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CHAPTER

ONE

BASIC CONCEPTS

1.1 Pre File Syntax

The most basic elements of the USim simulation process, which are discussed in USimcomposer-intro and considered
prerequisites for this section, are creating, running, and visualizing a run space. Here we will examine the basic
concepts within a USim input file, which contains more detailed information than the Key Input Parameters view in
the USimComposer Setup tab, and is by default not exposed to the user.

This section discusses the syntax used in pre files.

A pre file consists of:

• Comments

• Variables

• Top-level simulation parameters

• Parameters and vectors of parameters organized into input blocks

• Macros

1.1.1 Accessing the Input File

To access the input file in a run space, navigate to the Setup tab and click the View Input File button, which is circled
in red in the below figure.

Fig. 1.1: Click the View Input File Button to change from the Parameters View to the Input File Editor.
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This opens the Input File view as shown in the below:

Note that you can return to the Parameters view by clicking the Parameters View button, which is circled in red in the
above figure.

The remainder of this section describes the basic elements of a USim input file. For a more detailed description of
USim input files, see Basic USim Simulations.

1.1.2 Symbol Definition

In USim, symbols are defined by assignment, similar to many other programming languages. For example, to define a
given symbol with an expression, the syntax is:

$SYMBOL = EXP

where SYMBOL is the name of the symbol and EXP is any valid expression.

The expression EXP is a valid expression. See Expression Evaluation for details.

The preprocessor will not try to substitute a symbol on the left hand side of an equal sign =. For example, the following
code snippet:

$echarge = 1.6e-19
charge = echarge

results in:

charge = 1.6e-19

Comments

You can enter comments in either of two ways:

• Following a pound sign (#) either on a new line or a continuation of a current line

• Between the opening and closing comment tags <Comment> </Comment>

Note: Tech-X recommends that you always update your comments when you make changes to a pre file.
The reasoning behind a change may become unclear if you do not provide comments that explain why
you made the change. Pre files with old, out-of-date comments are difficult to work with.

2 Chapter 1. Basic Concepts
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Variables

Each line defining a variable begins with a dollar sign ($).

Parameters

Parameters can be integers, floating-point numbers, or text strings.

The format of the parameter value determines the type of parameter. For example:

• x = 10 indicates an integer

• x = 10.0 indicates a floating-point number

• x = ten indicates a text string

Some parameters accept any text string (within reason). Other parameters accept only a choice of text strings.

If USim can parse a value, such as 42, as an integer, it will do so. If USim cannot parse the value as an integer, it will
attempt to parse it as a floating-point number – for example, any of the following:

42.
3.14159
1.60217646e-19

If USim cannot parse the value as either an integer or a floating-point number, it will parse the value as a string of text,
for example, either of the following:

4o. (4 and lowercase O) or
4O (4 and uppercase O).

Given these rules, use a decimal point to specify a floating point number. Any number without of decimal point will
otherwise be interpreted as an integer.

If a parameter is specified twice, USim will use the second occurrence of the parameter in the input file produced from
the pre file. The style recommendations in this user guide will help avoid multiple specifications of parameters.

Vectors of Parameters

Vectors of parameters are enclosed by brackets [ ] with white space used as separators. For example:

• x = [10 10 10] indicates a vector of integers

• x = [10. 10. 10.] indicates a vector of floats

1.1.3 Input Blocks

Input blocks are used to create simulation objects. The block is enclosed by opening and closing tags such as:

<Grid globalGrid>
.
.
.

</Grid>

The tag determines:

• object type: indicated by an initial capital letter, for example, Grid

• object name: indicated by an initial lowercase letter, for example, globalGrid

1.1. Pre File Syntax 3
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You use the object name to refer to the object in other input blocks. For example, in the input block for a particle
object, you may refer to the name of the electromagnetic field object.

Input blocks can be nested. For example, input blocks for boundary conditions are nested within the input block for
an electromagnetic field.

1.1.4 Macros

Macros simplify input file construction through providing a mechanism for encapsulating commonly used input file
snippets. A user can then put into the input file only the macro, and then it will be expanded into the full input file at
the time of pre-processing the prefile.

Macros can have multiple uses including importing a group of parameters from a separate file, or simplifying an input
block such as follows:

<macro myFluid>

equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA

</Equation>
</macro>

You could then call your myFluid macro within the input file like this:

<Updater hyper>
kind = classicMuscl1d
onGrid = domain
...

myFluid

</Updater>

For more information about macros, see Overview

1.1.5 Scoping and Evaluation

Symbols in USim are scoped. This means that the effect of a symbol’s definition is confined to the macro or block in
which that symbol is defined. Whenever USim enters a macro or a new input file block, it enters a new scope.

In the case in which SYMBOL is defined in multiple scopes, USim ignores the previously defined SYMBOL for the
duration of the current scope. In the case in which SYMBOL is defined more than once in the current scope, the new
value overrides the previous value defined in the current scope.

This scope is closed once USim leaves the block or macro. That is, the symbol’s definition no longer has an effect
once USim has used the symbol’s value in the macro or block where it was defined and then proceeded to a different
block or macro. Scoping allows the next block or macro to be free to redefine the value of the symbol for its own
purposes.

4 Chapter 1. Basic Concepts
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Global Variables

It is possible to declare a global variable in USim. This is done by first defining the variable, then declaring it global.
For example:

<Block>
$ X = 4
$ global X

</Block>

Will cause the variable X to be equal to 4 outside of the Block. It is important to note that the variable must be defined,
and declared global on seperate lines. For example $ global X = 4 will not define X as a global variable with value 4.

Expression Evaluation

USim evaluates expressions by interpreting them as Python expressions. Python expressions are composed of tokens.
A token is a single element of an expression, such as a constant, identifier, or operation. The preprocessor breaks the
expression string into individual tokens then performs recursive substitution on each token. Once a token is no longer
found to be substitutable, the preprocessor tries to evaluate it as a Python expression. The result of this evaluation will
then be used as the value of this token. All the token values are then concatenated and again evaluated as a Python
expression. This result will then be assigned to the symbol.

Tokenizing, the act of breaking a string into tokens, is performed following the lexical rules of Python. This means
that white spaces are used to delimit tokens, but are otherwise entirely ignored.

Note: A string within matched quotes is treated as a single token with the matching quotes removed.

The input files generated by USim are sensitive to white spaces; as a result, USim has to re-introduce white spaces in
the translation process. By default, tokens are joined without any white spaces. However, if both tokens are of type
string, then a white space is introduced. Also, tokens inside an array (delineated by [ and ]) are delimited by a white
space.

See the Python documentation on the official Python website at http://www.python.org for more information about
Python expressions.

Python Token Evaluator (txpp.py)

The Python preprocessor has the following features:

• It accepts a file, conventionally with suffix .pre, for processing.

• Lines in that file that start with the character $ are processed by the preprocessor.

• Those lines are sent through the python interpreter to for evaluation

• The resulting values are replaced and written to a new file with suffix, .in

For example, suppose one has an input file, myfile.pre, containing,

$ LIGHTSPEED = 2.9979e8
$ LX = 1.e-6
$ NX = 20
$ DX = LX/NX
$ DT = DX/LIGHTSPEED
<Grid thegrid>

numCells = [NX]
lengths = [LX]

1.1. Pre File Syntax 5
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</Grid>
dt = DT

Pressing the Save and Validate button in USimComposer’s Setup tab, or equivalently command line execution of:

<txpp.py directory>/txpp.py --prefile=myfile.prei

produces a file, myfile.in that contains:

#$ LIGHTSPEED = 2.9979e8
# --> LIGHTSPEED = 299790000.0
#$ LX = 1.e-6
# --> LX = 9.9999999999999995e-07
#$ NX = 20
# --> NX = 20
#$ DX = LX/NX
# --> DX = 4.9999999999999998e-08
#$ DT = DX/LIGHTSPEED
# --> DT = 1.6678341505720671e-16

<Grid thegrid>
numCells=[20]
lengths=[9.9999999999999995e-07]

</Grid>

dt=1.6678341505720671e-16

This mechanism facilitates modifying files to change systems size, resolution, or other parameters while keeping
requisite mathematical relationships intact.

The preprocessor imports math, so one can include statements such as:

$ PI = math.pi

and then use the variable PI in the pre file. In addition, the replace occurs for commented lines as well, so the
myfile.pre could have contained the line,

# dx = DX

and then myfile.in would have contained the line:

# dx = 4.9999999999999998e-08

This is useful for printing out intermediate values for, e.g., debugging.

The pre file can be made self executing by adding the stanza:

#!/bin/sh
$NTUTILSDIR/txpp.py --prefile=$0 $*
exit $?

to the top, where NTUTILSDIR is an environment variable that gives the directory of the preprocessor. The prepro-
cessor then knows to skip lines up to exit before processing the file. In addition, the value of any variable named NDIM
defined in the pre file can be modified on the command line with the directive -ndim = 2, for example, to have all
occurrences of NDIM in the file replace by 2 instead of the value defined in the file. This enables writing only a single
pre file for simulations of multiple dimensionalities when the differences in the file follow from the value of NDIM
alone.

If a file fails to validate a brief explanation of what is wrong will be displayed in the Output tab under the Editor
window. Common reasons for a file to fail to invalidate include

6 Chapter 1. Basic Concepts
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1. Using features not available to your USim module. i.e. an example under the USimHS templates will not
validate if you are using a USimHEDP license.

2. A variable being declared as an integer instead of a float or vice versa. i.e. $ VAR = 6 instead of $ VAR = 6.0

3. A macro being called without it’s parent first being imported.

4. A macro has been called with the wrong number of parameters.

Now that we have examined USim pre file syntax, we are ready to discuss the creation of key parameters in the Setup
tab of USimComposer in Key Parameters.

1.2 Key Parameters

USim has the ability to create key parameters. These variables are visible in the Editor pane of the Setup tab in
USimComposer, and they can be modified without the user having to sift through the input file (also called the pre
file). They are useful when creating a base simulation that can be easily modified to simulate different phenomena
within the same base simulation. This tutorial is for power users who wish to use key parameters within their own
simulations and who are familiar with the USimcomposer-intro. As preparation for a discussion of key parameters,
the user must be comfortable with accessing the input file, as discussed in Pre File Syntax.

The two main components of the key parameters feature are the XSim block and the XVar block. An example XSim
block in a run space input file is boxed in red in the below figure, and an example XVar block is boxed in blue.

Fig. 1.2: Example XSim and XVar blocks in a run space input file

A description of the elements of these blocks and their effect on the Parameters view in the USimComposer Setup tab
is given in the following sections.

1.2.1 XSim Block

Given below is a template XSim block that can be modified to fit any file:

1.2. Key Parameters 7
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<XSim simulationName>
shortDescription = "Simulation Name"
description = "Description of the simulation."
longDescription = "Longer description of the simulation."
image = "simulationName.png"
thumbnail = "simulationNameTn.png"

</XSim>

Each line in this block is explained below:

1. image - The image parameter should give the name of a picture, located in the same directory as the .pre file,
that will be given on the right hand side of the Editor pane in the Setup tab. Frequently, this image is used to
illustrate key parameters such as dimensions of a physical structure. 400 by 500 pixels is a good image size.

2. longDescription - This text block will be visible above the image, and is generally used to give a description of
what the simulation does, and what will happen when key parameters are modified.

Fig. 1.3: Where image and longDescription appear in the Parameters View.

The three following parameters are only useful to very advanced users who are creating, and placing input
files in the Examples directory of USimComposer. The examples directory can be found in [USimInstallDirec-
tory]ContentsExamples.

3. thumbnail - This is the small image that is visible when you select an example file, located in the same directory
as the .pre file. 250 x 250 pixels in a good image size.

4. shortDescription - This is the name that will be given to the example file.

5. description - This is the description given in the window on the right side in the examples window.

6. analyzers[SCRIPT] - This will cause USimComposer to load the analysis script specified by SCRIPT, located
in the same directory as the .pre file, for use in the Analyze Tab.

1.2.2 XVar Block

Key parameters can be created in the input, or .pre, file of a USim simulation, and appear in the Setup tab in USim-
Composer as seen below boxed in red.

To create these parameters, the user must modify the .pre file and add XVar blocks, in the same way that the user must
add an XSim block as described in the preceding section. It is the practice of Tech-X developers to first declare the

8 Chapter 1. Basic Concepts
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Fig. 1.4: Select An Example Window

Fig. 1.5: Key parameters

1.2. Key Parameters 9
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primary variables with a default value, then give the XVar blocks for the primary variables below that. Given below is
a template XVar block that can be modified to fit any file:

$ variableName = default value
<XVar variableName>

description = "Description of the variable"
min = minimum value
max = maximum value

</XVar>

Each line in this block is explained below:

1. variableName - The very first line, above the XVar block, sets the default value of the variable.

2. <XVar variableName> - This line, which begins the XVar block, must exactly match the name of the variable
given in the line preceding it.

2. description - This text should describe the variable and will appear when the cursor is placed over the variable
name.

3. min - This is the minimum value for the variable and is optional. This can be very useful with certain simulation
parameters such as cell size that can cause an instability if incorrectly specified.

4. max - This is the maximum value for the variable and is optional.

Note that the name of the key parameter will turn red if there is no value given for the parameter, or if the value is not
greater than or equal to min and less than or equal to max, if they are specified.

10 Chapter 1. Basic Concepts



CHAPTER

TWO

MACROS

2.1 Introduction

USim contains a number of pre-defined macros that are used throughout the example input files available through the
USimComposer interface. The macros are used to help automate the process of setting up certain types of simulations.
Input files can also be generated by external tools, one that we’ve found especially useful is Mako

2.2 Overview

2.2.1 Using Macros in Input Files

A macro is a mechanism to abstract complex input file sequences into (parameterized) tokens. In its simplest form, a
macro provides a way to substitute a code snippet from an input file:

<macro snippet>
line1
line2
line3

</macro>

In this example, every occurrence of the code named snippet in the input file will now be replaced by the three lines
defined between the <macro> and </macro> tags.

For example, you could define a macro to set up a laser pulse like this:

<macro myFluid>

equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA

</Equation>
</macro>

You could then call your myLaser macro within the input file like this:

<Updater hyper>
kind = classicMuscl1d
onGrid = domain
...

myFluid

11
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</Updater>

The USim engine (USim) will expand the input file use of your macro into:

<Updater hyper>
kind = classicMuscl1d
onGrid = domain
...

equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA

</Equation>

</Updater>

Importing Local Macros

It is also possible to define a macro file, and provided that it is in the same directory as your input file, import it. This
is useful when writing one custom macro that will be used over multiple simulations. The macro must have a .mac
extension on it to be imported as a local macro. To extend the example above, say the macro myLaser is in the file
Lasers.mac, the input file would look like this:

$ import fluidModels.mac

<Updater hyper>
kind = classicMuscl1d
onGrid = domain
...

myFluid

</Updater>

USim will expand the input file use of your macro into:

<Updater hyper>
kind = classicMuscl1d
onGrid = domain
...

equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA

</Equation>

</Updater>

The macro definition would remain the exact same. As long as the macro file is imported properly, it is just like having
it defined explicitly in the input file.

12 Chapter 2. Macros
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2.2.2 Macro Parameters

Macros can take parameters, allowing variables to be passed into and used by the macro. Parameters are listed in
parentheses after the macro name in the macro declaration, as in this example:

<macro finiteVolumeData(name, grid, components, write)>
<DataStruct name>
kind = nodalArray
onGrid = grid
numComponents = components
numNodes = 1
writeOut = write

</DataStruct>
</macro>

Once a macro is defined, it can be used by calling it and providing values or symbols for the parameters. The macro
will substitute the parameter values into the body provided. Calling the example above with parameters defined like
this:

finiteVolumeData(density, domain, 1, true)

will create the following code fragment in the processed input file:

<DataStruct name>
kind = nodalArray
onGrid = grid
numComponents = components
numNodes = 1
writeOut = write

</DataStruct>

Note: The parameter substitution happened in the scope of the caller. Parameters do not have scope outside of the
macro in which they are defined.

2.2.3 Macro Overloading

As with symbols, macros can be overloaded within a scope. The particular instance of a macro that is used is deter-
mined by the number of parameters provided at the time of instantiation. This enables the user to write macros with
different levels of parameterization:

<macro circle(x0, y0, r)>
r^2 - ((x-x0)^2 + (y-y0)^2)

</macro>
<macro circle(r)>

circle(0, 0, r)
</macro>

Looking in the example above, whenever the macro circle is used with a single parameter, it creates a circle around
the origin; if you use the macro with 3 parameters, you can specify the center of the circle.

The macro substitution does not occur until the macro instantiation is actually made. This means that you do not have
to define the 3-parameter circle prior to defining the 1-parameter circle, even though the 1-parameter circle refers to
the 3-parameter circle. It is only necessary that the first time the 1-parameter circle is instantiated, that 3-parameter
circle has already been defined, otherwise you will receive an error.

2.2. Overview 13
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2.2.4 Defining Functions Using Macros

Macros can be particularly useful for defining complex mathematical expressions, such as defining functions in expr
lists.

Consider a macro that should simplify the setup of a Gaussian. One could define the following macro:

<macro badGauss(A, x, sigma)>
A * exp(-x^2/sigma)

</macro>

While this is a legitimate macro, an instantiation of the macro via:

badGauss(A0+5, x-3, 2*sigma)

will result in:

A0+5*exp(-x+3^3/2*sigma)

which is probably not the expected result. One alternative is to put parentheses around the parameters whenever they
are used in the macro.

<macro betterGauss(A, x, sigma)>
((A) * exp(-(x)^2/(sigma)))

</macro>

This will ensure that the expressions in parameters will not cause any unexpected side effects. The downside of this
approach, however, is that the macro text is hard to read due to all the parentheses. To overcome this issue, txpp
provides a mechanism to automatically introduce the parentheses around arguments by using a function block

<function goodGauss(A, x, sigma)>
A * exp(-x^2/sigma)

</function>

The previous example will produce the same output as the badGauss macro, but without requiring the additional
parentheses in the macro text.

2.2.5 Importing Files

USim allows input files to be split into individual files, thus enabling macros to be encapsulated into separate libraries.
For example, physical constant definitions or commonly-used geometry setups can be stored in files that can then be
used by many USim simulations. Input files can be nested to arbitrary depth.

Files are imported via the import keyword:

$ import FILENAME

where FILENAME represents the name of the file to be included. txpp applies the standard rules for token substitution
to any tokens after the import token. Quotes around the filename are optional and computed filenames are possible.

2.2.6 Conditionals

The USim preprocessor includes both flow control and conditional statements, similar to other scripting languages.
These features allow the user a great deal of flexibility when creating input files.

A conditional takes either the form:

14 Chapter 2. Macros
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$ if COND
...

$ endif

or

$ if COND
...

$ else
...

$ endif

Conditionals can be arbitrarily nested. All the tokens following the if token are interpreted following the expression
evaluation procedure (see above) and if they evaluate to true, the text following the if statement is inserted into the
output. If the conditional statement evaluates to false, the text after the else is inserted (if present). Note that true
and false in preprocessor macros are evaluated by Python – in addition to evaluating conditional statements such
as x == 1, other tokens can be evaluated. The most common use of this is using 0 for false and 1 for true. Empty
strings are also evaluated to false. For more detailed information, consult the Python documentation.

Example Conditional Statements

$ if TYPE == "MHD"
$ numComponents = 9
$ else
$ numComponents = 5
$ endif

A conditional statement can also use Boolean operators:

$ A = 0
$ B = 0
$ C = 1
#
# Below, D1 is 1 if A, B, or C are non-zero. Otherwise D1=0:
$ D1 = (A) or (B) or (C)
#
# Below, D2 is 1 if A is non-zero or if both B and C are non-zero. Otherwise D2=0:
$ D2 = (A) or ( (B) and (C) )
#
# This can be also be written as an if statement:
$ if (A) or ( (B) and (C) )
$ D3 = 1
$ else $
$ D3 = 0
$ endif

2.2.7 Repetition

For repeated execution, USim provides while loops; these take the form:

$ while COND
.
.
.

$ endwhile

2.2. Overview 15
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which repeatedly inserts the loop body into the output. For example, to create 10 stacked circles using the circle macro
from above, you could use:

$ n = 10
$ while n > 0 circle(n)
$ n = n - 1
$ endwhile

2.2.8 Recursion

Macros can be called recursively. E.g. the following computes the Fibonacci numbers:

<macro fib(a)>
$ if a < 2

a
$ else

fib(a-1)+fib(a-2)
$ endif

</macro>
fib(7)

Note: There is nothing preventing you from creating infinitely recursive macros; if terminal conditions are not given
for the recursion, infinite loops can occur.

2.2.9 Symbol Definition on the Command Line

txpp allows symbols to be defined on the command line. These definitions override any symbol definitions in the
outer-most (global) scope. This allows you to set a default value inside an input file that can then be overridden on the
command line if needed.

For example, if the following is in the outermost scope of the input file (outside of any blocks or macros):

$ X = 3
X

Then this will result in a line containing 3 in the output. However, if you were to invoke txpp via:

txpp.py -DX=4

then this will result in a line 4.

However, if you were to define X inside a block (not in the global scope), such as:

<block foo>
$ X = 3
X

</block>

then X will always be 3, no matter what value for X is specified on the command line.

2.2.10 Requires

When writing reusable macros, best practices compel macro authors to help ensure that the user can be prevented from
making obvious mistakes. One such mechanism is the requires directive, which terminates translation if one or more
symbols are not defined at the time. This allows users to write macros that depend on symbols that are not passed as
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parameters. For example, the following code snippet will not be processed if the symbol NDIM has not been previously
defined:

<macro circle(r)>
$requires NDIM
$if NDIM == 2 r^2 - x^2 - y^2
$endif
$if NDIM == 3 r^2 - x^2 - y^2 - z^2
$endif

</macro>

2.2.11 String Concatenation

One task that is encountered often during the simulation process is naming groups of similar blocks, e.g. similar
species. Macros can allow us to concatenate strings to make this process more clean and simple. However, based on
the white-spacing rules, strings will always be concatenated with a space between them. For example,

$a = hello
$b = world
a b
will result in
hello world

However, we can get around this rule to get the desired output with the following:

<macro concat(a, b)>
$ tmp = 'a tmp b'

</macro>

Now when calling

concat(hello, world)

the result will be:

helloworld

The first line appends a single quote to a and stores the result in tmp. The next line then puts the token a together with
the token b. As they are now no longer two strings, they will be concatenated without a space. The final evaluation of
the resulting string then removes the quotes around it, resulting in the desired output.

Now that we have examined macros in an overview, we are ready for Introduction.
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CHAPTER

THREE

BASIC USIM SIMULATIONS

The following tutorials can be worked through with a USimBase license and utilize Macros to perform simulations
using USim.

3.1 Using USim to solve the Euler Equations

In this tutorial, we demonstrate the basic methods used by USim to solve the Euler equations. This will serve as a
foundation for understanding how to run any simulation in USim.

Contents

• Using USim to solve the Euler Equations
– The Euler Equations
– Initializing a Simulation
– Adding a Simulation Grid
– Creating a Fluid Simulation
– Evolving the Fluid
– Putting it all Together
– An Example Simulation

3.1.1 The Euler Equations

This tutorial is based on the quickstart-shocktube example. The Shock Tube simulation is designed to set up a variety
of tube simulations including those by Einfeldt, Sod, Liska & Wendroff, Brio & Wu, and Ryu & Jones. In this tutorial,
we will look at the Sod Shock Tube based on the classic paper:

Sod, Gary A. "A survey of several finite difference methods for
systems of nonlinear hyperbolic conservation laws.";
Journal of Computational Physics 27.1 (1978): 1-31.

Note: It is important to note that while we will be following the quickstart-shocktube example, we will not reproduce
the example file in its entirety. The shockTube example is designed to set up a variety of simulations, and by using
“Flags” (if statements) in the shockTube.pre file, only certain parts of the file are used when simulating the Sod Shock
Tube. Therefore, at the end of this tutorial, our input will not be an exact copy of the shockTube.pre file but will
directly represent only the Sod Shock portion of it.

In this example we will look at the use of equations for inviscid compressible hydrodynamics (the Euler equations).
It is appropriate to use these equations for transonic, supersonic and hypersonic flows (Mach numbers of 0.1 and

19



USimInDepth, Release 3.0.1

above) where compressibility effects are important and at high Reynolds numbers where the effects of viscosity and
conductivity are relatively unimportant.

The Euler equations for an adiabatic gas can be written as a hyperbolic conservation law, which has the form:

𝜕q

𝜕𝑡
+ ∇ · [ℱ (w)] = 0

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux tensor
computed from a vector of primitive variables, (e.g. density, velocity, pressure), and w = w(q). Assuming an
adiabatic equations of state, the Euler equations can be written in this form such that:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃 )u] = 0

Here, I is the identity matrix, 𝑃 = 𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and 𝛾 is
the adiabatic index (ratio of specific heats).

The Euler equations are represented in USim by refmanual-eulerEqn. USim solves these equations by calculating an
upwind approximation of the flux tensor, ℱ(w) (see refmanual-classicMUSCL) and then using this approximation to
advance the conserved state from time 𝑡 to 𝑡+ ∆𝑡 (see refmanual-multiUpdater).

In this tutorial, we introduce the structure of a USim simulation, using quickstart-shocktube as an example. At the end
of this tutorial, you will understand how to setup simple USim simulations on structured meshes.

3.1.2 Initializing a Simulation

The first step in any USim simulation is to import the macros that are needed to define the simulation. For the
ShockTube example, there are two macros that are needed:

$ import fluidsBase.mac
$ import euler.mac

These macros provide basic capabilities for setting up a USim simulation of the Euler Equations. We can now de-
fine global parameters that tell USim basic information about the simulation. This is done through the use of the
initializeFluidSimulation macro:

initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

The parameters for the version of the macro used for the refmanual-eulerEqn are documented at euler-macro. For
completeness, we include them here, showing how the parameters specified here map onto the parameters used in the
initializeFluidSimulation macro:

NDIM (dimensionality): 1,2,3. Number of dimensions for the simulation

0.0 (tStart): Start time for simulation

END_TIME (tEnd): End time for simulation

NUMDUMPS (numFrames): Number of data outputs

CFL (cflNum): Cfl limit, typically ∆𝑡 = 𝑐𝑓𝑙𝑁𝑢𝑚 * ∆𝑥/𝑉𝑚𝑎𝑥

GAS_GAMMA (gammaIn): Adiabatic index for ideal gas eqn. of state. Pressure = (gammaIn - 1.0) *
density * internal energy

WRITE_RESTART (writeRestartIn): Output data required for simulation restart
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DEBUG (debugIn): Run simulation in debug mode

USim includes the ability to perform in place substitution of variables within the input file, as described in Symbol
Definition. This means that we can define the options given above earlier in the input file and USim will replace them
in the initializeFluidSimulation macro:

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "SOD"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

Note that we have included a range of other variables that are defined in the quickstart-shocktube example. We will
refer to these later in this tutorial as needed. In the above, the variable TEND is given in units of the the number of
times a sound wave crosses the grid. In order to use this to specify the end time for the simulation (END_TIME), we
convert this to have units of time through:

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

The specification of the CFL parameter is described in the next section. Our simulation starts off as:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0

3.1. Using USim to solve the Euler Equations 21



USimInDepth, Release 3.0.1

# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "SOD"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

3.1.3 Adding a Simulation Grid

The next step in setting up a USim simulation is to specify a simulation grid. The quickstart-shocktube uses a
refmanual-ntcart grid, which is added to the simulation through the addGrid macro:

addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

The options for this macro are documented in grid-macro. For completeness, we include them here:

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [ XMIN YMIN ZMIN ]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [ XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [ NX NY NZ ]

periodicDirections: List of directions that are periodic

periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ 0 1 2 ] (x,y,z-directions periodic)
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The options are setup in the ShockTube example according to the dimensionality of the simulation, as specified by the
variable NDIM above:

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

Note as well that the CFL condition that is used for the simulation changes according to the dimension of the simula-
tion. This is because the scheme for solving the hyperbolic equations has different stability requirements in different
dimensions:

CFL <=
1

NDIM

So, our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "SOD"
# adiabatic index
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$GAS_GAMMA = 5.0/3.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
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$ endif

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

3.1.4 Creating a Fluid Simulation

The next step in setting up a USim simulation is to create the basic set of variables needed to simulate the fluid. This
is accomplished through the createFluidSimulation macro, documented at euler-macro:

createFluidSimulation()

Now that these variables have been automatically created via the macro, it is possible to specify the distribution of
fluid on the grid. This is a three-step process:

1. Use addVariable to add variables that are independent of grid position.

2. Use addPreExpression to add quantities that are functions of grid position, variables and any previously defined
PreExpression in this block. Evaluated before expressions and the result is not accessible outside of this block.
Any number of PreExpressions can be added.

3. Use addExpression to define each initial condition for the fluid. There is one expression for density, each
component of momentum and the total energy. The order of the exprssions correspond to the order in the state
vector and there can only be one expression per entry in the state vector.

For the ShockTube example, the variables added in Step 1 in the above process are:

addVariable(pi_value,math.pi)
addVariable(gas_gamma,GAS_GAMMA)
addVariable(densityL,DENSITY_L)
addVariable(densityR,DENSITY_R)
addVariable(pressureL,PRESSURE_L)
addVariable(pressureR,PRESSURE_R)
addVariable(normalVelocityL,NORMAL_VELOCITY_L)
addVariable(normalVelocityR,NORMAL_VELOCITY_R)
addVariable(perpendicularVelocityL,PERPENDICULAR_VELOCITY_L)
addVariable(perpendicularVelocityR,PERPENDICULAR_VELOCITY_R)
addVariable(tangentialVelocityL,TANGENTIAL_VELOCITY_L)
addVariable(tangentialVelocityR,TANGENTIAL_VELOCITY_R)

The variables are then used in the PreExpressions that are defined in Step 2:

addPreExpression(rho = if (x>0.0, densityR, densityL))
addPreExpression(pr = if (x>0.0, pressureR, pressureL))
addPreExpression(vx = if (x>0.0, normalVelocityR, normalVelocityL))
addPreExpression(vy = if (x>0.0, perpendicularVelocityR, perpendicularVelocityL))
addPreExpression(vz = if (x>0.0, tangentialVelocityR, tangentialVelocityL))

Finally, these PreExpressions are used to specify the initial conditions define in Step 3:

addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))
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The ShockTube example includes many different initial conditions that are based on a range of cases proposed in
the literature. The simples case is the SOD shock tube, specified through $SHOCK_TUBE = “SOD” above. This
corresponds to the following variable definitions:

$ DENSITY_L = $3.0*REFERENCE_DENSITY$
$ DENSITY_R = $0.125*REFERENCE_DENSITY$
$ PRESSURE_L = $1.0*REFERENCE_PRESSURE$
$ PRESSURE_R = $0.1*REFERENCE_PRESSURE$
$ NORMAL_VELOCITY_L = 0.0
$ NORMAL_VELOCITY_R = 0.0
$ PERPENDICULAR_VELOCITY_L = 0.0
$ PERPENDICULAR_VELOCITY_R = 0.0
$ TANGENTIAL_VELOCITY_L = 0.0
$ TANGENTIAL_VELOCITY_R = 0.0

Our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "SOD"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$
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$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

# Parameters to specify the fluid state at t=0.0
$ DENSITY_L = $3.0*REFERENCE_DENSITY$
$ DENSITY_R = $0.125*REFERENCE_DENSITY$
$ PRESSURE_L = $1.0*REFERENCE_PRESSURE$
$ PRESSURE_R = $0.1*REFERENCE_PRESSURE$
$ NORMAL_VELOCITY_L = 0.0
$ NORMAL_VELOCITY_R = 0.0
$ PERPENDICULAR_VELOCITY_L = 0.0
$ PERPENDICULAR_VELOCITY_R = 0.0
$ TANGENTIAL_VELOCITY_L = 0.0
$ TANGENTIAL_VELOCITY_R = 0.0

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(pi_value,math.pi)
addVariable(gas_gamma,GAS_GAMMA)
addVariable(densityL,DENSITY_L)
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addVariable(densityR,DENSITY_R)
addVariable(pressureL,PRESSURE_L)
addVariable(pressureR,PRESSURE_R)
addVariable(normalVelocityL,NORMAL_VELOCITY_L)
addVariable(normalVelocityR,NORMAL_VELOCITY_R)
addVariable(perpendicularVelocityL,PERPENDICULAR_VELOCITY_L)
addVariable(perpendicularVelocityR,PERPENDICULAR_VELOCITY_R)
addVariable(tangentialVelocityL,TANGENTIAL_VELOCITY_L)
addVariable(tangentialVelocityR,TANGENTIAL_VELOCITY_R)

# Step 2: Add Pre-Expressions
addPreExpression(rho = if (x>0.0, densityR, densityL))
addPreExpression(pr = if (x>0.0, pressureR, pressureL))
addPreExpression(vx = if (x>0.0, normalVelocityR, normalVelocityL))
addPreExpression(vy = if (x>0.0, perpendicularVelocityR, perpendicularVelocityL))
addPreExpression(vz = if (x>0.0, tangentialVelocityR, tangentialVelocityL))

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))

3.1.5 Evolving the Fluid

USim implements the well-known MUSCL scheme to advance the conserved variables in time. There is a simple
macro that can be called to implement this scheme as shown below:

finiteVolumeScheme(DIFFUSIVE)

This macro is documented at euler-macro. It’s purpose is to compute the numerical flux for the hyperbolic system:

∇ · [ℱ (w)] − 𝒮 (w)

The next part of evolving the fluid is to apply boundary conditions at the left and right of the domain to ensure that
at the next time step, physically-valid data is used to update the conserved state. Without this, the simulation will
fail. It is possible to specify arbitrary boundary conditions in USim. For the Sod shock tube example considered here,
appropriate boundary conditions are outflow (“open”) boundary conditions at both ends of the domain

boundaryCondition(copy,left)
boundaryCondition(copy,right)

The copy boundary condition block is described in refmanual-copy. This boundary condition updater copies the values
on the layer next to the ghost cells into the ghost cells - this is equivalent to a zero derivative boundary condition. If we
are evolving in more than one-dimension, we have to specify boundary conditions on the rest of the domain boundaries.
For this example, this is done using periodic boundary conditions (refmanual-periodicCartBc):

boundaryCondition(periodic)

The final element of advancing the conserved quantities from time 𝑡 to 𝑡 + ∆𝑡 is to apply a time integration scheme,
specified through:

timeAdvance(TIME_ORDER)
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This applies an explicit Runge-Kutta time-integration scheme with the order of accuracy determined by the
TIME_ORDER parameter. TIME_ORDER can be one of first, second, third or fourth according to the desired or-
der of accuracy.

3.1.6 Putting it all Together

The final step in the USim simulation is to add:

runFluidSimulation()

This tells USim that we’re done specifying the simulation and that it can be run. So, our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "SOD"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
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$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

# Parameters to specify the fluid state at t=0.0
$ DENSITY_L = $3.0*REFERENCE_DENSITY$
$ DENSITY_R = $0.125*REFERENCE_DENSITY$
$ PRESSURE_L = $1.0*REFERENCE_PRESSURE$
$ PRESSURE_R = $0.1*REFERENCE_PRESSURE$
$ NORMAL_VELOCITY_L = 0.0
$ NORMAL_VELOCITY_R = 0.0
$ PERPENDICULAR_VELOCITY_L = 0.0
$ PERPENDICULAR_VELOCITY_R = 0.0
$ TANGENTIAL_VELOCITY_L = 0.0
$ TANGENTIAL_VELOCITY_R = 0.0

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(pi_value,math.pi)
addVariable(gas_gamma,GAS_GAMMA)
addVariable(densityL,DENSITY_L)
addVariable(densityR,DENSITY_R)
addVariable(pressureL,PRESSURE_L)
addVariable(pressureR,PRESSURE_R)
addVariable(normalVelocityL,NORMAL_VELOCITY_L)
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addVariable(normalVelocityR,NORMAL_VELOCITY_R)
addVariable(perpendicularVelocityL,PERPENDICULAR_VELOCITY_L)
addVariable(perpendicularVelocityR,PERPENDICULAR_VELOCITY_R)
addVariable(tangentialVelocityL,TANGENTIAL_VELOCITY_L)
addVariable(tangentialVelocityR,TANGENTIAL_VELOCITY_R)

# Step 2: Add Pre-Expressions
addPreExpression(rho = if (x>0.0, densityR, densityL))
addPreExpression(pr = if (x>0.0, pressureR, pressureL))
addPreExpression(vx = if (x>0.0, normalVelocityR, normalVelocityL))
addPreExpression(vy = if (x>0.0, perpendicularVelocityR, perpendicularVelocityL))
addPreExpression(vz = if (x>0.0, tangentialVelocityR, tangentialVelocityL))

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(copy,left)
boundaryCondition(copy,right)
boundaryCondition(periodic)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the shockTube.in file. In the .in file all macros are expanded to produce input
blocks.

Most USimBase simulations have a underlying pattern, that can be represented as:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation

3.1. Using USim to solve the Euler Equations 31



USimInDepth, Release 3.0.1

createFluidSimulation()

# Specify initial condition
# Step 1: Add Variables
addVariable(NAME,<value>)

# Step 2: Add Pre-Expressions
addPreExpression(<PreExpression>)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(<boundaryCondition,entity>)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

We will see this pattern repeated through USimBase.

3.1.7 An Example Simulation

The input file for the problem Shock Tube in the USimBase package demonstrates each of the concepts described
above to evolve the classic Sod Shock tube problem in one-dimensional hydrodynamics. Executing this input file
within USimComposer and switching to the Visualize tab yields the plots shown in Fig. 3.1.

3.2 Using USim to solve the Magnetohydrodynamic Equations

In Using USim to solve the Euler Equations we discussed the basic methods used by USim to solve the Euler equations.
In this tutorial, we show how USim can be used to integrate the magnetohydrodynamic (MHD) equations for problems
in one-dimension. This tutorial is based on the quickstart-shocktube example. The Shock Tube simulation is designed
to set up a variety of tube simulations including those by Einfeldt, Sod, Liska & Wendroff, Brio & Wu, and Ryu &
Jones. In this tutorial, we will look at the Brio & Wu shock Tube, described by:

Brio, M., & Wu, C.~C. (1988), Journal of Computational Physics, 75, 400

Note: While we will be following the quickstart-shocktube example, we will not reproduce the example file in its
entirety. The shockTube example is designed to set up a variety of simulations, and by using “Flags” (if statements) in
the shockTube.pre file, only certain parts of the file are used when simulating the Brio & Wu Shock Tube. Therefore,
at the end of this tutorial, our input will not be an exact copy of the shockTube.pre file but will directly represent only
the Brio & Wu Shock Tube portion of it.

In this example we will look at the use of equations for ideal compressible magnetohydrodynamics (the MHD equa-
tions) in one-dimension. It is appropriate to use these equations for transonic, supersonic and hypersonic flows (Mach
numbers of 0.1 and above) where compressibility effects are important, at high Reynolds numbers where the effects
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Fig. 3.1: Visualization tab in USimComposer after executing the input file for this lesson.
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of viscosity and thermal conductivity are relatively unimportant and at high magnetic Reynolds number where Ohmic
resistivity is relatively unimportant.

We will follow the pattern established in Using USim to solve the Euler Equations in order that the user can see the
differences between solving the MHD equations and the Euler equations. These are summarized in Notes at the end
of each section of the tutorial.

Contents

• Using USim to solve the Magnetohydrodynamic Equations
– The Magnetohydrodynamic Equations
– Solving the MHD Equations in One Dimension
– Adding a Simulation Grid
– Creating a Fluid Simulation
– Evolving the Fluid
– Putting it all Together
– An Example Simulation
– Combining Euler and MHD Equations in the Same Input File

3.2.1 The Magnetohydrodynamic Equations

The MHD equations for an adiabatic gas can be written as a hyperbolic conservation law, which has the form:

𝜕q

𝜕𝑡
+ ∇ · [ℱ (w)] = 0

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux tensor
computed from a vector of primitive variables, (e.g. density, velocity, pressure), and w = w(q). Assuming an
adiabatic equations of state, the MHD equations can be written in this form such that:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃 + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃 )u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, I is the identity matrix, 𝑃 = 𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and 𝛾 is
the adiabatic index (ratio of specific heats). The quantity 𝑐fast corresponds to the fastest wave speed over the entire
simulation domain; divergence errors are advected out of the domain with this speed.

