff = massFractionAvg
        numSpecies = NSPECIES
```

 fileName = REACTIONS_ATOMIC_DATA
 </Equation>
 </Updater>

12.33.8 molecularWeightAvg

Average molecular weight of species

Parameters

kind (string): transportCoeffSrc (fixed)
coeff (string): molecularWeightAvg (fixed)
numSpecies (int): number of species
fileName (string): name of the SpeciesDataFile containing the MOLECULARWEIGHT data.

Parent Updater Data

in (string vector, required) 1st In Variable
species number density $1 / m^{3}$
out (string vector, required) the average-molecular-weight

Example

```
<Updater computeMwAvg>
    kind = equation2d
    onGrid = domain
    in = [speciesDens]
    out = [mwAvg]
    <Equation mwavg>
        kind = transportCoeffSrc
        coeff = molecularWeightAvg
        numSpecies = NSPECIES
        fileName = REACTIONS_ATOMIC_DATA
    </Equation>
</Updater>
```


BOUNDARY CONDITIONS

Defines an Updater block that is only applied to the boundary of the domain. Modified boundary values are stored in out. An example boundary condition updater block is given below:

```
<Updater Bc>
    kind = copy2d
    onGrid = domain
    entity = ghost
    out = [q]
</Updater>
```

The following parameters are common to all Boundary Condition blocks:
in (string vector) All boundary conditions have the option to take a string vector of input DataStruct. These DataStructs may or may not be used by the boundary condition
out (string vector) All boundary conditions take an output dataStruct.
onGrid (string) All boundary conditions take a string that tells the boundary condition which grid it is applied to
entity (string) All boundary conditions (except the periodicBc) take an entity that tells the updater what boundary the boundary condition will be applied to.
the entity ghost represents all boundaries for all USim grid types
the entities left (lower x boundary) right (upper x boundary) bottom (lower y boundary) top (upper y boundary) back (lower z boundary) front (upper z boundary) are defined for ntBodyFitted and cart grids.
kind (string) All boundary condition blocks take a string kind that species the type of boundary condtion. The different kinds of boundary condition available in USim are:

13.1 copy (1d, 2d, 3d)

Copies the data on the inside edge of the domain into the ghost cells for the given boundaries. When multiple halo cells are present the data from the first halo is copied to the second, the second to the 3 rd etc...

13.1.1 Example

```
<Updater bcLeft>
    kind = copy2d
    onGrid = domain
    out = [q]
    entity = ghost
</Updater>
```


13.2 eulerBc (1d, 2d, 3d)

Sets boundary conditions for euler type equation systems

13.2.1 Parameters

model (string) Defines the hyperEqn to use, this should generally be eulerEqn.
bcType (string) There are currently 3 valid boundary condition types.

- wall which is a slip wall boundary condition.
- noInflow which is a boundary condition that lets fluid flow out of the domain, but does not let it flow in.
- noSlip which is a boundary condition where all components of velocity are set to zero at the wall.

13.2.2 Example

```
<Updater bcLeft>
    kind = eulerBc2d
    model = eulerEqn
    onGrid = domain
    out = [q]
    entity = left
</Updater>
```


13.3 functionBc (1d, 2d, 3d)

Defines the boundary condition using a function

13.3.1 Sub-Blocks

Function (block) The function that is used to define the values in out

13.3.2 Example

```
<Updater bcLeft>
    kind = functionBc2d
    onGrid = domain
    out = [q]
    entity = left
    <Function func>
        kind = exprFunc
        gamma = GAMMA
        P0 = $2.0*BASEMENT_PRESSURE$
        rho0 = $2.0*BASEMENT_DENSITY$
        b0 = B0
```

```
        preExprs = ["er = P0/(gamma-1)"]
        exprs = ["rho0", "0.0", "0.0", "0.0", "er","0.0","0.0","b0","0.0"]
    </Function>
</Updater>
```


13.4 generalBc (1d, 2d, 3d)

Applies a boundary condition that can be a general function of the input dataStructs as well as a separate list of dynVectors.

13.4.1 Data

dynVectors (string vector) Input 1 to N are input dynVectors which will be used in specifying the boundary condition.

13.4.2 Parameters

indVars_ (string vector) For each input variable an "indVars" string vector must be defined. So if in = [magneticField, electricField] where magneticField and electricField are each 3-component nodalArrays then the combiner block must define indVars_magneticField $=[" b x ", " b y ", " b z "]$ and indVars_electricField $=[" e x ", " e y ", " e z "]$. Note that the labels "bx", "by", "bz" and "ex", "ey", "ez" are arbitrary; the requirement is that there is a unique name for each component of each input data structure.
dynVectorVars_(string vector) For each dynVector variable a "dynVars" string vector must be defined. So if dynVectors $=[a, b]$ where a and b are each 3-component dynVectors then the combine block must define dynVectorVars_a = ["al","a2"," $a 3 "]$ and dynVectorVars_ $b=[" b 1 ", " b 2 ", " b 3 "]$. Note that the labels " $a 1$ "," $a 2$ "," $a 3$ " and " $b 1$ "," $b 2$ "," $b 3$ " are arbitrary; the requirement is that there is a unique name for each component of each input data structure.
preExprs (string vector) contains extra definitions that can be used in evaluating exprs. Expressions can
 surface normals.
exprs (string vector) Must be the size of the output vector q. Contains expressions representing each of the components of the output vector. This expression can also use the same internal variables as described in preExprs.
useModel (boolean) If useModel is set to true then model will need to be set. An example would be model=eulerEqn. With this option the values put into exprs are assumed to be in local coordinates and then USim will rotate them to global coordinates. Thus, with model=eulerEqn you can specify the input momentum density normal to the surface by specifying the x component of momentum and setting the remaining components to 0 .

13.4.3 Example

```
<Updater bcBottom>
    kind = generalBc2d
    onGrid = domain
    in = [q]
```

```
    dynVectors = []
    indVars_q = ["rho","mx","my","mz","en"]
    exprs = ["rho","-mx","-my","-mz","en"]
    out = [q]
    entity = bottom
</Updater>
```


13.5 maxwellBc (1d, 2d, 3d)

Sets boundary conditions specific to Maxwell's equations

13.5.1 Parameters

model (string) Defines the hyperEqn to use, this should generally be maxwellEqn.
bcType (string) There are currently 2 valid boundary condition types.

- conductor which is a conducting wall boundary condition
- axisymmetric which is a boundary condition appropriate for cylindrical geometries on axis.

13.5.2 Example

```
<Updater emBcBottom>
    kind = maxwellBc2d
    model = maxwellEqn
    bcType = conductor
    onGrid = domain
    out = [q]
    entity = ghost
</Updater>
```


13.6 mhdBc (1d, 2d, 3d)

Sets the boundary condition for MHD type equations

13.6.1 Parameters

model (string) Defines the hyperbolic equation to use, this should generally be idealMhdEqn, mhdDednerEqn, twoTemperatureMhdDednerEqn, twoTemperatureMhdEqn, gasDynamicMhdEqn, idealMhdEosEqn or twoTemperatureMhdEosEqn
bcType (string) There are currently 3 valid boundary condition types.

- conductingWall which is a slip wall boundary condition.
- noInflow which is a boundary condition that lets fluid flow out of the domain, but does not let it flow in.
- noSlip which is a boundary condition where all components of velocity are set to zero at the wall.

13.6.2 Example

```
<Updater bcOpen>
    kind = mhdBc2d
    bcType = noInflow
    model = twoTemperatureMhdEosEqn
    onGrid = domain
    out = [q]
    entity = sideSetHalosId1
</Updater>
```


13.7 periodicCartBc (1d, 2d, 3d)

Applies a periodic boundary condition on the boundaries set up in the cart grid as defined by periodicDirs.

13.7.1 Example

```
<Updater periodic>
    kind = periodicCartBc2d
    onGrid = domain
    in = [q]
    out = [q]
</Updater>
```


13.8 simpleBc (1d, 2d, 3d)

Sets the boundary condition for MHD type equations

13.8.1 Parameters

model (string) The hyperbolic equation that describes the system being modelled. This should be one of the options available in Hyperbolic Equations and should match that used in (e.g) the classicMusclUpdater $(1 d, 2 d, 3 d)$ updater used to evolve the system.
coefficients (integer vector) The size of the coefficients vector must be the same as the number of elements in the input vector and the hyperbolic equation refered to by model. For models containing vector fields, the components of the vector are rotated into the coordinate system of the vector normal to the boundary. Then, the components of the vector are multiplied by the coefficients vector to set the boundary condition.

13.8.2 Example

In the example below, the hyperbolic equation is eulerEqn. This corresponds to a 5 component system with primary variables $[r h o, m x, m y, m z, e n]$. Components 2-4 of this equation system correspond to the momentum vector, ($m x, m y, m z$), which are rotated so that $m x$ is aligned with the normal to the boundary. The coefficients for this example are $[1.0,-1.0,1.0,1.0,1.0]$ and so the sign of the normal momentum is reversed at the boundary, which is corresponds to a wall boundary condition. Other boundary conditions can therefore be created by manipulating the coefficient vector.

```
<Updater fluidWall>
    kind = simpleBc2d
    model = eulerEqn
    coefficients = [1.0,-1.0,1.0,1.0,1.0]
    onGrid = domain
    out = [q]
    entity = bottom
</Updater>
```


13.9 sufaceEvaporation (1d, 2d, 3d)

Computes the surface evaporation rate of a compound material.

13.9.1 Data

dynVectors (string vector) A list of dynVectors that can be used in computing the boundary condition
in contains the surface temperature

13.9.2 Example

```
<Updater bcAbSurfProp>
    kind = surfaceEvaporation2d
    onGrid = domain
    in = [surfTemp]
    dynVectors = []
    variablesType = ablation
    storeSurfaceProperty = 1
    ablationModel = sonic
    numConstituents = 3
    satPressure = [lllo.0 154699.92824 956.0 10.0 97419.99 617.0 1.3e-6 76899.999 293.0)}
    moleFraction = [MolF1 MolF2 MolF3]
    averageMolecularWeight = MWAb
    out = [abSurfProp]
    entity = sideSetHalosId3
</Updater>
```


13.10 tenMomentBc (1d, 2d, 3d)

Sets boundary conditions for tenMomentEqn type equation systems

13.10.1 Parameters

model (string) Defines the hyperbolic equation to use, this should generally be tenMomentEqn. bcType (string) There are currently 3 valid boundary condition types.

- wall which is a slip wall boundary condition.
- noInflow which is a boundary condition that lets fluid flow out of the domain, but does not let it flow in.
- noSlip which is a boundary condition where all components of velocity are set to zero at the wall.

13.10.2 Example

```
<Updater bcLeft>
    kind = tenMomentBc2d
    model = tenMomentEqn
    onGrid = domain
    out = [q]
    entity = left
</Updater>
```


TIME STEP RESTRICTION

Computes a minimum time step based on physical quantities, grid quantities and time. It could be used to determine the maximum explicitly stable time step based on wave speeds, or the maximum time step based on oscillations like the electron plasma oscillation. The TimeStepRestriction is used in conjunction with timeStepRestrictionUpdater (1d, $2 d, 3 d$). An example TimeStepRestriction is shown below:

```
<TimeStepRestriction wpe>
    kind = plasmaFrequency
    speciesCharge = ELECTRON_CHARGE
    speciesMass = ELECTRON_MASS
    epsilon0 = 1.0
    massDensityIndex = 0
</TimeStepRestriction>
```

The following parameters are common to all TimeStepRestriction blocks:
in (string vector, optional) Specifies the nodalArrays within the in attribute for the timeStepRestrictionUpdater (1d, $2 d, 3 d)$ that should be used for computing this time step restriction.
includeInTimeStep (bool, optional) Whether to include this time step restriction in the time step returned by the timeStepRestrictionUpdater (1d, 2d, 3d). Default true.
storeTimeStep (bool, optional) Whether to store this time step restriction in the timeSteps dynVector specified in the timeStepRestrictionUpdater (1d, 2d, 3d). Default: true.
storeWaveSpeed (bool, optional) Whether to store the wave speed associated with this in the waveSpeeds dynVector specified in the timeStepRestrictionUpdater (1d, 2d, 3d). Default: true.
applycFLRestriction (bool, optional) Whether to apply the CFL condition specified in the timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) to the time step computed in this restriction. Default: true.
kind (string, required) All TimeStepRestriction blocks take a string kind that species the type of time step restriction. The remainder of this section describes the different options for this parameter that are available in USim.

14.1 cyclotronFrequency (1d, 2d, 3d)

Computes the inverse cyclotron frequency which will then be used in determining the time step restriction.

14.1.1 Parameters

speciesCharge (float, required) Charge of the species for which we are computing the cyclotron frequency.
speciesMass (float, required) Mass of the species for which we are computing the cyclotron frequency.
magneticFieldIndexes (integer vector, required) The index of the magnetic field in the input data structure in timeStepRestrictionUpdater (1d, 2d, 3d)

14.1.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the cyclotronFrequency Time Step Restriction.

in (string vector, required)

Mass Density (nodalArray, at least 1 component, required) The mass density of the plasma. The component of the data structure that contains the mass density is specified with the parameter massIndex (see below).

14.1.3 Example

The following block demonstrates cyclotronFrequency used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and plasmaFrequency ($1 d, 2 d, 3 d$) to compute the time-step restriction in a plasma:

```
<Updater twofluidTimeStepRestrictions>
    kind = timeStepRestrictionUpdaterld
    in = [q]
    restrictions = [wpe, wce]
    onGrid = domain
    courantCondition = 1.0
    <TimeStepRestriction wpe>
            kind = plasmaFrequency1d
            cfl = 1.0
            speciesCharge = ELECTRON_CHARGE
            speciesMass = ELECTRON_MASS
            epsilon0 = 1.0
            massDensityIndex = 0
    </TimeStepRestriction>
    <TimeStepRestriction wce>
            kind = cyclotronFrequencyld
            speciesCharge = ELECTRON_CHARGE
            speciesMass = ELECTRON_MASS
            magneticFieldIndexes = [23, 24, 25]
            massDensityIndex = 0
        </TimeStepRestriction>
</Updater>
```


14.2 frequency (1d, 2d, 3d)

Computes the minimum time step suggested by an array of frequencies.

14.2.1 Parameters

components (int, required) Number of components in the input array. Each of the values in the array will be used to compute a time step restriction.

14.2.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) that calls the frequency Time Step Restriction.

in (string vector, required)

Reaction Frequency (nodalArray, \mathbf{N} components, required) An set of reaction frequencies to compute the restriction from

14.2.3 Example

The following block demonstrates frequency used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) to compute a time-step restriction for a set of reactions:

```
<Updater timestepRestriction>
    kind = timeStepRestrictionUpdater2d
        in = [reactionFreq]
        onGrid = domain
        restrictions = [reaction]
        courantCondition = CFLR
        <TimeStepRestriction reaction>
            kind = frequency2d
            components = 1
        </TimeStepRestriction>
</Updater>
```


14.3 hyperbolic (1d, 2d, 3d)

Computes the minimum time step and fastest wave speed based on the courant condition for a specified Hyperbolic Equations.

14.3.1 Parameters

model (string, required) The Hyperbolic Equations used. Available options are:

eulerEqn

Defines the equations of inviscid compressible hydrodynamics:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P=\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats).

Parameters

gasGamma (float) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of conserved quantities, \mathbf{q} has 5 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}$: total energy density
out (string vector, required) For the eulerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater $(1 d, 2 d, 3 d)$), primitive variables (computePrimitiveState $(1 d, 2 d, 3 d)$), the time step associated with the CFL condition (timeStepRestrictionUpdater $(1 d, 2 d, 3 d)$) or the fastest wave speed in the grid (timeStepRestrictionUpdater (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 5-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
5. $\nabla \cdot \mathcal{F}(\rho)$: mass flux
6. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
7. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
8. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
9. $\nabla \cdot \mathcal{F}(E)$: total energy flux

Vector of Primitive States (nodalArray, 5-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}:$ velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure

Time Step (dynVector, 1-component) When combined with the kind=hyperblic, model=eulerEqn timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), and storeTimeStep is true, the equation system returns the time step consistent with the CFL condition across the entire simulation domain.
Fastest Wave Speed (dynVector, 1-component) When combined with the kind=hyperbolic, model=eulerEqn timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), and storeWaveSpeed is true, the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Example

The following block demonstrates the eulerEqn used in combination with classicMusclUpdater (1d, 2d, $3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    timeIntegrationScheme=none
    numericalFlux=roeFlux
    limiter=[muscl]
    variableForm=primitive
    in=[q]
    out=[qnew]
    cfl=0.3
    equations=[euler]
    <Equation euler>
        kind=eulerEqn
        gasGamma=1.4
        basementDensity = 1.0e-5
        basementPressure = 1.0e-6
    </Equation>
</Updater>
```


realGasEqn

Real gas using a real gas equation of state. Requires the computation of specific heat and temperature and assignment of zero point energy outside of the equation. Assumes single temperature. The equations are solved in conservative form.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
e
\end{array}\right)+\nabla \cdot\left(\begin{array}{ccc}
\rho u_{x} & \rho u_{y} & \rho u_{z} \\
\rho u_{x}^{2}+P & \rho u_{x} u_{y} & \rho u_{x} u_{z} \\
\rho u_{y} u_{x} & \rho u_{y} u_{y}+P & \rho u_{y} u_{z} \\
\rho u_{z} u_{x} & \rho u_{z} u_{y} & \rho u_{z} u_{z}+P \\
u_{x}(e+P) & u_{y}(e+P) & u_{z}(e+P)
\end{array}\right)=0
$$

The energy is given by

$$
\begin{equation*}
e=\frac{1}{2} \rho\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)+\sum_{i} n_{i}\left(C v_{i} T+e_{0 i}\right) \tag{14.-2}
\end{equation*}
$$

Parameters

numSpecies (float) The number of species modeled in the real gas system.
basementPressure (float) The minimum pressure allowed. Defaults to 0 .
basementDensity (float) The minimum density allowed. Defaults to 0 .
Note: basementPressure and basementDensity are only used if correct=true
correct (boolean) Tells whether or not densities or pressures should be corrected when the fall below basement pressures or basement densities. When set to true pressure=max(basementPressure, pressure) and density $=\max ($ basementDensity, density). Defaults to false.

Note: Setting correctNans or correct to true can lead to energy conservation errors

Parent Updater Data

in (string vector, required)

Vector of conserved quantities

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. ρu_{y} y momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density

2nd variable ($\mathbf{3 n + 1}$) $3 n+1$ auxiliary variables with n the number of species
0 . variables $0-(\mathrm{n}-1) . n_{i}$ species number density

1. variables $\mathrm{n}-(2 \mathrm{n}-1) . C v_{i}$ species specific heat at constant volume
2. variables $\mathrm{n}-(3 \mathrm{n}-1) . e_{0} i$ species zero point energy density
3. variables 3 n . T Temperature in Kelvin

Example

An example realGas equation block is given below

```
<Equation realGas>
    kind = realGasEqn
    numSpecies = 7
</Equation>
```


realGasEosEqn

Gas dynamics with a general equation of state. The equations are solved in conservative form.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
e
\end{array}\right)+\nabla \cdot\left(\begin{array}{ccc}
\rho u_{x} & \rho u_{y} & \rho u_{z} \\
\rho u_{x}^{2}+P & \rho u_{x} u_{y} & \rho u_{x} u_{z} \\
\rho u_{y} u_{x} & \rho u_{y} u_{y}+P & \rho u_{y} u_{z} \\
\rho u_{z} u_{x} & \rho u_{z} u_{y} & \rho u_{z} u_{z}+P \\
u_{x}(e+P) & u_{y}(e+P) & u_{z}(e+P)
\end{array}\right)=0
$$

Parameters

basementPressure (float) The minimum pressure allowed. Default is 0 .
basementDensity (float) The minimum density allowed. Default is 0 .

Note: basementPressure and basementDensity are only used if correct=true
correct (boolean) Tells whether or not densities or pressures should be corrected when the fall below basement pressures or basement densities. When set to true pressure=max(basementPressure, pressure) and density $=\max$ (basementDensity, density)

Parent Updater Data

in (string vector, required)
Vector of conserved quantities (5 components)
0. ρ mass density

1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. e energy density
fluid pressure (1 component)
5. P total fluid pressure (not magnetic pressure included)
gas dynamic sound speed (1 component)
6. a estimate of the fluid sound speed

Example

An example realGasEos equation block is given below:

```
<Equation realGasEos>
    kind = realGasEosEqn
</Equation>
```


tenMomentEqn

Ideal compressible 10 moment fluid equations. The equations are solved in conservative form.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
\rho u_{x}^{2}+P_{x x} \\
\rho u_{x} u_{y}+P_{x y} \\
\rho u_{x} u_{z}+P_{x z} \\
\rho u_{y}^{2}+P_{y y} \\
\rho u_{y} u_{z}+P_{y z} \\
\rho u_{z}^{2}+P_{z z}
\end{array}\right)+\nabla \cdot P=0
$$

where P is defined as

$$
\left(\begin{array}{ccc}
\rho u_{x} & \rho u_{y} & \rho u_{z} \\
\rho u_{x}^{2}+P_{x x} & \rho u_{x} u_{y}+P_{x y} & \rho u_{x} u_{z}+P_{x z} \\
\rho u_{y} u_{x}+P_{x y} & \rho u_{y} u_{y}+P_{y y} & \rho u_{y} u_{z}+P_{y z} \\
\rho u_{z} u_{x}+P_{x z} & \rho u_{z} u_{y}+P_{y z} & \rho u_{z} u_{z}+P_{z z} \\
\rho u_{x}^{3}+3 u_{x} P_{x x} & \rho u_{y} u_{x}^{2}+u_{x} P_{y y}+2 u_{x} P_{x y} & \rho u_{z} u_{x}^{2}+u_{z} P_{x x}+2 u_{x} P_{x z} \\
\rho u_{x}^{2} u_{y}+2 u_{x} P_{x y}+u_{y} P_{x x} & 0 & 0 \\
\rho u_{x}^{2} u_{z}+2 u_{x} P_{x z}+u_{z} P_{x x} & 0 & 0 \\
\rho u_{x} u_{y}^{2}+u_{x} P_{y y}+2 u_{y} P_{x y} & \rho u_{y}^{3}+3 u_{y} P_{y y} & 0 \\
\rho u_{x} u_{y} u_{z}+u_{x} P_{y z}+u_{y} P_{x z}+u_{z} P_{x y} & 0 & 0 \\
\rho u_{x} u_{z}^{2}+u_{x} P_{z z}+2 u_{z} P_{x z} & 0 & \rho u_{z}^{3}+3 u_{z} P_{z z}
\end{array}\right)
$$

Parameters

basementPressure (float) The minimum pressure allowed. Defaults to 0 .
basementDensity (float) The minimum density allowed. Defaults to 0 .

Parent Updater Data

in (string vector, required)

1st variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} \mathrm{y}$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. $\rho u_{x}^{2}+P_{x x} \mathrm{xx}$ energy density
5. $\rho u_{x} u_{y}+P_{x y}$ xy energy density
6. $\rho u_{x} u_{z}+P_{x z} \mathrm{xz}$ energy density
7. $\rho u_{y}^{2}+P_{y y}$ yy energy density
8. $\rho u_{y} u_{z}+P_{y z}$ yz energy density
9. $\rho u_{z}^{2}+P_{z z} \mathrm{zz}$ energy density

Example

An example tenMoment equation block is given below:

```
<Equation tenMoment>
    kind = tenMomentEqn
</Equation>
```


multiSpeciesSingleVelocityEqn

This equation represents continuity equations for n species. The species continuity equation is given by

$$
\begin{equation*}
\frac{\partial n_{i}}{\partial t}+\nabla_{j}\left(n_{i} u_{j}\right)=0 \tag{14.-4}
\end{equation*}
$$

Parameters

basementNumberDensity (float) The minimum species number density allowed
basementDensity (float) The minimum auxiliary variable mass density allowed. Defaults to 0 .
numberOfSpecies (integer) The number of species that have continuity equations.
useParentEigenvalues (boolean) When set to true the eigenvalues of the parent system are used in computing dissipation in fluxes such as the localLaxFlux as well as time step restrictions. When set to false, the eigenvalue is simply u normal to the direction of interest.

Sub-Blocks

Equation (block) Defines the parent equation type of the system. The parent equation could be eulerEqn or idealMhdEqn for example. The first 4 components must be density, followed by the 3 components of momentum. This equation is used to compute the advection velocity and if useParentEigenvalues=true then the eigenvalues of this system are used to compute the level of dissipation in the flux functions.

Parent Updater Data

in (string vector, required)

Species densities Entries $1-N$ where N is the number of species
0 . variables $0-(\mathrm{N}-1) n_{i}$ number density of species i
Vector of conserved quantities Entries are determined by the Equation sub-block and only the first 4 entries are used in this equation. Entries $1-N$ where N the number variables in the parent equation
0. ρ species density

1. ρu_{x} species x momentum
2. ρu_{y} species y momentum
3. ρu_{z} species z momentum
4. all components beyond 3 are ignored.

