USiminDepth

Release 3.0.1

Tech-X Corporation

May 03, 2018

Basic Concepts

1.1 PreFile Syntax
1.2 KeyParameters
Macros

2.1 Introduction e e e e e e e e
2.2 OVEIVIEW . .t v v i v e e e e e e e e e e e

Basic USim Simulations

3.1
3.2
33
34
3.5

Using USim to solve the Euler Equations
Using USim to solve the Magnetohydrodynamic Equations
Solving Multi-Dimensional Problems in USim
Solving Problems on Advanced Structured Meshes in USim
Solving Problems on Unstructured Meshes in USim

Advanced USim Simulations

4.1
4.2
4.3
4.4
4.5

Advanced USim Simulation Concepts v v v v it e e
Advanced Methods for Solving the Euler Equations with USim
Advanced Methods for Solving the Magnetohydrodynamics Equations with USim

Advanced Methods for Solving for Solving Problems in Multi-Dimensions with Usim

Advanced Methods for Solving Problems on Advanced Meshes with USim

Using USim to Solve Advanced Physics Problems

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

Using USim to Solve a Diffusion Problem

Using USim to Solve the Two-Fluid Plasma Model
Using USim to Solve MHD with General Equationof State
Using USim to Solve MHD with General Equationof State

Using USim to Solve a Magnetic Nozzle Problem

Using USim to solve 10 moment ions with 5 moment electrons

Using USim to Solve Navier-Stokes Equations
Using USim to Solve Multi-Species Reactive Flows
Advanced Time-Stepping Methods in USim

Running USim from the Command Line

Restarting a USim Simulation L
RunningonaRemote Host e

Using USim to Solve an Anisotropic Diffusion Problem
Using USim to Solve Multi-Fluid Problems with Collisions

CONTENTS

~N = -

CHAPTER
ONE

BASIC CONCEPTS

1.1 Pre File Syntax

The most basic elements of the USim simulation process, which are discussed in USimcomposer-intro and considered
prerequisites for this section, are creating, running, and visualizing a run space. Here we will examine the basic
concepts within a USim input file, which contains more detailed information than the Key Input Parameters view in
the USimComposer Setup tab, and is by default not exposed to the user.

This section discusses the syntax used in pre files.
A pre file consists of:
* Comments
* Variables
 Top-level simulation parameters
* Parameters and vectors of parameters organized into input blocks

e Macros

1.1.1 Accessing the Input File

To access the input file in a run space, navigate to the Sefup tab and click the View Input File button, which is circled
in red in the below figure.

cingStep.pre
Navigation

Runspace Files

« [save And Process Setup

JUsers/angle/Documents /txcorp
JUSimComposer1.0/runs/forwar
dFacingStep

- Compressible inviscid flow over a step
flename. Caglo4 using on an unstructured mesh
> @ forwardFacingstep
» [forwardFacingstep.log T_FINAL (4.0
() forwardFacingStep.in
(2 forwardFacingStep.png N_FRAME 20
[) forwardFacingStep.pre

forwardFacingStep1.msh

forwardFacingStep2.msh MESH_FILE ‘wardFacingStep2.msh”

forwardFacingStepGrid.h§

forwardFacingStepVars.py RIEMANN_SOLVER [*hlleFlux”

ntMesh.msh
VARIABLE_FORM "conservative"
LIMITER [*muscl”
GAMMA (1.4 m

 forwardFacingstep.pre.

© forwardFacingStep.in_|

el o ol e o)

{ ® Find/Replace [NENCITNI © Results |

Starting runspace setup.
Creating input file.

Preprocessing completed successfully.
Proceed to run window.

Al Files
 smart Grouping

Fig. 1.1: Click the View Input File Button to change from the Parameters View to the Input File Editor.

USimInDepth, Release 3.0.1

This opens the Input File view as shown in the below:

U usim er - forwardFacingStep.p

Navigation

v

Save And Process Setup

/Users/angle/Documents/txcorp.
/USimComposer1.0/runs/forwar
dFacingStep

® forwardFacingStep.in |

» (@ forwardFacingStep

» [forwardFacingStep.log
1) forwardFacingstep.in
() forwardFacingStep.png
[3) forwardFacingStep.pre
(3 forwardFacingStepl.msh
(3 forwardFacingStep2.msh
2] forwardFacingstepGrid.hS
() forwardFacingStepVars.py
3 ntMesh.msh

{ @ Find/Replace [IENICNENI © Results |

Al Files
/ smart Grouping

Starting runspace setup.

