
Transitioning from Visual Setup

to text-based VSim simulations

Tom Jenkins

Senior Research Scientist

Tech-X Corporation

A brief introduction to me…

• Senior Research Scientist, 10.5 years at Tech-X

• Ph.D. @ Princeton/PPPL (2007), developing numerical methods for gyrokinetic PIC simulation

• Postdoc @ UW-Madison, working on RF/MHD coupling for electron cyclotron current drive in fusion plasmas

• Current research interests:

• methods for speeding up particle-in-cell simulations (SLPIC)

• modeling RF sheaths/impurity sputtering in fusion devices

• kinetic theory – wave/particle interactions, etc.

• PIC modeling of low-temperature plasmas

• Website, where this talk and many other talks/papers/presentations are posted:

http://nucleus.txcorp.com/~tgjenkins

This talk focuses on how VSim works ’under
the hood’

• VSim’s Visual Setup interface is designed to quickly bring new users up the VSim learning curve

• Allows common actions to be done quickly and systematically, with visual cues

-defining grids -importing shapes

-applying boundary conditions -adding particle species

• Shows users options consistent with their previous choices, while hiding others

-electrostatic vs. electromagnetic -direct vs. iterative matrix solve

• Visual Setup tools are adequate for many user needs (and we welcome suggestions for their

improvement and development).

• Not everything that users want to do can be done in visual setup.

• Exercise experimental or developing code features

• Verify that the equations being solved are the ones the user intended

• ?

My objective for this talk

Physics

problem

Numerical

discretization

Visual Setup

input file

Text

input file

Simulation

data
Running VSim

The “New User” approach

My objective for this talk

Physics

problem

Numerical

discretization

Visual Setup

input file

Text

input file

Simulation

data

Running

VSim

The “Experienced User” approach

• Understand the structure of text input files

• Understand how numerical discretization techniques are implemented in text input files

• Understand how to add to/edit text input files to get the result you want

• Some complexity unavoidable! But we’ll look at things in stages, and periodically

review and regroup, to make things easier.

Useful resources for this talk
• VSim online documentation:

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html

• Slides for this talk:

http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf

• Download page for the VSim input files I will use in this talk:

http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html
http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf
http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html

Choose a simple electrostatics problem: 1D Poisson

𝑑!𝜙(𝑥)

𝑑𝑥!
= −

𝜌 𝑥

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%& , 𝜙 𝑥 = 𝐿 = 𝜙'()*& ; 𝑥 ∈ [0, 𝐿]

Numerical approach: discretize on a grid with N cells.

Δ𝑥 =
𝐿

𝑁
; 𝑥+ = 𝑛Δ𝑥 ∀ 𝑛 = 0,1, … , 𝑁Define the grid:

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

Use a finite-difference approximation to the second derivative, at interior gridpoints:

Apply boundary conditions, at edge gridpoints:

𝜙" = 𝜙#$%&

𝜙0 = 𝜙'()*&

Solve the ensuing system of linear equations.

Physics

problem

Numerical

discretization

Solution error scales as 1/N2

𝑑!𝜙(𝑥)

𝑑𝑥!
= −

𝜌" sin
𝜋𝑥
𝐿

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%& , 𝜙 𝑥 = 𝐿 = 𝜙'()*& 𝑜𝑛 [0, 𝐿]

has exact solution

𝜙 𝑥 = 𝜙#$%& + 𝜙'()*& − 𝜙#$%&
𝑥

𝐿
+
𝜌"𝐿

!

𝜖"𝜋
!
sin

𝜋𝑥

𝐿

On the discrete grid, we have

𝜙,
$123& = 𝜙#$%& + 𝜙'()*& − 𝜙#$%&

,

0
+

4!5
"

6!7
"
sin

7,

0
; 𝜌,

$123& = 𝜌" sin
7,

0

Putting these functions into the discretized Poisson equation yields

−
𝜌"

𝜖"
sin

𝜋𝑗

𝑁

2𝑁!

𝜋!
1 − cos

𝜋

𝑁
≈ −

𝜌"

𝜖"
sin

𝜋𝑗

𝑁

2𝑁!

𝜋!
1 − 1 −

𝜋!

2𝑁!
+

𝜋8

24𝑁8
+⋯ ≈ 1

Physics

problem:

exact

solution

Numerical

discretization:

approximate

solution

What does this look like in VSim?