The MHD equations are represented in USim by refmanual-mhdDednerEqn. USim solves these equations by calcu-
lating an upwind approximation of the flux tensor, ℱ(w) (see refmanual-classicMUSCL) and then using this approxi-
mation to advance the conserved state from time 𝑡 to 𝑡+ ∆𝑡 (see refmanual-multiUpdater).

3.2.2 Solving the MHD Equations in One Dimension

The first step in any USim simulation is to import the macros that are needed to define the simulation. For the
ShockTube example, there are two macros that are needed:
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$ import fluidsBase.mac
$ import idealmhd.mac

These macros provide basic capabilities for setting up a USim simulation of the ideal MHD Equations. We can now
define global parameters that tell USim basic information about the simulation. This is done through the use of the
initializeFluidSimulation macro:

initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)

The parameters for the version of the macro used for the refmanual-mhdDednerEqn are documented at idealmhd-
macro. For completeness, we include them here, showing how the parameters specified here map onto the parameters
used in the initializeFluidSimulation macro:

NDIM (dimensionality): 1,2,3. Number of dimensions for the simulation

0.0 (tStart): Start time for simulation

END_TIME (tEnd): End time for simulation

NUMDUMPS (numFrames): Number of data outputs

CFL (cflNum): Cfl limit, typically ∆𝑡 = 𝑐𝑓𝑙𝑁𝑢𝑚 * ∆𝑥/𝑉𝑚𝑎𝑥

GAS_GAMMA (gammaIn): Adiabatic index for ideal gas eqn. of state. Pressure = (gammaIn - 1.0) *
density * internal energy

MU0 (muIn): Permeability of free space

WRITE_RESTART (writeRestartIn): Output data required for simulation restart

DEBUG (debugIn): Run simulation in debug mode

USim includes the ability to perform in place substitution of variables within the input file, as described in Symbol
Definition. This means that we can define the options given above earlier in the input file and USim will replace them
in the initializeFluidSimulation macro:

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "BRIOWU"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# permeability of free-space
$MU0 = 1.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
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# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

Note that we have included a range of other variables that are defined in the quickstart-shocktube example. We will
refer to these later in this tutorial as needed. In the above, the variable TEND is given in units of the the number of
times a sound wave crosses the grid. In order to use this to specify the end time for the simulation (END_TIME), we
convert this to have units of time through:

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

The specification of the CFL parameter is described in the next section. Our simulation starts off as:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import idealmhd.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "BRIOWU"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# permeability of free-space
$MU0 = 1.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
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$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)

Note: Compared to the Euler equations discussed in Using USim to solve the Euler Equations, there are three
differences:

1. We have replaced $ import euler.mac with $ import idealmhd.mac to change the system of equations from the
Euler equations to the ideal MHD equations.

2. We have defined the permeability of free-space, 𝜇0 through the parameter MU0 (here MU0 = 1.0).

3. We have added 𝜇0 to the parameters used to initialized the simulation, replacing:

initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

with:

initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)

3.2.3 Adding a Simulation Grid

The next step in setting up a USim simulation is to specify a simulation grid. The quickstart-shocktube uses a
refmanual-ntcart grid, which is added to the simulation through the addGrid macro:

addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

This options for this macro are documented in grid-macro. For completeness, we include them here:

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [ XMIN YMIN ZMIN ]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [ XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [ NX NY NZ ]

periodicDirections: List of directions that are periodic

periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ 0 1 2 ] (x,y,z-directions periodic)

The options are setup in the ShockTube example according to the dimensionality of the simulation, as specified by the
variable NDIM above:

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
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$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

Note as well that the CFL condition that is used for the simulation changes according to the dimension of the simula-
tion. This is because the scheme for solving the hyperbolic equations has different stability requirements in different
dimensions:

CFL <=
1

NDIM

So, our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import idealmhd.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "BRIOWU"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# permeability of free-space
$MU0 = 1.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
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# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

Note: The process of adding the simulation grid is identical for both the Euler equations and the MHD equations.
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This is true for all USim simulations.

3.2.4 Creating a Fluid Simulation

The next step in setting up a USim simulation is to create the basic set of variables need to simulate the fluid. This is
accomplished through the createFluidSimulation macro, documented at idealmhd-macro:

createFluidSimulation()

Now that these variables have been created, it is possible to specify the distribution of fluid on the grid. This is a
three-step process:

1. Use addVariable to add variables that are independent of grid position.

2. Use addPreExpression to add quantities that are functions of grid position, variables and any previously defined
PreExpression in this block. Evaluated before expressions and the result is not accessible outside of this block.
Any number of PreExpressions can be added.

3. Use addExpression to define each initial condition for the fluid. There is one expression for density, each
component of momentum and the total energy. The order of the exprssions correspond to the order in the state
vector and there can only be one expression per entry in the state vector.

For the Brio & Wu variant of the ShockTube example, the variables added in Step 1 in the above process are:

addVariable(pi_value,math.pi)
addVariable(gas_gamma,GAS_GAMMA)
addVariable(densityL,DENSITY_L)
addVariable(densityR,DENSITY_R)
addVariable(pressureL,PRESSURE_L)
addVariable(pressureR,PRESSURE_R)
addVariable(normalVelocityL,NORMAL_VELOCITY_L)
addVariable(normalVelocityR,NORMAL_VELOCITY_R)
addVariable(perpendicularVelocityL,PERPENDICULAR_VELOCITY_L)
addVariable(perpendicularVelocityR,PERPENDICULAR_VELOCITY_R)
addVariable(tangentialVelocityL,TANGENTIAL_VELOCITY_L)
addVariable(tangentialVelocityR,TANGENTIAL_VELOCITY_R)
addVariable(mu0,MU0)
addVariable(normalFieldL,NORMAL_FIELD_L)
addVariable(normalFieldR,NORMAL_FIELD_R)
addVariable(perpendicularFieldL,PERPENDICULAR_FIELD_L)
addVariable(perpendicularFieldR,PERPENDICULAR_FIELD_R)
addVariable(tangentialFieldL,TANGENTIAL_FIELD_L)
addVariable(tangentialFieldR,TANGENTIAL_FIELD_R)

The variables are then used in the PreExpressions that are defined in Step 2:

addPreExpression(rho = if (x>0.0, densityR, densityL))
addPreExpression(pr = if (x>0.0, pressureR, pressureL))
addPreExpression(vx = if (x>0.0, normalVelocityR, normalVelocityL))
addPreExpression(vy = if (x>0.0, perpendicularVelocityR, perpendicularVelocityL))
addPreExpression(vz = if (x>0.0, tangentialVelocityR, tangentialVelocityL))
addPreExpression(bx = if (x>0.0, normalFieldR, normalFieldL))
addPreExpression(by = if (x>0.0, perpendicularFieldR, perpendicularFieldL))
addPreExpression(bz = if (x>0.0, tangentialFieldR, tangentialFieldL))
addPreExpression(psi = 0.0)

Finally, these PreExpressions are used to specify the initial conditions defined in Step 3:
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addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression(pr/(gas_gamma-1.0) + 0.5*rho*(vx*vx+vy*vy+vz*vz)+0.5*((bx*bx+by*by+bz*bz)/mu0))
addExpression(bx)
addExpression(by)
addExpression(bz)
addExpression(psi)

The ShockTube example includes many different initial conditions that are based on a range of cases proposed in the
literature. The Brio & Wu shock tube is specified through $SHOCK_TUBE = “BRIOWU” above. This corresponds to
the following variable definitions:

$ DENSITY_L = $1.0*REFERENCE_DENSITY$
$ DENSITY_R = $0.125*REFERENCE_DENSITY$
$ PRESSURE_L = $1.0*REFERENCE_PRESSURE$
$ PRESSURE_R = $0.1*REFERENCE_PRESSURE$
$ NORMAL_VELOCITY_L = 0.0
$ NORMAL_VELOCITY_R = 0.0
$ PERPENDICULAR_VELOCITY_L = 0.0
$ PERPENDICULAR_VELOCITY_R = 0.0
$ TANGENTIAL_VELOCITY_L = 0.0
$ TANGENTIAL_VELOCITY_R = 0.0
$ NORMAL_FIELD_L = $0.75*math.sqrt(REFERENCE_DENSITY)$
$ NORMAL_FIELD_R = $0.75*math.sqrt(REFERENCE_DENSITY)$
$ PERPENDICULAR_FIELD_L = $1.0*math.sqrt(REFERENCE_DENSITY)$
$ PERPENDICULAR_FIELD_R = $-1.0*math.sqrt(REFERENCE_DENSITY)$
$ TANGENTIAL_FIELD_L = 0.0
$ TANGENTIAL_FIELD_R = 0.0

Note that this initialization procedure sets up up the following initial condition:

𝜌 = 1.0𝜌0 𝑥 ≤ 0.0 (3.-5)
𝜌 = 0.125𝜌0 𝑥 > 0.0 (3.-4)
𝑃𝑔 = 1.0𝑃0 𝑥 ≤ 0.0 (3.-3)
𝑃𝑔 = 0.1𝑃0 𝑥 > 0.0 (3.-2)
𝑏𝑦 =

√
𝜌0 𝑥 ≤ 0.0 (3.-1)

𝑏𝑦 = −√
𝜌0 𝑥 > 0.0 (3.0)

𝑏𝑥 = 0.75
√
𝜌0 (3.1)

where 𝜌0, 𝑃0 are the reference density and pressure respectively. Our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import idealmhd.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "BRIOWU"
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# adiabatic index
$GAS_GAMMA = 5.0/3.0
# permeability of free-space
$MU0 = 1.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
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$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

# Parameters to specify the fluid state at t=0.0
$ DENSITY_L = $1.0*REFERENCE_DENSITY$
$ DENSITY_R = $0.125*REFERENCE_DENSITY$
$ PRESSURE_L = $1.0*REFERENCE_PRESSURE$
$ PRESSURE_R = $0.1*REFERENCE_PRESSURE$
$ NORMAL_VELOCITY_L = 0.0
$ NORMAL_VELOCITY_R = 0.0
$ PERPENDICULAR_VELOCITY_L = 0.0
$ PERPENDICULAR_VELOCITY_R = 0.0
$ TANGENTIAL_VELOCITY_L = 0.0
$ TANGENTIAL_VELOCITY_R = 0.0
$ NORMAL_FIELD_L = $0.75*math.sqrt(REFERENCE_DENSITY)$
$ NORMAL_FIELD_R = $0.75*math.sqrt(REFERENCE_DENSITY)$
$ PERPENDICULAR_FIELD_L = $1.0*math.sqrt(REFERENCE_DENSITY)$
$ PERPENDICULAR_FIELD_R = $-1.0*math.sqrt(REFERENCE_DENSITY)$
$ TANGENTIAL_FIELD_L = 0.0
$ TANGENTIAL_FIELD_R = 0.0

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(pi_value,math.pi)
addVariable(gas_gamma,GAS_GAMMA)
addVariable(densityL,DENSITY_L)
addVariable(densityR,DENSITY_R)
addVariable(pressureL,PRESSURE_L)
addVariable(pressureR,PRESSURE_R)
addVariable(normalVelocityL,NORMAL_VELOCITY_L)
addVariable(normalVelocityR,NORMAL_VELOCITY_R)
addVariable(perpendicularVelocityL,PERPENDICULAR_VELOCITY_L)
addVariable(perpendicularVelocityR,PERPENDICULAR_VELOCITY_R)
addVariable(tangentialVelocityL,TANGENTIAL_VELOCITY_L)
addVariable(tangentialVelocityR,TANGENTIAL_VELOCITY_R)
addVariable(mu0,MU0)
addVariable(normalFieldL,NORMAL_FIELD_L)
addVariable(normalFieldR,NORMAL_FIELD_R)
addVariable(perpendicularFieldL,PERPENDICULAR_FIELD_L)
addVariable(perpendicularFieldR,PERPENDICULAR_FIELD_R)
addVariable(tangentialFieldL,TANGENTIAL_FIELD_L)
addVariable(tangentialFieldR,TANGENTIAL_FIELD_R)

# Step 2: Add Pre-Expressions
addPreExpression(rho = if (x>0.0, densityR, densityL))
addPreExpression(pr = if (x>0.0, pressureR, pressureL))
addPreExpression(vx = if (x>0.0, normalVelocityR, normalVelocityL))
addPreExpression(vy = if (x>0.0, perpendicularVelocityR, perpendicularVelocityL))
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addPreExpression(vz = if (x>0.0, tangentialVelocityR, tangentialVelocityL))
addPreExpression(bx = if (x>0.0, normalFieldR, normalFieldL))
addPreExpression(by = if (x>0.0, perpendicularFieldR, perpendicularFieldL))
addPreExpression(bz = if (x>0.0, tangentialFieldR, tangentialFieldL))
addPreExpression(psi = 0.0)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy, magnetic field and correction potential
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression(pr/(gas_gamma-1.0) + 0.5*rho*(vx*vx+vy*vy+vz*vz)+0.5*((bx*bx+by*by+bz*bz)/mu0))
addExpression(bx)
addExpression(by)
addExpression(bz)
addExpression(psi)

Note: Compared to the Euler equations discussed in Using USim to solve the Euler Equations, there are three
important differences in specifying the initial conditions:

1. We have to specify the three components of the magnetic field, here these are denoted 𝑏{𝑥,𝑦,𝑧}.

2. We have to specify the correction potential, here denoted, psi. Typically, 𝜓 = 0 at 𝑡 = 0.

3. We have to change the definition of the total energy from 𝐸 = 𝑃
Γ−1 + 𝜌|u|2

2 to 𝐸 = 𝑃
Γ−1 + 𝜌|u|2

2 + |b|2
2 ; that is

we include the contribution of the magnetic field to the total energy

3.2.5 Evolving the Fluid

USim implements the well-known MUSCL scheme to advance the conserved variables in time. There is a simple
macro that can be called to implement this scheme as shown below:

finiteVolumeScheme(DIFFUSIVE)

This macro is documented at idealmhd-macro. It’s purpose is to compute the numerical flux for the hyperbolic system:

∇ · [ℱ (w)] − 𝒮 (w)

The next part of evolving the fluid is to apply boundary conditions at the left and right of the domain to ensure that at
the next time step, physically-valid data is used to update the conserved state. Without this, the simulation will fail. It
is possible to specify arbitrary boundary conditions in USim. For the Brio & Wu shock tube example considered here,
appropriate boundary conditions are outflow (“open”) boundary conditions at both ends of the domain

boundaryCondition(copy,left)
boundaryCondition(copy,right)

The copy boundary condition block is described in refmanual-copy. This boundary condition updater copies the values
on the layer next to the ghost cells into the ghost cells - this is equivalent to a zero derivative boundary condition. If we
are evolving in more than one-dimension, we have to specify boundary conditions on the rest of the domain boundaries.
For this example, this is done using periodic boundary conditions (refmanual-periodicCartBc):

boundaryCondition(periodic)

The final element of advancing the conserved quantities from time 𝑡 to 𝑡 + ∆𝑡 is to apply a time integration scheme,
specified through:
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timeAdvance(TIME_ORDER)

This applies an explicit Runge-Kutta time-integration scheme with the order of accuracy determined by the
TIME_ORDER parameter. TIME_ORDER can be one of first, second, third or fourth according to the desired or-
der of accuracy.

Note: The method for evolving the fluid is identical for the Euler equations and the MHD equations in one-dimension.

3.2.6 Putting it all Together

The final step in the USim simulation is to add:

runFluidSimulation()

This tells USim that we’re done specifying the simulation and that it can be run. So, our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import idealmhd.mac

# X-extent of domain
$PAR_LENGTH = 1.0
# Y-extent of domain
$PERP_LENGTH = 1.0
# Zones parallel to shock normal direction
$PAR_ZONES = 256
# Zones perpendicular to shock normal direction
$PERP_ZONES = 256
# Shock tube to solve
$SHOCK_TUBE = "BRIOWU"
# adiabatic index
$GAS_GAMMA = 5.0/3.0
# permeability of free-space
$MU0 = 1.0
# Atmospheric Pressure
$REFERENCE_PRESSURE = 1.0 # [Pa]
# density of air
$REFERENCE_DENSITY = 1.0 # [kg/m^3]
# end time for simulation (units of # of sound wave crossings)
$TEND = 0.125
# number of frames
$NUMDUMPS = 10
# Whether to use a diffusive (but robust) integration scheme
$DIFFUSIVE = False
# Order in time
$TIME_ORDER = "second"
# Write data for restarting the simulation
$WRITE_RESTART = False
# Output info for debugging purposes
$DEBUG = False
# Default dimensionality
$NDIM = 1

# nominal speed of sound
$ c0 = math.sqrt(GAS_GAMMA*REFERENCE_PRESSURE/REFERENCE_DENSITY) # [m/s]

# Set end time according to (user specified)
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# number of times a wave crosses the box.
$END_TIME = $PERP_LENGTH*TEND/c0$

$XMIN = -0.5*PERP_LENGTH
$XMAX = 0.5*PERP_LENGTH
$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH
$ZMIN = -0.5*PAR_LENGTH
$ZMAX = 0.5*PAR_LENGTH

$if NDIM==1
$ CFL = 0.5
$ numCells = [PERP_ZONES]
$ periodicDirections = []
$ lowerBounds = [XMIN]
$ upperBounds = [XMAX]
$ else
$if NDIM==2
$ CFL = 0.4
$ numCells = [PERP_ZONES, PAR_ZONES]
# Make the direction perpendicular to the shock
# normal periodic.
$ periodicDirections = [1]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [PERP_ZONES, PAR_ZONES, PAR_ZONES]
# Make the directions perpendicular to the shock
# normal periodic.
$ periodicDirections = [1,2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif
$ endif

# Parameters to specify the fluid state at t=0.0
$ DENSITY_L = $1.0*REFERENCE_DENSITY$
$ DENSITY_R = $0.125*REFERENCE_DENSITY$
$ PRESSURE_L = $1.0*REFERENCE_PRESSURE$
$ PRESSURE_R = $0.1*REFERENCE_PRESSURE$
$ NORMAL_VELOCITY_L = 0.0
$ NORMAL_VELOCITY_R = 0.0
$ PERPENDICULAR_VELOCITY_L = 0.0
$ PERPENDICULAR_VELOCITY_R = 0.0
$ TANGENTIAL_VELOCITY_L = 0.0
$ TANGENTIAL_VELOCITY_R = 0.0
$ NORMAL_FIELD_L = $0.75*math.sqrt(REFERENCE_DENSITY)$
$ NORMAL_FIELD_R = $0.75*math.sqrt(REFERENCE_DENSITY)$
$ PERPENDICULAR_FIELD_L = $1.0*math.sqrt(REFERENCE_DENSITY)$
$ PERPENDICULAR_FIELD_R = $-1.0*math.sqrt(REFERENCE_DENSITY)$
$ TANGENTIAL_FIELD_L = 0.0
$ TANGENTIAL_FIELD_R = 0.0

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)

# Setup the grid
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addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(pi_value,math.pi)
addVariable(gas_gamma,GAS_GAMMA)
addVariable(densityL,DENSITY_L)
addVariable(densityR,DENSITY_R)
addVariable(pressureL,PRESSURE_L)
addVariable(pressureR,PRESSURE_R)
addVariable(normalVelocityL,NORMAL_VELOCITY_L)
addVariable(normalVelocityR,NORMAL_VELOCITY_R)
addVariable(perpendicularVelocityL,PERPENDICULAR_VELOCITY_L)
addVariable(perpendicularVelocityR,PERPENDICULAR_VELOCITY_R)
addVariable(tangentialVelocityL,TANGENTIAL_VELOCITY_L)
addVariable(tangentialVelocityR,TANGENTIAL_VELOCITY_R)
addVariable(mu0,MU0)
addVariable(normalFieldL,NORMAL_FIELD_L)
addVariable(normalFieldR,NORMAL_FIELD_R)
addVariable(perpendicularFieldL,PERPENDICULAR_FIELD_L)
addVariable(perpendicularFieldR,PERPENDICULAR_FIELD_R)
addVariable(tangentialFieldL,TANGENTIAL_FIELD_L)
addVariable(tangentialFieldR,TANGENTIAL_FIELD_R)

# Step 2: Add Pre-Expressions
addPreExpression(rho = if (x>0.0, densityR, densityL))

addPreExpression(pr = if (x>0.0, pressureR, pressureL))
addPreExpression(vx = if (x>0.0, normalVelocityR, normalVelocityL))
addPreExpression(vy = if (x>0.0, perpendicularVelocityR, perpendicularVelocityL))
addPreExpression(vz = if (x>0.0, tangentialVelocityR, tangentialVelocityL))
addPreExpression(bx = if (x>0.0, normalFieldR, normalFieldL))
addPreExpression(by = if (x>0.0, perpendicularFieldR, perpendicularFieldL))
addPreExpression(bz = if (x>0.0, tangentialFieldR, tangentialFieldL))
addPreExpression(psi = 0.0)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy, magnetic field and correction potential
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression(pr/(gas_gamma-1.0) + 0.5*rho*(vx*vx+vy*vy+vz*vz)+0.5*((bx*bx+by*by+bz*bz)/mu0))
addExpression(bx)
addExpression(by)
addExpression(bz)
addExpression(psi)

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(copy,left)
boundaryCondition(copy,right)
boundaryCondition(periodic)

# Time integration
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timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the shockTube.in file. In the .in file all macros are expanded to produce input
blocks.

3.2.7 An Example Simulation

The input file for the quickstart-shocktube example for the USimBase package with SHOCK_TUBE = “BRIOWU”
demonstrates each of the concepts described above to evolve the classic Brio & Wu shock tube problem in one-
dimensional magnetohydrodynamics. Executing this input file within USimComposer and switching to the Visualize
tab yields the plots shown in Fig. 3.2.

Fig. 3.2: Visualization tab in USimComposer after executing the Brio & Wu shock tube input file for the tutorial.

3.2.8 Combining Euler and MHD Equations in the Same Input File

In Using USim to solve the Euler Equations we saw how most USimBase simulations for the Euler equations have an
underlying pattern. Based on what we have discussed for the MHD equations, we can now extend this pattern to easily
switch between the Euler and MHD equations:

# Are we solving the MHD equations?
$ MHD = True

# Import macros to setup simulation
$ import fluidsBase.mac
# if MHD
$ import idealmhd.mac
$ else
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$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Specify initial condition
# Step 1: Add Variables
addVariable(NAME,<value>)

# Step 2: Add Pre-Expressions
addPreExpression(<PreExpression>)

# Step 3: a) Add expressions specifying initial condition on density,
# momentum
addExpression(<expression>)
$ if MHD
# Step 3: b) Add expression specifying initial conditions on total
# energy, magnetic field, correction potential
addExpression(<expression>)
$ else
# Step 3: b) Add expression specifying initial conditions on total
# energy
addExpression(<expression>)
$ endif

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(<boundaryCondition,entity>)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

You can see this pattern demonstrated in the quickstart-shocktube example.

3.2. Using USim to solve the Magnetohydrodynamic Equations 49



USimInDepth, Release 3.0.1

3.3 Solving Multi-Dimensional Problems in USim

In Using USim to solve the Euler Equations we discussed the basic methods used by USim to solve the Euler equa-
tions. Next, in Using USim to solve the Magnetohydrodynamic Equations, we extended these ideas to solve the MHD
equations in one-dimension and showed how USimBase simulations for both the Euler and MHD equations follow
the same basic pattern. In this tutorial, we continue to build on these concepts and demonstrate how to use USim to
solve the Euler and MHD equations in multi-dimensions, how to utilize more advanced boundary conditions and how
to apply external fources (such as gravity) to the equations.

This tutorial is based on quickstart-rtinstability in USimBase, which demonstrates the well-known Rayleigh-Taylor
instability problem described by:

Jun, Norman, & Stone, ApJ 453, 332 (1995).
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• Solving Multi-Dimensional Problems in USim
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– An Example Simulation

3.3.1 Initializing the Simulation

Compared to the ShockTube example used in Using USim to solve the Euler Equations, the initialization of the simu-
lation proceeds in a similar fashion, with parameters customized for the Rayleigh-Taylor problem:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$ PAR_LENGTH = 1.5
# Y-extent of domain
$ TRANS_LENGTH = 0.5
# Zones parallel to shear direction
$ PAR_ZONES = 192
# Zones perpendicular to shear direction
$ TRANS_ZONES = 64
# adiabatic index
$ GAS_GAMMA = 1.4
# acceleration due to gravity
$ GRAVITY_ACCEL = 0.1
# Upper fluid density
$ RHO_HEAVY = 2.0
# Lower fluid density
$ RHO_LIGHT = 1.0
# Magnetic field strength
$ BETA = 1.0e3
# Amplitude of perturbation
$ PERTURB_AMP = 0.01
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# end time for simulation
$ TEND = 12.75
# number of frames
$ NUMDUMPS = 10
# Whether to use diffusive (but robust) fluxes
$ DIFFUSIVE = False
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Default dimensionality
$ NDIM = 2

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

3.3.2 Adding a Simulation Grid

Compared to the ShockTube example used in Using USim to solve the Euler Equations, adding a grid again proceeds
in a similar fashion, with parameters customized for the Rayleigh-Taylor problem:

$XMIN = -0.5*TRANS_LENGTH
$XMAX = 0.5*TRANS_LENGTH

$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH

$ZMIN = -0.5*TRANS_LENGTH
$ZMAX = 0.5*TRANS_LENGTH

$if NDIM==2
$ CFL = 0.4
$ numCells = [TRANS_ZONES, PAR_ZONES]
$ periodicDirections = [0]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [TRANS_ZONES, PAR_ZONES, TRANS_ZONES]
$ periodicDirections = [0 2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif

addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

Note that directions 0 (x) and (in three-dimensions) 2 (z) are periodic. Our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$ PAR_LENGTH = 1.5
# Y-extent of domain
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$ TRANS_LENGTH = 0.5
# Zones parallel to shear direction
$ PAR_ZONES = 192
# Zones perpendicular to shear direction
$ TRANS_ZONES = 64
# adiabatic index
$ GAS_GAMMA = 1.4
# acceleration due to gravity
$ GRAVITY_ACCEL = 0.1
# Upper fluid density
$ RHO_HEAVY = 2.0
# Lower fluid density
$ RHO_LIGHT = 1.0
# Magnetic field strength
$ BETA = 1.0e3
# Amplitude of perturbation
$ PERTURB_AMP = 0.01
# end time for simulation
$ TEND = 12.75
# number of frames
$ NUMDUMPS = 10
# Whether to use diffusive (but robust) fluxes
$ DIFFUSIVE = False
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Default dimensionality
$ NDIM = 2

$XMIN = -0.5*TRANS_LENGTH
$XMAX = 0.5*TRANS_LENGTH

$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH

$ZMIN = -0.5*TRANS_LENGTH
$ZMAX = 0.5*TRANS_LENGTH

$if NDIM==2
$ CFL = 0.4
$ numCells = [TRANS_ZONES, PAR_ZONES]
$ periodicDirections = [0]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [TRANS_ZONES, PAR_ZONES, TRANS_ZONES]
$ periodicDirections = [0 2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

52 Chapter 3. Basic USim Simulations



USimInDepth, Release 3.0.1

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

3.3.3 Creating a Fluid Simulation

This initial condition for this problem is hydrostatic equilibrium consisting of a heavier fluid supported by a lighter
fluid, which is perturbed with a single mode. Initialization follows the same pattern as in Using USim to solve the
Euler Equations. First, we create the variables needed to simulate the fluid:

createFluidSimulation()

We then proceed through the three-step process to specify the distribution of the fluid on the grid. Step 1: Add
Variables:

addVariable(gas_gamma,GAS_GAMMA)
addVariable(rhoTop,RHO_HEAVY)
addVariable(rhoBottom,RHO_LIGHT)
addVariable(perturb,PERTURB_AMP)
addVariable(ytop,YMAX)
addVariable(gravity,GRAVITY_ACCEL)
addVariable(lx,TRANS_LENGTH)
addVariable(ly,PAR_LENGTH)

Step 2: Add Pre Expression’s:

addPreExpression(p0 = 0.01)
addPreExpression(pert = 0.01)
addPreExpression(pi = 3.14159)
addPreExpression(rho = if (y < 0.0, rhoBottom, rhoTop))
addPreExpression(pr = (1.0/gas_gamma) - (gravity*rho*y))
addPreExpression(vx = 0.0)
addPreExpression(vy = (0.25*perturb)*(1.0 + cos(2.0*pi*x/lx))*(1.0 + cos(2.0*pi*y/ly)))
addPreExpression(vz = 0.0)

Step 3: Add Expressions for density, momentum and total energy:

addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1.0))+0.5*rho*(vx*vx+vy*vy+vz*vz))

Note that Step 3 is identical to that used in Using USim to solve the Euler Equations. Our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$ PAR_LENGTH = 1.5
# Y-extent of domain
$ TRANS_LENGTH = 0.5
# Zones parallel to shear direction
$ PAR_ZONES = 192
# Zones perpendicular to shear direction
$ TRANS_ZONES = 64
# adiabatic index
$ GAS_GAMMA = 1.4
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# acceleration due to gravity
$ GRAVITY_ACCEL = 0.1
# Upper fluid density
$ RHO_HEAVY = 2.0
# Lower fluid density
$ RHO_LIGHT = 1.0
# Magnetic field strength
$ BETA = 1.0e3
# Amplitude of perturbation
$ PERTURB_AMP = 0.01
# end time for simulation
$ TEND = 12.75
# number of frames
$ NUMDUMPS = 10
# Whether to use diffusive (but robust) fluxes
$ DIFFUSIVE = False
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Default dimensionality
$ NDIM = 2

$XMIN = -0.5*TRANS_LENGTH
$XMAX = 0.5*TRANS_LENGTH

$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH

$ZMIN = -0.5*TRANS_LENGTH
$ZMAX = 0.5*TRANS_LENGTH

$if NDIM==2
$ CFL = 0.4
$ numCells = [TRANS_ZONES, PAR_ZONES]
$ periodicDirections = [0]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [TRANS_ZONES, PAR_ZONES, TRANS_ZONES]
$ periodicDirections = [0 2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
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addVariable(gas_gamma,GAS_GAMMA)
addVariable(rhoTop,RHO_HEAVY)
addVariable(rhoBottom,RHO_LIGHT)
addVariable(perturb,PERTURB_AMP)
addVariable(ytop,YMAX)
addVariable(gravity,GRAVITY_ACCEL)
addVariable(lx,TRANS_LENGTH)
addVariable(ly,PAR_LENGTH)

# Step 2: Add Pre-Expressions
addPreExpression(p0 = 0.01)
addPreExpression(pert = 0.01)
addPreExpression(pi = 3.14159)
addPreExpression(rho = if (y < 0.0, rhoBottom, rhoTop))
addPreExpression(pr = (1.0/gas_gamma) - (gravity*rho*y))
addPreExpression(vx = 0.0)
addPreExpression(vy = (0.25*perturb)*(1.0 + cos(2.0*pi*x/lx))*(1.0 + cos(2.0*pi*y/ly)))
addPreExpression(vz = 0.0)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))

Compared to the simulation described in Using USim to solve the Euler Equations, the similarities should be obvious
as the simulation is following the pattern:

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Specify initial condition
# Step 1: Add Variables
addVariable(NAME,<value>)

# Step 2: Add Pre-Expressions
addPreExpression(<PreExpression>)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)
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3.3.4 Evolving the Fluid

There are two major differences in simulating the Rayleigh-Taylor problem compared to a shock tube: acceleration
due to gravity and boundary conditions. These change the scheme for integrating the hyperbolic conservation law,
which now looks like:

#
# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

#
# Add source term for gravitational acceleration to the equations
addGravitationalAcceleration(GRAVITY_ACCEL)

#
# Boundary conditions
boundaryCondition(wall,top)
boundaryCondition(wall,bottom)
boundaryCondition(periodic)

#
# Time integration
timeAdvance(TIME_ORDER)

The first major difference is the addition of a gravitational acceleration. This is done through a simple macro call after
we have defined the finiteVolumeScheme:

addGravitationalAcceleration(GRAVITY_ACCEL)

The next is that we add wall or reflecting boundary conditions at the top and bottom of the grid. These boundary
conditions are documented at refmanual-eulerBc:

boundaryCondition(wall,top)
boundaryCondition(wall,bottom)

3.3.5 Putting it all Together

As before, the final step in the USim simulation is to add:

runFluidSimulation()

So, our simulation now looks like:

# Import macros to setup simulation
$ import fluidsBase.mac
$ import euler.mac

# X-extent of domain
$ PAR_LENGTH = 1.5
# Y-extent of domain
$ TRANS_LENGTH = 0.5
# Zones parallel to shear direction
$ PAR_ZONES = 192
# Zones perpendicular to shear direction
$ TRANS_ZONES = 64
# adiabatic index
$ GAS_GAMMA = 1.4
# acceleration due to gravity
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$ GRAVITY_ACCEL = 0.1
# Upper fluid density
$ RHO_HEAVY = 2.0
# Lower fluid density
$ RHO_LIGHT = 1.0
# Magnetic field strength
$ BETA = 1.0e3
# Amplitude of perturbation
$ PERTURB_AMP = 0.01
# end time for simulation
$ TEND = 12.75
# number of frames
$ NUMDUMPS = 10
# Whether to use diffusive (but robust) fluxes
$ DIFFUSIVE = False
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Default dimensionality
$ NDIM = 2

$XMIN = -0.5*TRANS_LENGTH
$XMAX = 0.5*TRANS_LENGTH

$YMIN = -0.5*PAR_LENGTH
$YMAX = 0.5*PAR_LENGTH

$ZMIN = -0.5*TRANS_LENGTH
$ZMAX = 0.5*TRANS_LENGTH

$if NDIM==2
$ CFL = 0.4
$ numCells = [TRANS_ZONES, PAR_ZONES]
$ periodicDirections = [0]
$ lowerBounds = [XMIN, YMIN]
$ upperBounds = [XMAX, YMAX]
$ else
$ CFL = 0.32
$ numCells = [TRANS_ZONES, PAR_ZONES, TRANS_ZONES]
$ periodicDirections = [0 2]
$ lowerBounds = [XMIN, YMIN, ZMIN]
$ upperBounds = [XMAX, YMAX, ZMAX]
$ endif

# Initialize a USim simulation
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(gas_gamma,GAS_GAMMA)
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addVariable(rhoTop,RHO_HEAVY)
addVariable(rhoBottom,RHO_LIGHT)
addVariable(perturb,PERTURB_AMP)
addVariable(ytop,YMAX)
addVariable(gravity,GRAVITY_ACCEL)
addVariable(lx,TRANS_LENGTH)
addVariable(ly,PAR_LENGTH)

# Step 2: Add Pre-Expressions
addPreExpression(p0 = 0.01)
addPreExpression(pert = 0.01)
addPreExpression(pi = 3.14159)
addPreExpression(rho = if (y < 0.0, rhoBottom, rhoTop))
addPreExpression(pr = (1.0/gas_gamma) - (gravity*rho*y))
addPreExpression(vx = 0.0)
addPreExpression(vy = (0.25*perturb)*(1.0 + cos(2.0*pi*x/lx))*(1.0 + cos(2.0*pi*y/ly)))
addPreExpression(vz = 0.0)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Add source term for gravitational acceleration to the equations
addGravitationalAcceleration(GRAVITY_ACCEL)

# Boundary conditions
boundaryCondition(wall,top)
boundaryCondition(wall,bottom)
boundaryCondition(periodic)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the shockTube.in file. In the .in file all macros are expanded to produce input
blocks.

3.3.6 Solving the MHD Equations in Multi-Dimensions

We can extend the approach above to solving the MHD equations in multi-dimensions in a straightforward fashion. The
steps for Creating a Fluid Simulation is unchanged from Using USim to solve the Magnetohydrodynamic Equations,
while the steps for Adding a Simulation Grid are identical to that given above. The differences come in Creating a
Fluid Simulation, where Steps 1) - 3) of specifying the initial condition change:

Step 1: Add Variables:
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addVariable(gas_gamma,GAS_GAMMA)
addVariable(rhoTop,RHO_HEAVY)
addVariable(rhoBottom,RHO_LIGHT)
addVariable(perturb,PERTURB_AMP)
addVariable(ytop,YMAX)
addVariable(gravity,GRAVITY_ACCEL)
addVariable(lx,TRANS_LENGTH)
addVariable(ly,PAR_LENGTH)
addVariable(mu0,MU0)
addVariable(beta,BETA)

Step 2: Add Pre Expression’s:

addPreExpression(p0 = 0.01)
addPreExpression(pert = 0.01)
addPreExpression(pi = 3.14159)
addPreExpression(rho = if (y < 0.0, rhoBottom, rhoTop))
addPreExpression(pr = (1.0/gas_gamma) - (gravity*rho*y))
addPreExpression(vx = 0.0)
addPreExpression(vy = (0.25*perturb)*(1.0 + cos(2.0*pi*x/lx))*(1.0 + cos(2.0*pi*y/ly)))
addPreExpression(vz = 0.0)
addPreExpression(bx = sqrt(2.0*pr/(beta*beta)))
addPreExpression(by = 0.0)
addPreExpression(bz = 0.0)
addPreExpression(psi = 0.0)

Step 3: Add Expressions for density, momentum, total energy, magnetic field and correction potential:

addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression(pr/(gas_gamma-1.0) + 0.5*rho*(vy*vy)+0.5*((bx*bx)/mu0))
addExpression(bx)
addExpression(by)
addExpression(bz)
addExpression(psi)

The remaining steps in setting up the simulation are unchanged. We can then extend the underlying pattern for
USimBase simulations:

# Are we solving the MHD equations?
$ MHD = True

# Import macros to setup simulation
$ import fluidsBase.mac
# if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
$ if MHD
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initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

# Setup the grid
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)

# Create data structures needed for the simulation
createFluidSimulation()

# Specify initial condition
# Step 1: Add Variables
addVariable(NAME,<value>)

# Step 2: Add Pre-Expressions
addPreExpression(<PreExpression>)

# Step 3: a) Add expressions specifying initial condition on density,
# momentum
addExpression(<expression>)
$ if MHD
# Step 3: b) Add expression specifying initial conditions on total
# energy, magnetic field, correction potential
addExpression(<expression>)
$ else
# Step 3: b) Add expression specifying initial conditions on total
# energy
addExpression(<expression>)
$ endif

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Add (optional) physics to the finite volume scheme
< physics macros >

# Boundary conditions
boundaryCondition(<boundaryCondition,entity>)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

Note: The algorithms in USim automatically preserve ∇ ·𝐵 = 0 (the solenoidal constraint on the magnetic field), so
there is no need for the user to make changes to the algorithm at the input file level when running in multi-dimensions.

3.3.7 An Example Simulation

The input file for the problem Rayleigh-Taylor Instability in the USimBase package demonstrates each of the concepts
described above to evolve the Rayleigh-Taylor instability for a single mode perturbation. An additional example of
these concepts can be found in the Kelvin-Helmholtz Instability input file in the USimBase package.

Executing the Rayleigh-Taylor input file within USimComposer and switching to the Visualize tab yields the plots
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shown in Fig. 3.3.

Note that it is possible to execute both the Rayleigh-Taylor Instability and Kelvin-Helmholtz Instability examples in
the USimBase package using MHD by selecting MHD = True.

Fig. 3.3: Visualization tab in USimComposer after executing the input file for the this tutorial.

3.4 Solving Problems on Advanced Structured Meshes in USim

In Using USim to solve the Euler Equations we discussed the basic methods used by USim to solve the Euler equa-
tions. Next, in Using USim to solve the Magnetohydrodynamic Equations, we extended these ideas to solve the MHD
equations in one-dimension and showed how USimBase simulations for both the Euler and MHD equations follow the
same basic pattern. Then, in Solving Multi-Dimensional Problems in USim, we built on these concepts to demonstrate
how to use USim to solve the Euler and MHD equations in multi-dimensions, how to utilize more advanced bound-
ary conditions and how to apply external forces (such as gravity) to the equations. In this tutorial, we extend these
ideas to demonstrate how USim can solve problems in axisymmetric curvilinear coordinates and how to use two- and
three-dimensional body fitted meshes to solve problems around simple geometries.
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3.4.1 Solving Problems in Axi-Symmetric Curvilinear Coordinates

An example of using USim to solve the MHD equations in axi-symmetric curvilinear coordinates is found in quickstart-
zpinch.