Creating input file.

Preprocessing completed successfully.
Proceed to run window.

Note that you can return to the Parameters view by clicking the Parameters View button, which is circled in red in the
above figure.

The remainder of this section describes the basic elements of a USim input file. For a more detailed description of
USim input files, see Basic USim Simulations.

1.1.2 Symbol Definition

In USim, symbols are defined by assignment, similar to many other programming languages. For example, to define a
given symbol with an expression, the syntax is:

$SYMBOL = EXP

where SYMBOL is the name of the symbol and EXP is any valid expression.
The expression EXP is a valid expression. See Expression Evaluation for details.

The preprocessor will not try to substitute a symbol on the left hand side of an equal sign =. For example, the following
code snippet:

Secharge = 1.6e-19
charge = echarge

results in:

charge = 1.6e-19

Comments

You can enter comments in either of two ways:
* Following a pound sign (#) either on a new line or a continuation of a current line

* Between the opening and closing comment tags <Comment> </Comment>

Note: Tech-X recommends that you always update your comments when you make changes to a pre file.
The reasoning behind a change may become unclear if you do not provide comments that explain why

you made the change. Pre files with old, out-of-date comments are difficult to work with.

2 Chapter 1. Basic Concepts

USimInDepth, Release 3.0.1

Variables

Each line defining a variable begins with a dollar sign ($).

Parameters

Parameters can be integers, floating-point numbers, or text strings.
The format of the parameter value determines the type of parameter. For example:
¢ x = 10 indicates an integer
* x = 10.0 indicates a floating-point number
* x =ten indicates a text string
Some parameters accept any text string (within reason). Other parameters accept only a choice of text strings.

If USim can parse a value, such as 42, as an integer, it will do so. If USim cannot parse the value as an integer, it will
attempt to parse it as a floating-point number — for example, any of the following:

42.
3.14159
1.60217646e-19

If USim cannot parse the value as either an integer or a floating-point number, it will parse the value as a string of text,
for example, either of the following:

40. (4 and lowercase 0O) or
40 (4 and uppercase O).

Given these rules, use a decimal point to specify a floating point number. Any number without of decimal point will
otherwise be interpreted as an integer.

If a parameter is specified twice, USim will use the second occurrence of the parameter in the input file produced from
the pre file. The style recommendations in this user guide will help avoid multiple specifications of parameters.

Vectors of Parameters

Vectors of parameters are enclosed by brackets [] with white space used as separators. For example:

¢ x [10 10 10] indicates a vector of integers

e x = [10. 10. 10.] indicates a vector of floats

1.1.3 Input Blocks

Input blocks are used to create simulation objects. The block is enclosed by opening and closing tags such as:

<Grid globalGrid>

</Grid>

The tag determines:
* object type: indicated by an initial capital letter, for example, Grid

* object name: indicated by an initial lowercase letter, for example, globalGrid

1.1. Pre File Syntax 3

USimInDepth, Release 3.0.1

You use the object name to refer to the object in other input blocks. For example, in the input block for a particle
object, you may refer to the name of the electromagnetic field object.

Input blocks can be nested. For example, input blocks for boundary conditions are nested within the input block for
an electromagnetic field.

1.1.4 Macros

Macros simplify input file construction through providing a mechanism for encapsulating commonly used input file
snippets. A user can then put into the input file only the macro, and then it will be expanded into the full input file at
the time of pre-processing the prefile.

Macros can have multiple uses including importing a group of parameters from a separate file, or simplifying an input
block such as follows:

<macro myFluid>
equations = [euler]

<Equation euler>
kind = eulerEqgn
gasGamma = GAMMA
</Equation>
</macro>

You could then call your myFluid macro within the input file like this:

<Updater hyper>
kind = classicMusclld
onGrid = domain

myFluid

</Updater>

For more information about macros, see Overview

1.1.5 Scoping and Evaluation

Symbols in USim are scoped. This means that the effect of a symbol’s definition is confined to the macro or block in
which that symbol is defined. Whenever USim enters a macro or a new input file block, it enters a new scope.