Parameters (5)

VLEFT = 0

VRIGHT = 1

LX = 1

NX = 10

RHOZERO = 20

Let’s set up a basic simulation with Visual Setup and run it for one step:

Basic Settings (4)

number of steps = 1

steps between dumps = 1

dimensionality = 1

field solver = electrostatic

SpaceTimeFunctions (1)

RHOxt=RHOZERO*sin(PI*x/LX)

Grids (3)

xMin = 0

xMax = LX

xCells = NX
Field Dynamics: Fields (1)

Background Charge Density RHO=RHOxt

Field Dynamics: FieldBoundaryConditions (2)

Dirichlet on lower x: VLEFT

Dirichlet on upper x: VRIGHT

Field Dynamics: PoissonSolver (2)

preconditioner = no preconditioner

solver = SuperLU

ChargeDensity

Phi

Visual

Setup

input

file

VSim generates .pre and .in files from the
Visual Setup .sdf file, when we Save and Setup

.pre file – an intermediate object

not of much immediate use to us

(if generated by Visual Setup

from a .sdf file)

.in file – the text input file we

want to learn how to work with

Looking at vsim.in – input blocks

Frontmatter

<Grid globalGrid>
...

</Grid>

<Decomp decomp>
...

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>
...

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>
...

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
...

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>
...

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]

</MultiField>

Key VSim concept 0:

block structures

Or very generally,

<OBJECT objectName>
…

object features
…

</OBJECT>

Looking at vsim.in – overall structure
Frontmatter

<Grid globalGrid>
...

</Grid>

<Decomp decomp>
...

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>
...

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>
...

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
...

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>
...

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]

</MultiField>

define scalar or vector objects: e.g. electric field, charge density, potential, …

define mathematical operations on field objects: e.g. taking the

gradient of a scalar field and directing the output to a vector field

define initial conditions – done only once at simulation outset

Call the previously defined FieldUpdaters to manipulate the fields

Key VSim concept 1: the

MultiField block

in a specified ordered sequence of operations

Looking at vsim.in – Frontmatter, Grid block

nsteps = 1

dumpPeriodicity = 1
dt = 1.0

dimension = 1

floattype = double
verbosity = 127

copyHistoryAtEachDump = 0
useGridBndryRestore = False

constructUniverse = False

<Grid globalGrid>

verbosity = 127
numCells = [10 11 12]

lengths = [1.0 1.0 1.0]

startPositions = [0.0 -0.5 0.0]
maxCellXings = 1

</Grid>

1D simulation

3D grid: default y, z values

𝛥x = 1/10 ; 𝛥y = 1/11 ; 𝛥z = 1/12

(extra y, z dimensions are not used in

this 1D computation, but may still be

present in several parts of the input file)

number of steps in simulation

write data every 1 timestep

timestep (in units of seconds)

How detailed the VSim output should

be (= 2M – 1) ; larger M = more detail

defines

spatial grid

properties

defines

some

global

simulation

parameters

Looking at vsim.in – Field blocks
<Field E>

numComponents = 3

offset = edge

kind = regular

overlap = [1 1]

labels = [E_x E_y E_z]

</Field>

<Field Phi>

numComponents = 1

offset = none

kind = regular

overlap = [1 2]

labels = [Phi]

</Field>

<Field ChargeDensity>

numComponents = 1

offset = none

kind = depField

overlap = [1 2]

labels = [ChargeDensity]

</Field>

vector field

lives on edges between grid points

scalar field

lives on grid points

scalar field

lives on grid points

Ex0 Ex1

𝜙0 𝜙1 𝜙2

what to name the field components in the output file

default VSim field type

messaging instructions for parallel computing:

include data from guard cells in a different way

special VSim field type, built from particle data

defines a

scalar or

vector field

to be used

in the

simulation

Looking at vsim.in – FieldUpdater blocks

<FieldUpdater gradPhi>

kind = gradVecUpdater

factor = -1.0

lowerBounds = [0 0 0]

upperBounds = [10 11 12]

readFields = [Phi]

writeFields = [E]

</FieldUpdater>

<FieldUpdater RHO>

kind = STFuncUpdater

operation = add

lowerBounds = [0 0 0]

upperBounds = [11 12 13]

writeFields = [ChargeDensity]

component = 0

cellsToUpdateAboveDomain = [False False False]

<STFunc f>

kind = expression

expression = (20.0*sin(3.141592653589793*x/1.0))