Example

An example multiSpeciesSingleVelocity equation block is given below

```
<Equation speciesContinuity>
    kind = multiSpeciesSingleVelocityEqn
    useParentEigenvalues = true
    inputVariables = [qSpecies, q]
    numberOfSpecies = NSPECIES
    <Equation realGas>
            kind = realGasEqn
            inputVariables = [q, realGasVariables]
            numSpecies = NSPECIES
    </Equation>
</Equation>
```


mhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P=\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats). The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
mu0 (float, optional) Optional value for the constant μ_{0}. Defaults to $4 \pi \times 10^{-7}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm's law, External, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $e^{\text {external }}$ is specified by the "externalEField" option described below.

0 . $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0 . $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$), primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater $(1 d, 2 d, 3 d)$), the equation system returns:
3. $\nabla \cdot \mathcal{F}(\rho)$: mass flux
4. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
5. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
6. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
7. $\nabla \cdot \mathcal{F}(E)$: total energy flux
8. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
9. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
10. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
11. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d, $2 d, 3 d)$ to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind=mhdDednerEqn
        gasGamma=1.4
        externalBfield="backgroundB"
    </Equation>
</Updater>
```

The following block demonstrates the mhdDednerEqn used in combination with timeStepRestrictionUpdater $(1 d, 2 d, 3 d)$ and hyperbolic $(1 d, 2 d, 3 d)$ to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdater1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
```

```
    # courant condition to apply to the timestep
    courantCondition=1.0
    <TimeStepRestriction idealMhd>
        kind=hyperbolicld
        model=mhdDednerEqn
        gasGamma= 1.4
        externalBfield=True
        includeInTimeStep=False
    </TimeStepRestriction>
</Updater>
```


mhdDednerEosEqn

Defines the equations of ideal compressible magnetohydrodynamics with and arbitrary equation of state (EOS) and divergence cleaning:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix and P is the pressure as specified by an external EOS. Updaters that compute all the data required from an EOS are found in vanDerWaalsComputeVariables, sesameComputeVariables and propaceosComputeVariables. The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
mu0 (float, optional) Optional value for the constant μ_{0}. Defaults to $4 \pi \times 10^{-7}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\rho \epsilon+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density where ϵ is the specific internal energy
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Pressure (nodalArray, 1-component, required) Value of the pressure as computed by the external EOS.

Sound speed squared (nodalArray, 1-component, required) Value of the sound speed squared as computed by the external EOS.
internal energy (nodalArray, 1-component, required) Value of the internal energy ($\rho \epsilon$) as computed by the external EOS.

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic (1d, 2d, $3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm's law, $\mathbf{E}^{\text {external, computed "externally" to the }}$ ideal magnetohydrodynamic system. The data structure containing $e^{\text {external }}$ is specified by the "externalEField" option described below.

0 . $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)

Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEosEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$) , primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$) , the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater ($1 d, 2 d, 3 d)$), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathrm{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}:$ velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic ($1 d, 2 d, 3 d$), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Examples

The following block demonstrates the mhdDednerEosEqn used in combination with classicMusclUpdater ($1 d, 2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyper>
    kind = classicMuscl2d
    onGrid = domain
    # input nodal component arrays
    in=[q, pressure, soundSqr, intEnergy]
    # output nodal component arrays
    out = [qNew]
    # input dynVector containing fastest wave speed
    waveSpeeds = [waveSpeed]
    # the numerical flux to use
    numericalFlux = hlldFlux
    # CFL number to use
    cfl = 0.5
    # determines solve is conservative or primitive
    variableForm = conservative
    # Limiter; one per input nodal component array
    limiter=[muscl, muscl, muscl, muscl]
    # list of equations to solve
    equations = [mhd]
    <Equation mhd>
        kind=mhdDednerEosEqn
        mu0=1.0
    </Equation>
</Updater>
```

The following block demonstrates the mhdDednerEosEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdater2d
    onGrid=domain
    # input nodal component arrays
    in=[q, pressure, soundSqr, intEnergy]
```

```
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=0.5
    <TimeStepRestriction idealMhd>
    kind=hyperbolicld
    model=mhdDednerEosEqn
    mu0=1.0
</TimeStepRestriction>
</Updater>
```


gasDynamicMhdDednerEqn

Defines the equations of inviscid fluid dynamics coupled to pre-Maxwell's equations in source term form with divergence cleaning:

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}]=0 \\
\frac{\partial(\rho \mathbf{u})}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P\right]=\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right) \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}]=\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E}^{\text {species }} \\
\frac{\partial \mathbf{B}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{E}+\nabla \psi=0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right]=0
\end{array}
$$

Here, $q^{\text {species }}$ is the species charge density, $\mathbf{J}^{\text {species }}$ is the species current density, \mathbb{I} is the identity matrix, $P=\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats). The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following standard identities (note that the use of these identities does not require an assumption of quasi-neutrality):

$$
\begin{array}{r}
\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right)=-\frac{\partial c^{-2} \mathbf{S}^{\mathrm{EM}}}{\partial t}+\nabla \cdot \mathcal{T}^{\mathrm{EM}} \\
\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E}=-\frac{\partial E^{\mathrm{EM}}}{\partial t}-\nabla \cdot \mathbf{S}^{\mathrm{EM}}
\end{array}
$$

Here, $\mathcal{T}^{\mathrm{EM}}$ is the electromagnetic stress tensor and \mathbf{S}^{EM} is the electromagnetic energy (Poynting) flux vector, which are defined as:

$$
\begin{array}{r}
\mathcal{T}^{\mathrm{EM}}=\frac{1}{\mu_{0}}\left(\frac{\mathbf{E E ^ { T }}}{c^{2}}+\mathbf{B} \mathbf{B}^{T}\right)+\mathbb{I} E_{\mathrm{EM}}=\frac{\mathbf{e e}^{T}}{c^{2}}+\mathbf{b b}^{T}+\mathbb{I} E_{\mathrm{EM}} \\
\mathbf{S}^{\mathrm{EM}}=\mu_{0}^{-1} \mathbf{E} \times \mathbf{B}=\mathbf{e} \times \mathbf{b} \\
E^{\mathrm{EM}}=\frac{1}{2 \mu_{0}}\left(\frac{|\mathbf{E}|^{2}}{c^{2}}+|\mathbf{B}|^{2}\right)=\frac{1}{2}\left(\frac{|\mathbf{e}|^{2}}{c^{2}}+|\mathbf{b}|^{2}\right)
\end{array}
$$

Here, E^{EM} is the electromagnetic energy density and the electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the pre-Maxwell equations.

With these identitifications, the gasDynamicMhdDednerEqn takes the form:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P-\mathcal{T}^{\mathrm{EM}}\right] & =0 \\
\frac{\partial\left(E+E^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[(E+P) \mathbf{u}+\mathbf{S}^{\mathrm{EM}}\right] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0
\end{aligned}
$$

This flux-conservative formulation is implemented in USim.

Parameters

lightSpeed (float, optional) The speed of light in m/s. Defaults to 2.99792458e8.
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
externalefield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $\mathbf{e}^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathbf{b}^{\text {external }}$.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{i}}$: total momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{j}}$: total momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{k}}$: total momentum density in the $\hat{\mathbf{k}}$ direction
4. $E+E^{\mathrm{EM}}=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+E^{\mathrm{EM}}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)

Additional terms in the generalized Ohm's law, External, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $\mathrm{e}^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$. "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)

Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState($1 d, 2 d, 3 d$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
3. $\nabla \cdot \mathcal{F}(\rho)$: mass flux
4. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\text {EM }}\right): \hat{\mathbf{i}}$ momentum flux
5. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}\right): \hat{\mathbf{j}}$ momentum flux
6. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}\right): \hat{\mathbf{k}}$ momentum flux
7. $\nabla \cdot \mathcal{F}(E)$: total energy flux
8. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
9. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
10. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
11. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState($1 d, 2 d, 3 d$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}$: velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d, $2 d, 3 d)$ to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
```

```
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind=gasDynamicMhdDednerEqn
        gasGamma=1.4
        externalBfield="backgroundB"
    </Equation>
</Updater>
```

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRestrictionUpdater $(1 d, 2 d, 3 d)$ and hyperbolic $(1 d, 2 d, 3 d)$ to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdaterld
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
        # list of equations to compute fastest wave speed for
    restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=1.0
    <TimeStepRestriction idealMhd>
            kind=hyperbolicld
            model=gasDynamicMhdDednerEqn
            gasGamma= 1.4
            externalBfield=True
            includeInTimeStep=False
        </TimeStepRestriction>
</Updater>
```


simpleTwoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an electron entropy equation:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P_{\text {tot }}+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0 \\
\frac{\partial S_{\text {electron }}}{\partial t}+\nabla \cdot\left[S_{\text {electron }} \mathbf{u}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P_{\text {tot }}=P_{\text {ion }}+P_{\text {electron }}=\rho_{\text {ion }} \epsilon_{\text {ion }}\left(\gamma_{\text {ion }}-1\right)+\rho_{\text {electron }} \epsilon_{\text {electron }}\left(\gamma_{\text {electron }}-1\right)$ is the total plasma pressure, $\epsilon_{\text {ion,electron }}$ is the specific internal energy of ions and electrons and $\gamma_{\text {ion, electron }}$ is the adiabatic index (ratio of specific heats) for the ions and electrons. The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

$$
S_{\text {electron }}=P_{\text {electron }} n_{\text {electron }}^{-\left(\gamma_{\text {electron }}+1\right)} ; \quad n_{\text {electron }}=\frac{\rho}{m_{\text {electron }}+\frac{m_{\text {ion }}}{Z}}
$$

Here, $n_{\text {electron }}$ is the electron number density, $m_{\text {electron }}$ is the electron mass, $m_{\text {ion }}$ is the ion mass and Z is the ion charge state. with the fluid velocity, \mathbf{u}. In order to advect the electron entropy with the electron velocity, refer to twoTemperatureMhdDednerEqn. The method provided by simpleTwoTemperatureMhdDednerEqn is generally more robust and has lower computational cost than that provided by twoTemperatureMhdDednerEqn. If, for example, heating of electrons by (for example) magnetic dissipation is required, then this can be accomplished by adding source terms of the electron entropy equation, see, e.g. mhdSrc.
The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure, γ. Defaults to $5 / 3$.
electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the electrons, $\gamma_{\text {electron }}$. Defaults to $5 / 3$.
electronMass (float, optional) Specifies the electron mass, $m_{\text {electron. }}$. Defaults to (1836) ${ }^{-1}$.
ionMass (float, optional) Specifies the ion mass, $m_{\text {ion }}$. Defaults to 1 .
chargeState (float, optional) Specifies the charge on an ion, Z. Defaults to 1 .
currentVector (string, required) Specifies the name of the data structure containing the total (ion + electron) plasma current, $\mathbf{J}^{\text {plasma }}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathrm{b}^{\text {external }}$.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector of conserved quantities, \mathbf{q} has 10 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $S_{\text {electron }}$: electron entropy

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm's law, External, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $\mathbf{e}^{\text {external }}$ is specified by the "externalEField" option described below.

0 . $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0 . $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d)$), primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater ($1 d, 2 d, 3 d$)), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathrm{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux
9. $\nabla \cdot \mathcal{F}\left(S_{\text {electron }}\right)$: electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState($1 d, 2 d, 3 d$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}:$ velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}:$ velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $P_{\text {electron }}$: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, c_{fast}.