In the case in which SYMBOL is defined in multiple scopes, USim ignores the previously defined SYMBOL for the
duration of the current scope. In the case in which SYMBOL is defined more than once in the current scope, the new
value overrides the previous value defined in the current scope.

This scope is closed once USim leaves the block or macro. That is, the symbol’s definition no longer has an effect
once USim has used the symbol’s value in the macro or block where it was defined and then proceeded to a different
block or macro. Scoping allows the next block or macro to be free to redefine the value of the symbol for its own
purposes.

4 Chapter 1. Basic Concepts

USimInDepth, Release 3.0.1

Global Variables

It is possible to declare a global variable in USim. This is done by first defining the variable, then declaring it global.
For example:

<Block>

$ X =4

$ global X
</Block>

Will cause the variable X to be equal to 4 outside of the Block. It is important to note that the variable must be defined,
and declared global on seperate lines. For example $ global X = 4 will not define X as a global variable with value 4.

Expression Evaluation

USim evaluates expressions by interpreting them as Python expressions. Python expressions are composed of tokens.
A token is a single element of an expression, such as a constant, identifier, or operation. The preprocessor breaks the
expression string into individual tokens then performs recursive substitution on each token. Once a token is no longer
found to be substitutable, the preprocessor tries to evaluate it as a Python expression. The result of this evaluation will
then be used as the value of this token. All the token values are then concatenated and again evaluated as a Python
expression. This result will then be assigned to the symbol.

Tokenizing, the act of breaking a string into tokens, is performed following the lexical rules of Python. This means
that white spaces are used to delimit tokens, but are otherwise entirely ignored.

Note: A string within matched quotes is treated as a single token with the matching quotes removed.

The input files generated by USim are sensitive to white spaces; as a result, USim has to re-introduce white spaces in
the translation process. By default, tokens are joined without any white spaces. However, if both tokens are of type
string, then a white space is introduced. Also, tokens inside an array (delineated by [and]) are delimited by a white
space.

See the Python documentation on the official Python website at http://www.python.org for more information about
Python expressions.

Python Token Evaluator (txpp.py)

The Python preprocessor has the following features:
* It accepts a file, conventionally with suffix . pre, for processing.
 Lines in that file that start with the character $ are processed by the preprocessor.
* Those lines are sent through the python interpreter to for evaluation
* The resulting values are replaced and written to a new file with suffix, . in

For example, suppose one has an input file, myfile.pre, containing,

LIGHTSPEED = 2.9979e8
ILX = 1l.e-6

NX = 20

DX = LX/NX

DT = DX/LIGHTSPEED
<Grid thegrid>

numCells = [NX]
lengths = [LX]

v A

1.1. Pre File Syntax 5

http://www.python.org

USimInDepth, Release 3.0.1

</Grid>
dt = DT

Pressing the Save and Validate button in USimComposer’s Setup tab, or equivalently command line execution of:

<txpp.py directory>/txpp.py —--prefile=myfile.prei

produces a file, myfile.in that contains:

#$ LIGHTSPEED = 2.9979e8

——> LIGHTSPEED = 299790000.0
#$ LX = 1l.e-6
¥ ——> LX

9.9999999999999995e-07

#S NX = 20

——> NX = 20

#$ DX = LX/NX

——> DX = 4.9999999999999998e-08
#$ DT = DX/LIGHTSPEED

——> DT = 1.6678341505720671e-16

<Grid thegrid>
numCells=[20]
1lengths=[9.9999999999999995e-07]
</Grid>

dt=1.6678341505720671e-16

This mechanism facilitates modifying files to change systems size, resolution, or other parameters while keeping
requisite mathematical relationships intact.

The preprocessor imports math, so one can include statements such as:

‘$ PI = math.pi

and then use the variable PI in the pre file. In addition, the replace occurs for commented lines as well, so the
myfile.pre could have contained the line,

‘# dx = DX

and then myfile. in would have contained the line:

’# dx = 4.9999999999999998e-08

This is useful for printing out intermediate values for, e.g., debugging.