Adding a Simulation Grid

The use of axisymmetric cylindrical coordinates in this problem is specified through the use of the grid:

addCylindricalGrid(lowerBounds, upperBounds, numCells, periodicDirections)

This macro is documented at grid-macro and follows the same pattern that we have seen previously for logically
structured Cartesian grids:

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [ RMIN ZMIN PHIMIN ]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [ RMAX ZMAX PHI-
MAX ]

numCells: Vector of number of cells in grid, numCells = [ NR NZ NPHI ]

periodicDirections: List of directions that are periodic

periodicDirections = [ 0 ] (R-direction periodic)
periodicDirections = [ 0 1 ] (R,Z-directions periodic)
periodicDirections = [ 0 1 2 ] (R,Z,PHI-directions periodic)

Using the addCylindricalGrid macro automatically tells the rest of the USim solvers to use the cylindrical form of the
operator. If a cylindrical form of an operator is not available, USim will stop with an error message.

Note: Cylindrical grids in USim are designed with axisymmetric coordinates in mind, so a one-dimensional mesh
simulates the 𝑅 coordinate, a two-dimensional mesh simulates the (𝑅,𝑍) coordinates and a three-dimensional mesh
simulates the (𝑅,𝑍, 𝜑) coordinates.

Creating a Fluid Simulation

The initial conditions for the quickstart-zpinch in axisymmetric cylindrical coordinates are given by:
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Step 1:

addVariable(gas_gamma,GAS_GAMMA)
addVariable(mu0,MU0)
addVariable(invSqrtMu0,INV_SQRT_MU0)
addVariable(Rp,RP)
addVariable(n_0,N0)
addVariable(j_0,J0)
addVariable(p_0,P0)
addVariable(mi,MI)
addVariable(k,WAVENUMBER)
addVariable(alpha,BASE_PRESSURE_RATIO)
addVariable(perturb,PERTURBATION_AMPLITUDE)

Step2:

addPreExpression(r = x)
addPreExpression(Z = y)
addPreExpression(phi = z)
addPreExpression(rho = if(r<Rp, mi*n_0*(alpha+(1.0-(r*r)/(Rp*Rp))), mi*n_0*alpha))
addPreExpression(vr = 0.0)
addPreExpression(vphi = 0.0)
addPreExpression(vz = 0.0)
addPreExpression(pr = if(r < Rp, p_0-0.25*mu0*j_0*j_0*r*r, alpha*0.25*mu0*j_0*j_0*Rp*Rp))
addPreExpression(br = 0.0)
addPreExpression(bphi = if(r < Rp, -0.5*r*mu0*j_0*(1.0+perturb*sin(k*Z)), -0.5*(Rp*Rp/r)*mu0*j_0*(1.0+perturb*sin(k*Z))))
addPreExpression(bz = 0.0)
addPreExpression(psi = 0.0)

Step 3:

addExpression(rho)
addExpression(rho*vr)
addExpression(rho*vphi)
addExpression(rho*vz)
addExpression(pr/(gas_gamma-1.0) + 0.5*rho*(vr*vr+vphi*vphi+vz*vz)+0.5*((br*br+bphi*bphi+bz*bz)/mu0))
addExpression(br*invSqrtMu0)
addExpression(bphi*invSqrtMu0)
addExpression(bz*invSqrtMu0)
addExpression(psi)

Note: While the ordering of coordinates on cylindrical grids in USim is (𝑅,𝑍, 𝜑), the components of vectors (such
as the momentum and magnetic field defined in step 3 above) take the order (R̂, 𝜑, Ẑ). Many issues in simulations
involving cylindrical coordinates originate in an incorrect ordering of vector components.

Putting it all Together

We can then extend the underlying pattern for USimBase simulations to incorporate curvilinear coordinates:

# Are we solving the MHD equations?
$ MHD = True

# Are we using cylindrical coordinates?
$ CYLINDRICAL = True

# Import macros to setup simulation
$ import fluidsBase.mac
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# if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,END_TIME,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

# Setup the grid
$ if CYLINDRICAL
addCylindricalGrid(lowerBounds, upperBounds, numCells, periodicDirections)
$ else
addGrid(lowerBounds, upperBounds, numCells, periodicDirections)
$ endif

# Create data structures needed for the simulation
createFluidSimulation()

# Specify initial condition
# Step 1: Add Variables
addVariable(NAME,<value>)

# Step 2: Add Pre-Expressions
addPreExpression(<PreExpression>)

# Step 3: a) Add expressions specifying initial condition on density,
# momentum
addExpression(<expression>)
$ if MHD
# Step 3: b) Add expression specifying initial conditions on total
# energy, magnetic field, correction potential
addExpression(<expression>)
$ else
# Step 3: b) Add expression specifying initial conditions on total
# energy
addExpression(<expression>)
$ endif

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(<boundaryCondition,entity>)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
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runFluidSimulation()

An Example Simulation

The input file for quickstart-zpinch in the USimBase package demonstrates each of the concepts described above to
evolve the z-Pinch problem in two-dimensional magnetohydrodynamics. Executing this input file within USimCom-
poser and switching to the Visualize tab yields the plots shown in Fig. 3.4.

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the zPinch.in file. In the .in file all macros are expanded to produce input blocks.

Fig. 3.4: Visualization tab in USimComposer after executing the Unstable plasma z-Pinch input file for the tutorial.

3.4.2 Solving Problems on Two-Dimensional Body-Fitted Meshes in USim

This tutorial is based on the quickstart-rampflow example in USimBase, which we use to demonstrate the creation of
two-dimensional body fitted meshes.

Adding a Simulation Grid

The Ramp Flow simulation uses a refmanual-bodyFitted grid, which is added to the simulation through the addBody-
FittedGrid macro:

addBodyFittedGrid(lowerBounds, upperBounds, numCells, periodicDirections)

The options for this macro are documented in grid-macro. For completeness, we include them here:

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [ XMIN YMIN ZMIN ]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [ XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [ NX NY NZ ]
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periodicDirections: List of directions that are periodic

periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ 0 1 2 ] (x,y,z-directions periodic)

Now that the body-fitted grid has been created, it is possible to transform the coordinates of the grid into the desired
shaped. This is a three-step process, much like specifying an initial condition:

1. Use addGridVariable to add variables that are independent of grid position.

2. Use addGridPreExpression to add quantities that are functions of grid position, variables and any previously
defined PreExpression in this block. Evaluated before expressions and the result is not accessible outside of this
block. Any number of PreExpressions can be added.

3. Use addGridExpression to define the new coordinates in the grid. The order of the expressions correspond to
the order of the coordinates in the grid and there must be the same number of expressions as dimensions in the
grid.

For the RampFlow example, the GridVariables added in Step 1 in the above process are:

# Grid properties
addGridVariable(xmin,XIN)
addGridVariable(xmax,XUP)
addGridVariable(ymax,YUP)
addGridVariable(slope,$math.tan(math.pi*THETA/180)$)

# Numbers of cells
addGridVariable(inletCells,1.0*NXI)
addGridVariable(rampCells,1.0*NXR)
addGridVariable(yCells,$1.0*NY$)

# x direction cell spacing in computational space
addGridVariable(dxc,$1.0/(NXI+NXR)$)
# y direction cell spacing in computational space
addGridVariable(dyc,$1.0/NY$)
# z direction cell spacing in computational space

Next, the GridPreExpressions added in Step 2 in the above process are:

# Grid preExpressions
addGridPreExpression(ix=rint(x/dxc))
addGridPreExpression(iy=rint(y/dyc))
addGridPreExpression(dxi=xmin/inletCells)
addGridPreExpression(dxr=(xmax-xmin)/rampCells)
addGridPreExpression(xp=if(inletCells>=ix,dxi*ix,xmin+dxr*(ix-inletCells)))
addGridPreExpression(dyi = ymax/yCells)
addGridPreExpression(b = -slope*xmin)
addGridPreExpression(y0 = slope*xp + b)
addGridPreExpression(dyr = (ymax-y0)/yCells)
addGridPreExpression(yp=if(inletCells>=ix,dyi*iy,y0+dyr*iy))

Finally, the GridExpressions added in Step 3 in the above process are:

addGridExpression(xp)
addGridExpression(yp)

The bodyFitted Grid in USim is an extension of the cart grid. The cart Grid lays out the grid in a uniform manner
and provides an x-y coordinate for each of the vertices of the cells. The bodyFitted grid allows the user to modify the
locations of these x-y vertices. The lowerBounds upperBounds and numCells parameters set up the uniform cartesian

66 Chapter 3. Basic USim Simulations



USimInDepth, Release 3.0.1

grid and its vertices. The vertices of this cartesian grid are then modified according to the GridExpressions which
defines the mapping from the cartesian grid to the bodyFitted grid, therefore if we specify:

addGridExpression(x*x)
addGridExpression(y*y)

then the cartesian grid is mapped to a grid with where x and y vary quadratically. USim loops through every vertex
and replaces the cartesian vertex with the new vertex specified by each of the addGridExpression macros. The user
must be careful to make sure that the new vertices are a result of simple stretching the cartesian grid so that cells in the
body fitted grid do not overlap.

Note: In the body fitted grid, ghost cells are also mapped using the addGridExpression macros. Ghost cells add an
extra layer to the grid beyond what is specified by cells. The location of these additional vertices can be computed by
adding additional cells to the cartesian grid. In many cases it is also important that the mapping of these ghost cells do
not produce overlapping cells which can result in negative areas and misdirected tangents and normals.

An Example Simulation

The input file for the problem Ramp Flow in the USimBase package demonstrates each of the concepts described
above. Executing this input file within USimComposer and switching to the Visualize tab yields the plots shown in
Fig. 3.5.

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the rampFlow.in file. In the .in file all macros are expanded to produce input
blocks.

Fig. 3.5: Visualization of mesh geometry in USimComposer after executing the MHD Ramp Flow input file for the
tutorial.

3.4.3 Solving Problems on Three-Dimensional Body-Fitted Meshes in USim

The input file for quickstart-zpinch in the USimBase package demonstrates each of the concepts described above to
evolve the z-Pinch problem in three-dimensional magnetohydrodynamics
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Adding a Simulation Grid

The three-dimensional version of the zPinch simulation uses a refmanual-bodyFitted grid, which is added to the
simulation through the addBodyFittedGrid macro:

addBodyFittedGrid(lowerBounds, upperBounds, numCells, periodicDirections)

The options for this macro are documented in grid-macro. For completeness, we include them here:

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [ XMIN YMIN ZMIN ]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [ XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [ NX NY NZ ]

periodicDirections: List of directions that are periodic

periodicDirections = [ 0 ] (x-direction periodic)
periodicDirections = [ 0 1 ] (x,y-directions periodic)
periodicDirections = [ 0 1 2 ] (x,y,z-directions periodic)

In this example, we use the body-fitted grid to transform a three-dimensional cylindrical mesh into a three-dimensional
(𝑋,𝑌, 𝑍) mesh that utilizes a cylindrical distribution. To accomplish this, we only have to perform the third step of
the three-step process above:

addGridExpression(x*cos(y))
addGridExpression(x*sin(y))
addGridExpression(z)

Creating a Fluid Simulation

In order to specify the initial condition on a three-dimensional Cartesian mesh when we start from a cylindrical initial
condition, we need to transform components of vectors from cylindrical to cartesian coordinates. We can do this
during the specification of the initial condition:

Step 1

addVariable(gas_gamma,GAS_GAMMA)
addVariable(mu0,MU0)
addVariable(invSqrtMu0,INV_SQRT_MU0)
addVariable(Rp,RP)
addVariable(n_0,N0)
addVariable(j_0,J0)
addVariable(p_0,P0)
addVariable(mi,MI)
addVariable(k,WAVENUMBER)
addVariable(alpha,BASE_PRESSURE_RATIO)
addVariable(perturb,PERTURBATION_AMPLITUDE)

Step 2

# Compute cylindrical coordinatees based on our x,y,z coordinates in
# the grid
addPreExpression(r = sqrt(x^2+y^2))
addPreExpression(phi = atan2(y,x))
addPreExpression(Z = z)

# Setup our plasma parameters in cylindrical coordinates
addPreExpression(rho = if(r<Rp, mi*n_0*(alpha+(1.0-(r*r)/(Rp*Rp))), mi*n_0*alpha))
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addPreExpression(vr = 0.0)
addPreExpression(vphi = 0.0)
addPreExpression(vz = 0.0)
addPreExpression(pr = if(r < Rp, p_0-0.25*mu0*j_0*j_0*r*r, alpha*0.25*mu0*j_0*j_0*Rp*Rp))
addPreExpression(br = 0.0)
addPreExpression(bphi = if(r < Rp, -0.5*r*mu0*j_0*(1.0+perturb*sin(k*Z)), -0.5*(Rp*Rp/r)*mu0*j_0*(1.0+perturb*sin(k*Z))))
addPreExpression(bz = 0.0)
addPreExpression(psi = 0.0)

# Transform from cylindrical coordinates into Cartesian.
addPreExpression(vx = vr*cos(phi)+vphi*sin(phi))
addPreExpression(vy = vr*sin(phi)-vphi*cos(phi))
addPreExpression(bx = br*cos(phi)+bphi*sin(phi))
addPreExpression(by = br*sin(phi)-bphi*cos(phi))

Step 3

# Specify initial condition according to cartesian vector components
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression(pr/(gas_gamma-1.0) + 0.5*rho*(vx*vx+vy*vy+vz*vz)+0.5*((bx*bx+by*by+bz*bz)/mu0))
addExpression(bx*invSqrtMu0)
addExpression(by*invSqrtMu0)
addExpression(bz*invSqrtMu0)
addExpression(psi)

An Example Simulation

The input file for quickstart-zpinch in the USimBase package with NDIM=3 demonstrates each of the concepts de-
scribed above to evolve the z-Pinch problem in three-dimensional magnetohydrodynamics.

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the zPinch.in file. In the .in file all macros are expanded to produce input blocks.

3.5 Solving Problems on Unstructured Meshes in USim

In Using USim to solve the Euler Equations we discussed the basic methods used by USim to solve the Euler equa-
tions. Next, in Using USim to solve the Magnetohydrodynamic Equations, we extended these ideas to solve the MHD
equations in one-dimension and showed how USimBase simulations for both the Euler and MHD equations follow the
same basic pattern. Then, in Solving Multi-Dimensional Problems in USim, we built on these concepts to demonstrate
how to use USim to solve the Euler and MHD equations in multi-dimensions, how to utilize more advanced boundary
conditions and how to apply external fources (such as gravity) to the equations. Following on from this in Solving
Problems on Advanced Structured Meshes in USim, we demonstrated how USim can solve problems in axisymmet-
ric curvilinear coordinates and how to use two- and three-dimensional body fitted meshes to solve problems around
simple geometries. In this tutorial, we introduce unstructured meshes in USim, show how to create boundary condi-
tions for simple geometries, apply custom boundary conditions based on user specified parameters, and compute flow
diagnostics.

The quickstart-forwardfacingstep example in USimBase illustrates how to solve problems on unstructured meshes.

Note: In USim Version 3.0 unstructured meshes should be quadrilateral or hexahedral. If unstructured grids are
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used in parallel then the user needs to define the partitioning of the grid prior to import; USim does not partition
unstructured meshes itself.

Contents

• Solving Problems on Unstructured Meshes in USim
– Creating Unstructured Meshes in CUBIT for USim
– Creating Unstructured Meshes in Trelis for USim
– Creating Unstructured Meshes in Gmsh for USim
– Running Unstructured Meshes in Parallel

* CUBIT/Trelis
* Gmsh

– Initializing a Simulation
– Adding a Simulation Grid
– Creating a Fluid Simulation
– Evolving the Fluid
– Boundary Conditions on Unstructured Meshes
– Adding Output Diagnostics
– Putting it all Together
– An Example Simulation

3.5.1 Creating Unstructured Meshes in CUBIT for USim

USim currently accepts Exodus II files created in a number of programs including CUBIT and Trelis. Exodus II files
generally have the extension .exo, however we frequently use the genesis format (.g) which contains only the mesh
data of the Exodus II file.

USim 3.0 currently accepts only quad or hex elements.

• First, create a mesh in CUBIT following the CUBIT tutorials.

• After the mesh has been created, sidesets (used for boundaries) can also be created and then used in defining the
locations of boundary conditions.

– In CUBIT, select ‘Materials and Bcs’ then select ‘Entities - Blocks’. From the drop down menu select
‘Add’ and set the ‘Block ID’ to 1. If the mesh is 2d pick ‘Surface’ and hit ‘Apply’. If the mesh is 3D,
instead select ‘Volume’ and hit ‘Apply’.

– Next, in ‘Entities - Blocks’ switch the drop down menu to ‘Element Type’. If the mesh is 2D select
‘Surfaces’ and then ‘Quad4’, if the mesh is 3D select ‘Volumes’ and ‘Hex8’, hit ‘Apply’.

– Next switch from ‘Entity - Blocks’ to ‘Entity - Sidesets’. In 2D select ‘Curve’ then click on the mesh or
the boundary you wish to choose for your sideset. In 3D select ‘Surface’ then select the boundary you are
interested in. You will now have a boundary defined as sideset 1 (for example).

• Once the grid is read into USim an entity is defined over the side with the name sideSetHalosId1. This entity
can then be used USim boundary conditions.

• Add any other side sets you wish to use as boundaries at this point. The mesh is now ready to export.

• In the main CUBIT window select ‘File->Export’. Choose the directory to export the file and from the dropdown
menu select ‘Genesis’ to export a Genesis file. Type in the file name and select ‘Save’. You should now have a
grid that can be read into USim.
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3.5.2 Creating Unstructured Meshes in Trelis for USim

USim currently accepts Exodus II files created in a number of programs including CUBIT and Trelis. Exodus II files
generally have the extension .exo, however we frequently use the genesis format (.g) which contains only the mesh
data of the Exodus II file.

USim 3.0 currently accepts only quad or hex elements.

• First, create a mesh in Trelis using tutorials and documentation.

• After the mesh has been created, sidesets (used for boundaries) can also be created and then used in defining the
locations of boundary conditions.

– In Trelis, select the ‘Analysis Groups and Materials’ mode, then select ‘Entity-Sidesets’.

– Set the ‘Action’ to ‘Create sideset’ and set the ‘Sideset ID’ to 1

– Select ‘Curve’ if the mesh is 2D and ‘Surface’ if the mesh is 3D and type in the curve/surface ID or select
it with your mouse and hit ‘Apply’

• Once the grid is read into USim an entity is defined over the side with the name sideSetHalosId1. This entity
can then be used USim boundary conditions.

• Add any other side sets you wish to use as boundaries at this point. The mesh is now ready to export.

• In the main Trelis window select ‘File->Export’. Choose the directory to export the file and from the dropdown
menu select ‘Exodus’ to export an Exodus file. Type in the file name and select ‘Save’. You should now have a
grid that can be read into USim.

3.5.3 Creating Unstructured Meshes in Gmsh for USim

USim also accepts Gmsh meshes with extension .msh.

• First, create a geometry in Gmsh following any Gmsh tutorials.

• Gmsh will mesh using triangles/tets unless instructed otherwise. Open the ‘Tools -> Options’ menu, and un-
der the ‘General’ tab for ‘Mesh’, check the box “Recombine all triangular meshes”. Also set the subdivision
algorithm to “All Quads” or “All Hexes” for 2D or 3D meshes.

• Save the mesh. You should now have a grid that can be read into USim.

Gmsh does not have a facility for setting sideSets used for USim boundary conditions. Instead, an entity can be created
in USim by masking off ghost cells to isolate those you would like to create a boundary condition on.

An example of masking off a region of the ghost cells is as follows:

<Updater generateOpenBc>
kind = entityGenerator2d
onGrid = domain
newEntityName = openBc
onEntity = ghost
<Function mask>
kind = exprFunc
exprs = ["if(x>0 && y>0.03,1.0,-1.0)"]

</Function>
</Updater>

This block creates a new entity of name “openBC” which can be called in an Updater and used for setting a boundary
condition.
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3.5.4 Running Unstructured Meshes in Parallel

CUBIT/Trelis

If you wish to run your simulation in parallel, the mesh will need to be decomposed prior to use in USim. CUBIT and
Trelis do not have a facility to do this, so an external program must be used. We recommend using SEACAS, which is
a suite of applications for supporting finite element analysis software using Exodus file format. SEACAS Specifically,
nem_slice and nem_spread.

In the Linux distribution of USim 3.0, an Exodus II mesh file can be decomposed using the provided partitioner script,
decomp.

For example, if you plan to use 8 processors, from the command line run:

<ULIXES_BIN_DIR>/decomp -p 8 --root ./ meshfile.g

or

<ULIXES_BIN_DIR>/decomp -p 8 --root ./ meshfile.exo

For more information about the decomp script, run the script with the help option:

<ULIXES_BIN_DIR>/decomp -h

A number of files will be output corresponding to the number of processors you plan to run on. In the case above, 8
files, namely:

meshfile.g.8.0 meshfile.g.8.1 meshfile.g.8.2 meshfile.g.8.3 meshfile.g.8.4 meshfile.g.8.5 meshfile.g.8.6 meshfile.g.8.7

USim will automatically detect these files upon running with 8 cores. In your <Creator> block, you simply need to set
the file to ‘meshfile.g’:

<Creator ctor>
kind = exodus
ndim = 3
file = meshfile.g

</Creator>

Gmsh

Gmsh, on the other hand, can partition your grid prior to saving. In Gmsh, select ‘Mesh->Partition’ and set the
‘Number of Partitions’ to however many cores you would like to run on. Then hit ‘Partition’. The colors in your mesh
should change to show the decomposition of the mesh onto your chosen number of partitions.

Saving this mesh will result in 1 file being written. We recommend you save the file with the number of partitions in
the file name.:

meshfile16.msh

USim will NOT automatically detect which file to use when running in parallel. In your <Creator> block, be sure to
set the correct meshfile.:

<Creator ctor>
kind = gmsh
ndim = 3
file = meshfile16.msh

</Creator>
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3.5.5 Initializing a Simulation

One of the great strengths of USim is that the underlying algorithms are able to work on both structured and unstruc-
tured meshes. This means that the worflow to setup a simulation on a unstructured mesh is very similar to that seen
previously:

# Are we solving the MHD equations?
$ MHD = False

# Import macros to setup simulation
$ import fluidsBase.mac
$ if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

For the Forward Facing Step example with the Euler equations, the parameters that we specify for the physics problem
are as follows:

# grid for simulation
$ GRIDFILE = "forwardFacingStep"
# format of grid
$ GRIDTYPE = "gmsh"
# adiabatic index
$ GAS_GAMMA = 1.4
# Magnetic field strength
$ BETA = 1.0e3
# end time for simulation
$ TEND = 4.0
# number of frames
$ NUMDUMPS = 20
# Riemann solver
$ DIFFUSIVE = True
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Dimensionality
$ NDIM = 2
# Permeability of free space
$ MU0 = 1.0
# CFL condition
$ CFL = 0.4
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3.5.6 Adding a Simulation Grid

The use of an unstructured mesh in USim is specified through the use of one of the two grids:

addExodusGrid(GRIDFILE)

or:

addGmshGrid(GRIDFILE)

The choice of which block to use corresponds to the format of the mesh; either GMSH or ExodusII format. The
GRIDFILE is the name of the file containing the mesh without the file extension.

Our simulation input file now looks like:

# Are we solving the MHD equations?
$ MHD = False

# Import macros to setup simulation
$ import fluidsBase.mac
$ if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
# grid for simulation
$ GRIDFILE = "forwardFacingStep"
# format of grid
$ GRIDTYPE = "gmsh"
# adiabatic index
$ GAS_GAMMA = 1.4
# Magnetic field strength
$ BETA = 1.0e3
# end time for simulation
$ TEND = 4.0
# number of frames
$ NUMDUMPS = 20
# Riemann solver
$ DIFFUSIVE = True
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Dimensionality
$ NDIM = 2
# Permeability of free space
$ MU0 = 1.0
# CFL condition
$ CFL = 0.4

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif
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$ if isEqualString(GRIDTYPE,ExodusII)
addExodusGrid(GRIDFILE)
$ else
addGmshGrid(GRIDFILE)
$ endif

3.5.7 Creating a Fluid Simulation

As in the Initializing a Simulation step, the procedure for setting up a fluid simulation on an unstructured mesh is
identical to that on a structured mesh. For the Flow Over a Forward Facing Step example, this proceeds as follows.
First, we create the variables needed to simulate the fluid:

createFluidSimulation()

We then proceed through the three-step process to specify the distribution of the fluid on the grid. Step 1: Add
Variables:

addVariable(gasGamma,GAS_GAMMA)

Step 2: Add Pre Expression’s:

addPreExpression(rho = gasGamma)
addPreExpression(vx = 3.0)
addPreExpression(vy = 0.0)
addPreExpression(vz = 0.0)
addPreExpression(pr = 1.0)

Step 3: Add Expressions for density, momentum and total energy:

addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1.0))+0.5*rho*(vx*vx+vy*vy+vz*vz))

Note that Step 3 is identical to that used in Using USim to solve the Euler Equations. Our simulation input file now
looks like:

# Are we solving the MHD equations?
$ MHD = False

# Import macros to setup simulation
$ import fluidsBase.mac
$ if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
# grid for simulation
$ GRIDFILE = "forwardFacingStep"
# format of grid
$ GRIDTYPE = "gmsh"
# adiabatic index
$ GAS_GAMMA = 1.4
# Magnetic field strength
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$ BETA = 1.0e3
# end time for simulation
$ TEND = 4.0
# number of frames
$ NUMDUMPS = 20
# Riemann solver
$ DIFFUSIVE = True
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Dimensionality
$ NDIM = 2
# Permeability of free space
$ MU0 = 1.0
# CFL condition
$ CFL = 0.4

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

$ if isEqualString(GRIDTYPE,ExodusII)
addExodusGrid(GRIDFILE)
$ else
addGmshGrid(GRIDFILE)
$ endif

# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(gasGamma,GAS_GAMMA)

# Step 2: Add Pre-Expressions
addPreExpression(rho = gasGamma)
addPreExpression(vx = 3.0)
addPreExpression(vy = 0.0)
addPreExpression(vz = 0.0)
addPreExpression(pr = 1.0)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))

3.5.8 Evolving the Fluid

For multi-dimensional physics problems on structured meshes, our general pattern for evolving the fluid took the form:
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# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Add (optional) physics to the finite volume scheme
< physics macros >

# Boundary conditions
boundaryCondition(<boundaryCondition,entity>)

# Time integration
timeAdvance(TIME_ORDER)

3.5.9 Boundary Conditions on Unstructured Meshes

The complexity of performing calculations on an unstructured mesh in USim is associated with application of boundary
conditions. USim’s approach to applying boundary conditions on an unstructured mesh is a two-step process:

1. The user defines the regions of the mesh (entity) that will be used to apply boundary conditions.

2. The user specifies the boundary conditions to apply on each region of the mesh.

For the specific case of the Flow Over a Forward Facing Step example, there are three boundaries that we need to
define, which are delimited by position in the streamwise direction, 𝑥:

1. Inflow boundary: defined for 𝑥 < 0.0

2. Wall boundary: defined for 0.0 < 𝑥 < 3.0

3. Outflow boundary: defined for 𝑥 > 3.0

We can generate boundary entities that exist on the exterior of the mesh using a combination of the createNewEnti-
tyFromMask and addEntityMaskExpression macros:

createNewEntityFromMask(<entityName>)
addEntityMaskExpression(<entityName>,<logicalExpression>)

Using this combination of macros will result in an entity with name <entityName> being generated when <logical-
Expression> expression evaluates to 1. For the three entities needed for the Flow Over a Forward Facing Step, these
operations take the form:

# Inflow for x < 0.0
createNewEntityFromMask(inflowEntity)
addEntityMaskExpression(inflowEntity,if(x<0.0,1.0,-1.0))

# Wall for 0.0 < x < 3.0
createNewEntityFromMask(wallEntity)
addEntityMaskExpression(wallEntity,if( (x>0.0) and (x<3.0),1.0,-1.0))

# Outflow for x > 3.0
createNewEntityFromMask(outflowEntity)
addEntityMaskExpression(outflowEntity,if(x>3.0,1.0,-1.0))

Now that we have created the inflowEntity, wallEntity and outflowEntity, we can specify boundary conditions on them.
For the wallEntity and the outflowEntity, the boundary conditions are familiar from our previous tutorials:

boundaryCondition(wall,wallEntity)
boundaryCondition(copy,outflowEntity)

For the inflowEntity, we specify a new type of boundary condition userSpecified to determine the inflow properties:
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boundaryCondition(userSpecified,inflowEntity)

The userSpecified boundary condition allows the user to specify the properties of the flow on the boundary entity (here
inflowEntity) using what should now be a familiar three-step process:

1. Use addBoundaryConditionVariable to add variables that are independent of grid position.

2. Use addBoundaryConditionPreExpression to add quantities that are functions of grid position, variables and
any previously defined PreExpression in this block. Evaluated before expressions and the result is not accessible
outside of this block. Any number of PreExpressions can be added.

3. Use addBoundaryConditionExpression to define each boundarycondition for the fluid. There is one expression
for density, each component of momentum and the total energy. The order of the exprssions correspond to the
order in the state vector and there can only be one expression per entry in the state vector.

Note that the macros for performing each of these steps take the form:

addBoundaryConditionVariable(<boundaryCondition>,<entityName>,<variableName>,<variableValue>)
addBoundaryConditionPreExpression(<boundaryCondition>,<entityName>,<preExpression>)
addBoundaryConditionExpression(<boundaryCondition>,<entityName>,<Expression>)

These macros are documented at euler-macro and idealmhd-macro. For the boundary condition on the inflowEntity,
the steps are the same as we specified for the initial condition (i.e. the inflow boundary is held in the same state as at
time 𝑡 = 0):

# Step 1: Add Variables
addBoundaryConditionVariable(userSpecified,inflowEntity,gasGamma,GAS_GAMMA)

# Step 2: Add Pre-Expressions
addBoundaryConditionPreExpression(userSpecified,inflowEntity,rho = gasGamma)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vx = 3.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vy = 0.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vz = 0.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,pr = 1.0)

# Step 3: Add expressions specifying boundary condition on density,
# momentum, total energy
addBoundaryConditionExpression(userSpecified,inflowEntity,rho)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vx)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vy)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vz)
addBoundaryConditionExpression(userSpecified,inflowEntity,(pr/(gasGamma-1.0))+0.5*rho*(vx*vx))

3.5.10 Adding Output Diagnostics

USim can compute additional quantities during the simulation that are of interest to the user. This is accomplised by
the use of the macro:

addOutputDiagnostic(<outputDiagnosticName>)

This macro is documented at euler-macro and idealmhd-macro. Once an output diagnostic has been defined, USim
allows the user to compute the diagnostic using the familiar three-step process:

1. Use addOutputDiagnosticVariable to add variables that are independent of grid position.

2. Use addOutputDiagnosticPreExpression to add quantities that are functions of grid position, variables and any
previously defined PreExpression in this block. Evaluated before expressions and the result is not accessible
outside of this block. Any number of PreExpressions can be added.
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3. Use addOutputDiagnosticExpression to compute the diagnostic.

Note that the macros for performing each of these steps take the form:

addOutputDiagnosticVariable(<outputDiagnosticName>,<variableName>,<variableValue>)
addOutputDiagnosticPreExpression(<outputDiagnosticName>,<preExpression>)
addOutputDiagnosticExpression(<outputDiagnosticName>,<Expression>)

These macros are documented at euler-macro and idealmhd-macro. In the Flow Over a Forward Facing Step example,
we compute the mach number (𝑀 = |𝑢|

𝑐𝑠
) as follows:

# Add a diagnostic to compute the Mach number of the flow
addOutputDiagnostic(machNumber)
addOutputDiagnosticParameter(machNumber,gasGamma,GAS_GAMMA)
addOutputDiagnosticPreExpression(machNumber,"V=sqrt(Vx^2+Vy^2+Vz^2)")
addOutputDiagnosticPreExpression(machNumber,"Cs=sqrt(gasGamma*P/rho)")
addOutputDiagnosticExpression(machNumber,"V/Cs")

Note: For the Euler equations, the following variables are pre-defined when computing an output diagnostic:

• rho

• rhoVx

• rhoVy

• rhoVz

• En

• Vx

• Vy

• Vz

• P

For the MHD equations, the following variables are pre-defined when computing an output diagnostic:

• rho

• rhoVx

• rhoVy

• rhoVz

• En

• Vx

• Vy

• Vz

• P

• Pb

• divB

• Jx

• Jy

• Jz
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3.5.11 Putting it all Together

The final step in the USim simulation is to add:

runFluidSimulation()

This tells USim that we’re done specifying the simulation and that it can be run. So, our simulation now looks like:

# Are we solving the MHD equations?
$ MHD = False

# Import macros to setup simulation
$ import fluidsBase.mac
$ if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
# grid for simulation
$ GRIDFILE = "forwardFacingStep"
# format of grid
$ GRIDTYPE = "gmsh"
# adiabatic index
$ GAS_GAMMA = 1.4
# Magnetic field strength
$ BETA = 1.0e3
# end time for simulation
$ TEND = 4.0
# number of frames
$ NUMDUMPS = 20
# Riemann solver
$ DIFFUSIVE = True
# Order in time
$ TIME_ORDER = "second"
# Write data for restarting the simulation
$ WRITE_RESTART = False
# Output info for debugging purposes
$ DEBUG = False
# Dimensionality
$ NDIM = 2
# Permeability of free space
$ MU0 = 1.0
# CFL condition
$ CFL = 0.4

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

$ if isEqualString(GRIDTYPE,ExodusII)
addExodusGrid(GRIDFILE)
$ else
addGmshGrid(GRIDFILE)
$ endif
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# Create data structures needed for the simulation
createFluidSimulation()

# Step 1: Add Variables
addVariable(gasGamma,GAS_GAMMA)

# Step 2: Add Pre-Expressions
addPreExpression(rho = gasGamma)
addPreExpression(vx = 3.0)
addPreExpression(vy = 0.0)
addPreExpression(vz = 0.0)
addPreExpression(pr = 1.0)

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(rho)
addExpression(rho*vx)
addExpression(rho*vy)
addExpression(rho*vz)
addExpression((pr/(gas_gamma-1))+0.5*rho*(vx*vx+vy*vy+vz*vz))

# Create boundary entities
# Inflow for x < 0.0
createNewEntityFromMask(inflowEntity)
addEntityMaskExpression(inflowEntity,if(x<0.0,1.0,-1.0))

# Wall for 0.0 < x < 3.0
createNewEntityFromMask(wallEntity)
addEntityMaskExpression(wallEntity,if( (x>0.0) and (x<3.0),1.0,-1.0))

# Outflow for x > 3.0
createNewEntityFromMask(outflowEntity)
addEntityMaskExpression(outflowEntity,if(x>3.0,1.0,-1.0))

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(wall,wallEntity)
boundaryCondition(userSpecified,inflowEntity)
boundaryCondition(copy,outflowEntity)

# Specify the inflow boundary condition according to the problem initial conditions
addBoundaryConditionVariable(userSpecified,inflowEntity,gasGamma,GAS_GAMMA)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,rho = gasGamma)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vx = 3.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vy = 0.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vz = 0.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,pr = 1.0)

# Expressions to specify the inflow boundary
addBoundaryConditionExpression(userSpecified,inflowEntity,rho)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vx)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vy)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vz)
addBoundaryConditionExpression(userSpecified,inflowEntity,(pr/(gasGamma-1.0))+0.5*rho*(vx*vx))

# Add user-specfied diagnostics
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# Add a diagnostic to compute the Mach number of the flow
addOutputDiagnostic(machNumber)
addOutputDiagnosticParameter(machNumber,gasGamma,GAS_GAMMA)
addOutputDiagnosticPreExpression(machNumber,"V=sqrt(Vx^2+Vy^2+Vz^2)")
addOutputDiagnosticPreExpression(machNumber,"Cs=sqrt(gasGamma*P/rho)")
addOutputDiagnosticExpression(machNumber,"V/Cs")

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

We can now apply our same approach to generalize this to performing simulations on an unstructured mesh in USim:

# Are we solving the MHD equations?
$ MHD = True

# Import macros to setup simulation
$ import fluidsBase.mac
$ if MHD
$ import idealmhd.mac
$ else
$ import euler.mac
$ endif

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
$ if MHD
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,MU0,WRITE_RESTART,DEBUG)
$ else
initializeFluidSimulation(NDIM,0.0,TEND,NUMDUMPS,CFL,GAS_GAMMA,WRITE_RESTART,DEBUG)
$ endif

# Setup the grid
$ if isEqualString(GRIDTYPE,ExodusII)
addExodusGrid(GRIDFILE)
$ else
addGmshGrid(GRIDFILE)
$ endif

# Create data structures needed for the simulation
createFluidSimulation()

# Specify initial condition
# Step 1: Add Variables
addVariable(NAME,<value>)

# Step 2: Add Pre-Expressions
addPreExpression(<PreExpression>)

# Step 3: a) Add expressions specifying initial condition on density,
# momentum
addExpression(<expression>)
$ if MHD
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# Step 3: b) Add expression specifying initial conditions on total
# energy, magnetic field, correction potential
addExpression(<expression>)
$ else
# Step 3: b) Add expression specifying initial conditions on total
# energy
addExpression(<expression>)
$ endif

# Define boundary entities
createNewEntityFromMask(<entityName>)
addEntityMaskExpression(<entityName>,<logicalExpression>)

# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

# Boundary conditions
boundaryCondition(<boundaryCondition,entity>)

# User-specified boundary conditions
boundaryCondition(userSpecified, <entityName>)
addBoundaryConditionVariable(<boundaryCondition>,<entityName>,<variableName>,<variableValue>)
addBoundaryConditionPreExpression(<boundaryCondition>,<entityName>,<preExpression>)
addBoundaryConditionExpression(<boundaryCondition>,<entityName>,<Expression>)

# User-specified output diagnostics
addOutputDiagnostic(<outputDiagnosticName>)
addOutputDiagnosticVariable(<outputDiagnosticName>,<variableName>,<variableValue>)
addOutputDiagnosticPreExpression(<outputDiagnosticName>,<preExpression>)
addOutputDiagnosticExpression(<outputDiagnosticName>,<Expression>)

# Time integration
timeAdvance(TIME_ORDER)

# Run the simulation!
runFluidSimulation()

3.5.12 An Example Simulation

The input file for the problem Flow over a forward facing step in the USimBase package demonstrates each of the
concepts described above. Executing this input file within USimComposer and switching to the Visualize tab yields
the plots shown in Fig. 3.6.

Note: For more depth, you can view the actual input blocks to Ulixes in the Setup window by choosing Save And
Process Setup and then clicking on the forwardFacingStep.in file. In the .in file all macros are expanded to produce
input blocks.
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Fig. 3.6: Visualization of mesh geometry in USimComposer after executing the Flow over a forward facing step input
file for the tutorial.
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CHAPTER

FOUR

ADVANCED USIM SIMULATIONS

The following tutorials can be worked through with a USimBase license and described how to perform simulations
using USim by working directly with the input file.

4.1 Advanced USim Simulation Concepts

In Using USim to solve the Euler Equations, Solving Problems on Unstructured Meshes in USim, we saw how to
solve the Euler and MHD equations for a range of problems using USim. The algorithms that we used to do this were
created using a range of macros. USim simulations can also be created without the use of these macros, allowing the
user much greater control over the simulation design process and enabling simulations with greater complexity. The
next set of tutorials describes how to create USim simulations without the use of macros. It does so by making use of
the examples in USimBase again, but this time we examine the actual input blocks generated from the macros. This is
done in the Setup window by choosing Save And Process Setup and then clicking on the <exampleName>.in tab. In
the .in tab all macros are expanded to produce input blocks.

We start this set of tutorials by presenting advanced concepts about USim that you should understand before creating
and running USim simulations without using the macros described in earlier tutorials. Taking the time to examine
these concepts before reading about the simulation process will make the simulation procedures simple to understand
and tutorial lessons straightforward to follow.