Examples

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with classicMusclUpdater (1d, 2d, 3d) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$

```
<Updater hyper>
    kind = classicMuscl1d
    onGrid = domain
# input data-structures
    in = [q,electricField]
# output data-structures
    out = [qnew]
# the time integration scheme, rk1 for first order runge-kutta
    timeIntegrationScheme = none
# the numerical flux to use
    numericalFlux = roeFlux
# CFL number to use
    cfl = 0.4
# Form of variables to limit
    variableForm = primitive
# Limiter to use
    limiter = [muscl,muscl]
    waveSpeeds = [waveSpeed]
# list of equations to solve
    equations = [mhd]
    <Equation mhd>
        kind = simpleTwoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
    </Equation>
```

```
</Updater>
```

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with computePrimitiveState($1 d, 2 d, 3 d$) to compute $\mathbf{w}(\mathbf{q})$

```
<Updater computePrimitiveState>
    kind = computePrimitiveStateld
    onGrid = domain
# input data-structures
    in = [q,electricField]
# ouput data-structures
    out = [w]
    <Equation mhd>
        kind = simpleTwoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
    </Equation>
</Updater>
```

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), hyperbolic ($1 d, 2 d, 3 d$) and quadratic ($1 d, 2 d, 3 d$) to compute $d t_{\text {min }}, d t_{\text {diff }}$ and $c_{\text {fast }}$ for resistive two-temperature MHD:

```
<Updater getHypDT>
    kind = timeStepRestrictionUpdater1d
        in = [q,electricField]
    onGrid = domain
    waveSpeeds = [waveSpeed]
    timeSteps = [diffDT]
    restrictions = [idealMhd]
    courantCondition = CFL
    <TimeStepRestriction idealMhd>
        kind = hyperbolicld
        cfl = CFL
        model = simpleTwoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        correctNans = true
        correct = true
        correctNans = true
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
        storeTimeStep = False
    </TimeStepRestriction>
</Updater>
```


twoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an electron entropy equation:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}-\mathbf{b} \mathbf{b}^{T}+\mathbb{I}\left(P_{\text {tot }}+\frac{1}{2}|\mathbf{b}|^{2}\right)\right] & =0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}+\mathbf{e} \times \mathbf{b}] & =0 \\
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{e}+\nabla \psi & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}\right] & =0 \\
\frac{\partial S_{\text {electron }}}{\partial t}+\nabla \cdot\left[S_{\text {electron }} \mathbf{u}_{\text {electron }}\right] & =0
\end{aligned}
$$

Here, \mathbb{I} is the identity matrix, $P_{\text {tot }}=P_{\text {ion }}+P_{\text {electron }}=\rho_{\text {ion }} \epsilon_{\text {ion }}\left(\gamma_{\text {ion }}-1\right)+\rho_{\text {electron }} \epsilon_{\text {electron }}\left(\gamma_{\text {electron }}-1\right)$ is the total plasma pressure, $\epsilon_{\text {ion,electron }}$ is the specific internal energy of ions and electrons and $\gamma_{\text {ion, electron }}$ is the adiabatic index (ratio of specific heats) for the ions and electrons. The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

$$
S_{\text {electron }}=P_{\text {electron }} n_{\text {electron }}^{-\left(\gamma_{\text {electron }}+1\right)} ; \quad n_{\text {electron }}=\frac{\rho}{m_{\text {electron }}+\frac{m_{\text {ion }}}{Z}}
$$

Here, $n_{\text {electron }}$ is the electron number density, $m_{\text {electron }}$ is the electron mass, $m_{\text {ion }}$ is the ion mass and Z is the ion charge state. The electron entropy is advected by the electron velocity, $\mathbf{u}_{\text {electron }}$, computed as:

$$
\mathbf{u}_{\text {electron }}=-\frac{\mathbf{J}^{\text {plasma }}-q Z m_{\text {ion }}^{-1} \rho \mathbf{u}}{q n_{\text {electron }}} ; \quad \mathbf{J}^{\text {plasma }}=\mu_{0}^{-1 / 2} \nabla \times \mathbf{b}^{\text {plasma }}=\mu_{0}^{-1} \nabla \times \mathbf{B}^{\text {plasma }}
$$

Here, $\mathbf{J}^{\text {plasma }}$ is the total (ion+electron) plasma current and q is the fundamental change ($-q$ is the charge on an electron). As defined above, the electron entropy is advected with the electron density. If, for example, heating of electrons by (for example) magnetic dissipation is required, then this can be accomplished by adding source terms of the electron entropy equation, see, e.g. mhdSrc.

The electromagnetic fields are defined as:

$$
\begin{aligned}
& \mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) \\
& \mathbf{e}=-\mathbf{u} \times \mathbf{b}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(-\mathbf{u} \times \mathbf{B}+\mathbf{E}^{\text {external }}\right)
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma by the inductive electric field, \mathbf{e}, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally" to the ideal magnetohydrodynamic equations.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure, γ. Defaults to $5 / 3$.
electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the electrons, $\gamma_{\text {electron. }}$. Defaults to $5 / 3$.
electronMass (float, optional) Specifies the electron mass, $m_{\text {electron }}$. Defaults to $(1836)^{-1}$.
ionMass (float, optional) Specifies the ion mass, $m_{\text {ion }}$. Defaults to 1 .
chargeState (float, optional) Specifies the charge on an ion, Z. Defaults to 1 .
currentVector (string, required) Specifies the name of the data structure containing the total (ion + electron) plasma current, $\mathbf{J}^{\text {plasma }}$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathrm{b}^{\text {external }}$.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector of conserved quantities, \mathbf{q} has 10 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}$: momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $S_{\text {electron }}$: electron entropy

Current Density (nodalArray, 3-components, required) The total (ion and electron) current in the plasma, typically calculated from from pre-Maxwell form of Ampere's law, $\mathbf{J}^{\text {plasma }}=$ $\mu_{0}^{1 / 2} \nabla \times \mathbf{b}^{\text {plasma }}$, which can be computed through, e.g. vector $(1 d, 2 d, 3 d)$. The data structure containing $\mathbf{J}^{\text {plasma }}$ is specified by the "currentVector" option described below.
$0 . J_{\hat{\mathbf{i}}}^{\text {plasma }}=\mathbf{J}^{\text {plasma }} \cdot \hat{\mathbf{i}}$: total (ion and electron) current in the plasma in the $\hat{\mathbf{i}}$ direction.

1. $J_{\hat{\mathbf{j}}}^{\text {plasma }}=\mathbf{J}^{\text {plasma }} \cdot \hat{\mathbf{j}}$: total (ion and electron) current in the plasma in the $\hat{\mathbf{j}}$ direction
2. $J_{\hat{\mathbf{k}}}^{\text {plasma }}=\mathbf{J}^{\text {plasma }} \cdot \hat{\mathbf{k}}$: total (ion and electron) current in the plasma in the $\hat{\mathbf{k}}$ direction

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic (1d, 2d, $3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)

Additional terms in the generalized Ohm's law, $\mathbf{E}^{\text {external }}$, computed "externally" to the ideal magnetohydrodynamic system. The data structure containing $\mathbf{e}^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$. "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)

Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
0 . $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction

1. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$), primitive variables (computePrimitiveState(1d, 2d, $3 d$)), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).
Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater ($1 d, 2 d, 3 d$), the equation system returns:
3. $\nabla \cdot \mathcal{F}(\rho)$: mass flux
4. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ momentum flux
5. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ momentum flux
6. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ momentum flux
7. $\nabla \cdot \mathcal{F}(E)$: total energy flux
8. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
9. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
10. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
11. $\nabla \cdot \mathcal{F}(\psi)$: correction potential flux
12. $\nabla \cdot \mathcal{F}\left(S_{\text {electron }}\right):$ electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState $(1 d, 2 d, 3 d)$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}:$ velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}:$ velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. ψ : correction potential
9. $P_{\text {electron }}:$ electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, $2 d, 3 d$), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Examples

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with classicMusclUpdater $(1 d, 2 d, 3 d)$ to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$, including resistive effects

```
<Updater hyper>
    kind = classicMuscl1d
    onGrid = domain
# input data-structures
    in = [q,electricField,current,chargeState,resistivity]
# output data-structures
    out = [qnew]
# the time integration scheme, rk1 for first order runge-kutta
    timeIntegrationScheme = none
# the numerical flux to use
    numericalFlux = roeFlux
# CFL number to use
    cfl = 0.4
# Form of variables to limit
    variableForm = primitive
# Limiter to use
    limiter = [muscl,muscl,muscl,muscl,muscl]
    waveSpeeds = [waveSpeed]
```

```
# list of equations to solve
    equations = [mhd]
# list of sources to add
    source = [mhdSource]
    <Equation mhd>
        kind = twoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
        currentVector = "current"
    </Equation>
    <Source mhdSource>
        kind = mhdSrc
        model = twoTemperatureMhdDednerEqn
        externalEfield = true
        inputVariables = [q, electricField,current,chargeState,resistivity]
        ionMass = ION_MASS
        fundamentalCharge = FUNDAMENTAL_CHARGE
    </Source>
</Updater>
```

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with computePrimitiveState ($1 d, 2 d, 3 d$) to compute $\mathbf{w}(\mathbf{q})$

```
<Updater computePrimitiveState>
    kind = computePrimitiveStateld
    onGrid = domain
# input data-structures
    in = [q,electricField,current,chargeState,resistivity]
# ouput data-structures
    out = [w]
    <Equation mhd>
        kind = twoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
        currentVector = "current"
    </Equation>
</Updater>
```

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$), hyperbolic ($1 d, 2 d, 3 d$) and quadratic ($1 d, 2 d, 3 d$) to compute $d t_{\text {min }}, d t_{\text {diff }}$ and $c_{\text {fast }}$ for resistive two-temperature MHD:

```
<Updater getHypDT>
    kind = timeStepRestrictionUpdater1d
```

```
    in = [q,electricField,current,chargeState,resistivity]
    onGrid = domain
    waveSpeeds = [waveSpeed]
    timeSteps = [diffDT]
    restrictions = [idealMhd,quadratic]
    courantCondition = CFL
    <TimeStepRestriction idealMhd>
        kind = hyperbolicld
        cfl = CFL
        model = twoTemperatureMhdDednerEqn
        gasGamma = GAS_GAMMA
        electronGamma = $ELECTRON_GAMMA$
        correctNans = true
        correct = true
        correctNans = true
        basementDensity = $BASEMENT_DENSITY$
        basementPressure = $BASEMENT_PRESSURE$
        externalEfield = "electricField"
        currentVector = "current"
        storeTimeStep = False
    </TimeStepRestriction>
    <TimeStepRestriction quadratic>
        kind = quadraticld
        in = [resistivity]
        cfl = CFL
    </TimeStepRestriction>
</Updater>
```


maxwellDednerEqn

Fluxes and eigensystem for Maxwell's equations in vacuum with divergence cleaning.

$$
\begin{aligned}
\frac{\partial \mathbf{E}}{\partial t}+c^{2} \nabla \times \mathbf{B}+\nabla \Phi & =0 \\
\frac{\partial \mathbf{B}}{\partial t}-\nabla \times \mathbf{E}+\nabla \psi & =0 \\
\frac{\partial \Phi}{\partial t}+\nabla \cdot\left[c_{\mathrm{fast}}^{2} \mathbf{E}\right] & =0 \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\mathrm{fast}}^{2} \mathbf{B}\right] & =0
\end{aligned}
$$

Coupling of Maxwell's equations to a plasma is accomplished using current.

Parameters

mu0 (float, optional) Permeability of free space. Default value is $1.256 \mathrm{e}-06$.
epsilon0 (float, optional) Permittivity of free space. Default value is $8.854 \mathrm{e}-12$.
cfl (float, optional) CFL number. Default value is 1.0.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 8-components, required) The vector of conserved quantities, \mathbf{q} has 8 entries:
0 . $E_{\hat{\mathbf{i}}}=\mathbf{E} \cdot \hat{\mathbf{i}}$: electric field in the $\hat{\mathbf{i}}$ direction.

1. $E_{\hat{\mathbf{j}}}=\mathbf{E} \cdot \hat{\mathbf{j}}$: electric field in the $\hat{\mathbf{j}}$ direction
2. $E_{\hat{\mathbf{k}}}=\mathbf{E} \cdot \hat{\mathbf{k}}$: electric field in the $\hat{\mathbf{k}}$ direction
3. $B_{\hat{\mathbf{i}}}=\mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field in the $\hat{\mathbf{i}}$ direction
4. $B_{\hat{\mathbf{j}}}=\mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field in the $\hat{\mathbf{j}}$ direction
5. $B_{\hat{\mathbf{k}}}=\mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field in the $\hat{\mathbf{k}}$ direction
6. Φ electric field correction potential
7. Ψ magnetic field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).
out (string vector, required) For the maxwellDednerEqn, one of three output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$) , the time step associated with the CFL condition (timeStepRestrictionUpdater $(1 d, 2 d, 3 d))$ or the fastest wave speed in the grid (hyperbolic ($1 d, 2 d, 3 d$)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater $(1 d, 2 d, 3 d)$), the equation system returns:
0. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ electric field flux

1. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{j}}}\right): \hat{\mathbf{i}}$ electric field flux
2. $\nabla \cdot \mathcal{F}\left(E_{\hat{\mathbf{k}}}\right): \hat{\mathbf{j}}$ electric field flux
3. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
4. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{j}}}\right): \hat{\mathbf{i}}$ magnetic field flux
5. $\nabla \cdot \mathcal{F}\left(B_{\hat{\mathbf{k}}}\right): \hat{\mathbf{j}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}(\psi)$: electric correction potential flux
7. $\nabla \cdot \mathcal{F}(\psi)$: magnetic correction potential flux

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d$), the equation system returns the time step consisten with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Example

The following block demonstrates the maxwellDednerEqn used in combination with classicMusclUpdater ($1 d, 2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$:

```
<Updater hyper>
    kind=classicMuscl2d
    onGrid=domain
```

```
timeIntegrationScheme=none
numericalFlux=hlleFlux
limiter=[none]
variableForm=conservative
preservePositivity=false
in=[q]
out=[qNew]
waveSpeeds=[waveSpeed]
cfl=0.4
equations=[maxwell]
<Equation maxwell>
    kind=maxwellDednerEqn
    epsilon0=1.0
    mu0=1.0
    cfl=0.4
</Equation>
</Updater>
```