The pre file can be made self executing by adding the stanza:

#!/bin/sh
SNTUTILSDIR/txpp.py —-prefile=S$0 S$x
exit $7

to the top, where NTUTILSDIR is an environment variable that gives the directory of the preprocessor. The prepro-
cessor then knows to skip lines up to exit before processing the file. In addition, the value of any variable named NDIM
defined in the pre file can be modified on the command line with the directive -ndim = 2, for example, to have all
occurrences of NDIM in the file replace by 2 instead of the value defined in the file. This enables writing only a single
pre file for simulations of multiple dimensionalities when the differences in the file follow from the value of NDIM
alone.

If a file fails to validate a brief explanation of what is wrong will be displayed in the Output tab under the Editor
window. Common reasons for a file to fail to invalidate include

6 Chapter 1. Basic Concepts

USimInDepth, Release 3.0.1

1. Using features not available to your USim module. i.e. an example under the USimHS templates will not
validate if you are using a USimHEDP license.

2. A variable being declared as an integer instead of a float or vice versa. i.e. $ VAR = 6 instead of $ VAR = 6.0
3. A macro being called without it’s parent first being imported.
4. A macro has been called with the wrong number of parameters.

Now that we have examined USim pre file syntax, we are ready to discuss the creation of key parameters in the Setup
tab of USimComposer in Key Parameters.

1.2 Key Parameters

USim has the ability to create key parameters. These variables are visible in the Editor pane of the Setup tab in
USimComposer, and they can be modified without the user having to sift through the input file (also called the pre
file). They are useful when creating a base simulation that can be easily modified to simulate different phenomena
within the same base simulation. This tutorial is for power users who wish to use key parameters within their own
simulations and who are familiar with the USimcomposer-intro. As preparation for a discussion of key parameters,
the user must be comfortable with accessing the input file, as discussed in Pre File Syntax.

The two main components of the key parameters feature are the XSim block and the X Var block. An example XSim
block in a run space input file is boxed in red in the below figure, and an example X Var block is boxed in blue.

n
Runspace Files
@ & O @ 4 [View Parameters « | save And Process Setup

B © forwardFacingStep.in |

{ ® Find/Replace [NENCITIM © Results |

All Files.

¥/ Smart Grouping

Fig. 1.2: Example XSim and XVar blocks in a run space input file

A description of the elements of these blocks and their effect on the Parameters view in the USimComposer Setup tab
is given in the following sections.

1.2.1 XSim Block

Given below is a template XSim block that can be modified to fit any file:

1.2. Key Parameters 7

USimInDepth, Release 3.0.1

<XSim simulationName>
shortDescription = "Simulation Name"
description = "Description of the simulation.”
longDescription = "Longer description of the simulation."
image = "simulationName.png"
thumbnail = "simulationNameTn.png"

</XSim>

Each line in this block is explained below:

1. image - The image parameter should give the name of a picture, located in the same directory as the .pre file,
that will be given on the right hand side of the Editor pane in the Setup tab. Frequently, this image is used to
illustrate key parameters such as dimensions of a physical structure. 400 by 500 pixels is a good image size.

2. longDescription - This text block will be visible above the image, and is generally used to give a description of
what the simulation does, and what will happen when key parameters are modified.

T e

Navigation Editor
| Runspace Files |
v

Save And Process Setup

A A O 3D 4 [ViewinputFile

JUsers/angle/Documents /txcorp
JUSimComposer1.0/runs/forwar
dFacing

CFL 0.4

I

T_FINAL (4.0

N_FRAME 20

MESH_FILE 'wardFacingStep2.msh”

DDEDODODDLEE

RIEMANN_SOLVER “hlleFlux"

VARIABLE_FORM |

LIMITER [*muscl”

GAMMA (1.4

© Find/Replace © Results |

Al Files
v/ Smart Grouping

eted successfully.

Fig. 1.3: Where image and longDescription appear in the Parameters View.

The three following parameters are only useful to very advanced users who are creating, and placing input
files in the Examples directory of USimComposer. The examples directory can be found in [USimlInstallDirec-
tory]ContentsExamples.

3. thumbnail - This is the small image that is visible when you select an example file, located in the same directory
as the .pre file. 250 x 250 pixels in a good image size.

4. shortDescription - This is the name that will be given to the example file.
5. description - This is the description given in the window on the right side in the examples window.

6. analyzers[SCRIPT] - This will cause USimComposer to load the analysis script specified by SCRIPT, located
in the same directory as the .pre file, for use in the Analyze Tab.

