GSim Documentation

The GSim Documentation comes in 5 manuals.

GSim Installation: System requirements, installing the software on your machine, release notes, and licensing.

GSim User Guide: Basics of creating and running a simulation, simulation concepts, and how to analyze and visualize the output.

GSim Customization: How to write macros to make input file writing easier, and how to write special analyzers for your data.

GSim Reference: Describes the input variables and panels of GSimComposer and the input blocks of Vorpal, and provides an API-level discussion of every analyzer and macro.

GSim Examples: Detailed walkthrough of a range of simulations.

These manuals are also distributed with GSim in PDF form for your convenience.

Indices and tables

Trademarks and licensing

  • Vorpal™ © 1999-2002 University of Colorado. All rights reserved.

  • Vorpal™ © 2002-2021 University of Colorado and Tech-X

  • Vorpal™ © 2022-2023 University of Colorado and Tech-X Corporation. All rights reserved.

  • GSim™ except for Vorpal™ is © 2012-2024 Tech-X Corporation. All rights reserved.

For GSim™ licensing details please email sales@txcorp.com. All trademarks are the property of their respective owners. Redistribution of any GSim™ input files from the GSim™ installation or the GSim™ document set, including GSim Installation, GSim Examples, GSim User Guide, GSim Reference, and GSim Customization, is allowed provided that this Copyright statement is also included with the redistribution.

References

[AMMS00]

E Ahedo, P Martinez, and M Martinez-Sanchez. Steady and linearly-unsteady analysis of a hall thruster with an internal sonic point. In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 3655. 2000.

[ADK86]

MV Ammosov, NB Delone, and VP Krainov. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP, 64:1191, 1986.

[ACWB09]

TM Austin, JR Cary, GR Werner, and L Bellantoni. Validation of broadly filtered diagonalization method for extracting frequencies and modes from high-performance computations. In Journal of Physics: Conference Series, volume 180, 012003. IOP Publishing, 2009.

[BHF+90]

Clarence F Barnett, Hamilton T Hunter, M Imogene Fitzpatrick, I Alvarez, C Cisneros, and Ronald A Phaneuf. Atomic data for fusion. volume 1: collisions of h, h2, he and li atoms and ions with atoms and molecules. NASA STI/Recon Technical Report N, 1990.

[BWC11]

Carl A Bauer, Gregory R Werner, and John R Cary. A second-order 3d electromagnetics algorithm for curved interfaces between anisotropic dielectrics on a yee mesh. Journal of Computational Physics, 230(5):2060–2075, 2011.

[BL91]

CK Bidsall and AB Langdon. Plasma physics via computer simulation, adam hilger. 1991.

[CES+12]

M Chen, E Esarey, CB Schroeder, CGR Geddes, and WP Leemans. Theory of ionization-induced trapping in laser-plasma accelerators. Physics of Plasmas, 19(3):033101, 2012.

[CCMG+13]

Min Chen, Estelle Cormier-Michel, Cameron GR Geddes, David L Bruhwiler, LL Yu, Eric Esarey, CB Schroeder, and WP Leemans. Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes. Journal of Computational Physics, 236:220–228, 2013.

[CSMZ06]

Min Chen, Zheng-Ming Sheng, Yan-Yun Ma, and Jie Zhang. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases. 2006.

[CFL28]

R Courant, K Friedrichs, and H Lewy. On the partial difference equations op mathematical physics. Mathematische Annalen, 1928.

[DK91]

NB Delone and Vladimir P Krainov. Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation. JOSA B, 8(6):1207–1211, 1991.

[DM97]

Supriyo Dey and Raj Mittra. A locally conformal finite-difference time-domain (fdtd) algorithm for modeling three-dimensional perfectly conducting objects. IEEE Microwave and Guided Wave Letters, 7(9):273–275, 1997.

[FP02]

MA Furman and MTF Pivi. Probabilistic model for the simulation of secondary electron emission. Phys. Rev. ST Accel. Beams, 5:124404, 2002.

[Ged96]

Stephen D Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of fdtd lattices. IEEE transactions on Antennas and Propagation, 44(12):1630–1639, 1996.

[HE88]

Roger W Hockney and James W Eastwood. Computer simulation using particles. crc Press, 1988.

[IDC92]

FA Ilkov, JE Decker, and SL Chin. Ionization of atoms in the tunnelling regime with experimental evidence using hg atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(19):4005, 1992.

[K+65]

LV Keldysh and others. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 20(5):1307–1314, 1965.

[Kim92]

Yong-Ki Kim. Compact fitting formulas for electron-impact cross sections. Journal of research of the National Institute of Standards and Technology, 97(6):689, 1992.

[Lan98]

Culbert B Laney. Computational gasdynamics. Cambridge university press, 1998.