The following block demonstrates the maxwellDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute $c_{\text {fast }}$:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdater2d
    in=[q]
    waveSpeeds=[waveSpeed]
    onGrid=domain
    restrictions=[hyperbolic]
    cfl=0.4
    courantCondition=0.4
    <TimeStepRestriction hyperbolic>
        kind=hyperbolic2d
        model=maxwellEqn
        cfl=0.4
        c0=1.0
        gamma=0.0
        chi=0.0
        includeInTimeStep=False
        </TimeStepRestriction>
</Updater>
```


gasDynamicMaxwellDednerEqn

Defines the equations of inviscid fluid dynamics coupled to Maxwell's equations in source term form with divergence cleaning:

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}]=0 \\
\frac{\partial(\rho \mathbf{u})}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P\right]=\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right) \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+P) \mathbf{u}]=\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E} \\
\frac{\partial \mathbf{B}^{\text {plasma }}}{\partial t}+\nabla \times \mathbf{E}+\nabla \Psi=0 \\
\frac{\partial \mathbf{E}^{\text {plasma }}}{\partial t}-c^{2} \nabla \times \mathbf{B}+\nabla \Phi=-\epsilon_{0}^{-1} \sum_{\text {species }} \mathbf{J}^{\text {species }} \\
\frac{\partial \Psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{B}^{\text {plasma }}\right]=0 \\
\frac{\partial \Phi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{E}^{\text {plasma }}\right]=\sum_{\text {species }} q^{\text {species }}
\end{array}
$$

Here, $q^{\text {species }}$ is the species charge density, $\mathbf{J}^{\text {species }}$ is the species current density, \mathbb{I} is the identity matrix, $P=\rho \epsilon(\gamma-1)$ is the pressure of an ideal gas, ϵ is the specific internal energy and γ is the adiabatic index (ratio of specific heats). The quantity $c_{\text {fast }}$ corresponds to the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.
In order to integrate these equations, USim casts them into flux-conservative form using the following standard identities (note that the use of these identities does not require an assumption of quasi-neutrality):

$$
\begin{array}{r}
\sum_{\text {species }}\left(q^{\text {species }} \mathbf{E}+\mathbf{J}^{\text {species }} \times \mathbf{B}\right)=-\frac{\partial c^{-2} \mathbf{S}^{\mathrm{EM}}}{\partial t}+\nabla \cdot \mathcal{T}^{\mathrm{EM}} \\
\sum_{\text {species }} \mathbf{J}^{\text {species }} \cdot \mathbf{E}=-\frac{\partial E^{\mathrm{EM}}}{\partial t}-\nabla \cdot \mathbf{S}^{\mathrm{EM}}
\end{array}
$$

Here, $\mathcal{T}^{\mathrm{EM}}$ is the electromagnetic stress tensor and \mathbf{S}^{EM} is the electromagnetic energy (Poynting) flux vector, which are defined as:

$$
\begin{array}{r}
\mathcal{T}^{\mathrm{EM}}=\frac{1}{\mu_{0}}\left(\frac{\mathbf{E} \mathbf{E}^{T}}{c^{2}}+\mathbf{B B}^{T}\right)+\mathbb{I} E_{\mathrm{EM}}=\frac{\mathbf{e e}^{T}}{c^{2}}+\mathbf{b} \mathbf{b}^{T}+\mathbb{I} E_{\mathrm{EM}} \\
\mathbf{S}^{\mathrm{EM}}=\mu_{0}^{-1} \mathbf{E} \times \mathbf{B}=\mathbf{e} \times \mathbf{b} \\
E^{\mathrm{EM}}=\frac{1}{2 \mu_{0}}\left(\frac{|\mathbf{E}|^{2}}{c^{2}}+|\mathbf{B}|^{2}\right)=\frac{1}{2}\left(\frac{|\mathbf{e}|^{2}}{c^{2}}+|\mathbf{b}|^{2}\right)
\end{array}
$$

Here, E^{EM} is the electromagnetic energy density and the electromagnetic fields are defined as:

$$
\begin{aligned}
\mathbf{b}=\mathbf{b}^{\text {plasma }}+\mathbf{b}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{B}^{\text {plasma }}+\mathbf{B}^{\text {external }}\right) & =\mu_{0}^{-1 / 2} \mathbf{B} \\
\mathbf{e}=\mathbf{e}^{\text {plasma }}+\mathbf{e}^{\text {external }}=\mu_{0}^{-1 / 2}\left(\mathbf{E}^{\text {plasma }}+\mathbf{E}^{\text {external }}\right) & =\mu_{0}^{-1 / 2} \mathbf{E}
\end{aligned}
$$

Here, $\mathbf{b}^{\text {plasma }}$ is the magnetic field induced in the plasma, $\mathbf{e}^{\text {plasma }}$ is the electric field associated with net charge in the plasma, while $\mathbf{e}^{\text {external }}$ and $\mathbf{b}^{\text {external }}$ are electromagnetic fields computed "externally"
to Maxwell's equations inside the plasma. With these identitifications, the fluid part of the gasDynamicMaxwellDednerEqn takes the form:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot[\rho \mathbf{u}] & =0 \\
\frac{\partial\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[\rho \mathbf{u} \mathbf{u}^{T}+\mathbb{I} P-\mathcal{T}^{\mathrm{EM}}\right] & =0 \\
\frac{\partial\left(E+E^{\mathrm{EM}}\right)}{\partial t}+\nabla \cdot\left[(E+P) \mathbf{u}+\mathbf{S}^{\mathrm{EM}}\right] & =0
\end{aligned}
$$

The electromagnetic part of the system is solved in USim as:

$$
\begin{array}{r}
\frac{\partial \mathbf{b}^{\text {plasma }}}{\partial t}-\nabla \times \mathbf{e}+\nabla \psi=0 \\
\frac{\partial \mathbf{e}^{\text {plasma }}}{\partial t}+f^{2} c_{\text {fast }}^{2} \nabla \times \mathbf{b}+\nabla \phi=-f^{2} c_{\text {fast }}^{2} \mu_{0}^{1 / 2} \sum_{\text {species }} \mathbf{J}^{\text {species }} \\
\frac{\partial \psi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{b}^{\text {plasma }}\right]=0 \\
\frac{\partial \phi}{\partial t}+\nabla \cdot\left[c_{\text {fast }}^{2} \mathbf{e}^{\text {plasma }}\right]=\mu_{0}^{-1 / 2} \sum_{\text {species }} q^{\text {species }}
\end{array}
$$

Here, we have written $c^{2}=f^{2} c_{\text {fast }}^{2}=\left(\epsilon_{0} \mu_{0}\right)^{-1}$, where f is a dimensionless number that defines the ratio of the speed of light to the fatest wave in the mesh and we have further defined $\psi=\mu_{0}^{-1 / 2} \Psi$ and $\Phi=\mu_{0}^{-1 / 2} \Phi$.

In order to close the electromagnetic part of the equations, a model for the current density and charge is required. An example of such a model that is provided with USim is mhdSrc. However, the user is also free to construct their own closure that returns:

$$
\mu_{0}^{-1 / 2} \sum_{\text {species }} q^{\text {species }} ; \mu_{0}^{1 / 2} \sum_{\text {species }} \mathbf{J}^{\text {species }}
$$

Parameters

lightSpeed (float, optional) The speed of light in m / s. Used to specify the speed of light in the fluid momentum and energy equations. Defaults to 2.99792458 e 8 .
lightSpeedFactor (float, optional) Dimensionless number, used to specify the ratio of the speed of light to the fastest wave speed in the grid. Defaults to 1.0 e 3 .
basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
basementDensity (float, optional) The minimum density allowed. Densities below this value will be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.
gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), γ. Defaults to $5 / 3$.
externalEfield (string, optional) Specifies the name of the data structure containing the externally computed electric field, $e^{\text {external }}$.
externalBfield (string, optional) Specifies the name of the data structure containing the externally computed magnetic field, $\mathrm{b}^{\text {external }}$.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 12-components, required) The vector of conserved quantities, \mathbf{q} has 9 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{i}}$: total momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{j}}$: total momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}=\left(\rho \mathbf{u}+c^{-2} \mathbf{S}^{\mathrm{EM}}\right) \cdot \hat{\mathbf{k}}$: total momentum density in the $\hat{\mathbf{k}}$ direction
4. $E+E^{\mathrm{EM}}=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+E^{\mathrm{EM}}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. $e_{\hat{\mathbf{i}}}=\mathbf{e} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{i}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
9. $e_{\hat{\mathbf{j}}}=\mathbf{e} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{j}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
10. $e_{\hat{\mathbf{k}}}=\mathbf{e} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{k}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
11. ψ : magnetic field correction potential
12. ϕ : electric field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire simulation domain, $c_{\text {fast }}$. Can be computed using hyperbolic ($1 d, 2 d, 3 d$) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)

Additional contribution to the electric field, $\mathbf{e}^{\text {external }}$, which is not evolved by Ampere's equation, but does contribution to the induction equation, the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{e}^{\text {external }}$ is specified by the "externalEField" option described below.
0. $e_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{i}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction.

1. $e_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{j}}$:"externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
2. $e_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{e}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E}^{\text {external }} \cdot \hat{\mathbf{k}}$: "externally" computed electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, $\mathbf{b}^{\text {external }}$, which is not evolved by the induction equation, but does contribute to Ampere's equation, the Lorentz force and the work done on the plasma. The data structure containing $\mathbf{b}^{\text {external }}$ is specified by the "externalBField" option described below.
3. $b_{\hat{\mathbf{i}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
4. $b_{\hat{\mathbf{j}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
5. $b_{\hat{\mathbf{k}}}^{\text {external }}=\mathbf{b}^{\text {external }} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B}^{\text {external }} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are computed, depending on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater ($1 d, 2 d, 3 d$), primitive variables (computePrimitiveState ($1 d, 2 d, 3 d$)), the time step associated with the CFL condition (timeStepRestrictionUpdater ($1 d, 2 d, 3 d$)) or the fastest wave speed in the grid (hyperbolic ($1 d, 2 d, 3 d$).

Vector of Fluxes (nodalArray, 12-components) When combined with an updater that computes $\nabla \cdot \mathcal{F}(\mathbf{w})$ (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:
0. $\nabla \cdot \mathcal{F}(\rho)$: mass flux

1. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{i}}}+c^{-2} S_{\hat{\mathbf{i}}}^{\mathrm{EM}}\right): \hat{\mathbf{i}}$ momentum flux
2. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{j}}}+c^{-2} S_{\hat{\mathbf{j}}}^{\mathrm{EM}}\right): \hat{\mathbf{j}}$ momentum flux
3. $\nabla \cdot \mathcal{F}\left(\rho u_{\hat{\mathbf{k}}}+c^{-2} S_{\hat{\mathbf{k}}}^{\mathrm{EM}}\right): \hat{\mathbf{k}}$ momentum flux
4. $\nabla \cdot \mathcal{F}(E)$: total energy flux
5. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ magnetic field flux
6. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ magnetic field flux
7. $\nabla \cdot \mathcal{F}\left(b_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ magnetic field flux
8. $\nabla \cdot \mathcal{F}\left(e_{\hat{\mathbf{i}}}\right): \hat{\mathbf{i}}$ electric field flux
9. $\nabla \cdot \mathcal{F}\left(e_{\hat{\mathbf{j}}}\right): \hat{\mathbf{j}}$ electric field flux
10. $\nabla \cdot \mathcal{F}\left(e_{\hat{\mathbf{k}}}\right): \hat{\mathbf{k}}$ electric field flux
11. $\nabla \cdot \mathcal{F}(\psi)$: magnetic correction potential flux
12. $\nabla \cdot \mathcal{F}(\phi)$: electric correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater that computes $\mathbf{w}=\mathbf{w}(\mathbf{q})$ (e.g. computePrimitiveState($1 d, 2 d, 3 d$), the equation systen returns:
0. ρ : mass density

1. $u_{\hat{\mathbf{i}}}=\mathbf{u} \cdot \hat{\mathbf{i}}$: velocity in the $\hat{\mathbf{i}}$ direction
2. $u_{\hat{\mathbf{j}}}=\mathbf{u} \cdot \hat{\mathbf{j}}$: velocity in the $\hat{\mathbf{j}}$ direction
3. $u_{\hat{\mathbf{k}}}=\mathbf{u} \cdot \hat{\mathbf{k}}:$ velocity in the $\hat{\mathbf{k}}$ direction
4. $P=\rho \epsilon(\gamma-1)$: ideal gas pressure
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
8. $e_{\hat{\mathbf{i}}}=\mathbf{e} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{i}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
9. $e_{\hat{\mathbf{j}}}=\mathbf{e} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{j}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
10. $e_{\hat{\mathbf{k}}}=\mathbf{e} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{E} \cdot \hat{\mathbf{k}}$: electric field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction
11. ψ : magnetic field correction potential
12. ϕ : electric field correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, $3 d)$, the equation system returns the time step consisten with the CFL condition across the entire simulation domain.
Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the equation system returns the fastest wave speed across the entire simulation domain, $c_{\text {fast }}$.

Examples

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with classicMusclUpdater ($1 d, 2 d, 3 d$) to compute $\nabla \cdot \mathcal{F}(\mathbf{w})$ with an externally supplied magnetic field:

```
<Updater hyper>
    kind=classicMuscl1d
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output nodal component array
    out=[qnew]
    # input dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # the numerical flux to use
    numericalFlux= hlldFlux
    # CFL number to use
    cfl=0.3
    # Form of variables to limit
    variableForm= primitive
    # Limiter; one per input nodal component array
    limiter=[minmod minmod]
    # list of equations to solve
    equations=[mhd]
    <Equation mhd>
        kind = gasDynamicMaxwellDednerEqn
        gasGamma = GAS_GAMMA
```

```
    lightSpeedFactor =LIGHT_SPEED_FACTOR
            externalBfield = EXTERNAL_FIELD
            basementPressure = BASEMENT_PRESSURE
            basementDensity = BASEMENT_DENSITY
    </Equation>
    <Source mhdSrc>
            kind = gasDynamicMhdDednerSrc
            scalarConductivity = $1.0/OHMIC_RESISTIVITY$
    </Source>
    <Source mhdClean>
            kind = mhdSrc
            model = mhdDednerEqn
            momentumEnergySource = 1
            inputVariables = [q,divB,gradPsi]
            </Source>
</Updater>
```

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with computePrimitiveState ($1 d, 2 d, 3 d$) to compute \mathbf{w} :

```
<Updater computePrimitiveState>
    kind = computePrimitiveState$NDIM$d
    onGrid = domain
    # input array
    in = [q]
    # ouput data-structures
    out = [w]
    <Equation fluid>
        kind = gasDynamicMaxwellDednerEqn
        gasGamma = GAS_GAMMA
        lightSpeedFactor =LIGHT_SPEED_FACTOR
        externalBfield = EXTERNAL_FIELD
        basementPressure = BASEMENT_PRESSURE
        basementDensity = BASEMENT_DENSITY
    </Equation>
</Updater>
```

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) and hyperbolic $(1 d, 2 d, 3 d)$ to compute $c_{\text {fast }}$ with an externally supplied magnetic field:

```
<Updater getWaveSpeed>
    kind=timeStepRestrictionUpdaterld
    onGrid=domain
    # input nodal component arrays
    in=[q backgroundB]
    # output dynVector containing fastest wave speed
    waveSpeeds=[waveSpeed]
    # list of equations to compute fastest wave speed for
```

```
restrictions=[idealMhd]
    # courant condition to apply to the timestep
    courantCondition=1.0
    <TimeStepRestriction idealMhd>
    kind = hyperbolicld
    model = gasDynamicMaxwellDednerEqn
        gasGamma = GAS_GAMMA
        lightSpeedFactor =LIGHT_SPEED_FACTOR
        externalBfield = EXTERNAL_FIELD
        basementPressure = BASEMENT_PRESSURE
        basementDensity = BASEMENT_DENSITY
    </TimeStepRestriction>
</Updater>
```


twoFluidEqn

Two fluid equations written as total mass density, momentum density, total charge density total current density and ion and electron energy. The two-fluid equations can also be written as two separate sets of euler equations, however, this form has the advantage that numerical diffusion is applied to the total charge density so that quasi-neutrality is enforced numerically.

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u_{x} \\
\rho u_{y} \\
\rho u_{z} \\
\rho_{c} \\
j_{x} \\
j_{y} \\
j_{z} \\
e_{i} \\
e_{e}
\end{array}\right)+\nabla \cdot P=0
$$

where P is defined as

$$
\left(\begin{array}{ccc}
\rho_{i} u_{x i}+\rho_{i} u_{x e} & \rho_{i} u_{y i}+\rho_{e} u_{y e} & \rho_{i} u_{z i}+\rho_{e} u_{z e} \\
\rho_{i} u_{x i}^{2}+P_{i}+\rho_{e} u_{x e}^{2}+P_{e} & \rho_{i} u_{x i} u_{y i}+\rho_{e} u_{x e} u_{y e} & \rho_{i} u_{x i} u_{z i}+\rho_{e} u_{x e} u_{z e} \\
\rho_{i} u_{y i} u_{x i}+\rho_{e} u_{y e} u_{x e} & \rho_{i} u_{y i} u_{y i}+P_{i}+\rho_{e} u_{y e} u_{y e}+P_{e} & \rho_{i} u_{y i} u_{z i}+\rho_{e} u_{y e} u_{z e} \\
\rho_{i} u_{z i} u_{x i}+\rho_{e} u_{z e} u_{x e} & \rho_{i} u_{z i} u_{y i}+\rho_{e} u_{z e} u_{y e} & \rho_{i} u_{z i} u_{z i}+P_{i}+\rho_{e} u_{z e} u_{z e}+1 \\
\rho_{i} u_{x i}+\rho_{i} u_{x e} & \rho_{i} u_{y i}+\rho_{e} u_{y e} & \rho_{i} u_{z i}+\rho_{e} u_{z e} \\
r_{i}\left(\rho_{i} u_{x i}^{2}+P_{i}\right)+r_{e}\left(\rho_{e} u_{x e}^{2}+P_{e}\right) & r_{i} \rho_{i} u_{x i} u_{y i}+r_{e} \rho_{e} u_{x e} u_{y e} & r_{i} \rho_{i} u_{x i} u_{z i}+r_{e} \rho_{e} u_{x e} u_{z e} \\
r_{i} \rho_{i} u_{y i} u_{x i}+r_{e} \rho_{e} u_{y e} u_{x e} & r_{i}\left(\rho_{i} u_{y i} u_{y i}+P_{i}\right)+r_{e}\left(\rho_{e} u_{y e} u_{y e}+P_{e}\right) & r_{i} \rho_{i} u_{y i} u_{z i}+r_{e} \rho_{e} u_{y e} u_{z e} \\
r_{i} \rho_{i} u_{z i} u_{x i}+r_{e} \rho_{e} u_{z e} u_{x e} & r_{i} \rho_{i} u_{z i} u_{y i}+r_{e} \rho_{e} u_{z e} u_{y e} & r_{i}\left(\rho_{i} u_{z i} u_{z i}+P_{i}\right)+r_{e}\left(\rho_{e} u_{z e} u_{z e}\right. \\
u_{x i}\left(e_{i}+P_{i}\right) & u_{y i}\left(e_{i}+P_{i}\right) & u_{z i}\left(e_{i}+P_{i}\right) \\
u_{x e}\left(e_{e}+P_{e}\right) & u_{y e}\left(e_{e}+P_{e}\right) & u_{z e}\left(e_{e}+P_{e}\right)
\end{array}\right.
$$

With $r_{i}=q_{i} / m_{i}$ and $r_{e}=q_{e} / m_{e}$ where q_{e} is the electron charge, q_{i} is the ion charge, m_{e} is the electron mass and m_{i} is the ion mass. In addition the variables $\left(\rho_{\alpha}, u_{x \alpha}, u_{y \alpha}, u_{x \alpha}, e_{\alpha}, P_{\alpha}\right)$ are the species mass density, species x velocity, species y velocity, species z velocity, species total energy density, and species pressure respectively. In this case α represents the species, either e for electron or i for ion.

Parameters

ionGamma (float) Specific heat ratio for the ions
electronGamma (float) Specific heat ratio for the electrons. Defaults to $5 / 3$
ionMass (float) ion mass
electronMass (float) electron mass
ionCharge (float) ion charge
electronCharge electron charge
basementPressure (float) The minimum pressure allowed. Defaults to 0 .
basementDensity (float) The minimum density allowed for the ions. Defaults to 0 . The electron basement density is determined by multiplying by the mass ratio, therefore basementDensityElectrons $=(m e / m i)$ basementDensity

Parent Updater Data

in (string vector, required)

1st Input Variable

0. ρ mass density
1. $\rho u_{x} \mathrm{x}$ momentum density
2. $\rho u_{y} y$ momentum density
3. $\rho u_{z} \mathrm{z}$ momentum density
4. ρ_{c} total charge density
5. $j_{x} \mathrm{x}$ current density
6. $j_{y} y$ current density
7. $j_{z} \mathrm{z}$ current density
8. e_{i} ion energy density
9. e_{e} electron energy density

Example

An example twoFluidEqn equation block is given below:

```
<Equation twoFluid>
    kind = twoFluidEqn
    ionGamma = GAS_GAMMA
    electronGamma = GAS_GAMMA
    ionMass = ION_MASS
    electronMass = ELECTRON_MASS
    ionCharge = ION_CHARGE
    electronCharge = ELECTRON_CHARGE
    basementDensity = BASEMENT_DENSITY
    basementPressure = BASEMENT_PRESSURE
</Equation>
```


userDefinedEqn

Define an arbitrary hyperbolic system. Built in hyperbolic equations should be used when they are available as they are faster.

Parameters

indVars_inName For each input variable an "indVars" array must be defined. So if in $=[E, B]$ then indVars_E and indVars_B must be defined. If indVars_E = ["Ex",'Ey",'Ez"] then operations are performed on "Ex"," $E y$ " and "Ez" in the expression evaluator.
transform_inName For each variable there must be a vector that tells how the data is transformed upon rotation. For example, for an electric field E, the transform would be transform_E = [vector] so that USim knows the input data is a vector. If the input data is density, momentum, energy as in the euler equations then we would have transform_q = [scalar, vector, scalar] which assumes that momentum has 3 components. The previous example transforms the first variable as if it were a scalar, then the next 3 variables as if they were part of a tensor and then the last variable as if it were a scalar. Available options are scalar, vector and tensor. It is assumed that vector has 3 components even in 1D and 2D simulations. Also it's assumed that tensor has 6 components in the order Txx, Txy, Tx, Tyy, Tyz, Tzz and that the remaining components are symmetric so are redundant.
preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by the muParser (http://muparser.sourceforge.net)
flux (string vector) Strings must be put in quotes. The strings are used to evaluate the flux in the xdirection. The fluxes in other directions are obtained through rotation of the input vector. Available command are defined by the muParser (http://muparser.sourceforge.net/)
eigenvalues (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array and are used to define the set of eigenvalues for the system. The eigenvalues are technically the eigenvalues in the x-direction and values in other directions are obtained through rotation. Available command are defined by the muParser (http://muparser.sourceforge.net/)
other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used in evaluating expression in both preExprs and flux and eigenvalues.

Parent Updater Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in $=[\mathrm{E}, \mathrm{B}]$
out (string vector) output nodalArray where the result of the operation is stored

Example

```
<Updater hyper>
    kind = classicMusclld
    onGrid = domain
    in = [q]
    out = [qnew]
    timeIntegrationScheme = none
    numericalFlux = $RIEMANN_SOLVER$
    Cfl = CFL
```

```
variableForm = $VARIABLE_FORM$
limiter = [$LIMITER$]
equations = [euler]
<Equation euler>
    kind = userDefinedEqn
    indVars_q = ["rho","mx","my","mz","en"]
    transform_q = [scalar, vector, scalar]
    gamma = GAS_GAMMA
    preExprs = ["p=(gamma-1.0)* (en-0.5* ((mx*mx+my*my+mz*mz)/rho))"]
    flux = ["mx","(mx*mx/rho) +p"," (mx*my/rho)","(mx*mz/rho)","(mx/rho)*(en+p)"]
    eigenvalues = ["sqrt(p*gamma/rho)+(mx/rho)"]
</Equation>
</Updater>
```

Parameters associated with the Hyperbolic Equations can be added to the time step restriction block.

14.3.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) that calls the hyperbolic Time Step Restriction.
in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined by the choice of Hyperbolic Equations.

14.3.3 Example

The following block demonstrates hyperbolic used in combination with timeStepRestrictionUpdater (1d, 2d, 3d) to compute a wave-speed for $m h d D e d n e r E q n$:

```
<Updater getWaveSpeed>
    kind = timeStepRestrictionUpdater2d
        in = [q]
    waveSpeeds = [waveSpeed]
    onGrid = domain
    restrictions = [idealMhd]
    courantCondition = 1.0
    <TimeStepRestriction idealMhd>
        kind = hyperbolic2d
        model = mhdDednerEqn
        gasGamma = GAMMA
        mu0=MU0
        includeInTimeStep = False
    </TimeStepRestriction>
</Updater>
```


14.4 plasmaFrequency (1d, 2d, 3d)

Computes the inverse plasma frequency

14.4.1 Parameters

massDensityIndex (integer, required) Gives the index of the primitive variable that stores mass density.
This is used so that number density can be computed and then plasma frequency calculated.
speciesCharge (float, required) Charge of the species for which we are computing the plasma frequency.
speciesMass (float, required) Mass of the species for which we are computing the plasma frequency.
epsilon0 (float, required) Value of permittivity

14.4.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the plasmaFrequency Time Step Restriction.
in (string vector, required)
Mass Density (nodalArray, at least 1 component, required) The mass density of the plasma. The component of the data structure that contains the mass density is specified with the parameter massDensityIndex (see below).

14.4.3 Example

The following block demonstrates plasmaFrequency used in combination with timeStepRestrictionUpdater (1d, $2 d, 3 d$) and cyclotronFrequency ($1 d, 2 d, 3 d$) to compute the time-step restriction in a plasma:

```
<Updater twofluidTimeStepRestrictions>
    kind = timeStepRestrictionUpdaterld
    in = [q]
    restrictions = [wpe, wce]
    onGrid = domain
    courantCondition = 1.0
    <TimeStepRestriction wpe>
        kind = plasmaFrequency1d
        speciesCharge = ELECTRON_CHARGE
        speciesMass = ELECTRON_MASS
        epsilon0 = 1.0
        massDensityIndex = 0
    </TimeStepRestriction>
    <TimeStepRestriction wce>
        kind = cyclotronFrequencyld
        speciesCharge = ELECTRON_CHARGE
        speciesMass = ELECTRON_MASS
        magneticFieldIndexes = [23, 24, 25]
        massDensityIndex = 0
    </TimeStepRestriction>
</Updater>
```


14.5 positiveValue (1d, 2d, 3d)

Computes a time step given such that when a source time depenedent source is added to the value, the value in question does not become negative. An example of this is adding radiation loss to the energy of a fluid. If the time step is too large the fluid energy can become negative, however a smaller time step will allow the fluid to radiate energy until radiated energy is negligible and then the time step will rise again. The positiveValue restriction as defined the following way. S is the source term, E is the energy, B_{v} is the lowest value that we would like E to be, Δt is the time step, c is a coefficient which is generally used to alter the sign of the source term and α is a reduction factor which scales the time step. The time step is given below

The time step restriction is derived from simple considerations

$$
\begin{equation*}
\frac{\partial E}{\partial t}=S \tag{14.-29}
\end{equation*}
$$

Which suggests that

$$
\begin{equation*}
E^{n+1}=E^{n}+\Delta t S>B_{v} \tag{14.-29}
\end{equation*}
$$

So if we want to make sure we do not subtract all the energy off in one time step then Δt would be chosen as

$$
\begin{equation*}
\Delta t<-\frac{E^{n}-B_{v}}{S} \tag{14.-29}
\end{equation*}
$$

We introduce the factor α and c to provide more flexibility in determining how the restriction should be applied and the relative sign of the source S. The restriction is then given by the following relation.

$$
\begin{equation*}
\Delta t=-\alpha \frac{E-B_{v}}{c S} \tag{14.-29}
\end{equation*}
$$

In the case where $c S>0$ no restriction is applied to Δt.

14.5.1 Parameters

alpha (float, required) If alpha is 1.0 then the time step that results will zero out the pressure in one time step. If alpha $=0.25$ then it will zero out the pressure in 4 time steps. alpha is similar to a cfl number where 1.0 is the maximum value that should be used.
positiveIndex (integer, required) Tell which component of the value we intend to keep positive should be used for comparison
sourceIndex (integer, required) Tell which component source vector should be used for comparison
basementValue (float, required) The value for which the positiveValue should not go lower than
coefficient (float, required) The restriction compares the positive value with the source value. If the source value is going to be added to the positive value then coefficient $=1.0$. If the source value is going to be subtracted from the source value then coefficient $=-1.0$ is correct.
numComponents (integer, optional) Occasionally the user will want to apply the postitive value restriction to an array of variables such as densities in chemical reactions. numComponents allows you to specify the number of components that the restriction will be applied to. It's assumed that the values will range from positiveIndex to positiveIndex'+ 'numComponents-1 and sourceIndex to sourceIndex'+'numComponents-1 and that coefficient and alpha will be constant for all components.

14.5.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the positiveValue Time Step Restriction.

in (string vector, required)

1st variable The first variable is the value we want to keep positive. An example would be energy or pressure.
2nd variable The second variable is the value that will be added to the first value when multiplied by Δt. An example of the second value could be energy loss rate due to radiation or mass loss rate due to chemical reactions.

14.5.3 Example

The following block demonstrates positiveValue used in combination with timeStepRestrictionUpdater (1d, 2d, 3d) to compute a time step that keeps the energy of the fluid (component 4 of input variable q) positive:

```
<Updater timeStepRestrictionEnerngy>
    kind = timeStepRestrictionUpdater2d
    in = [q, reactionEnergy]
    timeSteps = [diffDT4]
    onGrid = domain
    restrictions = [positiveSource]
    courantCondition = 1.0
    <TimeStepRestriction positiveSource>
        kind = positiveValue2d
        positiveIndex = 4
        sourceIndex = 0
        alpha = 0.01
        coefficient = 1.0
        basementValue = BASEMENT_ENERGY
        includeInTimeStep = false
    </TimeStepRestriction>
</Updater>
```


14.6 quadratic (1d, 2d, 3d)

Computes the minimum time step for systems that have 2nd derivatives such as the heat equation or Navier Stokes. The explicit time step for this type of system goes as the square of grid spacing.

14.6.1 Parameters

constant (float, optional) Multiply the input data by this value in computing the time-step restriction.

14.6.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) that calls the quadratic Time Step Restriction.
in (string vector, required) Diffusion coefficient (nodalArray, 1 component, required) κ, where the diffusion operator is $\nabla \cdot \kappa \nabla \phi$.

14.6.3 Example

The following block demonstrates quadratic used in combination with timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) to compute the timestep associated with a thermal conductivity:

```
<Updater timeStepRestriction2>
    kind = timeStepRestrictionUpdater2d
    in = [thermalCond]
    onGrid = domain
    restrictions = [quadratic]
    courantCondition = THERMAL_DIFF_TIMESTEP_FACTOR
    <TimeStepRestriction quadratic>
        kind = quadratic2d
    </TimeStepRestriction>
</Updater>
```


14.7 whistlerWave (1d, 2d, 3d)

Compute the time step restriction determined by the whistler wave and the grid resolution.

14.7.1 Parameters

massIndex (integer, optional) Gives the index of the Vector of Conserved Quanties that stores mass density.
Defaults to 0 .
chargeStateIndex (integer, optional) Gives the index of the Vector of Conserved Quanties that stores mass density. Defaults to 0 .
fundamentalCharge (float, required) Proton charge
speciesMass (float, required) Mass of the species for which we are computing the plasma frequency.
mu0 (float, required) Permeability of free space.
bIndex (integer vector, optional) Gives the indices of the Vector of Conserved Quanties that stores the magnetic field. Default: bIndex=[5 6 7].

14.7.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater ($1 d, 2 d, 3 d$) that calls the whistlerWave Time Step Restriction.

in (string vector, required)

Vector of Conserved Quanties (nodalArray, at least 8 components, required) The vector of conserved quantities, \mathbf{q} has at least 8 entries:
0. ρ : mass density

1. $\rho u_{\hat{\mathbf{i}}}=\rho \mathbf{u} \cdot \hat{\mathbf{i}}:$ momentum density in the $\hat{\mathbf{i}}$ direction
2. $\rho u_{\hat{\mathbf{j}}}=\rho \mathbf{u} \cdot \hat{\mathbf{j}}$: momentum density in the $\hat{\mathbf{j}}$ direction
3. $\rho u_{\hat{\mathbf{k}}}=\rho \mathbf{u} \cdot \hat{\mathbf{k}}$: momentum density in the $\hat{\mathbf{k}}$ direction
4. $E=\frac{P}{\gamma-1}+\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{1}{2}|\mathbf{b}|^{2}$: total energy density
5. $b_{\hat{\mathbf{i}}}=\mathbf{b} \cdot \hat{\mathbf{i}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{i}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{i}}$ direction
6. $b_{\hat{\mathbf{j}}}=\mathbf{b} \cdot \hat{\mathbf{j}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{j}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{j}}$ direction
7. $b_{\hat{\mathbf{k}}}=\mathbf{b} \cdot \hat{\mathbf{k}}=\mu_{0}^{-1 / 2} \mathbf{B} \cdot \hat{\mathbf{k}}$: magnetic field normalized by permeability of free-space in the $\hat{\mathbf{k}}$ direction

Ion Charge State (nodalArray, at least 1 component1, required) The charge state of the ions in the plasma. If a data structure with more than 1 component is specified, then the component corresponding to the charge state can be supplied with chargeStateIndex.

14.7.3 Example

The following block demonstrates whistlerWave used in combination with timeStepRestrictionUpdater (1d, 2d, $3 d$) and hyperbolic ($1 d, 2 d, 3 d$) to compute the fastest wave speed and the timestep restriction for Hall MHD:

```
<Updater timeStepRestriction>
    kind = timeStepRestrictionUpdater2d
    in = [q, Zavg]
    onGrid = domain
    waveSpeeds = [waveSpeed]
    restrictions = [idealMhd,whistler]
    courantCondition = CFL
        <TimeStepRestriction idealMhd>
            kind = hyperbolic2d
            model = mhdDednerEqn
            gasGamma = GAS_GAMMA
            mu0=MU0
        </TimeStepRestriction>
    <TimeStepRestriction whistler>
        kind = whistlerWave2d
        fundamentalCharge = CHARGE
            speciesMass = MI
            chargeStateIndex = 0
            muO = MUO
            bIndex = [[\begin{array}{lll}{5}&{6}&{7}\end{array}]
            massDensityIndex = 0
            gasGamma = GAS_GAMMA
    </TimeStepRestriction>
</Updater>
```


MULTI-SPECIES DATA FILES

Multi-species data such as reaction rate constants, specific heats, atomic data etc can be supplied to USim using an ASCII text file. Each data file can contain the following options:
REACTIONS chemical reactions
CP specific heat at constant pressure
EOF standard energy of formation
MOLECULARWEIGHT molecular weight
MOLECULARDIA molecular diameter
DOF degrees of freedom of a gas molecule
Not all properties need to be included with every file. Data associated with each property is enclosed between lines labelled '<PROPERTY $>$ START' and ' $<$ PROPERTY $>$ END', where $<$ PROPERTY $>$ is replaced with one of the above list.

15.1 Multi-Species Chemical Reactions

An example multi-species reaction block that demonstrates a range of reaction types for mult-species chemistry is given below:

```
REACTIONS START
SPECIES N2 N O2 O NO
2 2 F 1.0E-8 0.0 N2 O2 NO NO
2 2 A 300.0 11000.0 6.43E-18 1.0E+0 3.16E+4 1.58E-8 1.0E+0 1.64E+5 N O2 NO O
2 2 E 300.0 12000.0 4.0E-9 0.0 0.0 2.0 5 0.0 0.0 0.0 0.0 0.0 N2 O NO N
REACTIONS END
```

This reactions block demonstrates chemical reactions involving 5 species: N2 NO2 O NO, denoted by the second line in the example: SPECIES N2 NO2 O NO. Note that each specie is delimited by a space. The next three lines of the example (lines 3-5) describe the chemical reactions involving these species, one chemical reaction per line. Data describing the chemical reaction is space delimited. All chemical reactions supported by USim use the following pattern on one line to describe the reaction properties

Num_LHS Num_RHS Type Parameters LHS_Species RHS_Species
where

- Num_LHS = Number of species on LHS
- Num_RHS = Number of species on RHS
- Type = Reaction Type
- Parameters $=$ Reaction Parameters
- LHS_Species $=$ LHS species list
- RHS_Species $=$ RHS species list

In the example above, each reaction has

```
Num_LHS = 2
Num_RHS = 2
```

The third parameter, Type $=F, A, E$ denotes the type of chemical reaction and determines what entries are necessary in Parameters. The final two entiries on the line list the species on the left-hand side and right-hand sides of the reaction respectively. The above example demonstrates the three types of chemical reactions that it is possible to include in a USim simulation, which are:

Fixed rate reactions; Type $=\boldsymbol{F}$ Fixed rate reactions are demonstrated on line 3 of the example. In this case, we are demonstrating the system:

Reaction: $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$;
Foward Rate Constant: $k_{f}=10^{-8}$;
Backward Rate Constant: $k_{b}=0.0$
The data format for fixed rate reactions is as follows (on one line):

```
Num_LHS Num_RHS Type Forward_A Backward_A LHS_Species RHS_Species
```

In the example above these are set as:

```
Num_LHS = 2
Num_RHS = 2
Type = F
Forward_A = 1.0E-8
Backward_A = 0.0
LHS_Species = N2 O2
RHS_Species = NO NO
```

Arrhenius-type Chemical Reactions; Type $=\boldsymbol{A}$; Arrhenius-type reactions are demonstrated on line 4 of the example. In this case, we are demonstrating the system:

Reaction: $\mathrm{N}+\mathrm{O}_{2} \rightleftharpoons \mathrm{NO}+\mathrm{O}$;
Forward Rate Constant: $k_{f}=A\left(\frac{T}{298}\right)^{n} e^{\left(\frac{-E_{a}}{R T}\right) \text {; }}$
Backward Rate Constant: $k_{b}=A\left(\frac{T}{298}\right)^{n} e^{\left(\frac{-E_{a}}{R T}\right)}$
Arrhenius-type reactions are valid over a temperature range, $T_{\min }<T<T_{\max }$ which must be specified. The data format for Arrhenius-type reactions is as follows (on one line):

```
Num_LHS Num_RHS Type T_min T_max \
    Forward_A Forward_n Forward_Ea \
    Backward_A Backward_n Backward_Ez \
    LHS_Species RHS_Species
```

In the example above, these are set as:

```
Num_LHS = 2
Num_RHS = 2
Type = A
T_min = 300.0
T_max = 11000.0
```

```
Forward_A = 6.43E-18
Forward_n = 1.0E+0
Forward_Ea = 3.16E+4
Backward_A = 1.58E-8
Backward_n = 1.0E+0
Backward_Ea = 1.64E+5
LHS_Species = N2 O
RHS_Species = NO N
```

Arrhenius-type Chemical Reactions with Equilibriation; Type $=\boldsymbol{E}$ Arrhenius-type reactions with equilibriation are demonstrated on line 5 of the example. In this case, we are demonstrating the system:
$N_{2}+O \rightleftharpoons N O+N$
Forward Rate Constant $k_{f}=A\left(\frac{T}{298}\right)^{n} e^{\left(\frac{-E a}{R T}\right)}$
Equilibrium Rate Constant $k_{e}=B e^{\left(\sum_{i=1}^{m} c_{i}\left(\frac{10000}{T}\right)^{i}\right)}$
Backward Rate Constant $k_{b}=k_{f} / k_{e}$
This system of reactions are valid over a temperature range, $T_{\min }<T<T_{\text {max }}$ which must be specified. USim automatically derives the backward rate constant based on the forward and equilibrium rate constants. The data format for Arrhenius-type reactions with equilibriation is as follows (on one line):

```
Num_LHS Num_RHS Type T_min T_max \
    Forward_A Forward_n Forward_Ea \
    Equilib_B Equilib_m Equilib_c1 Equilib_c2 ... Equilib_cm \
    LHS_Species RHS_Species
```

Note that Equilib_m sets the number of entries Equilib_c1 Equilib_cm. In the example above, these are set as:

```
Num_LHS = 2
Num_RHS = 2
Type = E
T_min = 300.0
T_max = 12000.0
Forward_A = 4.0E-9
Forward_n = 0.0E+0
Forward_Ea = 0.0E0
Equilib_B = 2.0
Equilib_m = 5
Equilib_c1 = 0.0
Equilib_c2 = 0.0
Equilib_c3 = 0.0
Equilib_c4 = 0.0
Equilib_c5 = 0.0
LHS_Species = N O2
RHS_Species = NO O
```


15.2 Multi-Species Specific Heat At Constant Pressure

An example multi-species specific heat at constant pressure block is given below:

```
CP START
SPECIES N2 N O2 O NO
1 100.0 500.0 5 28.98641 1.853978 -9.647459 16.63537 0.000117
```

```
1 298.0 6000.0 5 21.13-0.388 0.04 0.02 -0.025
3 100.0 700.0 5 31.32-20.23 57.86 -36.50 -0.0073 700.0 2000.0 5 30.0 8.77 -3.988 \
    0.788-0.7415 2000.0 6000.0 5 20.91 10.72 -2.02 0.14 9.2
1 298.0 6000.0 5 21.13-0.388 0.04 0.02 -0.025
2 298.0 1200.0 5 23.83 12.58 -1.139 -1.497 0.214 1200.0 6000.0 5 35.99 0.95 -0.148 \
    0.0099-3.0
CP END
```

This block demonstrates specific heat at constant pressure for 5 species: N 2 NO O ONO , denoted by the second line in the example: SPECIES N2 NO2 O NO. Note that each specie is delimited by a space. The specific heat data of each of the species is entered in a separate line in the same order as that of the species list. Data for each species should be entered on a single line, but has been formatted here for ease of viewing. USim species the specific heat at constant pressure using Shomate polynomials defined in multiple temperature ranges according to:
$C_{p}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\frac{a_{4}}{t^{2}}$, where $t=T / 1000$.
The polynomials are specified through the data format:

```
<Number-of-polynomials> {Polynomiall-parameters} {Polynomial2-parameters} .... \
    {PolynomialN-parameters}
```

where each of the $N<$ Number-of-polynomals> are specified through \{PolynomialN-parameters \}:

```
<Temperature-range-lower-limitN> <Temperature-range-upper-limitN> \
    <Number-coefficients-in-polynomialN> <polynomialN-coefficients>
```

In line 3 of the above example, $C_{p, N_{2}}$ is specified using a single polynomial in the temperature range [100,500] K using

```
<Number-of-polynomials> = 1
<Temperature-range-lower-limit> = 100.0
<Temperature-range-upper-limit> = 500.0
<Number-coefficients-in-polynomial1> = 5
<polynomiall-coefficient1> = 28.98641
<polynomial1-coefficient2> = 1.853978
<polynomial1-coefficient3> = -9.647459
<polynomiall-coefficient4> = 16.63537
<polynomial1-coefficient5> = 0.000117
```

In line 7 of the above example, $C_{p, N O}$ is specified using two polynomials in the temperature ranges [298,1200] and (1200,6000] K using:

```
<Number-of-polynomials> = 2
<Temperature-range-lower-limit1> = 298.0
<Temperature-range-upper-limit1> = 1200.0
<Number-coefficients-in-polynomiall> = 5
<polynomiall-coefficientl> = 23.83
<polynomiall-coefficient2> = 12.58
<polynomial1-coefficient3> = -1.139
<polynomial1-coefficient4> = -1.497
<polynomiall-coefficient5> = 0.214
<Temperature-range-lower-limit2> = 1200.0
<Temperature-range-upper-limit2> = 6000.0
<Number-coefficients-in-polynomial2> = 5
<polynomial2-coefficient1> = 35.99
<polynomial2-coefficient2> = 0.95
<polynomial2-coefficient3> = -0.148
<polynomial2-coefficient4> = 0.0099
<polynomial1-coefficient5> = -3.0
```


15.3 Multi-Species Energy of Formation, Molecular Weight, Molecular Diameter and Degrees of Freedom

Each of the above mentioned properties are constant and hence share the same block format with the corresponding starting and ending lines. The example below is for molecular weight data. Block header 'MOLECULARWEIGHT START' is followed by list of species 'SPECIES N2 N O2 O NO'. Each of the species is delimited by space. The next line has the molecular weights entered in the same order as that of the species list. The block is closed with 'MOLECULARWEIGHT END'.

```
MOLECULARWEIGHT START
SPECIES N2 N O2 O NO
28.0 14.0 32.0 16.0 30.0
MOLECULARWEIGHT END
```


A

anisotropic diffusion, 58
Arrhenius-type Chemical Reactions, 265
Arrhenius-type Chemical Reactions with Equilibriation, 265

B

Backward, 93
bin, 31
binCells, 82
bodyFitted, 26
Boundary Condition, 207
boundaryEntityGenerator, 79
bremsPowerSrc, 180

C

characteristicCellLength, 79
Chemical Reactions, 265
classicMusclUpdater, 50
coilFieldEqn, 182
collisionFrequency, 188
combiner, 42
computeChargeError, 187
computePrimitiveState, 45
conductivityTensor, 191
copy, 207
Crank-Nicholson, 93
curl, 56
current, 183
curvilinear coordinates, 144,148
cyclotronFrequency, 215

D

Data Files, 265
DataStruct, 31
DataStructAlias, 33
Degrees of Freedom, 269
diffusion, 58
Dirchlet, 207
divergence, 56
divergence cleaning, 104, 108, 112, 117, 122, 132, 224, 228, 232, 237, 242, 250
dynVector, 32
dynVectorOperator, 43

E

electron energy, 117, 122, 237, 242
Energy of Formation, 269
entityGenerator, 80
Equation, 97
equationUpdater, 45
Euler, 93
eulerBc, 208
eulerEqn, 97, 217
eulerSym, 144
explicit time integration, 71
exprHyperSrc, 153

F

fieldAtPoint, 83
first derivatives, 56
firstOrderMusclUpdater, 48
Fixed-rate chemical reactions, 265
frequency, 216
functionBc, 208

G

gasDynamicMaxwellDednerEqn, 132, 250
gasDynamicMhdDednerEqn, 112, 232
general equation of state, 100, 220
generalBc, 209
generalizedOhmsLaw, 67
gradient, 56
grid, 25

H

hydrodynamics, 97, 217
hyperbolic, 217
hyperbolicCleanSym, 188
I
idealGasComputeVariables, 167
idealGasVariables, 166
implicitMultiUpdater, 72
initialize, 39
intCombinedFields, 83
inviscid compressilbe hydrodynamics, 144
iterative solver, 72

J

Jacobian Free Newton Krylov, 72

K

kEpsilonOperator, 65
kOmegaOperator, 63

L

laminar viscosity, 60
laplacian, 58
linearCombiner, 41
lineIntegral, 84
localOdeIntegrator, 76
lorentzForce, 184

M

magnetohydrodynamics, 104, 108, 112, 117, 122, 132, $148,224,228,232,237,242,250$
maxCombinedFields, 85
Maxwell's equations, 127, 129, 247
maxwellBc, 210
maxwellDednerEqn, 129, 247
maxwellEqn, 127
maxwellSym, 150
$\operatorname{mhdBc}, 210$
mhdDednerEosEqn, 108, 228
mhdDednerEqn, 104, 224
mhdSrc, 154
mhdSym, 148
minDistanceToWall, 80
Molecular Diameter, 269
Molecular Weight, 269
momentumEnergyExchange, 192
multispecies, 103, 223
multiSpeciesSingleVelocityEqn, 103, 223
multiSpeciesSym, 151
multiUpdater, 71

N

nanChecker, 89
Navier-Stokes, 60
navierStokesViscousOperator, 60
Neumann, 207
NFluidSrc, 194
nodalArray, 32
ntCart, 25
operatorEntityGenerator, 81
ordinary differential equation‘, 76

P

paintEntity, 82
periodicCartBc, 211
plasmadynamics, 138, 256
plasmaFrequency, 260
positiveValue, 261
pressureDensityCorrector, 90
primitive state, 45
propaceosComputeVariables, 171
propaceosVariables, 169
quadratic, 262

R

radiationAbsorption, 181
radiationEmission, 182
reactionTableRhs, 195
real gas, 99, 100, 219, 220
realGasEosEqn, 100, 220
realGasEqn, 99, 219
resistiveOperator, 69
Reynolds-Averaged Navier Stokes, 60
Runge Kutta, 93

S

second derivatives, 58
sesameComputeVariables, 175
sesameVariables, 173
simpleBc, 211
simpleTwoTemperatureMhdDednerEqn, 117, 237
Source, 143
Specific Heat At Constant Pressure, 267
stress, 60
sufaceEvapration, 212
Super Time Step, 93
surface ablation, 88
Surface Diagnostic, 87
surfaceIntegral, 86

T

temperatureAndHeatFlux, 89
temperatureRelaxation, 197
ten moment, 101, 222
tenMomentBc, 212
tenMomentEqn, 101, 222
tenMomentFluidSrc, 158
thermal conduction, 60
thirdOrderMusclUpdater, 54
time integration, 93
Time Step, 215
time step, 77
timeStepRestrictionUpdater, 77
transportCoeffSrc, 198
turbulent, 60
two fluid, 101, 222
twoFluidEqn, 138, 256
twoFluidSrc, 160
twoFluidSym, 152
twoTemperatureMhdDednerEqn, 122, 242

U

uniformCombiner, 41
unstructMusclUpdater, 52
unstructured, 28
Updater, 39
UpdateSequence, 37
UpdateStep, 35
userDefinedEqn, 139, 258

V

valueCorrector, 91
vanDerWaalsComputeVariables, 179
vanDerWaalsVariables, 177
vector, 56
vertexJetUpdater, 46
viscosity, 60
viscous, 60
W
wave speed, 77
whistlerWave, 263
wireFieldEqn, 186