1.2.2 XVar Block

Key parameters can be created in the input, or .pre, file of a USim simulation, and appear in the Sefup tab in USim-
Composer as seen below boxed in red.

To create these parameters, the user must modify the .pre file and add X Var blocks, in the same way that the user must
add an XSim block as described in the preceding section. It is the practice of Tech-X developers to first declare the

8 Chapter 1. Basic Concepts

USimiInDepth, Release 3.0.1

U New from Template
Available Templates Description 5

v USimBase: Examples demonstrating the basi
Brio & Wu Shock Tube
el elmholtz Instability
MHD Ramp Flow 4
Rayleigh Taylor Instability
Sod Shock Tube
Unstable plasma z-pinch
¥ USIMHEDP: Examples demonstrating high en..
Dense Plasma Focus
GEM challenge
Magnetic nozzle example
Merging plasma jets
¥ USImHS: Examples demonstrating multifluid -
Flow over cylindrical rod
Supersonic cross flow over cylinder
Blunt body re-entry

Flow over a forward facing step using an
unstructured mesh

Fig. 1.4: Select An Example Window

U UsimComposer - forwardFacingstep.pre

Navigation Editor

Runspace Files
L NE-TE R w Input File v Save And Process Setup
/Users/angle/Documents/ txcorp
JUSimComposer1.0/runs/forwar forwardFacingStep.pre forwardFacingste|
dFacingStep
oa 1 || compressible inviscid flow over a step
- vjl' Honame CFL Jo.4 using on an unstructured mesh
forwardFacingStep
») forwardFacingStep.log T_FINAL (4.0
() forwardFacingStep.in
[2) forwardFacingStep.png
N_FRAME (20
() forwardFacingStep.pre
() forwardFacingStepl.msh o
) forwardFacingstepz msh MESH_FILE ‘wardFacingStep2.msh
forwardFacingStepGrid.hs
() forwardFacingStepVars.py RIEMANN_SOLVER “hlleFlux"
() ntMesh.msi
VARIABLE_FORM [“conservative”
LIMITER "musc]
GAMMA (1.4
© Find/Replace IR © Results
[Al Files.
7 Starting runspace setup.
KiSnarictping Creating input file.
Preprocessing completed successfully.
Open, Proceed to run window.

Fig. 1.5: Key parameters

1.2. Key Parameters

USimInDepth, Release 3.0.1

primary variables with a default value, then give the X Var blocks for the primary variables below that. Given below is
a template X Var block that can be modified to fit any file:

$ variableName = default value

<XVar variableName>
description = "Description of the variable"
min = minimum value
max = maximum value

</XVar>

Each line in this block is explained below:
1. variableName - The very first line, above the X Var block, sets the default value of the variable.

2. <XVar variableName> - This line, which begins the X Var block, must exactly match the name of the variable
given in the line preceding it.

2. description - This text should describe the variable and will appear when the cursor is placed over the variable
name.

3. min - This is the minimum value for the variable and is optional. This can be very useful with certain simulation
parameters such as cell size that can cause an instability if incorrectly specified.

4. max - This is the maximum value for the variable and is optional.

Note that the name of the key parameter will turn red if there is no value given for the parameter, or if the value is not
greater than or equal to min and less than or equal to max, if they are specified.

10 Chapter 1. Basic Concepts

CHAPTER
TWO

MACROS

2.1 Introduction

USim contains a number of pre-defined macros that are used throughout the example input files available through the
USimComposer interface. The macros are used to help automate the process of setting up certain types of simulations.
Input files can also be generated by external tools, one that we’ve found especially useful is Mako

2.2 Overview

2.2.1 Using Macros in Input Files

A macro is a mechanism to abstract complex input file sequences into (parameterized) tokens. In its simplest form, a
macro provides a way to substitute a code snippet from an input file:

<macro snippet>
linel
line2
line3
</macro>

In this example, every occurrence of the code named snippet in the input file will now be replaced by the three lines
defined between the <macro> and </macro> tags.