[LS05]

BG Lindsay and RF Stebbings. Charge transfer cross sections for energetic neutral atom data analysis. Journal of Geophysical Research: Space Physics, 2005.

[MB04]

Peter Messmer and David L Bruhwiler. A parallel electrostatic solver for the vorpal code. Computer physics communications, 164(1-3):118–121, 2004.

[MPL+02]

J Scott Miller, Steve H Pullins, Dale J Levandier, Yu-hui Chiu, and Rainer A Dressler. Xenon charge exchange cross sections for electrostatic thruster models. Journal of Applied Physics, 91(3):984–991, 2002.

[Mur98]

Gerrit Mur. Total-field absorbing boundary conditions for the time-domain electromagnetic field equations. IEEE transactions on electromagnetic compatibility, 40(2):100–102, 1998.

[NC04]

Chet Nieter and John R Cary. Vorpal: a versatile plasma simulation code. Journal of Computational Physics, 196(2):448–473, 2004.

[NCW+09]

Chet Nieter, John R Cary, Gregory R Werner, David N Smithe, and Peter H Stoltz. Application of dey–mittra conformal boundary algorithm to 3d electromagnetic modeling. Journal of Computational Physics, 228(21):7902–7916, 2009.

[OZAJ08]

Ardavan F Oskooi, Lei Zhang, Yehuda Avniel, and Steven G Johnson. The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers. Optics Express, 16(15):11376–11392, 2008.

[Pad09]

Hasan Padamsee. RF superconductivity: science, technology, and applications. John Wiley & Sons, 2009.

[PB91]

BM Penetrante and JN Bardsley. Residual energy in plasmas produced by intense subpicosecond lasers. Physical Review A, 43(6):3100, 1991.

[PC02]

ST Perkins and DE Cullen. Endl type formats for the llnl evaluated atomic data library, eadl, for the evaluated electron data library, eedl, and for the evaluated photon data library, epdl. Technical Report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2002. Accessed: 2018-08-15.

[PCS91]

ST Perkins, DE Cullen, and SM Seltzer. Tables and graphs of electron-interaction cross-sections from 10 ev to 100 gev derived from the llnl evaluated electron data library (eedl), z= 1-100. UCRL-50400, 31:21–24, 1991.

[Rei08]

Martin Reiser. Theory and design of charged particle beams. John Wiley & Sons, 2008.

[RGH02]

Yotka Rickard, Natalia Georgieva, and Wei-Ping Huang. A perfectly matched layer for the 3-d wave equation in the time domain. IEEE microwave and wireless components letters, 12(5):181–183, 2002.

[SVS82]

J Michael Shull and Michael Van Steenberg. The ionization equilibrium of astrophysically abundant elements. The Astrophysical Journal Supplement Series, 48:95–107, 1982.

[Smi07]

David N Smithe. Finite-difference time-domain simulation of fusion plasmas at radiofrequency time scales. Physics of Plasmas, 14(5):056104, 2007.

[SWB06]

Randy L Spicer, Joseph Wang, and Lubos Breida. A study of particle collisions in electric propulsion plasma plumes. Technical Report, AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE, 2006.

[SVC+06]

PH Stoltz, JP Verboncoeur, RH Cohen, AW Molvik, J-L Vay, and SA Veitzer. Modeling ion-induced electrons in the high current experiment. Physics of plasmas, 13(5):056702, 2006.

[VD97]

Vahid Vahedi and G DiPeso. Simultaneous potential and circuit solution for two-dimensional bounded plasma simulation codes. Journal of Computational Physics, 131(1):149–163, 1997.

[VS95]

Vahid Vahedi and Maheswaran Surendra. A monte carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Computer Physics Communications, 87(1-2):179–198, 1995.

[VAVB93]

John P Verboncoeur, Maria Virginia Alves, Vahid Vahedi, and Charles Kennedy Birdsall. Simultaneous potential and circuit solution for 1d bounded plasma particle simulation codes. Journal of Computational Physics, 104(2):321–328, 1993.

[WBC13]

Gregory R Werner, Carl A Bauer, and John R Cary. A more accurate, stable, fdtd algorithm for electromagnetics in anisotropic dielectrics. Journal of Computational Physics, 255:436–455, 2013.

[WC07]

Gregory R Werner and John R Cary. A stable fdtd algorithm for non-diagonal, anisotropic dielectrics. Journal of Computational Physics, 226(1):1085–1101, 2007.

[WC08]

Gregory R Werner and John R Cary. Extracting degenerate modes and frequencies from time-domain simulations with filter-diagonalization. Journal of Computational Physics, 227(10):5200–5214, 2008.

[YT96]

Yasunori Yamamura and Hiro Tawara. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables, 62(2):149–253, 1996.

[Yee66]

Kane Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3):302–307, 1966.