Contents

• Advanced USim Simulation Concepts
– The Fluids Component
– Defining the Simulation Grid
– Allocating Memory
– Setting Initial Conditions
– Writing Out Data

* Writing out Additional Data
– An Example Simulation File

4.1.1 The Fluids Component

USim input files without macros look like XML files. Input files can contain nested blocks, each block can contain
double, integer and string values and vectors (arrays) of these types. Remember: if you want to specify a double in
the input file you must not omit the decimal point. Otherwise, the number will be interpreted as an integer. Similarly,
if you want an array of doubles, the first element must have a decimal point. Hence, what follows are examples of a
double scalar and a double vector:
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value = 1.0
listOfNumbers = [1.0, 2.0, 3.0]

The simplest example of an input file given below. It basically does nothing but starts USim and quits:

# start and end times
tStart = 0.0
tEnd = 0.2
# number of frames to write
numFrames = 2
# initial time-step to use
initDt = 0.01
verbosity = debug
defaultParallelSync = false

# top level component
<Component fluids>

kind = updaterComponent
</Component>

All input files need a start and end time for the simulation, specified as tStart and tEnd. The numFrames variable
tells USim how many frames of data to write. USim will always write the initial frame and then will write additional
numFrames frames. Each frame is an HDF5 file named same as the input file with numbers appended to indicate
frame number. For example, euler_0.h5, euler_1.h5 and euler_2.h5 will be created by the above simulation. More
information on USim data output is given in Writing Out Data.

The initial time-step is specified in initDt. This can be set to whatever you want as USim will simply adjust this
depending on the physics included in the simulation.

The option defaultParallelSync=false tells USim that the user will specify the parallel synchronization of the data in
the simulation. defaultParallelSync is optional, but defaults to false. If defaultParallelSync=true then parallel data
synchronization is done automatically. Automatic synchronization is less efficient than user defined synchronization,
but avoids many of the pitfalls. If you are having problems with a parallel simulations, a simple check of your
synchronization is to set defaultParallelSync=true.

In each simulation there must be exactly one top-level Component block. This block is called fluids. You can name it
anything you want and this name will be reflected in the output HDF5 files. Many blocks take a special field called
the kind field. This field tells USim what kind of Component (in this case) to create. For now, we will use the standard
updaterComponent component kind.

4.1.2 Defining the Simulation Grid

Every object in a USim simulation interacts with a grid in one, two or three dimensions, in either Cartesian or axisym-
metric Cylindrical coordinates. Grids in USim can either be rectangular, body-fitted or unstructured. The simplest
example is a one-dimensional rectangular grid, which here we name domain:

<Grid domain>
kind = cart1d
ghostLayers = 2
lower = [0.0]
upper = [1.0]
cells = [512]

</Grid>

This will create a 512 zone, 1D Cartesian grid spanning the physical space (0.0, 1.0). Instructions for creating multi-
dimensional Cartesian grids, body-fitted grids and unstructured meshes can be found in other sections of this manual.
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4.1.3 Allocating Memory

Data can be allocated on the grid defined in Defining the Simulation Grid through the code block such as:

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

This block will create a nodalArray array called “q”. A nodal array is one that interacts with rectangular, body-fitted
and unstructured meshes and is decomposed using MPI when run in parallel. Note we have to specify the name of the
grid the data lives on using the onGrid field. The field numComponents tells USim that we wish to store 5 components
in this array.

Now our input file should look like:

# start and end times
tStart = 0.0
tEnd = 0.2

# number of frames to write
numFrames = 2

# initial time-step to use
initDt = 0.01
verbosity = debug

# top level component
<Component fluids>
kind = updaterComponent

<Grid domain>
kind = cart1d
ghostLayers = 2
lower = [0.0]
upper = [1.0]
cells = [512]

</Grid>

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

</Component>

This input file can be executed within USimComposer.

4.1.4 Setting Initial Conditions

Now that we have allocated an array we will initialize it. USim provides a block called Updater to perform action
on data. There are many Updaters and we will use them extensively in constructing a simulation. Updaters are very
powerful and can be used to create very complex simulations by combining them carefully. Think of an updater as a
generalization of a subroutine or function.

Let’s create an updater, named “init” to initialize the “q” array. This updater will use a expressions to initialize all
the components of “q”. As a simple example, we will use the initial condition for a one-dimensional Sod Shock tube,
which consists of a left-state and a right-state separated by a discontinuity:
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<Updater init>
kind = initialize1d
onGrid = domain
out = [q]

# initial condition to use
<Function func>

kind = exprFunc

# location of discontinuity
sloc = 0.5

# gas density in left state
rhol = 3.0

# gas pressure in left state
prl = 3.0

# gas density in right state
rhor = 1.0

# gas pressure in right state
prr = 1.0

# Adiabatic index, or ratio of specific heats
gasGamma = $GAMMA$

preExprs = [ \
"rho = if (x>sloc, rhor, rhol)", \
"pr = if (x>sloc, prr, prl)"]

exprs = ["rho", "0.0", "0.0", "0.0", "pr/(gasGamma-1)"]

</Function>

</Updater>

Each updater must have a kind field and an onGrid field. This updater is of kind “initialize1d” and runs on the grid
“domain” that we created previously. Updaters usually have in and out fields that specify which datastructures are input
and which are output. Other fields and blocks depend on the updater kind. In this updater we are using a Function
block to specify a function for use in the initial conditions. The kind of function we are using is the “exprFunction”
that uses expressions. This particular expression sets the following initial condition

𝜌 = 3.0 𝑥 < 0.5 (4.1)
𝜌 = 1.0 𝑥 > 0.5 (4.2)
𝑃𝑔 = 3.0 𝑥 < 0.5 (4.3)
𝑃𝑔 = 1.0 𝑥 > 0.5 (4.4)

If we simply put the above block in the input file and run the simulation nothing will happen! I.e. the initial conditions
will not be applied. The reason is that updaters do not run automatically. We have to specify when the updater will be
run using UpdateStep blocks. To do this we add the following block in the input file:

<UpdateStep initStep>
updaters = [init]
syncVars = [q]

</UpdateStep>

This tells USim that when the initStep updater-step is run to call the updater “init”. The variable syncVars specifies
which variables should be synchronized AFTER the list of updaters is called. In this case the variable q is syn-
chronized. If defaultParallelSync=false then syncVars can be dropped and USim will automatically synchronize all
variables in the out list of the updaters.
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The final step to have this updater-step run is to add a single UpdateSequence block:

<UpdateSequence sequence>
startOnly = [initStep]
loop = []
writeOnly = []

</UpdateSequence>

Thats it! When we run the input file the “q” array will be initialized with the updater. Now our complete input file
looks like:

# Adiabatic index, or ratio of specific heats
$GAMMA = 1.4

# start and end times
tStart = 0.0
tEnd = 0.2

# number of frames to write
numFrames = 2

# initial time-step to use
initDt = 0.01
verbosity = debug

# top level component
<Component fluids>
kind = updaterComponent

<Grid domain>
kind = cart1d
numLayers = 2
lower = [0.0]
upper = [1.0]
cells = [100]
isRadial = false

</Grid>

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

<Updater init>
kind = initialize1d
onGrid = domain
out = [q]

# initial condition to use
<Function func>

kind = exprFunc

# location of discontinuity
sloc = 0.5

# gas density in left state
rhol = 3.0

# gas pressure in left state
prl = 3.0

# gas density in right state
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rhor = 1.0
# gas pressure in right state

prr = 1.0

# Adiabatic index, or ratio of specific heats
gasGamma = $GAMMA$

preExprs = [ \
"rho = if (x>sloc, rhor, rhol)", \
"pr = if (x>sloc, prr, prl)"]

exprs = ["rho", "0.0", "0.0", "0.0", "pr/(gasGamma-1)"]

</Function>

</Updater>

<UpdateStep initStep>
updaters = [init]

</UpdateStep>

<UpdateSequence sequence>
startOnly = [initStep]
loop = []
writeOnly = []

</UpdateSequence>

</Component>

4.1.5 Writing Out Data

All data produced by USim is output using the HDF5 data file format. These output files are dumped as defined by the
user; they can be written at the end of a simulation, for example, or every n steps to create a time series that can be used
to see how a system evolves over time. Additionally, these output files can be used to restart a run and continue from
a given point; for example, if a user has run a simulation for 1000 time steps and wishes to see how the simulation
progresses if run for another 1000.

Execution of USim leads to the generation of the data from the simulation in the form of HDF5 .h5 files. There are
separate executables for serial and parallel runs.

Writing out Additional Data

If we plot the q_4 variable in Composer we will be plotting the total energy and not the gas pressure. To compute the
pressure we can add another array called pressure to store the pressure:

<DataStruct pressure>
kind = nodalArray
onGrid = domain
numComponents = 1

</DataStruct>

Next, we add an “combiner” updater to extract the pressure:

<Updater pressCalc>
kind = combiner1d
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onGrid = domain
# input array

in = [q]

# ouput data-structures
out = [pressure]

indVars_q = ["rho", "rhou", "rhov", "rhow", "Er"]

gamma = GAMMA
preExprs = ["pr = (Er - 0.5*(rhou^2+rhov^2+rhow^2)/rho)*(gamma-1)"]
exprs = ["pr"]

</Updater>

In this updater we assign a name to each of the five components of “q” and use them in expressions to compute the
pressure using the formula

𝑝 = (𝛾 − 1)
(︀
𝐸 − 0.5𝜌(𝑢2 + 𝑣2 + 𝑤2)

)︀
where 𝐸 is the total fluid energy and (𝑢, 𝑣, 𝑤) are the fluid velocity components.

Finally, we need to call this updater in an updater-step and add it to the writeOnly list in the update-sequence block:

<UpdateStep pressureStep>
updaters = [pressCalc]

</UpdateStep>

<UpdateSequence sequence>
startOnly = [initStep]
loop = []
writeOnly = [pressureStep]

</UpdateSequence>

When we run this simulation an array called “pressure” will also be written out that will store the pressure in the
simulation. Note that by putting the “pressCalcStep” in the writeOnly list we are running the “pressCalcStep” only
before we write data to file. It is not run every time-step.

4.1.6 An Example Simulation File

The input file for the problem Shock Tube in the USimBase package demonstrates each of the concepts described
above to evolve the classic Sod Shock tube problem in one-dimensional hydrodynamics. You can view the actual
input blocks to Ulixes in the Setup window by choosing Save And Process Setup and then clicking on the shockTube.in
file. In the .in file all macros are expanded to produce input blocks.

4.2 Advanced Methods for Solving the Euler Equations with USim

In Advanced USim Simulation Concepts we examined the basic ingredients of a USim input file: the simulation grid
(see Defining the Simulation Grid); data structures (see Allocating Memory); how to assign initial conditions (see
Setting Initial Conditions) and how to write out additional data (see Writing Out Data). In this tutorial, we build
on these concepts and demonstrate the basic methods used by USim to solve the Euler equations without the use of
macros.

This tutorial is based on the quickstart-shocktube example. The Shock Tube simulation is designed to set up a variety
of tube simulations including those by Einfeldt, Sod, Liska & Wendroff, Brio & Wu, and Ryu & Jones. In this tutorial,
we will look at the Sod Shock Tube based on the classic paper:
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Sod, Gary A. "A survey of several finite difference methods for
systems of nonlinear hyperbolic conservation laws." ; Journal of Computational Physics 27.1 (1978): 1-31.

and the use of equations for inviscid compressible hydrodynamics (the Euler equations), which were described in
Using USim to solve the Euler Equations. The addition of a basic grid and how to setup an initial condition was
covered in Advanced USim Simulation Concepts. In this tutorial, we discuss how to setup USim algorithms for solving
the Euler equations directly without using macros.

Contents

• Advanced Methods for Solving the Euler Equations with USim
– Allocating Simulation Memory
– Computing the Fluxes
– Applying Boundary Conditions
– Advancing By A Time Step
– Putting it all Together

* An Example Simulation File
– Advanced USim Simulation Structure

4.2.1 Allocating Simulation Memory

The Euler equations consist of partial differential equations that describe the evolution of density, momentum and total
energy. refmanual-eulerEqn documents the number of components that each data structure needs to contain to solve
this set of equations; which is five:

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

4.2.2 Computing the Fluxes

USim implements the well-known MUSCL scheme to compute the spatial discretization of a hyperbolic conservation
law (see Using USim to solve the Euler Equations for a more detailed description). In Using USim to solve the Euler
Equations, we added this algorithm through:

finiteVolumeScheme(DIFFUSIVE)

For the Euler equations, this macro expands to produce a :ref: refmanual-classicMuscl, shown below:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

# input data-structures
in=[q]
# output data-structures
out=[qNew]
# CFL number to use
cfl=0.5
# legacy time integration scheme, attribute; should be set to "none"
timeIntegrationScheme=none
# Riemann solver
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numericalFlux=hllcEulerFlux
# Limiter to use
limiter=[muscl]
# Form of variable to limit
variableForm=primitive
# Whether to check variables for physical validitiy
preservePositivity=0

# Hyperbolic equation system
<Equation euler>
kind=eulerEqn
# Adiabatic index
gasGamma=1.6666666666666667

</Equation>

# Hyperbolic equation to solve
equations=[euler]

</Updater>

Details of the block and the meaning of each component are given in refmanual-classicMuscl . The Updater computes
the numerical flux for the hyperbolic system. This same Updater can be used for all hyperbolic equations available in
USim.

4.2.3 Applying Boundary Conditions

At each time step, we have to apply boundary conditions at the left and right of the domain to ensure that at the next
time step, physically-valid data is used to update the conserved state. Without this, the simulation will fail. It is
possible to specify arbitrary boundary conditions in USim.

For the Sod shock tube example considered here, appropriate boundary conditions are outflow (“open”) boundary
conditions at both ends of the domain. This was done in Using USim to solve the Euler Equations using the macros:

boundaryCondition(copy,left)
boundaryCondition(copy,right)

These expand to yield:

<Updater copyBoundaryOnEntityleft>
kind=copy1d
onGrid=domain
in=[q]
out=[q]
entity=left

</Updater>

<Updater copyBoundaryOnEntityright>
kind=copy1d
onGrid=domain
in=[q]
out=[q]
entity=right

</Updater>

The copy boundary condition block is described in refmanual-copy. This boundary condition updater copies the values
on the layer next to the ghost cells into the ghost cells - this is equivalent to a zero derivative boundary condition.

If we are evolving in more than one-dimension, we have to specify boundary conditions on the rest of the domain
boundaries. This was done in Using USim to solve the Euler Equations using the macro:
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boundaryCondition(periodic)

This expands to yield:

<Updater periodicBoundaryOnEntityghost>
kind=periodicCartBc1d
onGrid=domain
in=[q]
out=[q]

</Updater>

The periodic boundary condition updater is documented at refmanual-periodicCartBc).

4.2.4 Advancing By A Time Step

In order to solve the Euler equations, we have to advance the conserved quantities from time 𝑡 to 𝑡+ ∆𝑡. This is done
by applying a time integration scheme. In Using USim to solve the Euler Equations, we did this using the macro:

timeAdvance(TIME_ORDER)

This expands to yield:

<Updater mainIntegrator>
kind=multiUpdater1d
onGrid=domain
in=[q]
out=[qNew]

<TimeIntegrator timeStepper>
kind=rungeKutta1d
onGrid=domain
scheme=second

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=[copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=[hyper]
syncVars=[qNew]

</UpdateStep>

<UpdateSequence sequence>
startOnly=[]
restoreOnly=[]
writeOnly=[]
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>
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This is the refmanual-multiUpdater, which is the most powerful updater available in USim. It enables the user to
combine together almost any of the refmanual-updaters available in USim and apply explicit, super-time step or fully-
implicit refmanual-timeIntegrationSchemes. Details of each block can be found in refmanual-multiUpdater, however
here are a few key points. The multiUpdater integrates system of equations in time. The time integration method is
specified in TimeIntegrator, after that a series of UpdateSteps are defined. Each UpdateStep contains an operation
type (which is optional), a list of updaters that are evaluated during the step and an optional list of syncVars which
specifies which variables should synchronized after the updateStep is called. Synchronization (syncVars) are important
for parallel computation and tell USim to synchronize a DataStruct across a parallel domain. Default synchronization
can be specified by setting defaultParallelSync=true at the top of the file - at that point all the syncVars can be left
blank. This approach is less efficient than manual synchronization, but is less prone to user error.

The final element of advancing the conserved quantities from time 𝑡 to 𝑡 + ∆𝑡 is to copy the updated data in qnew to
q. In USim, we accomplish this through use of a Linear Combiner:

<Updater copier>
kind=linearCombiner1d
onGrid=domain
in=[qNew]
out=[q]
coeffs=[1.0]

</Updater>

This updater block is also generated when we expand the timeAdvance(TIME_ORDER) macros and is described in
refmanual-linearCombiner This updater solves the equation 𝑂𝑢𝑡 = 𝐶𝑜𝑒𝑓𝑓𝑠 * 𝐼𝑛, where in this case 𝐼𝑛 = 𝑞𝑁𝑒𝑤,
𝑂𝑢𝑡 = 𝑞 and 𝐶𝑜𝑒𝑓𝑓𝑠 = 1.0.

4.2.5 Putting it all Together

In Using USim to solve the Euler Equations, we told USim that we’re done specifying the simulation and that it can
be run by calling the macro:

runFluidSimulation()

This macro collects up all of the updaters that we have added so far and, based on the sequence that we have added
them, figures out how to call them to run a USim simulation. For the Sod shock case in ShockTube example, the
computations performed by this macro results in the following refmanual-updateSteps and refmanual-updateSequence
being generated:

<UpdateStep startStep>
updaters=[setVar copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep restoreStep>
updaters=[]
syncVars=[]

</UpdateStep>

<UpdateStep bcStep>
updaters=[copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[mainIntegrator copier]
syncVars=[]

</UpdateStep>
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<UpdateStep writeStep>
updaters=[computePressure computeVelocity computeDensity]
syncVars=[]

</UpdateStep>

Each UpdateStep block calls a number of updaters in in the order given in the updaters string list and when USim
is executed in parallel, handle synchronization of data across processors through the syncVar string list. Note that if
these lists are empty and the Update Step is called, then it simply returns without doing anything.

As part of the expansion of the runSimulation macro, the UpdateStep blocks are added to appropriate string lists in the
refmanual-UpdateSequence:

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

UpdateSteps listed in the startOnly string list are executed at the beginning of the simulation and generally are used
to define generate entities in the grid and definine iniital conditions. UpdateSteps listed in the restoreOnly string list
are executed when a simulation is restartedand generally are used to define generate entities in the grid, ensure that
data structures contain valid data and apply boundary conditions. UpdateSteps in the writeOnly string list are executed
only when data is output to a file. Finally, UpdateSteps listed in the loop string list are executed at each time step.

An Example Simulation File

The input file for the problem Shock Tube in the USimBase package demonstrates each of the concepts described
above to evolve the classic Sod Shock tube problem in one-dimensional hydrodynamics. You can view the actual
input blocks to Ulixes in the Setup window by choosing Save And Process Setup and then clicking on the shockTube.in
file. In the .in file all macros are expanded to produce input blocks.

4.2.6 Advanced USim Simulation Structure

In earlier tutorials, we developed a simple pattern that could be used to design USim simulations using macros. This
pattern can be repeated when we don’t use macros; however, we now need to add the grids, data structures, updaters,
boundary conditions and time integration schemes by hand and then tell USim how to run them. An initial pattern
looks like the following:

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
# Simulation start and end times
tStart = <float>
tEnd = <float>
# Number of data files to write
numFrames = <integer>
# Initial time-step to use
initDt = <float>
# Level of feedback to give user
verbosity = <info/debug>
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<Component fluids>
kind = updaterComponent

# Setup the grid
<Grid Grid_Name (type=string)>
<grid parameters>

</Grid>

# Create data structures needed for the simulation
<DataStruct DataStruct_Name1 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_Name2 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_NameN (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

# Specify initial condition
<Updater Initialization_Updater_Name (type=string)>
kind = initialize<NDIM>d
onGrid = <Grid_Name>
out = <DataStruct_Name for t = 0>

# initial condition to use
<Function func>

kind = exprFunc

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)

exprs = ["<density_expression>", \
"<xMomentum_expression>", \
"<yMomentum_expression>", \
"<zMomentum_expression>", \
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"<totalEnergy_expression>"]

</Function>

</Updater>

# Add the spatial discretization of the fluxes
<Updater FiniteVolume_Updater_Name (type=string)>
kind=classicMuscl<NDIM>d
onGrid=<Grid_Name>

# input data-structures
in=<DataStruct_Name for t^n>
# output data-structures

out=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>
# CFL number to use
cfl=<float>
# legacy time integration scheme, attribute; should be set to "none"
timeIntegrationScheme=none
# Riemann solver
numericalFlux=<string>
# Limiter to use

limiter=[<string>]
# Form of variable to limit
variableForm=<string>
# Whether to check variables for physical validitiy
preservePositivity=<int>

# Hyperbolic equation system
<Equation euler>

kind=eulerEqn
# Adiabatic index
gasGamma=<float>

</Equation>

# Hyperbolic equation to solve
equations=[euler]

</Updater>

# Boundary conditions
<Updater BoundaryCondition_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

# Time integration
<Updater TimeIntegrationUpdater_Name (type=string)>
kind=multiUpdater<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n+1>

<TimeIntegrator timeStepper>
kind=rungeKutta<NDIM>d
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onGrid=<Grid_Name>
scheme=<string>

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=<string list of boundary conditions>
syncVars=<DataStruct_Name at t^n>

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=<string list of integrators>
syncVars=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>

</UpdateStep>

<UpdateSequence sequence>
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

<Updater CopierUpdater_Name (type=string)>
kind=linearCombiner<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n+1>
out=<DataStruct_Name for t^n>
coeffs=[1.0]

</Updater>

<UpdateStep startStep>
updaters=[Initialization_Updater_Name BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep restoreStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep bcStep>
updaters=[BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[FiniteVolume_Updater_Name (type=string)]
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep writeStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
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writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

</Component>

Note that we have not filled in some of the entries in the UpdateSteps above. How to use these UpdateSteps is discussed
in later tutorials.

4.3 Advanced Methods for Solving the Magnetohydrodynamics
Equations with USim

In Advanced USim Simulation Concepts we examined the basic ingredients of a USim input file: the simulation grid
(see Defining the Simulation Grid); data structures (see Allocating Memory); how to assign initial conditions (see
Setting Initial Conditions) and how to write out additional data (see Writing Out Data). In Advanced Methods for
Solving the Euler Equations with USim, we built on these concepts and demonstrated the basic methods used by USim
to solve the Euler equations without the use of macros.

This tutorial is based on the quickstart-shocktube example. The Shock Tube simulation is designed to set up a variety
of tube simulations including those by Einfeldt, Sod, Liska & Wendroff, Brio & Wu, and Ryu & Jones. In this tutorial,
we will look at the Brio & Wu shock Tube, described by:

Brio, M., & Wu, C.~C. (1988), Journal of Computational Physics, 75, 400

and the use of equations for ideal compressible magnetohydrodynamics (the MHD equations) in one-dimension, which
were described in Using USim to solve the Magnetohydrodynamic Equations. In this tutorial, we discuss how to setup
USim algorithms for solving the MHD equations directly without using macros.

Contents

• Advanced Methods for Solving the Magnetohydrodynamics Equations with USim
– Allocating Simulation Memory
– Initializing the Fluid
– Evolving the Fluid
– Applying Boundary Conditions
– Advancing By A Time Step
– Simulation Diagnostics
– Putting it all Together

* An Example Simulation File
– Advanced USim Simulation Structure

4.3.1 Allocating Simulation Memory

The MHD equations consist of partial differential equations that describe the evolution of density, momentum. to-
tal energy and the magnetic field. refmanual-mhdDednerEqn documents the number of components that each data
structure needs to contain to solve this set of equations. In addition to the quantities defined by the MHD equations,
the refmanual-mhdDednerEqn evolves an additional partial differential equation that controls the divergence of the
magnetic field (the correction potential). As a result, our data structures need nine components:

<DataStruct q>
kind = nodalArray
onGrid = domain
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numComponents = 9
</DataStruct>

i.e. modifying the numComponents input block to contain 9 entries. This must be applied to all data structures that
contain the conserved state, fluxes or the primitive variables in the input file.

4.3.2 Initializing the Fluid

The initial condition for a MHD simulation follows the same basic three-step pattern outlined previously, but with the
need to specify the additional componets associated with the magnetic field and the correction potential:

<Updater init>
kind = initialize1d
onGrid = domain
out = [q,qnew]

<Function initFunc>
kind=exprFunc

# Step 1: Add Variables
pi_value=3.141592653589793
gas_gamma=1.6666666666666667
densityL=1.0
densityR=0.125
pressureL=1.0
pressureR=0.1
normalVelocityL=0.0
normalVelocityR=0.0
perpendicularVelocityL=0.0
perpendicularVelocityR=0.0
tangentialVelocityL=0.0
tangentialVelocityR=0.0
mu0=1.0
normalFieldL=0.75
normalFieldR=0.75
perpendicularFieldL=1.0
perpendicularFieldR=-1.0
tangentialFieldL=0.0
tangentialFieldR=0.0

# Step 2: Add Pre-Expressions
preExprs=[ rho=if(x>0.0,densityR,densityL) pr=if(x>0.0,pressureR,pressureL) vx=if(x>0.0,normalVelocityR,normalVelocityL) vy=if(x>0.0,perpendicularVelocityR,perpendicularVelocityL) vz=if(x>0.0,tangentialVelocityR,tangentialVelocityL) bx=if(x>0.0,normalFieldR,normalFieldL) by=if(x>0.0,perpendicularFieldR,perpendicularFieldL) bz=if(x>0.0,tangentialFieldR,tangentialFieldL) psi=0.0 ]

# Step 3: Add Expressions
exprs=[ rho rho*vx rho*vy rho*vz pr/(gas_gamma-1.0)+0.5*rho*(vx*vx+vy*vy+vz*vz)+0.5*((bx*bx+by*by+bz*bz)/mu0) bx by bz psi ]

</Function>

</Updater>

Notice how each of the three steps are added to the function block that defines the initial condition:

1. Step 1 creates a list of <variablesName> = <value> pairs; one per line.

2. Step 2 creates a string vector called preExprs (short for preExpressions). Each of the addPreExpression calls
described in Using USim to solve the Magnetohydrodynamic Equations adds one entry to this vector, which
contains the function specified in the addPreExpression call.

3. Step 3 creates a string vector called exprs (short for expressions). As with Step 2, each of the addExpression
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call described in Using USim to solve the Magnetohydrodynamic Equations adds one entry to this vector, which
contains the function specified in the addExpression call. Note that the order of the addExpression calls is pre-
served in the string vector; this is critical as these entries specify each component of the refmanual-nodalArray
specified in the [out] attribute.

We will see this pattern repeated whenever we used this three step process in the simple input files.

4.3.3 Evolving the Fluid

USim implements the well-known MUSCL scheme to compute the spatial discretization of a hyperbolic conservation
law (see Using USim to solve the Euler Equations for a more detailed description). In Using USim to solve the
Magnetohydrodynamic Equations, we added this algorithm through:

finiteVolumeScheme(DIFFUSIVE)

For the MHD equations, this macro expands to produce a :ref: refmanual-classicMuscl, shown below:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain
# input data-structures
in=[q]
# output data-structures
out=[qNew]
# CFL number to use
cfl=0.5
# legacy time integration scheme attribute; should be set to "none"
timeIntegrationScheme=none
# Riemann solver
numericalFlux=hlldFlux
# Limiter to use
limiter=[muscl]
# Form of variable to limit
variableForm=primitive
# Whether to check variables for physical validitiy
preservePositivity=0
# Maximum wave speed in the grid at this time step
waveSpeeds=[maxWaveSpeed]

# Hyperbolic equation system
<Equation idealMhd>
kind=mhdDednerEqn
# Adiabatic index
gasGamma=1.6666666666666667
# Permeability of free space; should always be set to unity
mu0=1.0

</Equation>

# Hyperbolic equation to solve
equations=[idealMhd]

</Updater>

Compare to the case for the Euler equations described in Advanced Methods for Solving the Euler Equations with
USim, this example of the refmanual-classicMuscl updater has two key differences:

1. The use of the refmanual-mhdDednerEqn to describe the hyperbolic equation system.

2. The use of the waveSpeeds = <string vector> to specify a list of refmanual-dynVectors to provide the fastest
wave speed in the grid at the current time step.
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The waveSpeeds = <string vector> attribute is required for the refmanual-mhdDednerEqn in order to control the
divergence of the magnetic field. These wave speeds are computed dynamically by USim using a refmanual-
timeStepRestrictionUpdater, which in the shock tube example looks like:

<Updater getMaxWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain
# input data-structures
in=[q]
# no output data-structures
out=[]
# CFL number to use
courantCondition=0.5
# DynVector to hold the maximum wave speed
waveSpeeds=[maxWaveSpeed]

# Time step restriction to compute
<TimeStepRestriction idealMhdRestriction>
# Compute a time step restriction for a hyperbolic equation
kind=hyperbolic1d
# Adiabatic index
gasGamma=1.6666666666666667
# Permeability of free-space, should always be 1.0
mu0=1.0
# Hyperbolic equation to use
model=mhdDednerEqn

</TimeStepRestriction>

# List of time step restrictions to compute
restrictions=[idealMhdRestriction]

</Updater>

This updater computes the global maximum wave speed over the entire simulation based on the refmanual-nodalArray
specified in the in string vector. The wave speed is stored in the refmanual-dynVector specified in the waveSpeeds
string vector.

4.3.4 Applying Boundary Conditions

At each time step, we have to apply boundary conditions at the left and right of the domain to ensure that at the next
time step, physically-valid data is used to update the conserved state. Without this, the simulation will fail. It is
possible to specify arbitrary boundary conditions in USim.

The boundary conditions used for the Brio & Wu shock tube are the same as those used in Using USim to solve the
Euler Equations, Using USim to solve the Magnetohydrodynamic Equations and Advanced Methods for Solving the
Euler Equations with USim: outflow (“open”) boundary conditions at both ends of the domain. This was done in
Using USim to solve the Magnetohydrodynamic Equations using the macros:

boundaryCondition(copy,left)
boundaryCondition(copy,right)

These expand to yield:

<Updater copyBoundaryOnEntityleft>
kind=copy1d
onGrid=domain
in=[q]
out=[q]
entity=left
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</Updater>

<Updater copyBoundaryOnEntityright>
kind=copy1d
onGrid=domain
in=[q]
out=[q]
entity=right

</Updater>

The copy boundary condition block is described in refmanual-copy. This boundary condition updater copies the values
on the layer next to the ghost cells into the ghost cells - this is equivalent to a zero derivative boundary condition. Note
that the blocks that describe these boundary conditions are identical to those used for the Euler equations (described
in Advanced Methods for Solving the Euler Equations with USim). This is because these boundary conditions simply
copy the values in each component of the refmanual-nodalArray into the ghost cells; USim does this for all components
of the supplied input refmanual-nodalArray.

As in Using USim to solve the Euler Equations, Using USim to solve the Magnetohydrodynamic Equations and Ad-
vanced Methods for Solving the Euler Equations with USim, If we are evolving in more than one-dimension, we have
to specify boundary conditions on the rest of the domain boundaries. This was done in Using USim to solve the
Magnetohydrodynamic Equations using the macro:

boundaryCondition(periodic)

This expands to yield:

<Updater periodicBoundaryOnEntityghost>
kind=periodicCartBc1d
onGrid=domain
in=[q]
out=[q]

</Updater>

The periodic boundary condition updater (documented at refmanual-periodicCartBc) is again identical to that used for
the Euler equations (described in Advanced Methods for Solving the Euler Equations with USim), for the same reason
as discussed above for the copy boundary condition. The copy and periodicCartBc boundary conditions are the two
easiest boundary conditions to apply in USim.

4.3.5 Advancing By A Time Step

In order to solve the MHD equations, we have to advance the conserved quantities from time 𝑡 to 𝑡 + ∆𝑡. This is
done by applying a time integration scheme. In Using USim to solve the Magnetohydrodynamic Equations, we did
this using the macro:

timeAdvance(TIME_ORDER)

This expands to yield:

<Updater mainIntegrator>
kind=multiUpdater1d
onGrid=domain
in=[q]
out=[qNew]

<TimeIntegrator timeStepper>
kind=rungeKutta1d
onGrid=domain
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scheme=second
</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=[copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=[hyper]
syncVars=[qNew]

</UpdateStep>

<UpdateSequence sequence>
startOnly=[]
restoreOnly=[]
writeOnly=[]
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

Note that this time integration scheme is identical to that described in Advanced Methods for Solving the Euler
Equations with USim; in USim, we can evolve many different systems of hyperbolic equations using the same basic
algorithmic ingredients.

4.3.6 Simulation Diagnostics

The macro-based simulations described in Basic USim Simulations compute a range of quantities that are output from
the simulation to aid the user in understanding simulation behavior. For the MHD equations, these quantities include
the primitive variables:

primitiveVariables = [density Velocity Pressure magneticField magneticFieldEnergy]

These quantities are computed in the simulation through use of a refmanual-updater-combiner:

<Updater computeDensity>
kind=combiner1d
onGrid=domain
in=[q]
out=[density]
indVars_q=[rho rhou rhov rhow Er bx by bz psi]
exprs=[ rho ]

</Updater>

<Updater computeVelocity>
kind=combiner1d
onGrid=domain
in=[q]
out=[velocity]
indVars_q=[rho rhou rhov rhow Er bx by bz psi]
preExprs=[ vx=rhou/rho vy=rhov/rho vz=rhow/rho ]
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exprs=[ vx vy vz ]
</Updater>

<Updater computePressure>
kind=combiner1d
onGrid=domain
in=[q]
out=[pressure]
gas_gamma=1.6666666666666667
mu0=1.0
indVars_q=[rho rhou rhov rhow Er bx by bz psi]
preExprs=[ pr=(Er-0.5*(rhou*rhou+rhov*rhov+rhow*rhow)/rho-0.5*(bx*bx+by*by+bz*bz))*(gas_gamma-1.0) ]
exprs=[ pr ]

</Updater>

<Updater computeMagneticField>
kind=combiner1d
onGrid=domain
in=[q]
out=[magneticField]
indVars_q=[rho rhou rhov rhow Er bx by bz psi]
exprs=[ bx by bz ]

</Updater>

<Updater computeFieldEnergy>
kind=combiner1d
onGrid=domain
in=[magneticField]
out=[magneticFieldEnergy]
mu0=1.0
indVars_magneticField=[bx by bz]
exprs=[ (bx*bx+by*by+bz*bz)*(0.5/mu0) ]

</Updater>

Each of these updaters follow the pattern described in Writing Out Data. For the MHD equations, USim also computes
a set of variables that describe the properties of the magnetic field:

magneticFieldProperties = [magneticFieldDivergence magneticFieldCurrent]

These quantities are computed through the use of USim capabilties to compute derivatives of quantities defined on the
simulation mesh (described at refmanual-vector):

<Updater computeFieldDivergence>
kind=vector1d
onGrid=domain
in=[magneticField]
out=[magneticFieldDivergence]
numberOfInterpolationPoints=8
derivative=divergence

</Updater>

<Updater computeFieldCurrent>
kind=vector1d
onGrid=domain
in=[magneticField]
out=[magneticFieldCurrent]
numberOfInterpolationPoints=8
derivative=curl

</Updater>
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USim capabilties for computing first- and second-order derivatives are discussed in later tutorials.

4.3.7 Putting it all Together

In Solving Multi-Dimensional Problems in USim, we told USim that we’re done specifying the simulation and that it
can be run by calling the macro:

runFluidSimulation()

This macro collects up all of the updaters that we have added so far and, based on the sequence that we have added
them, figures out how to call them to run a USim simulation. For the Brio & Wu shock case in ShockTube example, the
computations performed by this macro results in the following refmanual-updateSteps and refmanual-updateSequence
being generated:

<UpdateStep startStep>
updaters=[setVar copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost getMaxWaveSpeed]
syncVars=[q]

</UpdateStep>

<UpdateStep restoreStep>
updaters=[]
syncVars=[]

</UpdateStep>

<UpdateStep bcStep>
updaters=[copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[getMaxWaveSpeed mainIntegrator copier]
syncVars=[]

</UpdateStep>

<UpdateStep writeStep>
updaters=[computePressure computeMagneticField computeVelocity computeDensity computeFieldEnergy computeFieldDivergence computeFieldCurrent]
syncVars=[]

</UpdateStep>

<UpdateSequence simulation>
startOnly=[startStep]
restoreOnly=[restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

Note the similarlity between these blocks and those discussed in Advanced Methods for Solving the Euler Equations
with USim. There are two major differences:

1. The updaters specified in the hyperStep now calls the getMaxWaveSpeed updater prior to the mainIntegrator;
this computes the maximum wave speed for the simulation needed for evolving the MHD equations by ∆𝑡.

2. The updaters specified in the writeStep now includes all of the updaters needed to compute additional quantities
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for the MHD equations. These updaters are only run when USim writes out data; helping to minimize their
impact on USim performance.

An Example Simulation File

The input file for the problem Shock Tube in the USimBase package demonstrates each of the concepts described
above to evolve the classic Brio & Shock tube problem in one-dimensional magnetohydrodynamics. You can view
the actual input blocks to Ulixes in the Setup window by choosing Save And Process Setup and then clicking on the
shockTube.in file. In the .in file all macros are expanded to produce input blocks.

4.3.8 Advanced USim Simulation Structure

In earlier tutorials, we developed a simple pattern that could be used to design USim simulations using macros. This
pattern can be repeated when we don’t use macros; however, we now need to add the grids, data structures, updaters,
boundary conditions and time integration schemes by hand and then tell USim how to run them. An initial for the
MHD equations looks like the following:

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
# Simulation start and end times
tStart = <float>
tEnd = <float>
# Number of data files to write
numFrames = <integer>
# Initial time-step to use
initDt = <float>
# Level of feedback to give user
verbosity = <info/debug>

<Component fluids>
kind = updaterComponent

# Setup the grid
<Grid Grid_Name (type=string)>
<grid parameters>

</Grid>

# Create data structures needed for the simulation
<DataStruct DataStruct_Name1 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_Name2 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_NameN (type=string)>
kind = nodalArray
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onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

# Specify initial condition
<Updater Initialization_Updater_Name (type=string)>
kind = initialize<NDIM>d
onGrid = <Grid_Name>
out = <DataStruct_Name for t = 0>

# initial condition to use
<Function func>

kind = exprFunc

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)

exprs = ["<density_expression>", \
"<xMomentum_expression>", \
"<yMomentum_expression>", \
"<zMomentum_expression>", \
"<totalEnergy_expression>", \
"<xMagneticField_expression>", \
"<yMagneticField_expression>", \
"<zMagneticField_expression>", \
"<scalarPotential_expression>"
]

</Function>

</Updater>

# Add the spatial discretization of the fluxes
<Updater FiniteVolume_Updater_Name (type=string)>
kind=classicMuscl<NDIM>d
onGrid=<Grid_Name>

# input data-structures
in=<DataStruct_Name for t^n>
# output data-structures

out=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>
# CFL number to use
cfl=<float>
# legacy time integration scheme, attribute; should be set to "none"
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timeIntegrationScheme=none
# Riemann solver
numericalFlux=<string>
# Limiter to use

limiter=[<string>]
# Form of variable to limit
variableForm=<string>
# Whether to check variables for physical validitiy
preservePositivity=<int>

# Hyperbolic equation system
<Equation idealMhd>

kind=mhdDednerEqn
# Adiabatic index
gasGamma=<float>
# Permeability
mu0=<float>

</Equation>

# Hyperbolic equation to solve
equations=[idealMhd]

</Updater>

# Boundary conditions
<Updater BoundaryCondition_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

# Time integration
<Updater TimeIntegrationUpdater_Name (type=string)>
kind=multiUpdater<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n+1>

<TimeIntegrator timeStepper>
kind=rungeKutta<NDIM>d
onGrid=<Grid_Name>
scheme=<string>

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=<string list of boundary conditions>
syncVars=<DataStruct_Name at t^n>

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=<string list of integrators>
syncVars=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>

</UpdateStep>
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<UpdateSequence sequence>
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

<Updater CopierUpdater_Name (type=string)>
kind=linearCombiner<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n+1>
out=<DataStruct_Name for t^n>
coeffs=[1.0]

</Updater>

# Output Diagnostics
<Updater OutputDiagnosticUpdater_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name1, DataStruct_Name2, ..., DataStruct_NameN>
out=<OutputDiagnosticDataStruct_Name1>

# Step 0: Specify components of input data structures
indVars_DataStruct_Name1 = <DataStruct_Name1_Component1, DataStruct_Name1_Component2, ..., DataStruct_Name1_ComponentN>
indVars_DataStruct_Name2 = <DataStruct_Name2_Component1, DataStruct_Name2_Component2, ..., DataStruct_Name2_ComponentN>
indVars_DataStruct_NameN = <DataStruct_NameN_Component1, DataStruct_NameN_Component2, ..., DataStruct_NameN_ComponentN>

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions to compute output diagnostic
exprs = [ \

"<expression_1>", \
"<expression_2>", \
"<expression_N>"
]

</Updater>

<UpdateStep startStep>
updaters=[Initialization_Updater_Name BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep restoreStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep bcStep>
updaters=[BoundaryCondition_Name1 ... BoundaryCondition_NameN]
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syncVars=[<DataStruct_Name for t^n>]
</UpdateStep>

<UpdateStep hyperStep>
updaters=[FiniteVolume_Updater_Name (type=string)]
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep writeStep>
updaters=< OutputDiagnosticUpdater_Name1, OutputDiagnosticUpdater_Name2, OutputDiagnosticUpdater_NameN>
syncVars=<OutputDiagnosticDataStruct_Name1, OutputDiagnosticDataStruct_Name2, ..., OutputDiagnosticDataStruct_NameN>

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

</Component>

Note that we have not filled in some of the entries in the UpdateSteps above. How to use these UpdateSteps is discussed
in later tutorials.