For example, you could define a macro to set up a laser pulse like this:

<macro myFluid>
equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA
</Equation>
</macro>

You could then call your myLaser macro within the input file like this:

<Updater hyper>
kind = classicMusclld
onGrid = domain

myFluid

11

http://www.makotemplates.org/

USimInDepth, Release 3.0.1

</Updater>

The USim engine (USim) will expand the input file use of your macro into:

<Updater hyper>
kind = classicMusclld
onGrid = domain

equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA

</Equation>

</Updater>

Importing Local Macros

It is also possible to define a macro file, and provided that it is in the same directory as your input file, import it. This
is useful when writing one custom macro that will be used over multiple simulations. The macro must have a .mac
extension on it to be imported as a local macro. To extend the example above, say the macro myLaser is in the file
Lasers.mac, the input file would look like this:

$ import fluidModels.mac
<Updater hyper>
kind = classicMusclld
onGrid = domain
myFluid

</Updater>

USim will expand the input file use of your macro into:

<Updater hyper>
kind = classicMusclld
onGrid = domain

equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA

</Equation>

</Updater>

The macro definition would remain the exact same. As long as the macro file is imported properly, it is just like having
it defined explicitly in the input file.

12 Chapter 2. Macros

USimInDepth, Release 3.0.1

2.2.2 Macro Parameters

Macros can take parameters, allowing variables to be passed into and used by the macro. Parameters are listed in
parentheses after the macro name in the macro declaration, as in this example:

<macro finiteVolumeData (name, grid, components, write)>
<DataStruct name>
kind = nodalArray
onGrid = grid
numComponents = components
numNodes = 1
writeOut = write
</DataStruct>
</macro>

Once a macro is defined, it can be used by calling it and providing values or symbols for the parameters. The macro
will substitute the parameter values into the body provided. Calling the example above with parameters defined like
this:

finiteVolumeData (density, domain, 1, true)

will create the following code fragment in the processed input file:

<DataStruct name>
kind = nodalArray
onGrid = grid
numComponents = components
numNodes = 1
writeOut = write
</DataStruct>

Note: The parameter substitution happened in the scope of the caller. Parameters do not have scope outside of the
macro in which they are defined.

2.2.3 Macro Overloading

As with symbols, macros can be overloaded within a scope. The particular instance of a macro that is used is deter-
mined by the number of parameters provided at the time of instantiation. This enables the user to write macros with
different levels of parameterization:

<macro circle(x0, y0, r)>
r*2 - ((x-x0)7"2 + (y-y0)"2)
</macro>
<macro circle(r)>
circle(0, 0, 1)
</macro>

Looking in the example above, whenever the macro circle is used with a single parameter, it creates a circle around
the origin; if you use the macro with 3 parameters, you can specify the center of the circle.

The macro substitution does not occur until the macro instantiation is actually made. This means that you do not have
to define the 3-parameter circle prior to defining the 1-parameter circle, even though the 1-parameter circle refers to
the 3-parameter circle. It is only necessary that the first time the 1-parameter circle is instantiated, that 3-parameter
circle has already been defined, otherwise you will receive an error.

2.2. Overview 13

USimInDepth, Release 3.0.1

2.2.4 Defining Functions Using Macros

Macros can be particularly useful for defining complex mathematical expressions, such as defining functions in expr
lists.

Consider a macro that should simplify the setup of a Gaussian. One could define the following macro:

<macro badGauss (A, x, sigma)>
A *x exp(-x"2/sigma)
</macro>

While this is a legitimate macro, an instantiation of the macro via:

’badGauss(AO+5, x-3, 2*sigma)

will result in:

’AO+5*exp(—x+3A3/2*sigma)

which is probably not the expected result. One alternative is to put parentheses around the parameters whenever they
are used in the macro.

<macro betterGauss (A, x, sigma)>
((A) % exp(-(x)"2/(sigma)))
</macro>

This will ensure that the expressions in parameters will not cause any unexpected side effects. The downside of this
approach, however, is that the macro text is hard to read due to all the parentheses. To overcome this issue, txpp
provides a mechanism to automatically introduce the parentheses around arguments by using a function block

<function goodGauss (A, x, sigma)>
A % exp(-x"2/sigma)
</function>

The previous example will produce the same output as the badGauss macro, but without requiring the additional
parentheses in the macro text.

2.2.5 Importing Files

USim allows input files to be split into individual files, thus enabling macros to be encapsulated into separate libraries.
For example, physical constant definitions or commonly-used geometry setups can be stored in files that can then be
used by many USim simulations. Input files can be nested to arbitrary depth.

Files are imported via the import keyword:

$ import FILENAME

where FILENAME represents the name of the file to be included. txpp applies the standard rules for token substitution
to any tokens after the import token. Quotes around the filename are optional and computed filenames are possible.

2.2.6 Conditionals

The USim preprocessor includes both flow control and conditional statements, similar to other scripting languages.
These features allow the user a great deal of flexibility when creating input files.

A conditional takes either the form:

14 Chapter 2. Macros

USimInDepth, Release 3.0.1

$

$

if COND

endif

or

$

$

$

if COND
else

endif

Conditionals can be arbitrarily nested. All the tokens following the i f token are interpreted following the expression
evaluation procedure (see above) and if they evaluate to true, the text following the if statement is inserted into the
output. If the conditional statement evaluates to false, the text after the el se is inserted (if present). Note that t rue
and false in preprocessor macros are evaluated by Python — in addition to evaluating conditional statements such
as x == 1, other tokens can be evaluated. The most common use of this is using 0 for false and 1 for true. Empty
strings are also evaluated to false. For more detailed information, consult the Python documentation.

Example Conditional Statements

v W W r

if TYPE == "MHD"
numComponents = 9
else
numComponents = 5
endif

A conditional statement can also use Boolean operators:

WA A D 3 D D

=0
0
=1

QW >
Il

Below, D1 is 1 if A, B, or C are non-zero. Otherwise D1=0:
D1 = (A) or (B) or (C)

Below, D2 is 1 if A is non-zero or if both B and C are non-zero.

D2 = (A) or ((B) and (C))

This can be also be written as an if statement:

if (A) or ((B) and (C))
D3 =1

else S
D3 =0

endif

Otherwise D2=0:

2.2.7 Repetition

For repeated execution, USim provides while loops; these take the form:

$

$

while COND

endwhile

2.2. Overview

15

USimInDepth, Release 3.0.1

which repeatedly inserts the loop body into the output. For example, to create 10 stacked circles using the circle macro
from above, you could use:

S n =10

$ while n > 0 circle(n)
S n=n-1

$ endwhile

2.2.8 Recursion

Macros can be called recursively. E.g. the following computes the Fibonacci numbers:

<macro fib(a)>
$ if a < 2
a
$ else
fib(a-1)+fib (a-2)
$ endif
</macro>
fib (7)

Note: There is nothing preventing you from creating infinitely recursive macros; if terminal conditions are not given
for the recursion, infinite loops can occur.

2.2.9 Symbol Definition on the Command Line

txpp allows symbols to be defined on the command line. These definitions override any symbol definitions in the
outer-most (global) scope. This allows you to set a default value inside an input file that can then be overridden on the
command line if needed.

For example, if the following is in the outermost scope of the input file (outside of any blocks or macros):

$ X =3
X

Then this will result in a line containing 3 in the output. However, if you were to invoke txpp via:

txpp.py —-DX=4

then this will result in a line 4.

However, if you were to define X inside a block (not in the global scope), such as:

<block foo>
$ X =3
X

</block>

then X will always be 3, no matter what value for X is specified on the command line.

2.2.10 Requires

When writing reusable macros, best practices compel macro authors to help ensure that the user can be prevented from
making obvious mistakes. One such mechanism is the requires directive, which terminates translation if one or more
symbols are not defined at the time. This allows users to write macros that depend on symbols that are not passed as

16 Chapter 2. Macros

USimInDepth, Release 3.0.1

parameters. For example, the following code snippet will not be processed if the symbol NDIM has not been previously
defined:

<macro circle(r)>
Srequires NDIM
$if NDIM == 2 r"2 - xX"2 - y*2
Sendif
$if NDIM == 3 r"2 - x"2 - y"2 - z"2
Sendif

</macro>

2.2.11 String Concatenation

One task that is encountered often during the simulation process is naming groups of similar blocks, e.g. similar
species. Macros can allow us to concatenate strings to make this process more clean and simple. However, based on
the white-spacing rules, strings will always be concatenated with a space between them. For example,

Sa = hello
Sb = world
ab

will result in
hello world

However, we can get around this rule to get the desired output