4.4 Advanced Methods for Solving for Solving Problems in Multi-
Dimensions with Usim

In Advanced USim Simulation Concepts we examined the basic ingredients of a USim input file: the simulation grid
(see Defining the Simulation Grid); data structures (see Allocating Memory); how to assign initial conditions (see
Setting Initial Conditions) and how to write out additional data (see Writing Out Data). In Advanced Methods for
Solving the Euler Equations with USim, we built on these concepts and demonstrated the basic methods used by USim
to solve the Euler equations without the use of macros. Next, in Advanced Methods for Solving the Magnetohydro-
dynamics Equations with USim, we extended these ideas to demonstrate how to solve the MHD equations in USim,
again without the use of macros.

This tutorial is based on the quickstart-rtInstability example in USimBase, which demonstrates the well-known
Rayleigh-Taylor instability problem described by:

Jun, Norman, & Stone, ApJ 453, 332 (1995).

Using this example, we will examine how to solve the equations of inviscid compressible hydrodynamics and ideal
compressible magnetohydrodynamics directly without the use of macros.
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4.4.1 Defining the Simulation Grid

In order to execute the two-dimensional Rayleigh-Taylor, we must define a two-dimensional grid simulation grid. In
USim, this is done by replacing the Grid input block defined in Defining the Simulation Grid with:

<Grid domain>
kind=cart2d
lower=[-0.25 -0.75]
upper=[0.25 0.75]
cells=[64 192]
periodicDirs=[0]
ghostLayers=2
isRadial=0
writeGeom=0
writeConn=0
writeHalos=0

</Grid>

Notice that the lower, upper and cells input blocks now take two entries, one for each dimension. A three-dimensional
Cartesian grid would therefore be defined by:

<Grid domain>
kind=cart3d
lower=[-0.25 -0.75 -0.25]
upper=[0.25 0.75 0.25]
cells=[64 192 64]
periodicDirs=[0 2]
ghostLayers=2
isRadial=0
writeGeom=0
writeConn=0
writeHalos=0

</Grid>

Note the usage of the periodicDirs attribute in these blocks. This attribute species the directions in the computational
mesh that are periodic. For this example in two-dimensions, the 0 (or x) direction is periodic; similarly, in three-
dimensions, both the 0 and 2 (z) directions are periodic. Note that this attribute is necessary to setup information
within the simulation grid regarding periodicity; however, periodic boundary conditions must still be applied in the
simulation. This is discussed below.
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4.4.2 Allocating Simulation Memory

USim data structures automatically account for the chosen dimensionality of the simulation. As a result, there is no
need to change how data structures are added for the Euler equations compared to the discussion in Advanced Methods
for Solving the Euler Equations with USim or the MHD equations compared to the discussion in Advanced Methods
for Solving the Magnetohydrodynamics Equations with USim.

4.4.3 Initializing the Fluid

The initial condition for a multi-dimensional simulation follows the same basic three-step pattern outlined previously;
however, the kind attribute for the initialization updater has to match the dimension of the mesh:

<Updater setVar>
kind=initialize2d
onGrid=domain
in=none
out=[q qNew]

<Function initFunc>
kind=exprFunc
# adiabatic index
gas_gamma=1.4
# Upper fluid density
rhoTop=2.0
# Lower fluid density
rhoBottom=1.0
# Perturbation amplitude
perturb=0.01
# Location of upper y boundary
ytop=0.75
# acceleration due to gravity
gravity=0.1
# X-extent of domain
lx=0.5
# Y-extent of domain
ly=1.5
preExprs=[ p0=0.01 pert=0.01 pi=3.14159 rho=if(y<0.0,rhoBottom,rhoTop) pr=(1.0/gas_gamma)-(gravity*rho*y) vx=0.0 vy=(0.25*perturb)*(1.0+cos(2.0*pi*x/lx))*(1.0+cos(2.0*pi*y/ly)) vz=0.0 ]
exprs=[ rho rho*vx rho*vy rho*vz (pr/(gas_gamma-1.0))+0.5*rho*vy*vy ]

</Function>

</Updater>

As in Solving Multi-Dimensional Problems in USim, this initialization block creates a hydrostatic equilibrium consist-
ing of a heavier fluid supported by a lighter fluid, which is perturbed with a single mode. Compared to the initialization
block for the Sod shock tube problem discussed in Advanced Methods for Solving the Euler Equations with USim, the
key difference as far as problem dimensionality is concerned is that the kind block is specified as initialize2d for this
problem. This pattern is repeated for all updaters within a USim input file, e.g. for the generic updater update:

<Updater Updater_Name (type=string)>
kind = updateKind<NDIM>d
onGrid = <Grid_Name>

</Updater>

Here, updateKind is the kind of the USim updater that is being utilized (e.g. for the initialization input block, this is
initialize) and <NDIM> is the dimensionality of the problem, e.g. 1,2,3 for one-, two- and three-dimensions.
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4.4.4 Evolving the Fluid

USim implements the well-known MUSCL scheme to compute the spatial discretization of a hyperbolic conservation
law (see Using USim to solve the Euler Equations for a more detailed description). In Solving Multi-Dimensional
Problems in USim, we added this algorithm through:

#
# Add the spatial discretization of the fluxes
finiteVolumeScheme(DIFFUSIVE)

#
# Add source term for gravitational acceleration to the equations
addGravitationalAcceleration(GRAVITY_ACCEL)

For the quickstart-rtinstability example in two-dimensions, this macro expands to give:

<Updater hyper>
kind=classicMuscl2d
onGrid=domain
in=[q]
out=[qNew]
cfl=0.4
timeIntegrationScheme=none
numericalFlux=hllcEulerFlux
limiter=[muscl]
variableForm=primitive
preservePositivity=0

<Equation euler>
kind=eulerEqn
gasGamma=1.4

</Equation>

equations=[euler]

<Source gravity>
kind=exprHyperSrc
gravity=0.1
rhoSrc=0.0
mxSrc=0.0
mzSrc=0.0
inpRange=[0 1 2 3 4]
outRange=[0 1 2 3 4]
indVars=[rho rhou rhov rhow Er]
exprs=[ rhoSrc mxSrc -rho*gravity mzSrc -gravity*rhov ]

</Source>

sources=[gravity]
</Updater>

Compared to the quickstart-shocktube example discussed in Advanced Methods for Solving the Euler Equations with
USim, we see that this is following the pattern discussed above, i.e. kind = classicMuscl1d has been replaced by kind
= classicMuscl2d. We also have added an additional Source block to this updater, corresponding to the use of the
macro:

# Add source term for gravitational acceleration to the equations
addGravitationalAcceleration(GRAVITY_ACCEL)

The use of this macro resulted in the addition of refmanual-exprHyperSrc to the refmanual-classicMuscl updater:
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<Source gravity>
kind=exprHyperSrc
gravity=0.1
rhoSrc=0.0
mxSrc=0.0
mzSrc=0.0
inpRange=[0 1 2 3 4]
outRange=[0 1 2 3 4]
indVars=[rho rhou rhov rhow Er]
exprs=[ rhoSrc mxSrc -rho*gravity mzSrc -gravity*rhov ]

</Source>

Note that this block is following the classic three step pattern that used throughout USim (in this case, no preExpres-
sions have been defined). The additional attributes inpRange and outRange tell USim which components of the input
and output variables for the refmanual-classicMuscl updater to work with.

4.4.5 Applying Boundary Conditions

The Rayleigh-Taylor instability problem requires more advanced boundary conditions that were used for the Sod
Shock tube in the previous example. In two-dimensions, appropriate boundary conditions for the Rayleigh-Taylor
instability are periodic boundaries in the direction transverse to the gravitational field and reflecting boundaries in the
parallel direction, which are the x and y directions respectively.

In the quickstart-rtinstability example, we applied these boundary conditions through the use of the macros:

#
# Boundary conditions
boundaryCondition(wall,top)
boundaryCondition(wall,bottom)
boundaryCondition(periodic)

The first two of these macros expand to yield the blocks:

<Updater wallBoundaryOnEntitytop>
kind=eulerBc2d
onGrid=domain
in=[q]
out=[q]
model=eulerEqn
bcType=wall
entity=top
gasGamma=1.4

</Updater>

<Updater wallBoundaryOnEntitybottom>
kind=eulerBc2d
onGrid=domain
in=[q]
out=[q]
model=eulerEqn
bcType=wall
entity=bottom
gasGamma=1.4

</Updater>

These reflecting wall boundary conditions are described below. The third macro expands to yield a periodic boundary
condition:
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<Updater periodicBoundaryOnEntityghost>
kind=periodicCartBc2d
onGrid=domain
in=[q]
out=[q]

</Updater>

We discuss this in the next section.

Periodic Boundary Conditions

Periodic boundary conditions in USim are specified in two ways, both of which must be used simultaneously. First, an
input block peroidicDirs is added to the Grid block:

<Grid domain>
kind = cart2d
ghostLayers = 2
lower = [-0.25, -0.75]
upper = [ 0.25, 0.75]
cells = [64, 192]
periodicDirs = [0]

</Grid>

The dimensions in which periodic boundary conditions are applied are specified by a vector. In this case, we apply
periodic boundary conditions in the x direction, so we set:

periodicDirs = [0]

If we wished (for example) to extend the Rayleigh-Taylor instability problem to three-dimensions, then it might be
appropriate to apply periodic boundary conditions to the x and z directions. In this case, we would set:

periodicDirs = [0,2]

In addition to the periodicDirs input block that is added to Grid, we must also add an updater block to apply the
periodic boundary conditions within the simulation loop. This is done through the updater:

<Updater periodicBoundaryOnEntityghost>
kind=periodicCartBc2d
onGrid=domain
in=[q]
out=[q]

</Updater>

where the meanings of the various input blocks are described as in Evolving the Fluid. Note that if we wished to apply
periodic boundary conditions in a three-dimensional problem, then we would set:

kind = periodicCartBc3d

This follows the pattern for changing the dimension of a USim simulation discussed previously.

Reflecting Wall Boundary Conditions

In the transverse direction to the flow (here the y direction), we specify reflecting wall boundary conditions. In USim,
this is done using the updater:
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<Updater wallBoundaryOnEntitytop>
kind=eulerBc2d
onGrid=domain
in=[q]
out=[q]
model=eulerEqn
bcType=wall
entity=top
gasGamma=1.4

</Updater>

<Updater wallBoundaryOnEntitybottom>
kind=eulerBc2d
onGrid=domain
in=[q]
out=[q]
model=eulerEqn
bcType=wall
entity=bottom
gasGamma=1.4

</Updater>

The refmanual-eulerBc applies boundary condition appropriate for systems of equations that follow the pattern of
the Euler equations, i.e. a conserved state vector similar to that described at refmanual-eulerEqn. The specific type
of hydrodynamic equation that the boundary condition is applied to is specified by the attribute modelEqn. Valid
options for this attribute include refmanual-eulerEqn, refmanual-realGasEqn and refmanual-realGasEosEqn. Note
that attributes required by these equations should be specified in the block associated with the boundary condition. In
the examples above, this includes the gasGamma parameter required for refmanual-eulerEqn.

A range of boundary conditions can be applied by refmanual-eulerBc; the specific choice is specified by the attribute
bcType. Valid options for this attribute include wall, noInflow and noSlip.

Finally, we must specify the boundary that the boundary condition is to be applied on. For a structured mesh such as
used in the quickstart-rtinstability example, a range of boundaries are predefined:

left The lower x-boundary.

right The upper x-boundary.

bottom The lower y-boundary.

top The upper y-boundary.

back The lower z-boundary.

front The upper z-boundary.

We specify the boundary to apply the boundary through the use of the entityType attribute, e.g. to apply the wall
boundary condition on the upper y-boundary, we set:

entity=top

4.4.6 Advancing By A Time Step

In order to solve the MHD equations, we have to advance the conserved quantities from time 𝑡 to 𝑡+ ∆𝑡. This is done
by applying a time integration scheme. In Solving Multi-Dimensional Problems in USim, we did this using the macro:

timeAdvance(TIME_ORDER)

118 Chapter 4. Advanced USim Simulations



USimInDepth, Release 3.0.1

This expands to yield:

<Updater mainIntegrator>
kind=multiUpdater2d
onGrid=domain
in=[q]
out=[qNew]

<TimeIntegrator timeStepper>
kind=rungeKutta2d
onGrid=domain
scheme=second

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=[wallBoundaryOnEntitytop wallBoundaryOnEntitybottom periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=[hyper]
syncVars=[qNew]

</UpdateStep>

<UpdateSequence sequence>
startOnly=[]
restoreOnly=[]
writeOnly=[]
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

This time integration scheme is very similar to that described in Advanced Methods for Solving the Euler Equations
with USim; we follow the pattern described above to switch the dimension of the mainIntegrator and the timeStepper
blocks. To handle the changes to the boundary conditions compared to Advanced Methods for Solving the Euler
Equations with USim, we change the boundaryStep block from:

<UpdateStep boundaryStep>
operation=boundary
updaters=[copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

to:

<UpdateStep boundaryStep>
operation=boundary
updaters=[wallBoundaryOnEntitytop wallBoundaryOnEntitybottom periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>
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4.4.7 Putting it all Together

In Solving Multi-Dimensional Problems in USim, we told USim that we’re done specifying the simulation and that it
can be run by calling the macro:

runFluidSimulation()

This macro collects up all of the updaters that we have added so far and, based on the sequence that we have added
them, figures out how to call them to run a USim simulation. For the quickstart-rtInstability example, the computa-
tions performed by this macro results in the following refmanual-updateSteps and refmanual-updateSequence being
generated:

<UpdateStep generateStep>
updaters=[]
syncVars=[]

</UpdateStep>

<UpdateStep startStep>
updaters=[setVar wallBoundaryOnEntitytop wallBoundaryOnEntitybottom periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep restoreStep>
updaters=[]
syncVars=[]

</UpdateStep>

<UpdateStep bcStep>
updaters=[wallBoundaryOnEntitytop wallBoundaryOnEntitybottom periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[mainIntegrator copier]
syncVars=[]

</UpdateStep>

<UpdateStep writeStep>
updaters=[computePressure computeVelocity computeDensity]
syncVars=[]

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>
</UpdateSequence>

Note the similarlity between these blocks and those discussed in Advanced Methods for Solving the Euler Equations
with USim. In fact, the only difference is the change in the bcStep block, which is analogous to that discussed above,
i.e. we have that:
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<UpdateStep bcStep>
updaters=[copyBoundaryOnEntityleft copyBoundaryOnEntityright periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

becomes:

<UpdateStep bcStep>
updaters=[wallBoundaryOnEntitytop wallBoundaryOnEntitybottom periodicBoundaryOnEntityghost]
syncVars=[q]

</UpdateStep>

4.4.8 Advanced USim Simulation Structure

In earlier tutorials, we developed a simple pattern that could be used to design USim simulations using macros. This
pattern can be repeated when we don’t use macros; however, we now need to add the grids, data structures, updaters,
boundary conditions and time integration schemes by hand and then tell USim how to run them. In multi-dimensions,
we can extend the pattern to:

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
# Simulation start and end times
tStart = <float>
tEnd = <float>
# Number of data files to write
numFrames = <integer>
# Initial time-step to use
initDt = <float>
# Level of feedback to give user
verbosity = <info/debug>

<Component fluids>
kind = updaterComponent

# Setup the grid
<Grid Grid_Name (type=string)>
<grid parameters>

</Grid>

# Create data structures needed for the simulation
<DataStruct DataStruct_Name1 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_Name2 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_NameN (type=string)>
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kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

# Specify initial condition
<Updater Initialization_Updater_Name (type=string)>
kind = initialize<NDIM>d
onGrid = <Grid_Name>
out = <DataStruct_Name for t = 0>

# initial condition to use
<Function func>

kind = exprFunc

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)

exprs = ["<density_expression>", \
"<xMomentum_expression>", \
"<yMomentum_expression>", \
"<zMomentum_expression>", \
"<totalEnergy_expression>"]

</Function>

</Updater>

# Add the spatial discretization of the fluxes
<Updater FiniteVolume_Updater_Name (type=string)>
kind=classicMuscl<NDIM>d
onGrid=<Grid_Name>

# input data-structures
in=<DataStruct_Name for t^n>
# output data-structures

out=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>
# CFL number to use
cfl=<float>
# legacy time integration scheme, attribute; should be set to "none"
timeIntegrationScheme=none
# Riemann solver
numericalFlux=<string>
# Limiter to use
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limiter=[<string>]
# Form of variable to limit
variableForm=<string>
# Whether to check variables for physical validitiy
preservePositivity=<int>

# Hyperbolic equation system
<Equation euler>

kind=eulerEqn
# Adiabatic index
gasGamma=<float>

</Equation>

# Hyperbolic equation to solve
equations=[euler]

<Source Souce_Name_1>
kind=<string>
<Source_Name_1 params>

</Source>

...

<Source Souce_Name_N>
kind=<string>
<Source_Name_N params>

</Source>

sources=[Souce_Name_1, ..., Souce_Name_N]
</Updater>

# Boundary conditions
<Updater BoundaryCondition_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

...

<Updater BoundaryCondition_NameN (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

# Output Diagnostics
<Updater OutputDiagnosticUpdater_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name1, DataStruct_Name2, ..., DataStruct_NameN>
out=<OutputDiagnosticDataStruct_Name1>
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# Step 0: Specify components of input data structures
indVars_DataStruct_Name1 = <DataStruct_Name1_Component1, DataStruct_Name1_Component2, ..., DataStruct_Name1_ComponentN>
indVars_DataStruct_Name2 = <DataStruct_Name2_Component1, DataStruct_Name2_Component2, ..., DataStruct_Name2_ComponentN>
indVars_DataStruct_NameN = <DataStruct_NameN_Component1, DataStruct_NameN_Component2, ..., DataStruct_NameN_ComponentN>

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions to compute output diagnostic
exprs = [ \

"<expression_1>", \
"<expression_2>", \
"<expression_N>"
]

</Updater>

# Time integration
<Updater TimeIntegrationUpdater_Name (type=string)>
kind=multiUpdater<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n+1>

<TimeIntegrator timeStepper>
kind=rungeKutta<NDIM>d
onGrid=<Grid_Name>
scheme=<string>

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=<string list of boundary conditions>
syncVars=<DataStruct_Name at t^n>

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=<string list of integrators>
syncVars=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>

</UpdateStep>

<UpdateSequence sequence>
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

<Updater CopierUpdater_Name (type=string)>
kind=linearCombiner<NDIM>d
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onGrid=<Grid_Name>
in=<DataStruct_Name for t^n+1>
out=<DataStruct_Name for t^n>
coeffs=[1.0]

</Updater>

<UpdateStep startStep>
updaters=[Initialization_Updater_Name BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep restoreStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep bcStep>
updaters=[BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[FiniteVolume_Updater_Name (type=string)]
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep writeStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

</Component>

Note that we have not filled in some of the entries in the UpdateSteps above. How to use these UpdateSteps is discussed
in later tutorials.

4.4.9 Advanced Methods for Solving the MHD Equations in Multi-Dimensions

We can extend the approach above to solving the MHD equations in multi-dimensions in a straightforward fashion. The
steps for Creating a Fluid Simulation is unchanged from Using USim to solve the Magnetohydrodynamic Equations,
while the steps for Adding a Simulation Grid are identical to that given above. The first differences come in Initializing
the Fluid, where the initial condition now has to specify the magnetic field, magnetic energy and the scalar potential:

<Updater setVar>
kind=initialize2d
onGrid=domain
in=none
out=[q qNew]

<Function initFunc>
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kind=exprFunc
# adiabatic index
gas_gamma=1.4
# Upper fluid density
rhoTop=2.0
# Lower fluid density
rhoBottom=1.0
# Perturbation amplitude
perturb=0.01
# Location of upper y boundary
ytop=0.75
# acceleration due to gravity
gravity=0.1
# X-extent of domain
lx=0.5
# Y-extent of domain
ly=1.5
# permeability of free space
mu0=1.0
# ratio of gas to magnetic pressure
beta=1000.0
preExprs=[ p0=0.01 pert=0.01 pi=3.14159 rho=if(y<0.0,rhoBottom,rhoTop) pr=(1.0/gas_gamma)-(gravity*rho*y) vx=0.0 vy=(0.25*perturb)*(1.0+cos(2.0*pi*x/lx))*(1.0+cos(2.0*pi*y/ly)) vz=0.0 bx=sqrt(2.0*pr/(beta*beta)) by=0.0 bz=0.0 psi=0.0 ]
exprs=[ rho rho*vx rho*vy rho*vz pr/(gas_gamma-1.0)+0.5*rho*(vy*vy)+0.5*((bx*bx)/mu0) bx by bz psi ]

</Function>

</Updater>

The finite volume scheme used to compute the spatial discretization is becomes:

<Updater hyper>
kind=classicMuscl2d
onGrid=domain
in=[q]
out=[qNew]
cfl=0.4
timeIntegrationScheme=none
numericalFlux=hlldFlux
limiter=[muscl]
variableForm=primitive
preservePositivity=0
waveSpeeds=[maxWaveSpeed]

<Equation idealMhd>
kind=mhdDednerEqn
gasGamma=1.4
mu0=1.0

</Equation>

equations=[idealMhd]

<Source gravity>
kind=exprHyperSrc
gravity=0.1
rhoSrc=0.0
mxSrc=0.0
mzSrc=0.0
bxSrc=0.0
bySrc=0.0
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bzSrc=0.0
psiSrc=0.0
inpRange=[0 1 2 3 4 5 6 7 8]
outRange=[0 1 2 3 4 5 6 7 8]
indVars=[rho rhou rhov rhow Er Bx By Bz Psi]
exprs=[ rhoSrc mxSrc -rho*gravity mzSrc -gravity*rhov bxSrc bySrc bzSrc psiSrc ]

</Source>

sources=[gravity]
</Updater>

Compared to the exampled discussed in Advanced Methods for Solving the Magnetohydrodynamics Equations with
USim, the differences follow the same pattern as discussed above; the switch of the dimension and the addition of the
Source block. Note that for the MHD equations, we have to specify the source terms for the magnetic field and the
potential, even though these are zero.

Note: The algorithms in USim automatically preserve ∇ ·𝐵 = 0 (the solenoidal constraint on the magnetic field), so
there is no need for the user to make changes to the algorithm at the input file level when running in multi-dimensions.

Finally, the wall boundary conditions become:

<Updater conductingWallBoundaryOnEntitytop>
kind=mhdBc2d
onGrid=domain
in=[q]
out=[q]
model=mhdDednerEqn
bcType=conductingWall
entity=top
gasGamma=1.4

</Updater>

<Updater conductingWallBoundaryOnEntitybottom>
kind=mhdBc2d
onGrid=domain
in=[q]
out=[q]
model=mhdDednerEqn
bcType=conductingWall
entity=bottom
gasGamma=1.4

</Updater>

The signficant difference compared to the hydrodynamic case discussed above, is that we have switch the kind attribute
to refmanual-mhdBc. Valid bcType options for this attribute include conductingWall, noInflow and noSlip, while
the options for the modelType attribute include refmanual-mhdDednerEqn, refmanual-gasDynamicMhdDednerEqn,
refmanual-simpleTwoTemperatureMhdDednerEqn and refmanual-twoTemperatureMhdDednerEqn.

Advanced USim Simulation Structure for MHD in Multi-Dimensions

In earlier tutorials, we developed a simple pattern that could be used to design USim simulations using macros. This
pattern can be repeated when we don’t use macros; however, we now need to add the grids, data structures, updaters,
boundary conditions and time integration schemes by hand and then tell USim how to run them. A multi-dimensional
approach for the MHD equations, include sources resembles the following:
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# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
# Simulation start and end times
tStart = <float>
tEnd = <float>
# Number of data files to write
numFrames = <integer>
# Initial time-step to use
initDt = <float>
# Level of feedback to give user
verbosity = <info/debug>

<Component fluids>
kind = updaterComponent

# Setup the grid
<Grid Grid_Name (type=string)>
<grid parameters>

</Grid>

# Create data structures needed for the simulation
<DataStruct DataStruct_Name1 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_Name2 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_NameN (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

# Specify initial condition
<Updater Initialization_Updater_Name (type=string)>
kind = initialize<NDIM>d
onGrid = <Grid_Name>
out = <DataStruct_Name for t = 0>

# initial condition to use
<Function func>

kind = exprFunc

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>
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# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)

exprs = ["<density_expression>", \
"<xMomentum_expression>", \
"<yMomentum_expression>", \
"<zMomentum_expression>", \
"<totalEnergy_expression>", \
"<xMagneticField_expression>", \
"<yMagneticField_expression>", \
"<zMagneticField_expression>", \
"<scalarPotential_expression>"
]

</Function>

</Updater>

# Add the spatial discretization of the fluxes
<Updater FiniteVolume_Updater_Name (type=string)>
kind=classicMuscl<NDIM>d
onGrid=<Grid_Name>

# input data-structures
in=<DataStruct_Name for t^n>
# output data-structures

out=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>
# CFL number to use
cfl=<float>
# legacy time integration scheme, attribute; should be set to "none"
timeIntegrationScheme=none
# Riemann solver
numericalFlux=<string>
# Limiter to use

limiter=[<string>]
# Form of variable to limit
variableForm=<string>
# Whether to check variables for physical validitiy
preservePositivity=<int>

# Hyperbolic equation system
<Equation idealMhd>

kind=mhdDednerEqn
# Adiabatic index
gasGamma=<float>
# Permeability
mu0=<float>

</Equation>

# Hyperbolic equation to solve
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equations=[idealMhd]

<Source Souce_Name_1>
kind=<string>
<Source_Name_1 params>

</Source>

...

<Source Souce_Name_N>
kind=<string>
<Source_Name_N params>

</Source>

sources=[Souce_Name_1, ..., Souce_Name_N]
</Updater>

# Boundary conditions
<Updater BoundaryCondition_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

...

<Updater BoundaryCondition_NameN (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

# Time integration
<Updater TimeIntegrationUpdater_Name (type=string)>
kind=multiUpdater<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n+1>

<TimeIntegrator timeStepper>
kind=rungeKutta<NDIM>d
onGrid=<Grid_Name>
scheme=<string>

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=<string list of boundary conditions>
syncVars=<DataStruct_Name at t^n>

</UpdateStep>

<UpdateStep integrationStep>
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operation=integrate
updaters=<string list of integrators>
syncVars=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>

</UpdateStep>

<UpdateSequence sequence>
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

<Updater CopierUpdater_Name (type=string)>
kind=linearCombiner<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n+1>
out=<DataStruct_Name for t^n>
coeffs=[1.0]

</Updater>

# Output Diagnostics
<Updater OutputDiagnosticUpdater_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name1, DataStruct_Name2, ..., DataStruct_NameN>
out=<OutputDiagnosticDataStruct_Name1>

# Step 0: Specify components of input data structures
indVars_DataStruct_Name1 = <DataStruct_Name1_Component1, DataStruct_Name1_Component2, ..., DataStruct_Name1_ComponentN>
indVars_DataStruct_Name2 = <DataStruct_Name2_Component1, DataStruct_Name2_Component2, ..., DataStruct_Name2_ComponentN>
indVars_DataStruct_NameN = <DataStruct_NameN_Component1, DataStruct_NameN_Component2, ..., DataStruct_NameN_ComponentN>

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions to compute output diagnostic
exprs = [ \

"<expression_1>", \
"<expression_2>", \
"<expression_N>"
]

</Updater>

<UpdateStep startStep>
updaters=[Initialization_Updater_Name BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep restoreStep>
updaters=<String List of Updaters>
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syncVars=<String List of DataStructs>
</UpdateStep>

<UpdateStep bcStep>
updaters=[BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[FiniteVolume_Updater_Name (type=string)]
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep writeStep>
updaters=< OutputDiagnosticUpdater_Name1, OutputDiagnosticUpdater_Name2, OutputDiagnosticUpdater_NameN>
syncVars=<OutputDiagnosticDataStruct_Name1, OutputDiagnosticDataStruct_Name2, ..., OutputDiagnosticDataStruct_NameN>

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

</Component>

Note that we have not filled in some of the entries in the UpdateSteps above. How to use these UpdateSteps is discussed
in later tutorials.

4.5 Advanced Methods for Solving Problems on Advanced Meshes
with USim

In Advanced USim Simulation Concepts we examined the basic ingredients of a USim input file: the simulation grid
(see Defining the Simulation Grid); data structures (see Allocating Memory); how to assign initial conditions (see Set-
ting Initial Conditions) and how to write out additional data (see Writing Out Data). In Advanced Methods for Solving
the Euler Equations with USim, we built on these concepts and demonstrated the basic methods used by USim to solve
the Euler equations without the use of macros. Next, in Advanced Methods for Solving the Magnetohydrodynamics
Equations with USim, we extended these ideas to demonstrate how to solve the MHD equations in USim, again with-
out the use of macros. Then, in Advanced Methods for Solving for Solving Problems in Multi-Dimensions with Usim,
we demonstrated how to extend these concepts to multi-dimensions for both the Euler and MHD without the use of
macros.

In this tutorial, we show how USim can be used to solve problems on more advanced meshes, building on the concepts
presented in Solving Problems on Advanced Structured Meshes in USim and Solving Problems on Unstructured Meshes
in USim to demonstrate how to solve problems in USim on a range of advanced mesh types.
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* Putting it all Together
* Advanced USim Simulation Structure

4.5.1 Solving Problems in Axi-Symmetric Curvilinear Coordinates

An example of using USim to solve the MHD equations in axi-symmetric curvilinear coordinates is found in quickstart-
zpinch.

Adding a Simulation Grid

In Solving Problems on Advanced Structured Meshes in USim, the use of axisymmetric cylindrical coordinates in this
problem is specified through the use of the macro:

addCylindricalGrid(lowerBounds, upperBounds, numCells, periodicDirections)

For the quickstart-zpinch example, this macro expans to yield:

<Grid domain>
kind=cart2d
lower=[0.001 -0.1]
upper=[0.1 0.1]
cells=[32 64]
periodicDirs=[1]
ghostLayers=2
isRadial=1
writeGeom=0
writeConn=0
writeHalos=0

</Grid>

The isRadial attribute in this Grid block specifies that the grid is utilizing curvilinear coordinates. When we work di-
rectly with the input file, we have to manually specify which Grids and updaters we want to use curvilinear coordinates,
unlike for the macros described in Solving Problems on Advanced Structured Meshes in USim.

Note: Cylindrical grids in USim are designed with axisymmetric coordinates in mind, so a one-dimensional mesh
simulates the 𝑅 coordinate, a two-dimensional mesh simulates the (𝑅,𝑍) coordinates and a three-dimensional mesh
simulates the (𝑅,𝑍, 𝜑) coordinates.

Evolving the Fluid

The MUSCL scheme implemented in USim requires additional source blocks to correctly integrate a hyperbolic con-
servation law in curvilinear coordinates. In Solving Problems on Advanced Structured Meshes in USim, these terms
were added automatically when we used the addCylindricalGrid macro. When we work directly with the input file,
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we have to add these by hand. This is done through the addition of a Source block to the refmanual-classicMuscl
Updater in a similar fashion to the gravitational acceleration block discussed in Advanced Methods for Solving for
Solving Problems in Multi-Dimensions with Usim:

<Updater hyper>
kind=classicMuscl2d
onGrid=domain
in=[q]
out=[qNew]
cfl=0.4
timeIntegrationScheme=none
numericalFlux=hlldFlux
limiter=[muscl]
variableForm=primitive
preservePositivity=1
waveSpeeds=[maxWaveSpeed]

<Equation idealMhd>
kind=mhdDednerEqn
basementPressure=20047.379936313715
basementDensity=8.000000000000001e-06
gasGamma=1.6667
mu0=1.0
correctNans=1
correct=1

</Equation>

equations=[idealMhd]

<Source axiSymmetricSource>
kind=mhdSym
gasGamma=1.6667
mu0=1.0
symmetryType=cylindrical
model=mhdDednerEqn

</Source>

sources=[axiSymmetricSource]
</Updater>

The axiSymmetricSource applied here is documented at refmanual-mhdSym. This is the only changed needed for the
refmanual-classicMuscl updater to work in axisymmetric cylindrical coordinates.

Simulation Diagnostics

The macro-based simulations described in Basic USim Simulations compute a range of quantities that are output from
the simulation to aid the user in understanding simulation behavior. For the MHD equations, USim also computes a
set of variables that describe the properties of the magnetic field:

magneticFieldProperties = [magneticFieldDivergence magneticFieldCurrent]

These quantities are computed through the use of USim capabilties to compute derivatives of quantities defined on the
simulation mesh (described at refmanual-vector):

<Updater computeFieldDivergence>
kind=vector2d
onGrid=domain
in=[magneticField]
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out=[magneticFieldDivergence]
numberOfInterpolationPoints=8
isRadial=1
derivative=divergence

</Updater>

<Updater computeFieldCurrent>
kind=vector2d
onGrid=domain
in=[magneticField]
out=[magneticFieldCurrent]
numberOfInterpolationPoints=8
isRadial=1
derivative=curl

</Updater>

Compared to the Advanced Methods for Solving the Magnetohydrodynamics Equations with USim, these blocks have
an additional attribute, isRadial=1, which tells USim to calculate these derivatives in a form consistent with axisym-
metric cylindrical coordinates.

4.5.2 Advanced Methods for Solving Problems on Body-Fitted Meshes in USim

An example of applying USim to a problem on a body-fitted mesh is found in quickstart-rampflow. This simulation
uses a refmanual-bodyFitted grid, which is added to the simulation through the addBodyFittedGrid macro:

addBodyFittedGrid(lowerBounds, upperBounds, numCells, periodicDirections)

This macro expands to yield:

<Grid domain>
kind=bodyFitted2d
lower=[0.0 0.0 0.0]
upper=[1.0 1.0 1.0]
cells=[37 25 25]
periodicDirs=[]
ghostLayers=2
isRadial=0
writeGeom=0
writeConn=0
writeHalos=0

<Vertices vertices>
kind=funcVertCalc

<Function myGrid>
kind=exprFunc

# Step 1: Add Variables
xmin=0.1
xmax=0.8
ymax=0.45
slope=0.17632698070846498
inletCells=12.0
rampCells=25.0
yCells=25.0
dxc=0.02702702702702703
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dyc=0.04

# Step 2: Add Pre-Expressions
preExprs=[ ix=rint(x/dxc) iy=rint(y/dyc) dxi=xmin/inletCells dxr=(xmax-xmin)/rampCells xp=if(inletCells>=ix,dxi*ix,xmin+dxr*(ix-inletCells)) dyi=ymax/yCells b=-slope*xmin y0=slope*xp+b dyr=(ymax-y0)/yCells yp=if(inletCells>=ix,dyi*iy,y0+dyr*iy) ]

# Step 3: Add Expressions
exprs=[ xp yp ]

</Function>

</Vertices>

</Grid>

Notice how each of the three steps are added to the function block that defines the grid condition:

1. Step 1 creates a list of <variablesName> = <value> pairs; one per line.

2. Step 2 creates a string vector called preExprs (short for preExpressions). Each of the addGridPreExpression
calls described in Solving Problems on Advanced Structured Meshes in USim adds one entry to this vector,
which contains the function specified in the addGridPreExpression call.

3. Step 3 creates a string vector called exprs (short for expressions). As with Step 2, each of the addGridExpression
call described in Solving Problems on Advanced Structured Meshes in USim adds one entry to this vector, which
contains the function specified in the addExpression call. Note that the order of the addGridExpression calls is
preserved in the string vector; this is critical as these entries specify each of the real space coordinates for the
computational grid.

4.5.3 Advanced Methods for Solving Problems on Unstructured Meshes with USim

An example of applying USim to a problem on an unstructured mesh is found in quickstart-forwardFacingStep. In
Solving Problems on Unstructured Meshes in USim, we added an unstructured mesh to a USim simulation through the
use of one of the two macros:

addExodusGrid(GRIDFILE)

or:

addGmshGrid(GRIDFILE)

The choice of which block to use corresponds to the format of the mesh; either GMSH or ExodusII format. The
GRIDFILE is the name of the file containing the mesh without the file extension.

These macros expand to yield a grid block that follows the pattern:

<Grid GRIDFILE>
kind=unstructured
ghostLayers=2
isRadial=0
writeGeom=0
writeConn=0
writeHalos=0
decomposeHalos=0

<Creator ctor>
kind=<Mesh_Format>
ndim=<NDIM>
file=GRIDFILE.<Mesh_Extension>

</Creator>
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</Grid>

Here, <Mesh_Format> = gmsh,exodus and <Mesh_Extension> = msh,g correspondigly, while <NDIM> specifies the
dimension of the simulation (as usual); here, it additionally corresponds to the highest dimensionality element in the
mesh, i.e. for quads <NDIM> = 2, while <NDIM> = 3 for hexes.

Note: Unstructured meshes in USim can only have dimension 2,3. One-dimensional meshes should make use of a
cartesian or a body fitted mesh.

Advanced Methods for Boundary Conditions on Unstructured Meshes

As was discussed in Solving Problems on Unstructured Meshes in USim, the complexity of performing calculations
on an unstructured mesh in USim is associated with application of boundary conditions. USim’s approach to applying
boundary conditions on an unstructured mesh is a two-step process:

1. The user defines the regions of the mesh (entity) that will be used to apply boundary conditions.

2. The user specifies the boundary conditions to apply on each region of the mesh.

For the specific case of quickstart-forwardFacingStep, there are three boundaries that we need to define, which are
delimited by position in the streamwise direction, 𝑥:

1. Inflow boundary: defined for 𝑥 < 0.0

2. Wall boundary: defined for 0.0 < 𝑥 < 3.0

3. Outflow boundary: defined for 𝑥 > 3.0

In Solving Problems on Unstructured Meshes in USim, we generated boundary entities that exist on the exterior of the
mesh using a combination of the createNewEntityFromMask and addEntityMaskExpression using the macros:

createNewEntityFromMask(<entityName>)
addEntityMaskExpression(<entityName>,<logicalExpression>)

These expand to yield a block that follows the pattern:

<Updater generate<entityName> >
kind=entityGenerator<NDIM>d
onGrid=<gridName>
in=none
out=none
newEntityName=<entityName>
onEntity=ghost

<Function <entityName>Mask>
kind=exprFunc
exprs=[ <logicalExpression> ]

</Function>

</Updater>

Of particular note here is the attribute onEntity = ghost. This attribute specifies an existing entity in the grid which
is will be subdivided by <logicalExpression>. All USim grids include an entity named ghost which corresponds to
the exterior surface of the mesh; as a result, our new entities only include mesh elements on the exterior surface of
the mesh that obey <logicalExpression>. In this fashion, it is possible to construct complex boundary regions for
unstructured meshes in USim using only simple logical conditions.

For the three entities needed for quickstart-forwardFacingStep, these operations take the form:
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# Inflow for x < 0.0
<Updater generateinflowEntity>

kind=entityGenerator2d
onGrid=forwardFacingStep
in=none
out=none
newEntityName=inflowEntity
onEntity=ghost

<Function inflowEntityMask>
kind=exprFunc
exprs=[ if(x<0.0,1.0,-1.0) ]

</Function>

</Updater>

# Wall for 0.0 < x < 3.0
<Updater generatewallEntity>

kind=entityGenerator2d
onGrid=forwardFacingStep
in=none
out=none
newEntityName=wallEntity
onEntity=ghost

<Function wallEntityMask>
kind=exprFunc
exprs=[ if((x>0.0)and(x<3.0),1.0,-1.0) ]

</Function>

</Updater>

# Outflow for x > 3.0
<Updater generateoutflowEntity>

kind=entityGenerator2d
onGrid=forwardFacingStep
in=none
out=none
newEntityName=outflowEntity
onEntity=ghost

<Function outflowEntityMask>
kind=exprFunc
exprs=[ if(x>3.0,1.0,-1.0) ]

</Function>

</Updater>

Now that we have created the inflowEntity, wallEntity and outflowEntity, we can specify boundary conditions on them.
For the wallEntity and the outflowEntity, the boundary conditions are familiar from our previous tutorials:

boundaryCondition(wall,wallEntity)
boundaryCondition(copy,outflowEntity)

The first of these boundary condition macros expands to yield:

<Updater wallBoundaryOnEntitywallEntity>
kind=eulerBc2d
onGrid=forwardFacingStep
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in=[q]
out=[q]
model=eulerEqn
bcType=wall
entity=wallEntity
gasGamma=1.4

</Updater>

while the second of these expands to yield:

<Updater copyBoundaryOnEntityoutflowEntity>
kind=copy2d
onGrid=forwardFacingStep
in=[q]
out=[q]
entity=outflowEntity

</Updater>

These boundary conditions should be familiar from previous tutorials; the difference here being that the entityName
parameter is set to match the specific entity that the boundary condition is applied to.

For the inflowEntity, we specify a new type of boundary condition userSpecified to determine the inflow properties
using the macros:

boundaryCondition(<boundaryCondition>,<entityName>,)
addBoundaryConditionVariable(<boundaryCondition>,<entityName>,<variableName>,<variableValue>)
addBoundaryConditionPreExpression(<boundaryCondition>,<entityName>,<preExpression>)
addBoundaryConditionExpression(<boundaryCondition>,<entityName>,<Expression>)

For quickstart-forwardFacingStep, the inflow boundary was specified according to:

# Add a user specified boundary condition
boundaryCondition(userSpecified,inflowEntity)

# Step 1: Add Variables
addBoundaryConditionVariable(userSpecified,inflowEntity,gasGamma,GAS_GAMMA)

# Step 2: Add Pre-Expressions
addBoundaryConditionPreExpression(userSpecified,inflowEntity,rho = gasGamma)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vx = 3.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vy = 0.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,vz = 0.0)
addBoundaryConditionPreExpression(userSpecified,inflowEntity,pr = 1.0)

# Step 3: Add expressions specifying boundary condition on density,
# momentum, total energy
addBoundaryConditionExpression(userSpecified,inflowEntity,rho)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vx)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vy)
addBoundaryConditionExpression(userSpecified,inflowEntity,rho*vz)
addBoundaryConditionExpression(userSpecified,inflowEntity,(pr/(gasGamma-1.0))+0.5*rho*(vx*vx))

These macros expand to yield the block:

<Updater userSpecifiedBoundaryOnEntityinflowEntity>
kind=functionBc2d
onGrid=forwardFacingStep
in=[q]
out=[q]
entity=inflowEntity
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<Function userSpecifiedBoundaryOnEntityinflowEntityFunc>
kind=exprFunc
# Step 1: Add Variables
gasGamma=1.4
# Step 2: Add preExpressions
preExprs=[ rho=gasGamma vx=3.0 vy=0.0 vz=0.0 pr=1.0 ]
# Step 3: Add expressions
exprs=[ rho rho*vx rho*vy rho*vz (pr/(gasGamma-1.0))+0.5*rho*(vx*vx) ]

</Function>

</Updater>

This block follows the standard three step pattern:

1. Step 1 creates a list of <variablesName> = <value> pairs; one per line.

2. Step 2 creates a string vector called preExprs (short for preExpressions). Each of the addBoundaryCondition-
PreExpression calls described in Solving Problems on Unstructured Meshes in USim adds one entry to this
vector, which contains the function specified in the addBoundaryConditionPreExpression call.

3. Step 3 creates a string vector called exprs (short for expressions). As with Step 2, each of the addBoundaryCon-
ditionExpression call described in Solving Problems on Unstructured Meshes in USim adds one entry to this
vector, which contains the function specified in the addBoundaryConditionExpression call. Note that the order
of the addBoundaryConditionExpression calls is preserved in the string vector; this is critical as these entries
specify each of the entries in the output data structure.

Putting it all Together

In Solving Problems on Unstructured Meshes in USim, we told USim that we’re done specifying the simulation and
that it can be run by calling the macro:

runFluidSimulation()

This macro collects up all of the updaters that we have added so far and, based on the sequence that we have added
them, figures out how to call them to run a USim simulation. For the quickstart-forwardFacingStep example, the
computations performed by this macro results in the following refmanual-updateSteps and refmanual-updateSequence
being generated:

<UpdateStep generateStep>
updaters=[generatewallEntity generateinflowEntity generateoutflowEntity]
syncVars=[]

</UpdateStep>

<UpdateStep startStep>
updaters=[setVar wallBoundaryOnEntitywallEntity userSpecifiedBoundaryOnEntityinflowEntity copyBoundaryOnEntityoutflowEntity]
syncVars=[q]

</UpdateStep>

<UpdateStep restoreStep>
updaters=[]
syncVars=[]

</UpdateStep>

<UpdateStep bcStep>
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updaters=[wallBoundaryOnEntitywallEntity userSpecifiedBoundaryOnEntityinflowEntity copyBoundaryOnEntityoutflowEntity]
syncVars=[q]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[mainIntegrator copier]
syncVars=[]

</UpdateStep>

<UpdateStep writeStep>
updaters=[computePressure computeVelocity computeDensity computemachNumber]
syncVars=[]

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

Notice that the Updaters that generate the wall, inflow and outflow entities are added to the the generateStep. This
step is only called during the startOnly and restoreOnly operations in the UpdateSequence: an entity only needs to be
created once per simulation startup.

Advanced USim Simulation Structure

In earlier tutorials, we developed a simple pattern that could be used to design USim simulations using macros. This
pattern can be repeated when we don’t use macros; however, we now need to add the grids, data structures, updaters,
boundary conditions and time integration schemes by hand and then tell USim how to run them. For unstructured
meshes, we can extend the pattern to:

# Specify parameters for the specific physics problem
$ PARAM_1 = <value>
$ PARAM_2 = <value>
$ PARAM_N = <value>

# Initialize a USim simulation
# Simulation start and end times
tStart = <float>
tEnd = <float>
# Number of data files to write
numFrames = <integer>
# Initial time-step to use
initDt = <float>
# Level of feedback to give user
verbosity = <info/debug>

<Component fluids>
kind = updaterComponent

# Setup the grid
<Grid Grid_Name (type=string)>
kind=unstructured
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<Grid Parameters>

<Creator ctor>
kind=<Mesh_Format>
ndim=<NDIM>
file=GRIDFILE.<Mesh_Extension>

</Creator>
</Grid>

# Create data structures needed for the simulation
<DataStruct DataStruct_Name1 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_Name2 (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<DataStruct DataStruct_NameN (type=string)>
kind = nodalArray
onGrid = <Grid_Name>
numComponents = <int>

</DataStruct>

<Updater generate<Entity_Name1> >
kind=entityGenerator<NDIM>d
onGrid=<Grid_Name>
in=none
out=none
newEntityName=<Entity_Name1>
onEntity=ghost

<Function <Entity_Name1>Mask>
kind=exprFunc
exprs=[ <logicalExpression> ]

</Function>
</Updater>

...

<Updater generate<Entity_NameN> >
kind=entityGenerator<NDIM>d
onGrid=<Grid_Name>
in=none
out=none
newEntityName=<Entity_NameN>
onEntity=ghost

<Function <Entity_NameN>Mask>
kind=exprFunc
exprs=[ <logicalExpression> ]

</Function>
</Updater>
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# Specify initial condition
<Updater Initialization_Updater_Name (type=string)>
kind = initialize<NDIM>d
onGrid = <Grid_Name>
out = <DataStruct_Name for t = 0>

# initial condition to use
<Function func>

kind = exprFunc

# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions specifying initial condition on density,
# momentum, total energy
addExpression(<expression>)

exprs = ["<density_expression>", \
"<xMomentum_expression>", \
"<yMomentum_expression>", \
"<zMomentum_expression>", \
"<totalEnergy_expression>"]

</Function>

</Updater>

# Add the spatial discretization of the fluxes
<Updater FiniteVolume_Updater_Name (type=string)>
kind=classicMuscl<NDIM>d
onGrid=<Grid_Name>

# input data-structures
in=<DataStruct_Name for t^n>
# output data-structures

out=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>
# CFL number to use
cfl=<float>
# legacy time integration scheme, attribute; should be set to "none"
timeIntegrationScheme=none
# Riemann solver
numericalFlux=<string>
# Limiter to use

limiter=[<string>]
# Form of variable to limit
variableForm=<string>
# Whether to check variables for physical validitiy
preservePositivity=<int>
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# Hyperbolic equation system
<Equation euler>

kind=eulerEqn
# Adiabatic index
gasGamma=<float>

</Equation>

# Hyperbolic equation to solve
equations=[euler]

<Source Souce_Name_1>
kind=<string>
<Source_Name_1 params>

</Source>

...

<Source Souce_Name_N>
kind=<string>
<Source_Name_N params>

</Source>

sources=[Souce_Name_1, ..., Souce_Name_N]
</Updater>

# Boundary conditions
<Updater BoundaryCondition_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

...

<Updater BoundaryCondition_NameN (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n>
entity=<Entity_Name (type=string)>
<Boundary Condition Parameters>

</Updater>

# Output Diagnostics
<Updater OutputDiagnosticUpdater_Name1 (type=string)>
kind=<string><NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name1, DataStruct_Name2, ..., DataStruct_NameN>
out=<OutputDiagnosticDataStruct_Name1>

# Step 0: Specify components of input data structures
indVars_DataStruct_Name1 = <DataStruct_Name1_Component1, DataStruct_Name1_Component2, ..., DataStruct_Name1_ComponentN>
indVars_DataStruct_Name2 = <DataStruct_Name2_Component1, DataStruct_Name2_Component2, ..., DataStruct_Name2_ComponentN>
indVars_DataStruct_NameN = <DataStruct_NameN_Component1, DataStruct_NameN_Component2, ..., DataStruct_NameN_ComponentN>
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# Step 1: Add Variables
VARIABLE_1 = <float>
VARIABLE_2 = <float>
VARIABLE_N = <float>

# Step 2: Add Pre-Expressions
preExprs = [ \

"<PreExpression_1>", \
"<PreExpression_2>", \
"<PreExpression_N>"
]

# Step 3: Add expressions to compute output diagnostic
exprs = [ \

"<expression_1>", \
"<expression_2>", \
"<expression_N>"
]

</Updater>

# Time integration
<Updater TimeIntegrationUpdater_Name (type=string)>
kind=multiUpdater<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n>
out=<DataStruct_Name for t^n+1>

<TimeIntegrator timeStepper>
kind=rungeKutta<NDIM>d
onGrid=<Grid_Name>
scheme=<string>

</TimeIntegrator>

<UpdateStep boundaryStep>
operation=boundary
updaters=<string list of boundary conditions>
syncVars=<DataStruct_Name at t^n>

</UpdateStep>

<UpdateStep integrationStep>
operation=integrate
updaters=<string list of integrators>
syncVars=<DataStruct_Name for \nabla \cdot F(<DataStruct_Name for t^n>)>

</UpdateStep>

<UpdateSequence sequence>
loop=[boundaryStep integrationStep]

</UpdateSequence>

</Updater>

<Updater CopierUpdater_Name (type=string)>
kind=linearCombiner<NDIM>d
onGrid=<Grid_Name>
in=<DataStruct_Name for t^n+1>
out=<DataStruct_Name for t^n>
coeffs=[1.0]

</Updater>
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<UpdateStep generateStep>
updaters=[generate<Entity_Name1> ... generate<Entity_NameN>]

</UpdateStep>

<UpdateStep startStep>
updaters=[Initialization_Updater_Name BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep restoreStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep bcStep>
updaters=[BoundaryCondition_Name1 ... BoundaryCondition_NameN]
syncVars=[<DataStruct_Name for t^n>]

</UpdateStep>

<UpdateStep hyperStep>
updaters=[FiniteVolume_Updater_Name (type=string)]
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateStep writeStep>
updaters=<String List of Updaters>
syncVars=<String List of DataStructs>

</UpdateStep>

<UpdateSequence simulation>
startOnly=[generateStep startStep]
restoreOnly=[generateStep restoreStep bcStep]
writeOnly=[bcStep writeStep]
loop=[hyperStep]

</UpdateSequence>

</Component>
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CHAPTER

FIVE

USING USIM TO SOLVE ADVANCED PHYSICS PROBLEMS

The following tutorials can be worked through with either a USimHS license or a USimHEDP license:

5.1 Using USim to Solve a Diffusion Problem

In this tutorial we show how to use USim to solve a problem with diffusion using the updater refmanual-diffusion with
derivative set to diffusion.

Contents

• Using USim to Solve a Diffusion Problem
– Required DataStructs
– Solving problems using the derivatives with option diffusion
– Computing the time step for the diffusion operator
– An Example Simulation

5.1.1 Required DataStructs

The variable that is diffusing is q and is a scalar

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 3
writeOut = 1

</DataStruct>

In addition we define the scalar diffusion coefficient as diffCoeff

<DataStruct diffCoeff>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = 1

</DataStruct>

5.1.2 Solving problems using the derivatives with option diffusion

diffCoeff can be defined using a refmanual-updater-combiner. After diffCoeff is computed the diffusion operator can
be applied. We use refmanual-diffusion with derivative set to diffusion to compute the diffusion term. The operator
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take in q and diffCoeff and the result (in this case) is stored in qnew

<Updater computeDiffusion>
kind = diffusion2d
onGrid = domain
derivative = diffusion
numScalars = 1
coefficient = 1.0
numberOfInterpolationPoints = 8

in = [q,diffCoeff]
out = [qnew]

</Updater>

Note that the complete list of options available in refmanual-diffusion are diffusion, anisotropicDiffusion and gradi-
entOfDivergence.

5.1.3 Computing the time step for the diffusion operator

Time integration is performed using super time stepping. Super time stepping is a variable stage Runge-Kutta ap-
proach that is much faster (by the number of stages) than standard Runge-Kutta methods for solving diffusion
problems. The approach requires two time steps. The desired (actual) time step is computed using a refmanual-
timeStepRestrictionUpdater. The key here is that STS_CFL=40.0 so it is much higher than the explicitly stable time
step for a diffusive system

<Updater timeStepRestriction>

kind = timeStepRestrictionUpdater2d
in = [diffCoeff]

onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = STS_CFL

</TimeStepRestriction>

</Updater>

Next the time step for the super time stepping method is computed where an explicitly stable CFL=0.25 is used. The
time step is stored in stsDt

<Updater getSTSdt>
kind = getTimeStepUpdater2d
in = [diffCoeff]
out = [stsDt]
onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = EXPLICIT_CFL

</TimeStepRestriction>
</Updater>

The Super Time Stepping integrator then knows to take the ratio of the desired time step and the explicitly stable time
step to compute the number of stages used in the STS Updater.
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5.1.4 An Example Simulation

The input file for the problem Diffusion in the USimHS package demonstrates each of the concepts described above.

5.2 Using USim to Solve the Two-Fluid Plasma Model

In the USimBase tutorials the basic concepts of USim were described. In this first HEDP tutorial we describe how
to solve the fully electromagnetic two-fluid plasma equations using a semi-implicit operator to step over the plasma
frequency and cyclotron frequency and electric field diffusion to minimize errors in in the electric field divergence
relation.

Contents

• Using USim to Solve the Two-Fluid Plasma Model
– Semi-Implicit Solution for the Lorentz Forces and Current Sources
– Electric and Magnetic Field Divergence Cleaning
– Computing the Reconnected Magnetic Flux
– An Example Simulation

5.2.1 Semi-Implicit Solution for the Lorentz Forces and Current Sources

To demonstrate how to use USim to solve a problem using the two-fluid plasma system, we will use the well known
GEM (geomagnetic environmental modeling) reconnection challenge setup to solve fast reconnection of a current
layer. The GEM challenge was originally described in

Birn, J., et al. "Geospace Environmental Modeling (GEM) magnetic reconnection challenge."
Journal of Geophysical Research: Space Physics (1978-2012) 106.A3 (2001): 3715-3719.

This tutorial is based on the GEM Challenge template.

The first thing we need to model two-fluids, is data structures for the electrons, ions and the electromagnetic field. In
this case the electrons will be represented by a 5-moment compressible fluid:

<DataStruct electrons>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

The ions are also represented by a 5-moment compressible fluid:

<DataStruct ions>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

The electromagnetic field variable contains the full Field vector [Ex,Ey,Ez,Bx,By,Bz,Ep,Bp] with the variables Ep and
Bp the error correction potentials. As such the electromagnetic field data structure is defined as:

<DataStruct em>
kind = nodalArray
onGrid = domain
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numComponents = 8
</DataStruct>

Separate initialization using an refmanual-initialize updater is performed for each variable, electrons, ions and em:

<Updater initElectrons>
kind = initialize2d
onGrid = domain
out = [electrons]

<Function func>
kind = exprFunc

.

.

.

preExprs = [ \
"rhoe = n0*me*(1.0/(cosh(y/lambda)*cosh(y/lambda))+0.2)", \

"mze = -(me/qe)*b0*(1.0/lambda)*1.0/(cosh(y/lambda)*cosh(y/lambda))", \
"ee = (1.0/12.0)*(1./(gamma-1.0))*b0*b0*(rhoe/me)+0.5*(mze*mze/rhoe)"]

exprs = [ \
"rhoe", "0.0", "0.0", "mze", "ee"]

</Function>

</Updater>

<Updater initIons>
kind = initialize2d
onGrid = domain
out = [ions]

<Function func>
kind = exprFunc

.

.

.

preExprs = [ \
"rhoi = n0*mi*(1.0/(cosh(y/lambda)*cosh(y/lambda))+0.2)", \

"ei = (5.0/12.0)*(1.0/(gamma-1.0))*b0*b0*(rhoi/mi)"]

exprs = ["rhoi", "0.0", "0.0", "0.0", "ei"]

</Function>

</Updater>

<Updater initEm>
kind = initialize2d
onGrid = domain
out = [em]

<Function func>
kind = exprFunc
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.

.

.

preExprs = ["bx = b0*tanh(y/lambda)-psi*(pi/Ly)*cos(2.0*pi*x/Lx)*sin(pi*y/Ly)", \
"by = psi*(2.0*pi/Lx)*sin(2.0*pi*x/Lx)*cos(pi*y/Ly)"]

exprs = ["0.0", "0.0", "0.0", "bx", "by", "0.0", "0.0", "0.0"]

</Function>

</Updater>

In the above initialization some variables have been eliminated for conciseness. In addition, every variable, electrons,
ions, em, must have their own refmanual-classicMuscl

<Updater hyperElectrons>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none

numericalFlux = FLUID_NUMERICAL_FLUX
preservePositivity = true
limiter = [LIMITER, none]
limiterType = characteristic
variableForm = conservative

in = [electrons]
out = [electronsNew]

cfl = CFL
equations = [euler]

<Equation euler>
kind = eulerEqn
gasGamma = GAS_GAMMA
basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE

</Equation>
</Updater>

<Updater hyperIons>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = FLUID_NUMERICAL_FLUX
preservePositivity = true
limiter = [LIMITER]
limiterType = characteristic
variableForm = conservative

in = [ions]
out = [ionsNew]

cfl = CFL
equations = [euler]

<Equation euler>
kind = eulerEqn
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basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE
gasGamma = GAS_GAMMA

</Equation>
</Updater>

<Updater hyperEm>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = fWaveFlux
limiterType = characteristic
limiter = [LIMITER]
variableForm = conservative

in = [em]
out = [emNew]

cfl = CFL
equations = [maxwell]

<Equation maxwell>
kind = maxwellEqn
c0 = SPEED_OF_LIGHT
gamma = BP
chi = 0.0

</Equation>
</Updater>

The coupling between the fields and fluids is provided by Lorentz forces (for the fluid equations) and current sources
(for the electromagnetic field). One option is to simply add these to the right hand side of the flux calculation and
then integrate, however, this leads to an explicit scheme where the plasma frequency and cyclotron frequency must be
resolved. Instead we use a semi-implicit operator as defined in

Harish Kumar and Siddhartha Mishra. “Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations.” Journal
of Scientific Computing (2012): 1-25.

The implicit operator refmanual-twoFluidSrc is a source in USim, it’s applied cell by cell and does not require a global
implicit solve. The refmanual-twoFluidSrc is evaluated using the explicit solution to the electron, ion and em variables
and the resulting matrix is multiplied by those same variables to produce the implicit source evaluation with explicit
hyperbolic terms. The semi-implicit operator is given below:

<Updater twoFluidLorentz>
kind = equation2d

onGrid = domain
in = [electronsNew, ionsNew, emNew]
out = [electronsNew, ionsNew, emNew]

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 5Moment
electronCharge = ELECTRON_CHARGE
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
ionMass = ION_MASS
epsilon0 = EPSILON0

</Equation>
</Updater>
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The semi-implicit operator is applied in a special location in the refmanual-multiUpdater. The list of updaters in the
refmanual-multiUpdater define the explicit steps in the refmanual-multiUpdater. A second list of updaters is in the
operator list. Updaters in the operator list are applied to integrationVariablesOut after a complete update. In the block
below operators = [twoFluidLorentz] applies the operator after the explicit right hand side has been calculated, for
example

We want to solve the hyperbolic part of the multi-fluid equations explicitly and the source term implicitly. For a first
order scheme the discretization becomes.

𝑄𝑛+1 = 𝑄𝑛 + ∆𝑡∇𝑓𝑛 + ∆𝑡𝜓𝑛+1 (5.0)

and therefore
𝑄𝑛+1 =

(︀
1 − ∆𝑡𝐴𝑛+1

)︀−1
∆𝑡∇𝑓𝑛 (5.0)

The term in parentheses is the twoFluidLorentz operator defined in the multiUpdater below. As stated previously, the
updaters in operate are applied to the right hand side which is computed in the updaters list

<Updater rkUpdaterMain>
kind = multiUpdater2d
onGrid = domain

in = [em, ions, electrons]
out = [emNew, ionsNew, electronsNew]

<TimeIntegrator rkIntegrator>
kind = rungeKutta2d
ongrid = domain
scheme = RK_SCHEME

</TimeIntegrator>

<UpdateSequence sequence>
loop = [boundaries,hyper,implicit]

</UpdateSequence>

<UpdateStep boundaries>
updaters = [periodicEm, periodicIons, periodicElectrons, electronBcTop, electronBcBottom, \
ionBcTop, ionBcBottom, emBcTop, emBcBottom]

</UpdateStep>

<UpdateStep hyper>
operation = "integrate"
updaters = [hyperIons, hyperElectrons, hyperEm, addSource]

</UpdateStep>

<UpdateStep implicit>
operation = "operate"
updaters = [twoFluidLorentz]

</UpdateStep>

</Updater>

In the refmanual-multiUpdater above we include 3 sets of in variables, 3 sets of out variables for each of the integration
variables.

The results described above are sufficient to create an algorithm that steps over plasma frequency and cyclotron fre-
quency, but this does not show us how to minimze errors in the divergence equations.

5.2. Using USim to Solve the Two-Fluid Plasma Model 153



USimInDepth, Release 3.0.1

5.2.2 Electric and Magnetic Field Divergence Cleaning

The standard approach to divergence preservation in USim is to use hyperbolic divergence cleaning. Hyperbolic
divergence cleaning is described for the MHD equation in

Andreas Dedner, et al. “Hyperbolic divergence cleaning for the MHD equations.” Journal of Computational Physics
175.2 (2002): 645-673.

And for Maxwell’s equation in

Munz, C-D., et al. “Divergence correction techniques for Maxwell solvers based on a hyperbolic model.” Journal of
Computational Physics 161.2 (2000): 484-511.

Unfortunately, for the two-fluid system hyperbolic cleaning of the electric field is often inadequate, or results in larger
errors than we started with. Instead we use electric field diffusion. In this section we describe how we perform the
divergence cleaning in the GEM challenge problem.

First off, the magnetic field can be cleaned using the hyperbolic approach. In the hyperbolic updated of the electro-
magnetic field the refmanual-Equation block defines the speed of light c0 as well as the wave speeds of the correction
potentials. gamma is the magnetic field correction potential factor and chi is the electric field correction factor. The
speed of the magnetic field correction potential is gamma*c0 and of the electric field correction potential chi*c0. In
the case below we give gamma a finite value (typically 1.0) and we set chi to 0 so that we can use a different correction
method for the electric field:

<Updater hyperEm>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = fWaveFlux
limiterType = characteristic
limiter = [LIMITER]
variableForm = conservative

in = [em]
out = [emNew]

cfl = CFL
equations = [maxwell]

<Equation maxwell>
kind = maxwellEqn
c0 = SPEED_OF_LIGHT
gamma = BP
chi = 0.0

</Equation>
</Updater>

Electric field diffusion is quite simple. We add a diffusion term to the electric field given as

𝜕𝐸

𝜕𝑡
− 𝑐2∇×𝐵 = − 𝐽

𝜖0
+ 𝛾∇

(︂
∇ · 𝐸 − 𝜌𝑐

𝜖0

)︂
(5.0)

where 𝛾 is the electric field diffusion coefficient. You can see that the diffusion term never kicks in unless there is
a numerical error gauss’ law. How do we go about implementing this in USim? First of all we define a set of data
structures just for electric field divergence cleaning

The first data structure stores the characteristic cell length for the diffusion coefficient:

<DataStruct cellDx>
kind = nodalArray
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onGrid = domain
numComponents = 1
writeOut = 0

</DataStruct>

We define a data structure for storing the error computed from ∇ · 𝐸 − 𝜌𝑐

𝜖0
:

<DataStruct residual>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = 0

</DataStruct>

We define a data structure for storing the divergence of E:

<DataStruct divE>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = 0

</DataStruct>

We then store the actual diffusion term in the last data structure:

<DataStruct gradDiv>
kind = nodalArray
onGrid = domain
numComponents = 3
writeOut = 0

</DataStruct>

Along with the data structures, we have a series of updaters that are used to fill up the data structures. The first updater
refmanual-characteristicCellLength simply computes a characteristic length for each cell. This updater only needs to
be called at startup since the cell length does not change.

<Updater computeCellDx>
kind = characteristicCellLength2d
onGrid = domain
out = [cellDx]
coefficient = 1.0

</Updater>

The next updater computes the ∇·𝐸 from the electric field. It takes as in the array em. The vectorDivergence operator
assumes the 3 vector of interest occurs in the 3 components of em which happens to be correct in this case as those
components correspond to Ex,‘Ey‘,‘Ez‘. In addition, a parameter coeffs is provided which multiplies the resulting
divergence by the factor 1.0. This is a simple way to reverse the sign of the divergence or multiply by some other
factor:

<Updater computeDivE>
kind = vectorDivergence2d
onGrid = domain
in = [em]
out = [divE]
coeffs = [1.0]

</Updater>

The next updater uses an refmanual-equation to compute the residual ∇·𝐸−𝜌𝑐/𝜖0. The source computeChargeError
expects as input ∇ ·𝐸 and then expectes the remaining variables to be fluid mass densities, any number of species can
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be added. Along with the species mass densities we provide a list indicating the species mass and species charge for
each of these species densities. We also specify the permittivity epsilon0 so that the residual can be calculated.

<Updater computeResidual>
kind = equation2d
onGrid = domain

in = [divE, electrons, ions]
out = [residual]

<Equation>
kind = computeChargeError
speciesCharge = [ELECTRON_CHARGE, ION_CHARGE]
speciesMass = [ELECTRON_MASS, ION_MASS]
epsilon0 = EPSILON0

</Equation>

</Updater>

The final diffusion term including gamma factor is computed using a scalar gradient calculator. The scalar gradient
takes 2 inputs. It takes the gradient of the first input (residual in this case) and multiplies that gradient by the second
input cellDx. The result is the multiplied by coefficient which is constant for all space. This particular form of diffusion
is such that the diffusion is stable to explicit time stepping. If super time stepping is used or subcycling, the diffusion
coefficient can be increased to do a better job of error cleaning.

<Updater gradient>
kind = scalarGradient2d
gradientType = leastSquares
onGrid = domain
in = [residual, cellDx]
out = [gradDiv]
coefficient = 0.5

</Updater>

Once the diffusion term is computed it needs to be added to the right hand side of the update equation. The term is
added after the hyperbolic explicit terms are computed. We use a combiner2d to add the diffusion term to the equation.
In this example the updater takes two input data structures, emNew and gradDiv and dumps the output into emNew.
Every input variable requires an indVars_inputName block which provides a way to access each component of the
input variable. These names can then be used in the output expression exprs. In the refmanual-multiUpdater, the
addSource block is called after the hyperbolic terms so that it is not overwritten by updaters that are called earlier.

<Updater addSource>
kind = combiner2d
onGrid = domain

in = [emNew, gradDiv]
out = [emNew]

indVars_emNew = ["ex","ey","ez","bx","by","bz","phiE","phiB"]
indVars_gradDiv = ["dx","dy","dz"]
c = SPEED_OF_LIGHT
exprs = ["ex+c*dx","ey+c*dy","ez+c*dz","bx","by","bz","phiE","phiB"]

</Updater>

Finally, boundary conditions must be provided to the residual. In this problem the residual on the boundary should be
0 so we use a refmanual-functionBc to explicitly set the residual on the boundary to zero. The variable out specifies
the data that the boundary condition will be applied to, while entity tells the boundary condition which boundary it
should be applied to. In this case entity=ghost means that the boundary is applied to all boundary cells.

156 Chapter 5. Using USim to Solve Advanced Physics Problems



USimInDepth, Release 3.0.1

<Updater residualBc>
kind = functionBc2d

onGrid = domain

<Function func>
kind = exprFunc
exprs = ["0.0"]

</Function>

out = [residual]
entity = ghost

</Updater>

This simulation has periodic boundaries in the x direction so we also apply a periodic boundary condition to the
residual. This boundary condition is called after residualBc so it overwrites the boundry conditions in the X direction
set by residualBc

<Updater periodicResidual>
kind = periodicCartBc2d
onGrid = domain
in = [residual]
out = [residual]

</Updater>

Now that we’ve added a bunch of new updaters we need to modify the multiUpdater to include the changes that
have been made. The new updater added to the updater list include computeDivE, computeResidual, residu-
alBc,‘periodicResidual‘,‘gradient‘ in the UpdateStep‘s compute and clean. These updaters are evaluated after the
boundary conditions for electrons,‘ions‘ and em are applied, but before the hyperbolic updaters are called hyperI-
ons, hyperElectrons and hyperEm. Once again, for parallel simulations it’s very important to get the synchronization
correct. We’ve added one synchronizations. The new synchronization occurs directly after periodicResidual. peri-
odicResidual is the last updater that is applied before a derivative gradient is computed on residual so we need to
synchronize residual at this point.

<Updater rkUpdaterMain>
kind = multiUpdater2d
onGrid = domain

in = [em, ions, electrons]
out = [emNew, ionsNew, electronsNew]

<TimeIntegrator rkIntegrator>
kind = rungeKutta2d
ongrid = domain
scheme = RK_SCHEME

</TimeIntegrator>

<UpdateSequence sequence>
loop = [boundaries,compute,clean,hyper,implicit]

</UpdateSequence>

<UpdateStep boundaries>
updaters = [periodicEm, periodicIons, periodicElectrons, electronBcTop, electronBcBottom, \
ionBcTop, ionBcBottom, emBcTop, emBcBottom]

</UpdateStep>

<UpdateStep compute>
updaters = [ computeDivE, computeResidual, residualBc, periodicResidual]
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</UpdateStep>

<UpdateStep clean>
updaters = [ gradient]

</UpdateStep>

<UpdateStep hyper>
operation = "integrate"
updaters = [hyperIons, hyperElectrons, hyperEm, addSource]

</UpdateStep>

<UpdateStep implicit>
operation = "operate"
updaters = [twoFluidLorentz]

</UpdateStep>

</Updater>

Finally, recall that the characteristic cell lengths only need to be calculated once. As a result we calculate them during
the initialization step.

<UpdateStep initStep>
updaters = [initElectrons, initIons, initEm, computeCellDx]
syncVars = [electrons, ions, em]

</UpdateStep>

5.2.3 Computing the Reconnected Magnetic Flux

In the GEM Challenge simulation we’ve added passive diagnostic to compute the line integral across the domain. In
order to compute the line integral we add two data structures. The first data structure is called a refmanual-bin. The
bin is a uniform grid that overlays the exiting grid. The extents of the bin match the extents of the grid, but a bin
is rectangular regardless of the shape of the grid. The bin has two important parameters, the first is onGrid which
specifies which grid the bin will use to define itself, the second is the scale. scale tells roughly how many bins there
are per grid cell in domain. The bin is used for fast lookup so that USim can quickly tell which cell a particular point
in space is in. The bin is given as

<DataStruct cellBin>
kind = bin
onGrid = domain
scale = 2.0

</DataStruct>

In addition we need to fill the bin with data. In this particular case we want to fill each bin with a a list of indexes
corresponding to the cells that fall inside each cell of the bin. The refmanual-binCells updater does exactly that. This
updater only needs to be called at startup since the grid does not change with time.

<Updater fillBin>
kind = binCells2d
onGrid = domain
out = [cellBin]

</Updater>

The second variable is a refmanual-dynVector. A dynVector is a dataStructure which is a vector and has the same value
on all domains in parallel simulations. dynVectors store a time series of data, so the value of the dynVector is dumped
at every time step so it can be used to store integrated quantities. The dynVector had numComponents to specify how
long the vector is. In this case it stores only 1 value. writeOut=true is set so the dynVector is written.
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<DataStruct integratedFlux>
kind = dynVector
numComponents = 1
writeOut = 1

</DataStruct>

These two data structures are then used to compute the line integral with the refmanual-lineIntegral updater. The
refmanual-lineIntegral behaves like a refmanual-updater-combiner except that it takes in refmanual-nodalArray‘s and
fills up a refmanual-dynVector.

<Updater computeLineIntegral>
kind = lineIntegral2d
onGrid = domain
startPosition = [XMIN, 0.0]
endPosition = [XMAX, 0.0]
numberOfSamples = 1000

layout = [cellBin]
in = [em]
indVars_em = ["ex","ey","ez","bx","by","bz","phiE","phiB"]
exprs = ["0.5*abs(by)"]
out = [integratedFlux]

</Updater>

This updater should not be called within an rkUpdater otherwise it will store multiple values per time step. Instead we
call this updater in its own refmanual-UpdateStep

<UpdateStep diagnosticStep>
updaters = [computeLineIntegral]

</UpdateStep>

5.2.4 An Example Simulation

The input file for the problem GEM Challenge in the USim USimHEDP package demonstrates each of the concepts
described above to solve fast magnetic reconnection.

5.3 Using USim to Solve MHD with General Equation of State

In the USimBase tutorials the basic concepts of USim were described. In this HEDP tutorial we show how to use the
ideal MHD equations with general equation of state and a simple radiation model.

Contents

• Using USim to Solve MHD with General Equation of State
– Solving Problems using the idealMhdEosEqn
– Adding an Analytic Energy Loss Term
– Divergence Cleaning the Magnetic Field as A Separate Step
– Using the vertexJetUpdater
– An Example Simulation
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5.3.1 Solving Problems using the idealMhdEosEqn

The plasma jets problem uses an ideal MHD model with general equation of state refmanual-idealMhdEosEqn and
a simple radiation loss model refmanual-bremsPowerSrc. More sophisticated radiation loss can be included with
purchase of the PROPACEOS tables from prism computational sciences or use of the SESAME tables from Los
Alamos National Laboratory. The key to this whole development is the use of the refmanual-idealMhdEosEqn in the
hyperbolic updater given below:

<Updater hyper>
kind = classicMuscl$DIM$d
onGrid = domain
numericalFlux = NUMERICAL_FLUX
timeIntegrationScheme = none

variableForm = conservative
preservePositivity = true
limiter = [LIMITER, LIMITER, none]

in = [q, pressure, soundSpeed]
out = [qnew]

cfl = CFL

equations = [mhd]

<Equation mhd>
kind = idealMhdEosEqn
basementDensity = $0.1*BASEMENT_DENSITY$
basementPressure = $0.1*BASEMENT_PRESSURE$
mu0 = MU0
correctionSpeed = 0.0

</Equation>

</Updater>

A few key differences for this refmanual-classicMuscl updater are that it takes in multiple input variables. In this case
the conserved variables q, the fluid pressure pressure and an estimate of the speed of sound soundSpeed. Since the
pressure and sound speed are inputs the user can define these however they wish, with the caveat that the sound speed
should be a good estimate in order to produce accurate (and stable) results.

For every variable input into the refmanual-classicMuscl updater a limiter must be provided limiter=[LIMITER, LIM-
ITER, none]. In this case we limit the conserved variable and the pressure, but don’t limit the sound speed since it’s
only used to add diffusion to the system and compute a time step. In this case the ‘correctionSpeed is being set to 0.0
as we will use a separate updater to evolve the correction potential.

The key issue then becomes how to compute the pressure and sound speed outside the hyperbolic update? As an
example we use an ideal equation of state and use a refmanual-updater-combiner to compute the pressure from the
energy:

<Updater computePressure>
kind = combiner$DIM$d
onGrid = domain

in = [q]
out = [pressure]
mu0 = MU0
gamma = GAMMA
bp = BASEMENT_PRESSURE
indVars_q = ["rho","mx","my","mz","en","bx","by","bz","phi"]
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exprs = ["max(1.1*bp,(gamma-1)*(en-(0.5/mu0)*(bx*bx+by*by+bz*bz)-0.5*(mx*mx+my*my+mz*mz)/rho))"]
</Updater>

In this case a basement pressure is used so the maximum of the basement pressure and the computed pressure is taken.
Alternatively, the refmanual-propaceosVariables or refmanual-sesameVariables updaters may be used to compute an
equation of state for the pressure as a function of the temperature and density. Similarly, we use a combiner to compute
the sound speed based on the pressure and the density:

<Updater computeSoundSpeed>
kind = combiner$DIM$d
onGrid = domain

in = [q, pressure]
out = [soundSpeed]
gamma = GAMMA
indVars_q = ["rho","mx","my","mz","en","bx","by","bz","phi"]
indVars_pressure = ["pressure"]

exprs = ["sqrt(gamma*pressure/rho)"]
</Updater>

These results can be easily applied in a multiUpdater to produce an MHD model with a user specified equation of
state. The refmanual-multiUpdater for this system follows where the pressure and density are computed before hyper
updater is called:

<Updater rkUpdater>
kind = multiUpdater$DIM$d
onGrid = domain
timeIntegrationScheme = RKSCHEME

updaters = [bc, computePressure, computeSoundSpeed, hyper]

syncVars_bcBack =[q]
syncVars_hyper = [qnew]

integrationVariablesIn = [q]
integrationVariablesOut = [qnew]
dummyVariables_q = [dummy1, dummy2]

syncAfterSubStep = [qnew]
</Updater>

5.3.2 Adding an Analytic Energy Loss Term

Adding an energy loss term is quite simple, except the user needs to make sure that the energy loss does not lead
negative energies in the MHD model. In this case we use radiated power as estimated by analytical estimates of
Bremsstrahlung radiation. The refmanual-bremsPowerSrc computes radiated power density (𝑊/𝑚3) given plasma
density, temperature and the effective Z. The block below shows how to use the refmanual-bremsPowerSrc:

<Updater computeRadPower>
kind = equation$DIM$d
onGrid = domain
in = [density, temperature, zEffective]
out = [radiationPower]

<Equation Bremsstrahlung>
kind = bremsPowerSrc

5.3. Using USim to Solve MHD with General Equation of State 161



USimInDepth, Release 3.0.1

</Equation>
</Updater>

The dataStruct radiationPower has a single component and this value must then be subtracted from the fluid energy
equation as shown below using a refmanual-updater-combiner:

<Updater addRadiation>
kind = combiner$DIM$d
onGrid = domain

in = [qnew, radiationPower]
out = [qnew]

indVars_qnew = ["rho","mx","my","mz","en","bx","by","bz","phi"]
indVars_radiationPower = ["radiation"]

exprs = ["rho","mx","my","mz","en-radiation","bx","by","bz","phi"]
</Updater>

In certain cases the radiated power an be huge, so much so that if the time step is not reduced all the energy in the
system will dissappear. To get around this problem we use a positiveValue time step restriction inside a refmanual-
timeStepRestrictionUpdater. A refmanual-timeStepRestrictionUpdater takes a list of input variables, and a list of
restriction‘s. The restriction in this case is the refmanual-positiveValue restriction. The variable positiveIndex refers
to the index of the first input variable (in this case pressure). The variable sourceIndex refers to the index of the second
variable sourceIndex. In this case the maximum time step is computed using

∆𝑡 = alpha*(pressure[positiveValue]-basementValue)/(-coefficient*radiationPower[sourceIndex]) (5.0)

And what the refmanual-positiveValue restriction does is it choses a time step so that you only subtract off the fraction
alpha of the remaining energy in the input pressure. This time step is then compared with the other time steps computed
by other restrictions and updaters and the smallest time allowable time step is used for the update:

<Updater timeStepRestriction>
kind = timeStepRestrictionUpdater$DIM$d
in = [pressure, radiationPower]
onGrid = domain
restrictions = [radiation]

<TimeStepRestriction radiation>
kind = positiveValue
positiveIndex = 0
sourceIndex = 0
basementValue = BASEMENT_PRESSURE
alpha = 0.25
coefficient = -1.0

</TimeStepRestriction>
</Updater>

In this case radiatedPower is always positive. Since radiatedPower is actually subtracted from pressure (not added)
we set coefficient=-1.0. If radiatedPower was defined to be negative then coefficient=1.0 would be the correct value.
With radiation added the refmanual-multiUpdater looks like this:

<Updater rkUpdater>
kind = multiUpdater$DIM$d
onGrid = domain
timeIntegrationScheme = RKSCHEME

updaters = [correctMore, bc, computeDensity, computeTemperature, computePressure, \
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computeSoundSpeed, computeRadPower, timeStepRestriction, \
hyper, addRadiation]

syncVars_bcBack =[q]
syncVars_hyper = [qnew]

integrationVariablesIn = [q]
integrationVariablesOut = [qnew]
dummyVariables_q = [dummy1, dummy2]

syncAfterSubStep = [qnew]
</Updater>

The timeStepRestriction is included in the refmanual-multiUpdater, but could also be included in a separate Updat-
eStep depending on how rapidly the power loss is changing.

5.3.3 Divergence Cleaning the Magnetic Field as A Separate Step

In this problem divergence cleaning is computed as a separate step using refmanual-hyperbolicCleanEqn. This ap-
proach has benefits because a less diffusive method can be used for the cleaning update and for certain choices of
numerical flux, it can reduce overall diffusion of the solution. We use a separate refmanual-classicMuscl updater as
defined below:

<Updater hyperClean>
kind = classicMuscl2d
timeIntegrationScheme = none
variableForm = conservative

cfl = CFL

numericalFlux = hlleFlux

limiter = [muscl]

onGrid = domain
in = [qClean]
out = [qCleanNew]

equations = [clean]

<Equation clean>
kind = hyperbolicCleanEqn
waveSpeed = CORRECTIONSPEED

</Equation>
</Updater>

Which uses the refmanual-hyperbolicCleanEqn. The refmanual-hyperbolicCleanEqn takes one parameter waveSpeed
which is the speed that the correction wave propagates at. As with the refmanual-multiUpdater for evolving the rest of
the MHD model, we must also include boundary conditions for the cleaning update:

<Updater rkClean>
kind = multiUpdater2d
onGrid = domain
timeIntegrationScheme = rk2
updaters = [cleanCopyBc, hyperClean]

integrationVariablesIn = [qClean]
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integrationVariablesOut = [qCleanNew]
dummyVariables_qClean = [dummyClean1,dummyClean2]

syncAfterSubStep = [qCleanNew]
</Updater>

<Updater cleanCopyBc>
kind = copy2d
onGrid = domain
out = [qClean]
entity = ghost

</Updater>

<Updater copyClean>
kind = linearCombiner2d
onGrid = domain
in = [qCleanNew]
out = [qClean]
coeffs = [1.0]

</Updater>

In the above example we used the DataStructAlias which is a pointer to a DataStruct:

<DataStructAlias qClean>
kind = nodalArray
target = q
componentRange = [5,9]

</DataStructAlias>

<DataStructAlias qCleanNew>
kind = nodalArray
target = qNew
componentRange = [5,9]

</DataStructAlias>

In the DataStructAlias we only need to define target which is the DataStruct that the alias is pointing to, the compo-
nentRange which defines which components of DataStruct to use. In the case above componentRange=[5,9] means
that qClean points to elements [5,6,7,8] of q.

Finally, we put all of this into its own update step:

<UpdateStep cleanStep>
updaters = [rkClean, copyClean]

</UpdateStep>

Which can then be called before the main refmanual-multiUpdater.

5.3.4 Using the vertexJetUpdater

The refmanual-vertexJetUpdater was an updater specifically designed for modeling the Los Alamos Plasma Liner
Experiment. It allows one to easily generate a series of directed jets with uniform initial conditions each aligned
about their own axis. The refmanual-vertexJetUpdater works in both 2 and 3 dimensions. The variety of options
provided by the updater are described in the reference manual, however we can point out a few key things here. An
arbitrary number of jets can be defined by adding additional vertices, but they must be labeled in sequential order
vertex0,1,2,3,.... The vertex represents the tip of the jet and that jet will be directed towards the location specified by
origin. The width of the jet defines the width about each jet will be evaluated perpendicular to the line from the vertex
to the origin. The length specifies the distance from the vertex along the line from the vertex to the origin that the
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jet will be evaluated. The normalizedDensityFunction is used to define jets with non-uniform density profiles. The
density profile is rotated into the coordinate system where X is parallel to the vector from the origin to the vertex and
Y and Z are perpendicular. An example block is given below where it is used to update q:

<Updater jetSet>
kind = vertexJetUpdater$DIM$d

origin = [0.0, 0.0, 0.0]
width = JET_INIT_WIDTH
length = JET_INIT_LENGTH

radialVelocity = $-U$

numberDensity = $RHO_JET/MI$
speciesMass = MI
temperature = TKELVIN

<normalizedDensityFunction>
kind = exprFunc
preExprs = JET_DENSITY_PRE_FUNCTION
exprs = JET_DENSITY_FUNCTION

</normalizedDensityFunction>

vertex0 = [RAD, 0.0, 0.0]
vertex1 = [0.0, RAD, 0.0]
vertex2 = [-RAD, 0.0, 0.0]
vertex3 = [0.0, -RAD, 0.0]

vertex4 = [$(1.0/sqrt(2.0))*RAD$, $(1.0/sqrt(2.0))*RAD$, 0.0]
vertex5 = [$-(1.0/sqrt(2.0))*RAD$, $(1.0/sqrt(2.0))*RAD$, 0.0]
vertex6 = [$-(1.0/sqrt(2.0))*RAD$, $-(1.0/sqrt(2.0))*RAD$, 0.0]
vertex7 = [$(1.0/sqrt(2.0))*RAD$, $-(1.0/sqrt(2.0))*RAD$, 0.0]

includeElectronTemperature = false

correctionSpeed = CORRECTIONSPEED

gasGamma = GAMMA

#We use the mhdMunzEqn to initialize energy based on a temperature
model = mhdMunzEqn
mu0 = MU0
onGrid = domain

out = [q]
</Updater>

5.3.5 An Example Simulation

The input file for the problem Plasma Jet Merging in the USim USimHEDP package demonstrates each of the concepts
described above to solve the plasma jet merging problem.

5.3. Using USim to Solve MHD with General Equation of State 165



USimInDepth, Release 3.0.1

5.4 Using USim to Solve MHD with General Equation of State

In the USimBase tutorials the basic concepts of USim were described. In this HEDP tutorial we show how to use the
two-temperature mhd equations with general equation of state on an unstructured grid.

Contents

• Using USim to Solve MHD with General Equation of State
– Solving Problems Using The twoTemperatureMhdEosEqn
– Computing the Electric Field
– Computing J through ∇×𝐵
– Computing Pressure
– Current Boundary Condition
– An Example Simulation

5.4.1 Solving Problems Using The twoTemperatureMhdEosEqn

This problem is performed on an unstructured grid in axisymmetric geometry. The standard grid block is used making
sure to set isRadial=true and using the unstructured gmsh grid file called dpf1.msh:

<Grid domain>
kind = unstructured

ghostLayers = 2
isRadial = true
decomposeHalos = false

<Creator ctor>
kind = gmsh
ndim = 2
file = dpf1.msh

</Creator>
</Grid>

The refmanual-twoTemperatureMhdEosEqn is considerably more complex than any of the ideal MHD models since
the electric field is computed externally. The hyperbolic updater is given below using the refmanual-classicMuscl
method:

<Updater hyper>
kind = classicMuscl2d
onGrid = domain
variableForm = conservative
gradientType = leastSquares

timeIntegrationScheme = none
preservePositivity = true
numericalFlux = NUMERICALFLUX
limiterType = component

in = [q, pressure, electronPressure, soundSpeed, J, E, Z]
out = [qnew]

cfl = CFL
limiter = [LIMITER, LIMITER, LIMITER, none, LIMITER, LIMITER, none]
equations = [mhd]
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sources = [axisymmetricSource, mhdSrc]

<Equation mhd>
kind = twoTemperatureMhdEosEqn
mu0 = MU0
ionMass = MI
gasGamma = GAMMA
fundamentalCharge = CHARGE
basementDensity = BASEMENTDENSITY
basementPressure = BASEMENTPRESSURE

</Equation>

<Source axisymmetricSource>
kind = mhdSym
symmetryType = cylindrical
model = twoTemperatureMhdEosEqn
inputVariables = [q, pressure, electronPressure, J, E, Z]
fundamentalCharge = CHARGE
mu0 = MU0
ionMass = MI

</Source>

<Source mhdSrc>
kind = mhdSrc
model = twoTemperatureMhdEosEqn
inputVariables = [q, J, E, Z]
fundamentalCharge = CHARGE
mu0 = MU0
ionMass = MI

</Source>

</Updater>

The updater differs from previous MHD type schemes in that we have 7 input variables which are described in the
reference manual for refmanual-twoTemperatureMhdEosEqn. The 7 variables are the conserved variable vector q, the
pressure p the electron pressure electronPressure an estimate of the local sound speed soundSpeed the current density
(computed from the curl of the magnetic field) J, the electric field E and the local charge state Z which can vary
spatially

Limiters must be defined for each input variable, in this case we have

limiter = [LIMITER, LIMITER, LIMITER, none, LIMITER, LIMITER, none]

where each limiter corresponds to the corresponding input variable. Limiters need to be applied to q, p, electronPres-
sure, E and J since derivatives of each of these terms are compute. No limiters are applied to the remaining variable.
Limiters could also be applied to soundSpeed and Z however the stability of the scheme does not depend on limiting
this terms so we reduce the work load by not limiting these variables.

The Equation block is kind=twoTemperatureMhdEosEqn and is given by

<Equation mhd>
kind = twoTemperatureMhdEosEqn
mu0 = MU0
ionMass = MI
gasGamma = GAMMA
fundamentalCharge = CHARGE
basementDensity = BASEMENTDENSITY
basementPressure = BASEMENTPRESSURE

</Equation>
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Where the variables are described in the reference manual. In addition to the Equation block we require two Source
blocks. The following line indicates which sources will be called by the updater

sources = [axisymmetricSource, mhdSrc]

The first source adds the axisymmetric terms of the hyperbolic flux so that the derivative is correct in axisymmetric
geometry. This block is defined in refmanual-mhdSym and some specifics outlined here

<Source axisymmetricSource>
kind = mhdSym
symmetryType = cylindrical
model = twoTemperatureMhdEosEqn
inputVariables = [q, pressure, electronPressure, J, E, Z]
fundamentalCharge = CHARGE
mu0 = MU0
ionMass = MI

</Source>

We are interested in cylindrical symmetry so symmetryType=cylindrical is specified. The model being used is model
= twoTemperatureMhdEosEqn. The key parameter in the axisymmetricSource block is the inputVariable block. In
computing sources, if USim does not include inputVariable block it will assume that the inputVariables will be pro-
vided for the updaters in list in the order they are provided. In this case this is not what is desired so we must specify
a inputVariable list so that USim uses the correct variables in evaluating the source.

First note that in the classicaMuscl2d updater the in list is given as

in = [q, pressure, electronPressure, soundSpeed, J, E, Z]

The axisymmetric source does not need the variable soundSpeed, so, if no inputVariables list is specified in the ax-
isymmetric source then USim will try and use the first 6 variables q,‘pressure‘,‘electronPressure‘ soundSpeed,‘J‘ and
E in evaluating the source. Fortunately the size of soundSpeed is wrong (size 1 instead of the expected size 3) so
USim will throw an exception and won’t run. In order to get around this problem, and to get the correct computed
source we specify the inputVariables list. The inputVariables can only contain variables specified in the in list of the
classicMusclUpdater2d. In this example the correct inputVariables is

inputVariables = [q, pressure, electronPressure, J, E, Z]

note that there is no soundSpeed variable in this list.

The next Source is the mhdSrc. This source is needed to add the 𝐸 · 𝐽𝑒 term to the electron energy equation since the
two-temperature mhd system cannot be written entirely in flux form. The source is desribed in refmanual-mhdSrc and
some details are given here

<Source mhdSrc>
kind = mhdSrc
model = twoTemperatureMhdEosEqn
inputVariables = [q, J, E, Z]
fundamentalCharge = CHARGE
mu0 = MU0
ionMass = MI

</Source>

The kind=mhdSrc is specified and the model is twoTemperatureMhdEosEqn. As with the axisymmetric source the
user must specify inputVariables to override the default input variables that would be used based on the in list from
the classicaMuscl2d updater. In this case the list is given as

inputVariables = [q, J, E, Z]
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5.4.2 Computing the Electric Field

The electric field could be computed using a combiner, but USim also has a refmanual-generalizedOhmsLaw updater
which can simplify things. The generalizedOhmsLaw updater is discussed in the reference manual. It allows the user
to add electron pressure gradient, resistive hall and ideal terms to the electric field. All derivatives (such as the electron
pressure gradient) are computed outside of the generalizedOhmsLaw updater. The generalizedOhmsLaw used in this
case is specified below

<Updater computeE>
kind = generalizedOhmsLaw2d
onGrid = domain

in = [q, J, Z]
out = [E]

hallTerm = false

fundamentalCharge = CHARGE
ionMass = MI
electronMass = ME
boltzmannConstant = KB

</Updater>

The updater takes in parameters conserved variable vector q, current density J and the charge state Z. These terms are
sufficient to compute the ideal and hall terms. In order to add in resistivity and the electron pressure gradient refer to
the manual. In this case hallTerm is set to false as it severly constrains the time step in many explicit simulations. The
output is stored in the electric field E which has 3 components regardless of whether a refmanual-generalizedOhmsLaw
1d, 2d or 3d is used.

5.4.3 Computing J through ∇×𝐵

Derivatives such as gradient, divergence and curl can be computed using two different types of algorithms in USim.
The first approach is a finite difference approach which is fast, but becomes inaccurate on triangular and sufficiently
skewed quadrilateral meshes. This approach currently works consistently in 1, 2 and 3 dimension. The following
example shows how to compute the curl using a finite difference approach

<Updater computeJ>
kind = curl2d
onGrid = domain
inIndex = [5, 6, 7]
outIndex = [0, 1, 2]
in = [q]
out = [J]
coefficient = $1.0/MU0$

</Updater>

The updater is described in the reference manual. In this case we want the curl of the magnetic field to compute the
current density J. The input variable is the conserved variable vector q and the output is the current density J. The
magnetic field component stored in the conserved variable vector q occur in components [5,6,7] of the vector q so we
must specify inIndex=[5,6,7] so that USim takes the correct components when computing J.

The second approach produces better results on unstructured grids and uses a least squares approach to computing
the curl. This method is more accurate than the finite difference approach and is robust in 1 and 2 dimensions, but is
slower than the previous method. An example block using the least squares refmanual-vector, with the option curl is
given below
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<Updater computeJ>
kind = vector2d
onGrid = domain
derivative = curl
numScalars = 1
orderAccuracy = 1
coefficient = $1.0/MU0$
numberOfInterpolationPoints = 5

in = [BPhi]
out = [J]

</Updater>

This updater expects an input vector of size 3 and produces and output vector of size 3. In this case, a second data
struct BPhi was created and the magnetic field form q was copied into that variable. In addition, the parameter
numberOfInterpolationPoints must be specified. The value chosen here is variable depending on the grid, but should
generally be 5 or greater in 2d. Note that the complete list of options available in refmanual-vector are gradient, curl
and divergence.

5.4.4 Computing Pressure

Discussion of the pressure calculation for this system is included for clarity using a refmanual-updater-combiner.
Pressure in this case is total pressure or electron pressure + ion pressure. If we are using the ideal gas law (as is done
in this case) the pressure must be broken into ion pressure and electron pressure separately. The combiner below does
just that

<Updater computePressure>
kind = combiner2d
onGrid = domain

in = [q, electronPressure]
out = [pressure]
mi = MI
mu0 = MU0
gamma = GAMMA
k=KB
indVars_q = ["rho","mx","my","mz","en","bx","by","bz","ene"]
indVars_electronPressure = ["ene"]
exprs = ["(gamma-1)*(en-ene-(0.5/mu0)*(bx*bx+by*by+bz*bz)-0.5*(mx*mx+my*my+mz*mz)/rho)+(gamma-1.0)*ene"]

</Updater>

5.4.5 Current Boundary Condition

The boundary at the inlet is specified using a refmanual-functionBc. The functionBc allows you to specify the boundary
condition as a function of time t and spatial variables x,‘y‘,‘z‘. This is to be contrasted with the refmanual-generalBc
which also allows boundaries to be specified as functions of other DataStructs. The functionBc used in this example
is specified below

<Updater bcSource>
kind = functionBc2d
onGrid = domain
out = [q]

entity = source
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<Function func>
kind = exprFunc

#insulator end
iEnd = $0.027-0.81e-2$
iRad = $1.5*0.27e-2$
b0 = B0
riseTime = 2.0e-6
mu0 = MU0
gamma = GAMMA
p=$BETA*P0$
rho0 = $2.0*BASEMENTDENSITY$

preExprs = ["uz=1.0e3","by = (b0*iRad/x)*sin(6.28*t/riseTime)","en=(p/(gamma-1))+0.5*rho0*uz*uz+0.5*by*by/mu0"]

exprs = ["rho0","0.0","0.0","rho0*uz","en","0.0","by","0.0","0.5*p/(gamma-1.0)"]
</Function>

</Updater>

As with all USim boundary conditions an entity must be defined to tell USim where to apply the boundary condition. In
addition a Function block must be specified to define the initial conditions. The kind of this block is always exprFunc.
Inside this block we specify a preExprs list to provide some work space for performing computations before the values
of q are set in the boundary with exprs. The preExprs list is given below

preExprs = ["uz=1.0e3","by = (b0*iRad/x)*sin(6.28*t/riseTime)","en=(p/(gamma-1))+0.5*rho0*uz*uz+0.5*by*by/mu0"]

We’ve specified by as a sin function to mimic current rise and fall. The values defined in the preExprs can then be used
in exprs

exprs = ["rho0","0.0","0.0","rho0*uz","en","0.0","by","0.0","0.5*p/(gamma-1.0)"]

In this examples magnetic field is fed into the domain using a small velocity uz and low density rho0. Using this
technique we can make sure the magnetic field gets into the domain without defining a “resistive” layer near the wall.
Since the model is an MHD model a finite plasma density must exist so that the Alfven wave speed does not become
infinite.

5.4.6 An Example Simulation

The input file for the problem Dense Plasma Focus in the USimHEDP package demonstrates each of the concepts
described above to evolve the dense plasma focus problem in 2D axisymmetric geometry using two temperature MHD
with a general equation of state.

5.5 Using USim to Solve a Magnetic Nozzle Problem

In this tutorial we show how to use USim to solve a problem with both an induced and imposed magnetic field using
the gas dynamic form of the mhd equations.
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5.5.1 Solving Problems Using The Gas Dynamic Form of the MHD Equations

This tutorial follows many of the same concepts as the previous tutorial Using USim to Solve MHD with General
Equation of State. In this case we are solving the MHD system written in gas dynamic form. This form is significant
since it is not conservative, but simplifies some considerations when there are both imposed and induces magnetic
fields.

First of all we want to split the field into an imposed field generated by external coils and and induced field generated
by the plasma motion. To do this we have 3 data structures, the first, backgroundB stores the field generated by a
magnetic field coil

<DataStruct backgroundB>
kind = nodalArray
onGrid = domain
numComponents = 3

</DataStruct>

The second variable stores the conserved variables along with the total magnetic field, i.e., the induced field + the
background field

<DataStruct qModified>
kind = nodalArray
onGrid = domain
numComponents = NUMCOMP

</DataStruct>

The 3rd variable stores the conserved variables and only the induced magnetic field

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = NUMCOMP

</DataStruct>

The imposed magnetic field is generated at startup using a wire source refmanual-wireFieldEqn and a refmanual-
equation updater. The refmanual-equation updater works with all USim refmanual-Source blocks. Since the problem
is not axisymmetric we use a wire, but could use a refmanual-coilFieldEqn to model a current carrying loop. The
refmanual-wireFieldEqn initialization of the background magnetic field is given below

<Updater initMagField>
kind = equation2d
onGrid = domain
in = []
out = [backgroundB]

<Equation coil>
kind = wireFieldEqn

outRange = [0, 1, 2]
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point = [$COILRAD$, -0.001, 0.0]
mu0 = MU0
normal = [0.0, 0.0, 1.0]
current = $COILCURRENT$

</Equation>
</Updater>

Now the fields are split into induces q and imposed fields backgroundB. The imposed field backgroundB does not
evolve in time, but does affect the flow of fluid through the 𝐽 × 𝐵 force which is treated as a source in this example.
Taking this into account we apply the hyperbolic update to q (which ignores the imposed field) not qModified which
includes the imposed field. The refmanual-classicMuscl updater is used with the input file seen below

<Updater hyper>
kind = classicMuscl2d
timeIntegrationScheme = none
gradientType = leastSquares

numericalFlux = hlleFlux
variableForm = conservative
preservePositivity = true

limiter = [muscl, none, muscl, none]

onGrid = domain
in = [q, J, E, Z]
out = [qnew]

cfl = CFL

equations = [mhd]

<Equation mhd>
kind = gasDynamicMhdEqn
gasGamma = ION_GAMMA
mu0 = MU0
correctionSpeed = 0.0
ionMass = ION_MASS
chargeState = ZRATIO
fundamentalCharge = FUNDAMENTAL_CHARGE

</Equation>
</Updater>

Since this equation system does not use the general equation of state the inputs are somewhat simpler than in the
case of the refmanual-twoTemperatureMhdEosEqn. The inputs are the conserved variables q, the total current J, the
electric field E and the charge state Z. Also, note that we have not included the refmanual-mhdSrc which was included
in the case of refmanual-twoTemperatureMhdEosEqn. Instead we add the refmanual-mhdSrc in a separate step. First
we compute qModified which includes the conserved variables and both the induced and imposed field (we use a
refmanual-updater-combiner)

<Updater computeQMod>
kind = combiner2d
onGrid = domain

in = [q, backgroundB]
out = [qModified]

indVars_q = ["rho", "mx", "my", "mz", "en", "bx", "by", "bz", "phi", "ee"]
indVars_backgroundB = ["B0x","B0y","B0z"]
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exprs = ["rho", "mx", "my", "mz", "en", "bx+B0x", "by+B0y", "bz+B0z", "phi", "ee"]
</Updater>

The current density is computed from the perturbed magnetic field only 𝐽 = 1
𝜇0
∇× 𝐵 since it is already known that

that the curl of the imposed field is zero everywhere inside the domain

<Updater computeJ>
kind = vector2d

onGrid = domain
derivative = curl
numScalars = 1
orderAccuracy = 2
coefficient = 1.0
numberOfInterpolationPoints = 8

in = [B]
out = [J]

</Updater>

Now that we’ve computed qModified we use this to compute the refmanual-mhdSrc through the use of a refmanual-
equation so that both the induced and imposed fields provide a force to the fluids. The source term is stored in src.

<Updater computeSource>
kind = equation2d
in = [qModified, J, E, Z]
out = [src]
onGrid = domain

<Equation gdSrc>
kind = mhdSrc
model = gasDynamicMhdEqn
gasGamma = ION_GAMMA
electronGasGamma = ELECTRON_GAMMA
ionMass = ION_MASS
chargeState = ZRATIO
fundamentalCharge = FUNDAMENTAL_CHARGE
correctionSpeed = 0.0
mu0 = MU0

</Equation>
</Updater>

The source term is then added to the update q, qnew through the use of a refmanual-uniformCombiner. The refmanual-
uniformCombiner acts just like a refmanual-updater-combiner except that it assumes all input variables and output
variables are of the same size and that the same operation is being applied to all components. In the block below we
have added src generated by the computeSource Updater above

<Updater updateQ>
kind = uniformCombiner2d
onGrid = domain

in = [qnew, src]
out = [qnew]

indVars_qnew = ["qn"]
indVars_src = ["s"]
exprs = ["qn+s"]

</Updater>

As in the previous tutorial the electric field is computed using a refmanual-generalizedOhmsLaw updater. Notice
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that the conserved variables including the total magnetic field qModified is used in computing the electric field. In
addition, we’ve included a resistivity term by defining resistivity=eta. eta is a refmanual-nodalArray defined using a
refmanual-updater-combiner

<Updater computeE>
kind = generalizedOhmsLaw2d
onGrid = domain

in = [qModified, J, Z]
out = [E]
resistivity = eta

hallTerm = false

fundamentalCharge = FUNDAMENTAL_CHARGE
ionMass = ION_MASS
electronMass = ME
boltzmannConstant = KB

mu0 = MU0
</Updater>

5.5.2 Computing the Δ𝑡 restriction for explicit resistive term

USim has a refmanual-TimeStepRestriction for explicit diffusion type terms. The restriction can be applied to viscous,
thermal diffusion and resistive terms. In order to compute the restriction properly the diffusion coefficient needs to be
computed properly. In the case of resistivity we want to compute the diffusion coefficient 𝛾 in the proper form

𝜕𝐵

𝜕𝑡
= 𝛾∇2𝐵

It turns out gamma=eta/mu_{0} in the case of magnetic field diffusion. In this simulation we first compute the resis-
tivity

<Updater initEta>
kind = initialize2d
onGrid = domain
out = [eta]

<Function func>
kind = exprFunc
eta0 = RESISTIVITY
exprs = ["eta0"]

</Function>
</Updater>

and then compute etaBymu0 = eta0/mu0 so that we can compute the explicit time step constraint

<Updater initEtaBymu0>
kind = combiner2d
onGrid = domain
in = [eta]
out = [etaBymu0]
indVars_eta = ["eta0"]
mu0 = $MU0$
exprs = ["eta0/mu0"]

</Updater>
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etaByMu0 can then be used in the refmanual-quadratic time step restriction updater

<Updater timeStepRestriction>
kind = timeStepRestrictionUpdater2d
in = [etaBymu0]
onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = 0.5

</TimeStepRestriction>
</Updater>

Note that diffusion terms have explicit time step restriction given by ∆𝑡 ≈ ∆𝑥2 so that the time step reduces qua-
datically as the grid is refined. Currently we can get around this problem in USim by using super time stepping (see
Advanced Time-Stepping Methods in USim).

5.5.3 Divergence Cleaning with an Imposed Field

Divergence cleaning with imposed fields is accomplished by cleaning the induced field only. It is already known that
the imposed field is divergence free so that part can be ignored. Hyperbolic divergence cleaning in this case, but only
applied to the perturbed field. A refmanual-DataStructAlias is used to point just to the magnetic field and correction
potential components in the conserved variable vector

<DataStructAlias qClean>
kind = nodalArray
target = q
componentRange = [5,9]
writeOut = 0

</DataStructAlias>

This refmanual-DataStructAlias is used in the hyperbolic cleaning step which consists of a refmanual-classicMuscl
updater, a refmanual-multiUpdater and associated boundary conditions.

<Updater hyperClean>
kind = classicMuscl2d
timeIntegrationScheme = none
gradientType = leastSquares
variableForm = conservative

cfl = CFL

numericalFlux = hlleFlux

limiter = [muscl]

onGrid = domain
in = [qClean]
out = [qCleanNew]

equations = [clean]

syncAfterSubStep = [qCleanNew]
<Equation clean>
kind = hyperbolicCleanEqn
waveSpeed = CORRECTION_SPEED

</Equation>
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</Updater>

<Updater hyperClean2>
kind = multiUpdater2d
onGrid = domain
timeIntegrationScheme = rk2
updaters = [cleanCopyBc, cleanInflow, hyperClean]

integrationVariablesIn = [qClean]
integrationVariablesOut = [qCleanNew]
dummyVariables_qClean = [dummyClean1,dummyClean2]

syncAfterSubStep = [qCleanNew]
</Updater>

In this case the boundary conditions consist of copying out the magnetic field and reversing the sign of the correction
potential. In can be the case that field build up can occur at the boundary and in these cases simply setting the perturbed
magnetic field to zero resolves the issue. Boundary conditions used for the hyperbolic cleaning step with the perturbed
magnetic field are shown below using a refmanual-generalBc

<Updater cleanCopyBc>
kind = generalBc2d
onGrid = domain

in = [qClean]
dynVectors = []

indVars_qClean = ["Bx","By","Bz","Phi"]

exprs = ["Bx","By","Bz","-Phi"]
out = [qClean]

entity = ghost
</Updater>

<Updater cleanInflow>
kind = generalBc2d
onGrid = domain

in = [qClean]
dynVectors = []

indVars_qClean = ["Bx","By","Bz","Phi"]

exprs = ["Bx","By","Bz","-Phi"]
out = [qClean]

entity = ghost
</Updater>

5.5.4 An Example Simulation

The input file for the problem Magnetic Nozzle in the USimHEDP package demonstrates each of the concepts de-
scribed above.
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5.6 Using USim to Solve an Anisotropic Diffusion Problem

In this tutorial we show how to use USim to solve a problem with anisotropic diffusion using the updater refmanual-
diffusion with option anisotropicDiffusion. The problem used an example is based off of the problem described in

Parrish, Ian J., and James M. Stone. "Nonlinear evolution of the magnetothermal instability in two dimensions." The Astrophysical Journal 633.1 (2005): 334.

but solved on an unstructured grid.

Contents

• Using USim to Solve an Anisotropic Diffusion Problem
– Required DataStructs
– Computing a Conductivity Tensor
– Solving problems using Derivatives with option anisotropicDiffusion
– Computing the time step for the diffusion operator
– An Example Simulation

5.6.1 Required DataStructs

This tutorial follows many of the same concepts as prior tutorials

First of all we initialize a vector (in this case B) that defines the field that is used to construct the conductivity tensor

<DataStruct B>
kind = nodalArray
onGrid = domain
numComponents = 3
writeOut = 1

</DataStruct>

In addition we define the parallel conductivity (parallel to the vector field) kParallel

<DataStruct kParallel>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = 1

</DataStruct>

And the conductivity perpendicular to the vector field kPerpendicular

<DataStruct kPerpendicular>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = 1

</DataStruct>

Finally we define the conductivity tensor conductivityTensor. The conductivity tensor always has 9 components even
if the simulation is 2 dimensional

<DataStruct conductivityTensor>
kind = nodalArray
onGrid = domain
numComponents = 9
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writeOut = 1
</DataStruct>

5.6.2 Computing a Conductivity Tensor

In general the conductivityTensor could be filled up manually using a refmanual-updater-combiner, but thermal dif-
fusion in a magnetic field is best split into parallel and perpendicular conductivities. A built in source computes this
automatically given the parallel and perpendicular conductivities. The conductivityTensor takes a vector field B a paral-
lel conductivity kParallel (scalar) and a perpendicular conductivity kPerpendicular (scalar). The use of a Conductivity
Tensor is given below

<Updater initConductivityTensor>
kind = equation2d
onGrid = domain

in = [B, kParallel, kPerpendicular]

out = [conductivityTensor]

<Equation a>
kind = conductivityTensor

</Equation>

</Updater>

5.6.3 Solving problems using Derivatives with option anisotropicDiffusion

Now that conductivityTensor is defined we can compute the diffusion. We use the refmanual-diffusion which supplies
second order derivatives. In this case the we use anisotropicDiffusion which expects a scalar input (in this case
temperature) and a 9 component conductivity tensor (in this case conductivityTensor)

<Updater computeDiffusion>
kind = diffusion2d
derivative = anisotropicDiffusion
onGrid = domain
numScalars = 3
coefficient = 1.0

orderAccuracy = 1
numberOfInterpolationPoints = 8

in = [temperature, conductivityTensor]
out = [temperatureNew]

</Updater>

Note that the complete list of options available in refmanual-diffusion are diffusion, anisotropicDiffusion and gradi-
entOfDivergence.

5.6.4 Computing the time step for the diffusion operator

Time integration is performed using super time stepping. Super time stepping is a variable stage Runge-Kutta ap-
proach that is much faster (by the number of stages) than standard Runge-Kutta methods for solving diffusion
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problems. The approach requires two time steps. The desired (actual) time step is computed using a refmanual-
timeStepRestrictionUpdater. The key here is that CFLSTEP=100.0 so it is much higher than the explicitly stable time
step for a diffisive system

<Updater timeStepRestriction>

kind = timeStepRestrictionUpdater2d
in = [maxConductivity]

onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = CFLSTEP

</TimeStepRestriction>

</Updater>

Next the time step for the super time stepping method is computed where an explicitly stable CFL=0.1 is used. The
time step is stored in diffDT1

<Updater getDiffDT1>
kind = getTimeStepUpdater2d
in = [maxConductivity]
out = [diffDT1]
onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = CFL

</TimeStepRestriction>
</Updater>

The Super Time Stepping integrator then knows to take the ratio of the desired time step and the explicitly stable time
step to compute the number of stages used in the STS Updater.

5.6.5 An Example Simulation

The input file for the problem Anisotropic Diffusion in the USimHEDP package demonstrates each of the concepts
described above.

5.7 Using USim to Solve Multi-Fluid Problems with Collisions

In this tutorial we show how to use USim to solve a problem with collisions in a multi-fluid simulation. This tutorial
uses refmanual-collisionFrequency, refmanual-momentumEnergyExchange, refmanual-temperatureRelaxation.
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5.7.1 Required DataStructs

In this example we have 3 different fluids. The first thing we need to define is a variable to contain the collision matrix.
Since there are 3 fluids the collision matrix will have 3X3=9 components

<DataStruct collisionMatrix>
kind = nodalArray
onGrid = domain
numComponents = 9
writeOut = 1

</DataStruct>

So that we can look at the total density, energy and momentum of the system we define qTotal for convenience (this
variable is not necessary for this simulation)

<DataStruct qTotal>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

For each of the 3 fluids we define a vector to contain the mass density, momentum density and energy density. The
first fluid DataStruct is defined as q1 along with its updated value qnew1

<DataStruct q1>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

<DataStruct qnew1>
kind = nodalArray
onGrid = domain
numComponents = 5
writeOut = false

</DataStruct>

Also, we need a variable to hold the momentum and energy collisional source terms for each of the fluids. The length
of the vector is 5 to match the number of conserved variables even though the collisional source for the first variable
(density) is 0

<DataStruct q1Mom>
kind = nodalArray
onGrid = domain
numComponents = 5
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writeOut = false
</DataStruct>

In addition data for storing collisions due to thermal energy exchange for each species are also created. The length of
this DataStruct is 1

<DataStruct tempRelax1>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = false

</DataStruct>

Data for the species number density is required for each species

<DataStruct N1>
kind = nodalArray
onGrid = domain
numComponents = 1
writeOut = 1

</DataStruct>

Data for the temperature of each species is also required

<DataStruct T1>
kind = nodalArray
onGrid = domain
numComponents = 1

</DataStruct>

Data is also required for the velocity of each species

<DataStruct V1>
kind = nodalArray
onGrid = domain
numComponents = 3

</DataStruct>

5.7.2 Computing the collision tensor using Collision Frequency

In general the collisionFrequency could be filled up manually using a refmanual-updater-combiner, but it is much
easier to use collisionFrequency. The in variable takes temperature number density and velocity for each species
(repeated as below for any number of species). In the case where plasma collision are modeled type=ionized charge
states Z are also required. In the example below type=neutrals is used so collision cross sections are computed from
species diameters given by speciesDia. Notice that inverse=false which means collision frequencies are returned in
collisionMatrix. If inverse=true then collision times are returned

<Updater collisionFrequency>
kind = equation1d
onGrid = domain

in = [T1, N1, V1, T2, N2, V2, T3, N3, V3]

out = [collisionMatrix]

<Equation momentum>
kind = collisionFrequency
inverse = false
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type = neutrals
speciesMass = [MI1, MI2, MI3]
speciesDia = [DI1, DI2, DI3]

</Equation>
</Updater>

5.7.3 Computing the momentum and energy exchange terms using Momentum En-
ergy Exchange

Once collisionMatrix is computed it can be used to compute the momentum and energy exchange term can be com-
puted. Note that this term ignores thermal collisions which are computed using a different operator. refmanual-
momentumEnergyExchange takes in the conserved variables for each of the fluids along with the collisionMatrix and
produces momentum and energy exchange terms that can then be added to the fluid equations

<Updater momentumSource>
kind = equation1d
onGrid = domain
in = [q1, q2, q3, collisionMatrix]
out = [q1Mom, q2Mom, q3Mom]

<Equation momentum>
kind = momentumEnergyExchange
speciesMass = [MI1, MI2, MI3]

</Equation>
</Updater>

5.7.4 Computing the temperature relaxation terms using Temperature Relaxation

collisionMatrix is also used to compute the temperature relaxation between fluids. temperatureRelaxation takes mass
densities or number densities (depending on whether isNumberDensity=1 (takes number densities) or isNumberDen-
sity=0 (takes mass densities). q1,‘q2‘ and q3 are conserved variable vectors where the first component is mass density,
the remaining 4 components of the vector are ignored by temperatureRelaxation. The resulting relaxation terms are
stored in the output variables and then are added to energy term of the respective fluid equations to compute the effect
of temperature relaxation

<Updater energySource>
kind = equation1d
onGrid = domain
in = [q1, q2, q3, T1, T2, T3, collisionMatrix]
out = [tempRelax1, tempRelax2, tempRelax3]

<Equation momentum>
kind = temperatureRelaxation
isNumberDensity = 0
speciesMass = [MI1, MI2, MI3]

</Equation>
</Updater>

5.7.5 Adding the momentum/energy sources to the fluid equations

Now that the momentum and energy exchange terms have been computed along with the temperature relaxation term
have been computed these are added to the solution after the hyperbolic part is computed. The source terms are added
using a combiner. Notice that the energy term contains contributions from both the momentum exchange and the

5.7. Using USim to Solve Multi-Fluid Problems with Collisions 183



USimInDepth, Release 3.0.1

thermal relaxation term. The updater for the first fluid is given below, the updaters for the remaining fluids will be
similar

<Updater addThermalRelaxation1>
kind = combiner1d
onGrid = domain

in = [qnew1, tempRelax1, q1Mom]
out = [qnew1]

indVars_qnew1 = ["rho","mx","my","mz","en"]
indVars_q1Mom = ["dRho","dMx","dMy","dMz","dEn"]
indVars_tempRelax1 = ["dT"]

exprs = ["rho","mx+dMx","my+dMy", "mz+dMz","en+dT+dEn"]

</Updater>

5.7.6 Computing the time step for collisions using Frequency

Collisions add new time scales that need to be applied when an explicit approach is used. A special updater is used
to compute the smallest time scale introduced by collisionMatrix. We use refmanual-timestepRestriction which takes
in collisionMatrix and then used the restriction kind given by kind=frequency. The frequency restriction takes compo-
nents which tells USim how many of the components in collisionMatrix should be used. In this case all components
are used. This restriction will ensure that the explicit solution is stable to the collisions

<Updater timestepRestriction>
kind = timeStepRestrictionUpdater1d
in = [collisionMatrix]
onGrid = domain
restrictions = [inverseTime]

<TimeStepRestriction inverseTime>
kind = frequency
components = 9
cfl = 0.5

</TimeStepRestriction>
</Updater>

5.7.7 An Example Simulation

The input file for the problem Multi-Fluids with collisions in the USimHEDP package demonstrates each of the
concepts described above.

5.8 Using USim to solve 10 moment ions with 5 moment electrons

In this tutorial we show how to solve the two-fluid system where the ions use the 10-moment model and the electrons
use the 5 moment model. The simulation is based off of the result published in

Hakim, Ammar H. "Extended MHD modelling with the ten-moment equations." Journal of Fusion Energy 27.1-2 (2008): 36-43.

Readers should refer to Using USim to Solve the Two-Fluid Plasma Model since the setup is virtually identical. The
difference in this case lays in the use of refmanual-tenMomentEqn as well as the options type = 10MomentIonsStep1
and type = 10MomentIonsStep2 in refmanual-twoFluidSrc.
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– DataStructs
– Computing the semi-implicit operators
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5.8.1 DataStructs

The electrons use the 5 moment model so the electron conserved variables have 5 components refmanual-eulerEqn

<DataStruct electrons>
kind = nodalArray
onGrid = domain
numComponents = 5

</DataStruct>

The ions use the 10 moment model so the ion conserved variables have 10 components refmanual-tenMomentEqn

<DataStruct ions>
kind = nodalArray
onGrid = domain
numComponents = 10

</DataStruct>

5.8.2 Computing the semi-implicit operators

The first part of the semi-implicit operator is computed as shown below. The type must be set to 10MomentIonsStep
as this operator is applied first

<Updater twoFluidSrc1>
kind = equation1d

onGrid = domain
in = [electronsNew, ionsNew, emNew]
out = [electronsNew, ionsNew, emNew]

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 10MomentIonsStep1
useImposedField = false
electronCharge = ELECTRON_CHARGE
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
ionMass = ION_MASS
epsilon0 = EPSILON0

</Equation>
</Updater>

The second operator can be applied after the conserved variables have been updated from the first operator. In this
case the type is 10MomentIonsStep2 as shown below. Notice that the result is only applied to the updated ion values
ionsNew
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<Updater twoFluidSrc2>
kind = equation1d

onGrid = domain
in = [ionsNew, emNew]
out = [ionsNew]

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 10MomentIonsStep2
ionCharge = ION_CHARGE
ionMass = ION_MASS

</Equation>
</Updater>

5.8.3 Integrating the 10 moment ion 5 moment electron system

Time integration is performed in the standard way, but now two operators must be applied. Notice the block

<UpdateStep operators>
updaters = [twoFluidSrc1, twoFluidSrc2]
syncVars = [emNew, ionsNew, electronsNew]

</UpdateStep>

where both twoFluidSrc1 and then twoFluidScr2 are applied

<Updater rkUpdaterMain>
kind = multiUpdater1d
onGrid = domain

in = [em, ions, electrons]
out = [emNew, ionsNew, electronsNew]

<TimeIntegrator rkIntegrator>
kind = rungeKutta1d
ongrid = domain
scheme = secondNonTVD

</TimeIntegrator>

<UpdateSequence sequence>
fluxStep = [hyper]
boundaryStep = [boundaries]
operatorStep = [operators]

</UpdateSequence>

<UpdateStep boundaries>
updaters = [bcIons, bcElectrons, bcEm]
syncVars = [em, ions, electrons]

</UpdateStep>

<UpdateStep hyper>
updaters = [hyperIons, hyperElectrons, hyperEm]
syncVars = [emNew, ionsNew, electronsNew]

</UpdateStep>

<UpdateStep operators>
updaters = [twoFluidSrc1, twoFluidSrc2]
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syncVars = [emNew, ionsNew, electronsNew]
</UpdateStep>

</Updater>

5.8.4 An Example Simulation

The input file for the problem Ten-Moment Two-Fluid Shock in the USimHEDP package demonstrates each of the
concepts described above.

5.9 Using USim to Solve Navier-Stokes Equations

Conservative form of Navier-Stokes equations are solved in USim. Convective and diffusion terms are de-coupled.
Hence the diffusion terms are added as source in the Euler equations (see Using USim to solve the Euler Equations).

Contents

• Using USim to Solve Navier-Stokes Equations
– Viscous and Thermal Terms in Navier-Stokes Equations
– Evaluation and Addition of the Diffusion Terms
– Time Step Restriction
– An Example Simulation

5.9.1 Viscous and Thermal Terms in Navier-Stokes Equations

Navier-Stokes equations are solved in Supersonic cross flow over cylinder example of the USimHS by adding the
diffusion terms to regular Euler equations. The diffusion terms considered for the evaluation are found in refmanual-
navierStokesViscousOperator. An example updater block that evaluates the diffusion terms in momentum and energy
equations is shown below:

<Updater computeViscousFluxes>
kind = navierStokesViscousOperator2d
isRadial = false
numberOfInterpolationPoints = 8
onGrid = domain
coefficient = 1.0
enableThermal = true
enableViscous = true
temperatureIndex = 0
in = [velocity, dynamicViscosity, temperature, thermalCoefficient]
out = [source]

</Updater>

The meanings for the input blocks in this updater are as follows:

kind (string)

Specifies the navierStokesViscousOperator2d updater, which tells USim to evaluate the diffusion terms
on two-dimensional grid. Similarly navierStokesViscousOperator1d and navierStokesViscousOperator3d
can be used for one and three dimensional space domains.

isRadial (boolean)
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Specifies whether the evaluation is carried out in cylindrical or Cartesian coordinates.

numberOfInterpolationPoints (string)

Number of interpolation points for leastsquares fit.

enableThermal (boolean)

Option to include heat conduction term in energy equation. time 𝑡, here this is qSpecies.

enableViscous (boolean)

Option to include viscous terms in momentum and energy equations.

temperatureIndex (int)

Index of temperature in the array that stores temperature. Lets say the temperature array that is passed for
diffusion source computation has three values translational, vibrational, and rotational temperature. Since
translational temperature is used in the computation of heat conduction and viscous dissipation, we pass
temperatureIndex = 0.

in (nodalArrays)

The variables required for the computation of diffusion terms. The names in the examples are self-
explanatory and the order should not be changed.

out (nodalArray)

The variable to store the evluated diffusion terms.

5.9.2 Evaluation and Addition of the Diffusion Terms

The Updater block is evaluated in the time integration multiUpdater of the input file. Again referring to Supersonic
cross flow over cylinder example of the USimHS package, the following updater block is used for time integration of
fluxes using first order Runge-Kutta method. In this multiUpdater, computeViscousFluxes is added to the list of the
updaters (updaters = [.,.,.,.,.]) to evaluate diffusion fluxes.:

<Updater rkUpdaterMain>
kind = multiUpdater2d
onGrid = domain

in = [q]
out = [qnew]

<TimeIntegrator rkIntegrator>
kind = rungeKutta2d
ongrid = domain
scheme = first

</TimeIntegrator>

<UpdateSequence sequence>
loop = [boundaries,compute,hyper]

</UpdateSequence>

<UpdateStep boundaries>
updaters = [correct, bcBottom, bcTop, bcRight, bcWall, bcLeft, computeT, bcWallTemp]
syncVars = [q]

</UpdateStep>

<UpdateStep compute>
operation = "operate"

188 Chapter 5. Using USim to Solve Advanced Physics Problems



USimInDepth, Release 3.0.1

updaters = [computeVelocity, computeViscosity, computeKinematicViscosity, computeThermalCoefficient, \
computeThermalDiffusivity, computeViscousFluxes]

syncVars = [source]
</UpdateStep>

<UpdateStep hyper>
operation = "integrate"
updaters = [hyper,addSource]
syncVars = [qnew]

</UpdateStep>

</Updater>

option kind (string)

name of of the this time integration updater multiUpdater2d (2d for two dimensional space).

option in (nodalArray)

variables to be integrated in time.

option out (nodalArray)

name of the output variable.

option TimeIntegrator (sub block)

type of integration scheme is rungeKutta2d with first order scheme.

option UpdateSequence (sub block)

specifies the suquence loop of UpdateSteps.

option UpdateStep (sub blocks)

Consists of the names of the user defined updater blocks required to be evaluated during the time
integration steps. Note that, the names are user-given in the inputfile. And the order of evaluation is
important.

correct, bcBottom, bcTop, bcRight, bcWall, bcLeft, computeT, bcWallTemp, computeVelocity, computeViscosity, com-
puteKinematicViscosity, computeThermalCoefficient, computeThermalDiffusivity, are the other updater blocks to eval-
uate and apply boundary conditions and thermophysical properties. These updater blocks are found in the Supersonic
cross flow over cylinder example. Their usefulness will be briefed here in this lesson. correct corrects the values of
any variables of interest to user specified limits. bcBottom, bcTop, bcRight, bcWall, bcLeft are the boundary condi-
tions for conservative variables (here in this example, they are mass, three components of momentum, and energy
density). computeT is for obtaining temperature from the conservative variables. bcWallTemp applies user specified
temperature on the wall. ‘computeVelocity’ obtains the velocity from the conservative variables. computeViscosity,
computeKinematicViscosity, computeThermalCoefficient, computeThermalDiffusivity are updater blocks used to com-
pute thermophysical properties varying with temperature. Note that these blocks can be eliminated from the input file,
if the properties are constant. computeViscousFluxes evaluates the viscous and thermal fluxes using the updater block
shown above. hyper is classicMuscl updater block used to evaluate the convective fluxes from the hyperbolic part of
the NS equations. Now the diffusion source is added to the existing convective sources using the combiner2d updater
as shown below:

<Updater addSource>
kind = combiner2d
onGrid = domain
in = [qnew, source]
out = [qnew]
indVars_qnew = ["rho", "mx", "my", "mz", "en"]
indVars_source = ["sx","sy","sz","sen"]
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exprs = ["rho","mx+sx","my+sy","mz+sz","en+sen"]
</Updater>

option syncVars_computeViscousFluxes (optional attribute) This option synchronizes the diffusion fluxes
in the variable source. All of the computed variables which need information from the cells in the
adjacent partition (used in parallel computing) have to be synchronized using this option. Differen-
tiation operators are used in computeViscousFluxes and the result is stored in source. Hence source
is synChronized after calling computeViscousFluxes.

option syncVars_bcRight (optional attribute) used for the same reason as specified above.

option dummyVariables_q The dummy variables qDummy1, qDummy2, qDummy3 are required for
Runge-Kutta integration. Each of the integration variable should have a different dummyVariables_
= [.,.,.] option.

option syncAfterSubStep

qnew which has the updated values of the integration is synchronized at the end of integration.

5.9.3 Time Step Restriction

Time step restriction has to be added separately for hyperbolic and elliptic terms. The following three restriction are
evaluated and added in the loop.

Hyperbolic restriction:

<Updater timeStepRestriction>
kind = timeStepRestrictionUpdater2d
in = [q]
onGrid = domain
restrictions = [hyperbolic]
<TimeStepRestriction hyperbolic>

kind = hyperbolic
model = eulerEqn
cfl = CFL
gasGamma = GAS_GAMMA

</TimeStepRestriction>
</Updater>

Viscous diffusion time step restriction:

<Updater timeStepRestriction2>
kind = timeStepRestrictionUpdater2d
in = [kinematicViscosity]
onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = 0.5

</TimeStepRestriction>
</Updater>

Thermal diffusion time step restriction:

<Updater timeStepRestriction3>
kind = timeStepRestrictionUpdater2d
in = [thermalDiffusivity]
onGrid = domain
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restrictions = [quadratic]
<TimeStepRestriction quadratic>
kind = quadratic
cfl = 0.5

</TimeStepRestriction>
</Updater>

In all of the above time step restrictions, cfl can be varied according to the problem.

5.9.4 An Example Simulation

The Supersonic cross flow over cylinder example of the USimHS demonstrates each of the concepts described above.
Executing the Supersonic cross flow over cylinder input file within USimComposer and switching to the Visualize tab
yields the plot shown in Fig. 5.1.

Fig. 5.1: Visualization tab in USimComposer after executing the input file for the tutorial.

5.10 Using USim to Solve Multi-Species Reactive Flows

Multi-species transport in cylindrical coordinates along with reactions is demonstrated in this example. A hypothetical
gas consisting of three species N2,N,O2 is considered here. Mass transport of individual species is solved along with
Euler equations. Rate equations are solved in USim to obtain the change in concentration of the species due to
chemical reactions. The rate of change of species is obtained using reaction rates and then added to the species
transport as sources. Similarly the the change in energy is incorporated using energy of formation of each of the
species. The related input file can be found in quickstart-blunt-body example of USimHS.
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5.10.1 Multi-Species Mass Transport

Species mass transport fluxes are evaluated using the classicMuscl updater and Eigenvalues values of the Euler equa-
tion (see Using USim to solve the Euler Equations). The updater block is as given below.

<Updater hyperSpecies>
kind = classicMuscl2d
timeIntegrationScheme = none
numericalFlux = localLaxFlux
limiter = [minmod, minmod, minmod, none]

variableForm = conservative
cfl = CFL
onGrid = domain
in = [speciesDens, q, p, a]
out = [speciesDensNew]
equations = [speciesContinuity]
sources = [multiSpeciesAxiSrc]

<Equation speciesContinuity>
useParentEigenvalues = true
inputVariables = [speciesDens, q]
kind = multiSpeciesSingleVelocityEqn
numberOfSpecies = NSPECIES

<Equation euler>
kind = realGasEosEqn
inputVariables = [q, p, a]
numSpecies = NSPECIES

</Equation>

</Equation>

<Source multiSpeciesAxiSrc>
kind = multiSpeciesSym
symmetryType = cylindrical
numberOfSpecies = NSPECIES

</Source>
</Updater>

This block uses Equation sub-block and a Source block. The mass fluxes are computed in the Equation block using
the Eigenvalues of conservative variables q. Here q contains the conservative variables of realGasEosEqn equation.
The equation of state is user specified, hence it requires pressure p and speed of sound a as inputs. The Source block
computes the sources due to additional terms in cylindrical coordinates. The fluxes evaluated in both of the sub-blocks
are added to the out variable speciesDensNew.
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5.10.2 Mass Diffusion

Mass diffusion source for the multi-species can computed using the following block. This block uses refmanual-
diffusion operator to compute the diffusion source, with the derivative specified as diffusion, numScalars is the num-
ber of species, isRadial is true for cylindrical coordinates, and the input variables are species density and diffusion
coefficient D. out variable diffSrc contains the output.

<Updater computeDiffSrc>
kind = diffusion2d
onGrid = domain
derivative = diffusion
numScalars = NSPECIES
coefficient = 1.0
numberOfInterpolationPoints = 8
isRadial = true
in = [speciesDens,D]
out = [diffSrc]

</Updater>

5.10.3 Rate of Change of Density

The following equation block shows the computation of rate of change of density three species due to two reactions.
In order to use this block, a nodalArray variable consisting of the species densities speciesDens has to be initialized,
another array to add the density change rates speciesDensNew should be declared, and an nodalArray with average
temperature of the species. The two reactions are N2 + N2 -> N + N + N2 and N2 + O2 -> N + N + O2. The equation
block follow.

<Updater sourceUpdater>
kind = equation2d
onGrid = domain

in = [speciesDens, temperature]
out = [speciesDensNew]

equations = [reactionSrc]

<Equation reactionSrc>
kind = reactionTableRhs
outputEnergyRate = 0
maxRate = 1.0e28
species = [N2, N, O2]
fileName = airReaction.txt

</Equation>
</Updater>

The attributes used in the above block are

option kind (string)

Specifies the type of updater. Here it is equation2d

option in (nodalArray)

Names of the required nodalArray inputs. In this example, those are speciesDens, temperature

option out

Name of the output variable.
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option equations (string)

Name of the equation. Here the name is reactionSrc

Attributes within the Equation sub blocks

option kind (string)

Type of equation. In this example, it is refmanual-reactionTableRhs

option outputEnergyRate (boolean)

option to compute reaction energy. it is chosen to be false in this demo.

option maxRate (real number)

An option to introduce artificial limit on the maximum value of reaction rate. It is useful in stabilizing
the solution at reasonably small time steps.

option species (list of strings)

Names of the species considered.

option fileName (string)

Name of the refmanual-MultiSpeciesDataFiles.

Within the Equation Any number of reactions can be included by simply adding those to refmanual-
MultiSpeciesDataFiles.

5.10.4 Chemical Energy

The energy of formation is computed using the following Updater block. The total energy of formation of all the
species is added to get the mixture’s energy. This energyOfFormation is added to internal energy in the energy equation.
Hence during the initialization, the initial value of energyOfFormation should be computed using the initial densities
of species and added to the energy density variable.

<Updater computeChemEn>
kind = equation2d
onGrid = domain

in = [speciesDens,cpR,temperature]
out = [chemEn]

<Equation cp>
kind = transportCoeffSrc
coeff = chemicalEnergy
numSpecies = NSPECIES
fileName = airReaction.txt

</Equation>
</Updater>

The attributes used in the above block are

option kind (string)

Specifies the type of updater. Here it is equation2d

option in (nodalArray)

Names of the required nodalArray inputs. In this example, those are speciesDens, cpR, temperature.
specisDens is the number densities of all species, cpR is specific heats. temperature is average
temperature of species. speciesDens and cpR are arrays with size equal to the number of species.
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option out

Name of the output variable. contains the energy of formation. This variable will have only one
component.

5.10.5 Addition of sources in time integrator

Two updaters are here, one for integrating the conservative variables q and species density speciesDens. The other is
to integrate time rate of change of species due to reactions in using detailed explanation of the attributes is found in
refmanual-multiUpdater.

<Updater rkUpdaterFluid>
kind = multiUpdater2d
onGrid = domain

in = [q,speciesDens]
out = [qnew,speciesDensNew]

<TimeIntegrator rkIntegrator>
kind = TIMEINTEGRATION_METHOD
ongrid = domain
scheme = TIMEINTEGRATION_SCHEME

</TimeIntegrator>

<UpdateSequence sequence>
loop = [boundaries,hyper]

</UpdateSequence>

<UpdateStep boundaries>
updaters = [bcOutflowSpecies, bcInflowSpecies, bcAbWallSpecies1, bcAbWallSpecies2, bcAbWallSpecies3, computeChemEn, computeTemperature, temperatureCorrector, bcFluidTempAxis, bcFluidTempWall, bcFluidTempInflow, bcFluidTempCopy, bcSurfTemp, bcOutflow, bcInflow, bcAxis, bcAbWall1, bcAbWall2, bcAbWall3]
syncVars = [speciesDens,chemEn, temperature, surfTemp, q]

</UpdateStep>

<UpdateStep hyper>
operation = "integrate"
updaters = [computeChemEn, computeTemperature, temperatureCorrector, computeCpAvg, computeMwAvg, computeGammaAvg, computeViscosity, computeThermalCoefficient, computeGasPressure, computeElectronPressure, computeHvpPressure, bcPressureWall1, bcPressureWall2, bcPressureWall3, computeSoundSpeed, computeKinematicViscosity, computeThermalDiffusivityFluid, computeVelocity,computeViscousSource,hyper, hyperSpecies, addViscousSource]
syncVars = [temperature, p,a,velocity,viscousSource,qnew,speciesDensNew]

</UpdateStep>

Boundary conditions are applied on species using bcOutflowSpecies, bcInflowSpecies, bcAbWallSpecies1, bcAbWall-
Species2, bcAbWallSpecies3. Energy of formation and temperature are computed using computeChemEn, com-
puteTemperature. Remember that, energy of formation is required to compute temperature. Boundary conditions
on temperature are then applied using bcFluidTempAxis, bcFluidTempWall, bcFluidTempInflow, bcFluidTempCopy,
bcSurfTemp updaters. Finally boundary conditions are applied to bcOutflow, bcInflow, bcAxis, bcAbWall1, bcAbWall2,
bcAbWall3 conservative variables.

Energy of formation, computeChemEn is evaluated and then temperature is computed using the updater computeTem-
perature. The properties are evaluated using computeCpAvg for average value of constant pressure specific heat of
species, computeMwAvg for the average molecular weight, and computeGammaAvg for average gamma of the mix-
ture. Viscosity an thermal conductivity are evaluated using computeViscosity, computeThermalCoefficient. The total
pressure of the gas, electron pressure and heavy particle pressure are computed using computeGasPressure, com-
puteElectronPressure, computeHvpPressure updaters respectively. The pressure is copied into the ghost layers using
the boundary condition updaters bcPressureWall1, bcPressureWall2, bcPressureWall3. Pressure boundary condition
is applied for refmanual-realGasEosEqn. Then computeSoundSpeed is evaluated. computeKinematicViscosity, com-
puteThermalDiffusivityFluid are evaluated to obtain kinematic viscosity and thermal diffusivity. These are required
for time step restriction based on diffusion. Velocity of fluid is evaluated using computeVelocity and then viscous
source is computed computeViscousSource. Convective fluxes of conservative variable are computed in ‘hyper’ and
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stored in qnew. Convective fluxes of species are stored in speciesDensNew. Viscous source is added to qnew using
addViscousSource.

The change in density due to reactions is added to species density and integrated in the following Updater. The updater
sourceUpdater evaluates and adds the rate of change of density to the species equations. The resulting equations are
integrated using refmanual-localOdeIntegrator method.

<Updater sourceUpdater>
kind = localOdeIntegrator2d

onGrid = domain

in = [speciesDens, temperature]

out = [speciesDensNew]
integrationScheme = bulirschStoer
relativeErrorTolerance = 1.0e9
equations = [reactionSrc]
<Equation reactionSrc>

kind = reactionTableRhs
outputEnergyRate = 0
maxRate = MAXRATE
species = [N2, N, O2, O, NO, NO_p1, e, Ca, Na, K]
fileName = airReaction.txt

</Equation>

</Updater>

5.10.6 An Example Simulation

The Blunt body reentry example of the USimHS demonstrates each of the concepts described above using 7 species
model of air. The considered 7 species are 𝑁2, 𝑁,𝑂2, 𝑂,𝑁𝑂,𝑁𝑂+, 𝑒. Executing the Blunt body reentry input file
within USimComposer and switching to the Visualize tab yields the plot shown in Fig. 5.2.

Fig. 5.2: Visualization tab in USimComposer after executing the input file for the tutorial.
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5.11 Advanced Time-Stepping Methods in USim

USim implements methods that allows a simulation to be advanced on the timestep associated with the inviscid equa-
tions (e.g. the Euler equations), rather than that associated with (for example) the Navier-Stokes equations or complex
reaction chemistry. These methods typically allow a speed up ∼

√
𝑁 where 𝑁 is the ratio of the inviscid to the (for

example) viscous timesteps.

Contents

• Advanced Time-Stepping Methods in USim
– Subcycling for Complex Chemsitry
– Super Time Stepping for Viscous Operators
– An Example Simulation

5.11.1 Subcycling for Complex Chemsitry

The Flow over cylindrical rod example of the USimHS package of USim implements methods for accelerating chem-
ical reaction rates through sub-cycling. An example updater block that implements these methods is shown below:

<Updater chemistryUpdater>
kind = stsUpdater2d
onGrid = domain
timeIntegrationScheme = zerothOrder
updaters = [sourceUpdater]

integrationVariablesIn = [qSpecies]
integrationVariablesOut = [qSpeciesNew]
timeStepRestrictions = [reactionrateDT]
dummyVariables_qSpecies = [dummySpecies1, dummySpecies2, dummySpecies3, dummySpecies4, dummySpecies5]

</Updater>

The meanings for the input blocks in this updater are as follows:

kind (string)

Specifies the stsUpdater2d updater, which tells USim to advance the solution vector super time stepping
methods in 2d.

timeIntegratioScheme (string)

The order of accuracy of the time-integration scheme that to be used. Here we have specified a sub-cycling
scheme using zerothOrder.

updaters (string)

The list of updaters that are used to perform the time integration. This is equivalent to the loop field of
the update-sequence that was discussed in USimBase Tutorial on Euler Equations, input file, with the
exception that updater are called directly, rather than through an update-step. In this case, we call one
updater sourceUpdater, which calculates chemical reaction rates.

integrationVariablesIn (string)

Specifies the data structure that contains the conserved state at time 𝑡, here this is qSpecies.

integrationVariablesOut (string)

Specifies the data structure that contains the conserved state updated to time 𝑡+ ∆𝑡, here this is qSpecies-
New
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timeStepRestrictions (string)

Specifies the dynVector data structure that holds the timestep associated with the chemical reaction. Here,
this is reactionrateDT, which is defined through:

<DataStruct reactionrateDT>
kind = dynVector
numComponents = 1
writeOut = false

</DataStruct>

The timestep restriction is calculated using the dynVectorOperator updater:

<Updater fixDt>
# to fix dt to specified value
kind = dynVectorOperator
in = [ ]
out = [reactionrateDT]
onGrid = [domain]

maxDt = MAX_DT

exprs = ["maxDt"]
</Updater>

This updater sets the dynVector called reactionrateDT to hold the value specified by MAX_DT.

dummyVariables_q (string)

A list of dummy variables that are used by the multiUpdater to perform the integration. These are subsi-
tituted for the qSpecies vector and should have the same number of components. The stsUpdater requires
five dummy vectors, irrespective of the choice of timeIntegrationScheme.

5.11.2 Super Time Stepping for Viscous Operators

The Flow over cylindrical rod example of the USimHS package of USim implements methods for accelerating chem-
ical reaction rates through sub-cycling. An example updater block that implements these methods is shown below:

<Updater stsUpdater>
kind = stsUpdater2d
onGrid = domain
timeIntegrationScheme = secondOrder

updaters = [bcAxis, bcInflow, bcWall, bcOutflow,bcFreeflow, \
computeViscousSource,setViscSource]

integrationVariablesIn = [q]
integrationVariablesOut = [qnew]
timeStepRestrictions = [diffDT1,diffDT2]
dummyVariables_q = [dummy1, dummy2, dummy3, dummy4, dummy5]

</Updater>

The meanings for the input blocks in this updater are as follows:

timeIntegratioScheme (string)

The order of accuracy of the time-integration scheme that to be used. Here we have specified a second
order super time stepping scheme using secondOrder.

timeStepRestrictions (string)
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Specifies the dynVector data structure that holds the timestep associated with the chemical reaction. Here,
this is [diffDT1,diffDT2], which are defined through:

<DataStruct diffDT1>
kind = dynVector
numComponents = 1
writeOut = false

</DataStruct>

<DataStruct diffDT2>
kind = dynVector
numComponents = 1
writeOut = false

</DataStruct>

These timestep restriction are calculated using the getTimeStepRestriction updater:

<Updater getDiffDT1>
kind = getTimeStepUpdater2d
in = [kinematicViscosity]
out = [diffDT1]
onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = CFL

</TimeStepRestriction>
</Updater>

<Updater getDiffDT2>
kind = getTimeStepUpdater2d
in = [kinematicConductivity]
out = [diffDT2]
onGrid = domain
restrictions = [quadratic]

<TimeStepRestriction quadratic>
kind = quadratic
cfl = CFL

</TimeStepRestriction>
</Updater>

These updaters set the dynVector called diffDT1 and diffDT2 to hold the timesteps associated with the
viscous and conductivity operators in the Navier-Stokes equations respectively.

5.11.3 An Example Simulation

The Flow over cylindrical rod example of the USimHS package demonstrates each of the concepts described above.
Executing the Flow over cylindrical rod input file within USimComposer and switching to the Visualize tab yields the
plot shown in Fig. 5.3.

5.12 Running USim from the Command Line

The following sections describe how to run USim from the command line.
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Fig. 5.3: Visualization tab in USimComposer after executing the input file for the tutorial.

5.12.1 PATH Definitions

The following definitions will be used for the remainder of this section.

On Mac:

<ULIXES_BIN_DIR>=/Applications/USimComposer.app/Contents/engine/bin
<ULIXES_LIB_DIR>=/Applications/USimComposer.app/Contents/engine/lib
<ULIXES_SHARE_DIR>=/Applications/USimComposer.app/Contents/engine/share

On Linux (assuming you have chosen /usr/local/USimComposer as your default installation directory):

<ULIXES_BIN_DIR>=/usr/local/USimComposer/Contents/engine/bin
<ULIXES_LIB_DIR>=/usr/local/USimComposer/Contents/engine/lib
<ULIXES_SHARE_DIR>=/usr/local/USimComposer/Contents/engine/share

On Windows (e.g. 64-bit)

<ULIXES_BIN_DIR>=C:\Program Files\Tech-X (Win64)\USim 6.0\Contents\engine\bin
<ULIXES_SHARE_DIR>=C:\Program Files\Tech-X (Win64)\USim 6.0\Contents\engine\share

5.12.2 Running a USim Pre File

Your USim distribution package contains two executable programs for running USim, one for serial computations
(ulixesser) and another for parallel computations (ulixes). Both versions of the USim executables are located
in the ULIXES_BIN_DIR directory.

Command Line Features

If USim is run from the command line, input file and runtime options are specified as command line options. USim-
Composer sets up your environment prior to running USim, and therefore you must set up your environment when
running USim from the command line. You will need to modify the environment variables LD_LIBRARY_PATH and
PATH.
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If you are using the bash shell, you will need to modify LD_LIBRARY_PATH by adding the following line to your
.bashrc:

export LD_LIBRARY_PATH=<ULIXES_LIB_PATH>:$LD_LIBRARY_PATH

Instead, if you are using the csh shell (or one of its variants such as tcsh), you will need to add the following line to
your .cshrc:

setenv LD_LIBRARY_PATH <ULIXES_LIB_DIR>:$LD_LIBRARY_PATH

Similarily, to set your PATH in the bash shell, you will need to add the following line to your .bashrc:

export PATH=<ULIXES_BIN_DIR>:$PATH

whereas in csh/tcsh, you will need to add the following line to your .cshrc:

setenv PATH <ULIXES_BIN_DIR>:$PATH

Note that any changes you make to your .bashrc/.cshrc do not take effect until the next time you log in, so after
modifying your startup file, you must execute the following command in your current shell, but will not need to do it
in the future:

source ~/.bashrc (for bash)

or

source ~/.cshrc (for csh/tcsh)

Order of Parameter Precedence

If a parameter is both set within the input file and specified on the command line, the command line parameter value
takes precedence. The command line override enables you to configure an input file with default values while exploring
alternative parameter settings from the command line. From the command line, you can quickly change simulation
run lengths, dimensionality, output timing, etc.

Examples of Running USim from the Command Line

In these examples, it is assumed that you are either in the directory in which the ulixesser is installed or you have
added the appropriate directory to your shell path.

Command Line Options

The first step in running USim on the command line is to preprocess the input file. Run the preprocessor (txpp.py) on
the .pre file as follows

./txpp.py filaname.pre

The output will be a file called filename.in. The .in file is then used with the ulixes executable as follows To use
multiple options, the command line syntax is:

./ulixesser -i filename.in [-o prefix_name] [-r num]

in which ./ulixesser is used to run a serial computation. See Serial Computation for details about serial compu-
tation. See the Parallel Computation for details of command line invocation with parallel computation scripts.

Commonly used options that you can specify on the command line include:
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-i filename.in Read input from file named filename.

For example:

./ulixesser -i sodShock.in

-o prefix_name Base names of output files on the text string prefix_name.

For example, if you want output files named newforwardFacingStep rather than
forwardFacingStep, use:

./ulixesser -i forwardFacingStep.in -o newforwardFacingStep

-r num Restart USim from dump num.

For example, if you want to restartforwardFacingStep using the output dumped at time step 50, use:

./ulixesser -i sodShock.in -r 50

More details on how to restart USim are given in Restarting a USim Simulation

5.12.3 Serial Computation

The USim executable for use in serial computation is named ulixesser. Except as noted, the explanations and
tutorials within the USim In Depth and USim-Quick-Start demonstrate USim usage for serial computations. Here
is an example of USim command line invocation using a pre file named myfile.pre with corresponding .in file
myfile.in. By default, the output files for this example would be named using the format myfile.out.

ulixesser -i myfile.in

Note: The above invocation line assumes you added <ULIXES_BIN_DIR> to your PATH, as noted in the Command
Line Features section.

Note: When running USim via USimComposer, command line options are not directly available, however -i and -o
command line options described in this document are implicit; that is, these options are automatically invoked when
running USimComposer.

5.12.4 Parallel Computation

The USim executable for use in parallel computation is named ulixes. This section explains use of the USim
executable program for parallel computations.

USim for parallel computations requires the Message Passing Interface (MPI). For information about mpi for use with
USim, see Running USim with mpiexec.

Parallel Computation Scripts

Running USim with MPI or Parallel Queuing Systems requires use of different shell scripts to enable invocation of
the USim executable as discussed in the following sections.

Running USim with mpiexec

USim comes bundled with a distribution of Open MPI, which must be used to run USim in parallel (in other words,
even if you have an installation of Open MPI on your machine, you should use the one included with USim).
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In order to run USim in parallel via the command line, you must first add the <ULIXES_BIN_DIR> to your PATH, as
noted in the Command Line Features section.

To run USim in parallel, execute the following command:

mpiexec -np <#> ulixes -i filename.in

in which <#> is the number of processors, ulixes is the executable program for parallel computations, and
filename.in is the name of the USim .in file (which must be in the current directory, or must be specified by
a full path).

Following mpiexec, but before <ULIXES_BIN_DIR>, you can specify a variety of mpiexec options. For more
information about mpiexec, including the complete list of options, see a man page or other documentation for
mpiexec.

Following ulixes, you can specify a variety of USim options. For a list of commonly used options, see Command
Line Features.

USim automatically adjusts its decomposition to match the number of processors it is given.

Running USim with Parallel Queuing Systems

Parallel queuing systems, such as LoadLeveler and PBS, require the submission of a shell script with embedded
comments that the systems interpret. Here is an example of a basic shell script for a PBS-based system:

#PBS -N NDS_ulixes
#PBS -l nodes=2:ppn=2
cd /directory/containing/your/input/file
mpiexec -np 4 ulixes -i your_input_file.in

Running USim in Parallel under Windows

To run USim in parallel on a Windows system, bring up a DOS window. From the command prompt,

<ULIXES_BIN_DIR>\mpiexec.exe -np 2 <ULIXES_BIN_DIR>\ulixes.exe -i your_input_file.in

Running SEACAS partitioner on Linux

To decompose a meshfile for a number of processors use the provided SEACAS partitioner script (decomp). For
example, if you plan to use 8 processors, from the command line run:

<ULIXES_BIN_DIR>/decomp -p 8 meshfile.g

For more information about the decomp script, run the script with the help option:

<ULIXES_BIN_DIR>/decomp -h

5.13 Restarting a USim Simulation

Restart in USim is performed on the command line with the -r option. To restart from dump 5 in parallel enter:

mpiexec -np 4 ulixes -i sodshock.in -r 5
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Restart in USim can be tricky so for large problems it’s best to first test restart to make sure that you’ve dumped out
all the required data and furthermore that you’ve included the correct updater in the restoreOnly loop and entered the
proper synchronization during the restoreOnly loop. The restore loop should include all the entities that are generated
along with anything in the initialization loop that does not overwrite the data you are reading in. An example of the
restoreOnly loop and the associated UpdateStep is:

<UpdateStep generateStep>
updaters = [generateOpen, generateWall, generateInflow, generateNoInflow]
syncVars = [q]

</UpdateStep>

restoreOnly=[generateStep]

Geometry is regenerated at the beginning of every simulation regardless of whether it is restarted or no. Secondly,
all DataStruct write their data out to file by default unless writeOut=false (or 0). All the DataStructs that have been
written out will be written in. It is best not to modify the writeOut option before a simulation is restarted since USim
only reads in values whose writeOut value is true (the default). The example below is a fairly typical input file using an
unstructured grid. The input file uses the entityGenerator which is typically called only once during the initialization
step. Restore will work properly in this case only if the entity generators are also called with the restoreOnly option.
The startOnly loop is not called on restart so restoreOnly acts as it’s substitute for restart. The reason for this is simple,
during restart we do not want to initialize our DataStruct since they are being read in, however we do want to initialize
geometric quantities. One final important point to make, in addition to reading in the proper data synchronization must
be performed across the DataStructs that are read in. In the example below our step generateStep initialized entities
and synchronizes the DataStruct q.

An example of a USim input file that illustrates the concepts described above is given below:

<Component fluids>
kind = updaterComponent

<Grid domain>
kind = unstructured

writeGeom = true
writeConn = true
ghostLayers = 2
decomposeHalos = false

<Creator ctor>
kind = gmsh
ndim = 2
file = rampgeom4.msh

</Creator>
</Grid>

<DataStruct q>
kind = nodalArray
numComponents = 5
onGrid = domain

</DataStruct>

<DataStruct dummy1>
kind = nodalArray
numComponents = 5
onGrid = domain
writeOut = false

</DataStruct>
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<DataStruct qnew>
kind = nodalArray
numComponents = 5
onGrid = domain
writeOut = false

</DataStruct>

.

.

.

<Updater generateOpen>
kind = entityGenerator2d
onGrid = domain
newEntityName = openBoundary
onEntity = ghost
<Function mask>

kind = exprFunc
exprs = ["if( (x>0.001) and (y>0.34),1.0,-1.0)"]

</Function>
</Updater>

<Updater generateWall>
kind = entityGenerator2d
onGrid = domain
newEntityName = wallBoundary
onEntity = ghost
<Function mask>

kind = exprFunc
exprs = ["if( (x>0.01) and (y<0.35),1.0,-1.0)"]

</Function>
</Updater>

<Updater generateInflow>
kind = entityGenerator2d
onGrid = domain
newEntityName = inflowBoundary
onEntity = ghost
<Function mask>

kind = exprFunc
exprs = ["if(x<0.01,1.0,-1.0)"]

</Function>
</Updater>

<Updater generateNoInflow>
kind = entityGenerator2d
onGrid = domain
newEntityName = noInFlowBoundary
onEntity = ghost
<Function mask>

kind = exprFunc
exprs = ["if(y<0.0,1.0,-1.0)"]

</Function>
</Updater>

.

.

.
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<UpdateStep initStep>
updaters = [initdn]

</UpdateStep>

<UpdateStep generateStep>
updaters = [generateOpen, generateWall, generateInflow, generateNoInflow]
syncVars = [q]

</UpdateStep>

.

.

.

<UpdateSequence seq>
startOnly = [initStep, generateStep]
restoreOnly = [generateStep]
loop = [boundaryStep, hyperStep, copyStep]

</UpdateSequence>

</Component>

5.14 Running on a Remote Host

USim allows the user to run on a remote host if desired. This is potentially beneficial for several reasons, including
runs with large data sets, running on a large cluster, or shared resources.

5.14.1 Setting up a Remote Host

To use the remote capability, one must install USim on both the local and remote hosts. Only 64-bit Linux platforms
are supported for the remote host, so follow the Linux installation instructions. The local host can be any of the
supported operating systems and with the proper license a user can switch back and forth between local and remote
operations from the same local USim installation.

Once a Linux version of USim is installed on the remote host, note the location of the installation (e.g.
/path/to/usim/installation). On the local machine:

• Open USimComposer.

• Open the Settings Dialog (choose Tools -> Settings on Windows/Linux or Preferences under the USimComposer
menu in Mac OS).

• Click on the Host Settings tab on the left.

• Click on the Add button under the Profiles pane.

• Under General :

– Choose the host profile name, enter your user name, and host address.

– Optionally Enter your password if you want to test the connection. You will be prompted for your pass-
word later as well, when needed. Note that your password will not be saved. Dynamic (key-fob-based)
passwords are also supported.

– Click Apply and switch to Paths.
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Fig. 5.4: The Host Settings Window showing the general settings

5.14.2 Setting the Remote Host Paths

Under Paths:

• Choose the path to your workspace directory on the remote host. This directory is where all template data will
be copied, and where generated data will be saved. For example:

/path/to/user/workspace

• Enter the path to the USimComposer installation directory. For example:

/path/to/usim/installation

Fig. 5.5: The Host Settings Window showing the path settings

• Click Apply and then OK.

At this point, the remote host is set up, and you may use either this remote host or the local host.

5.14.3 Using the Remote Host

When asked by USimComposer to choose where to save your files (from new from template or from existing exam-
ples), you can choose either local or remote host under Host. From then on, you will be on the chosen host.
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Similarly, if you want to open an existing file of your own, you can elect to Open Runspace under the File menu. From
here, select either the local or remote host under Host.

Fig. 5.6: Choosing the remote host

5.14.4 Troubleshooting

If you have problems with remote visualization, please make sure that your configuration is set up as required by
remote VisIt: ports 5600-5609 are open on the client and the server machine.

• USim © 2011-2018 Tech-X Corporation. All rights reserved.

For USim licensing details please email sales@txcorp.com. All trademarks are the property of their
respective owners. Redistribution of any USim™ simulation input file code examples from the USim
Document Set, including the USim In Depth and USim Reference, is allowed provided that this copyright
statement is also included with the redistribution.
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