</STFunc>

</FieldUpdater>

𝐸 = −∇𝜙.

in other words,

Ex0 Ex1

𝜙0 𝜙1 𝜙2

names of previously defined Field blocks:

scalar input, vector output for this FieldUpdater kind.

built-in operation that computes the gradient of a scalar

(inclusive)

(exclusive)

= 𝜌" sin
71

5
, from our input parameters

(inclusive)

(exclusive)

scalar

adds (subtracts, multiplies, etc.) the specified

STFunc to the specified writeField

built-in operation that manipulates SpaceTimeFunction objects

defines a

mathematical

operation on

Field objects

Looking at vsim.in – InitialUpdateStep blocks

<InitialUpdateStep RHOInitStep>

alsoAfterRestore = True

updaters = [RHO]

messageFields = []

</InitialUpdateStep>

<InitialUpdateStep esSolveInitStep>

alsoAfterRestore = True

updaters = [esSolve]

messageFields = [Phi]

</InitialUpdateStep>

<InitialUpdateStep gradPhiInitStep>

alsoAfterRestore = True

updaters = [gradPhi]

messageFields = [E]

</InitialUpdateStep>

Also do this step when restarting a simulation

Previously defined field updater, defines ChargeDensity field

Previously defined field updater, solves Poisson equation

for phi field

Previously defined field updater, computes E from phi.

These updates are performed only once, at the simulation outset.

Sets initial

conditions for

Field objects

Looking at vsim.in – UpdateStep blocks

<UpdateStep RHOStep>

toDtFrac = 1.0

updaters = [RHO]

messageFields = []

</UpdateStep>

<UpdateStep esSolveStep>

toDtFrac = 1.0

updaters = [esSolve]

messageFields = [Phi]

</UpdateStep>

<UpdateStep gradPhiStep>

toDtFrac = 1.0

updaters = [gradPhi]

messageFields = [E]

</UpdateStep>

…

updateStepOrder = [RHOStep esSolveStep gradPhiStep]

Advance the specified field to the next full timestep in this update

Previously defined field updater, defines ChargeDensity

field (just as in InitialUpdateStep call)

Previously defined field updater, solves Poisson equation

for phi field (just as in InitialUpdateStep call)

Previously defined field updater, computes E from phi (just

as in InitialUpdateStep call).

These updates are performed at every timestep in the simulation.

UpdateSteps can appear in the input file in any order you like, the

updateStepOrder determines which ones will be called when.

Apply various

FieldUpdater

operations to

Field objects,

in a given

sequence

Regroup and Review

So far, we have:

-built an .sdf file in VSim, using Visual Setup, that solves the 1D Poisson equation

-found the .in text input file that VSim built from our initial .sdf file

-looked at the general block structure of that .in file

-looked at some typical blocks that live in the larger MultiField block, and their contents

*Field *FieldUpdater

*InitialUpdateStep *UpdateStep

Now, we’ll do a bit of a deeper dive into how VSim solves the Poisson equation, and learn a bit more about

how data is organized ‘under the hood’ in VSim.

Electrostatic solves, without VSim

VSim solves the Poisson equation

𝑑!𝜙(𝑥)

𝑑𝑥!
= −

𝜌 𝑥

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%& , 𝜙 𝑥 = 𝐿 = 𝜙'()*& ; 𝑥 ∈ [0, 𝐿]

with Fields and FieldUpdaters and UpdateSteps.

Δ𝑥 =
𝐿

𝑁
; 𝑥+ = 𝑛Δ𝑥 ∀ 𝑛 = 0,1, … , 𝑁

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

𝜙" = 𝜙#$%&

𝜙0 = 𝜙'()*&

Let’s build a discretized version of this problem “by hand”, to see what kinds of things we

might expect VSim to be doing:

N-cell grid:

Discrete Poisson

equation:

Boundary

conditions:

Physics

problem

Numerical

discretization

Result: a linear system of equations

for the unknown 𝜙j values.

Constructing the matrix – interior points

−
𝜖"

Δ𝑥!

1 −2 1

0 1 −2

0 0 0

1 0 0

0 0 0

0 0 0
⋮ ⋮ ⋮
0

0

0

0

0

0

1

0

0
⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2

1

0

1

−2

1

0

1

−2
⋮ ⋮ ⋮

⋮ ⋮ ⋮
0

0

1

0

0

0

0

0

0
⋮ ⋮ ⋮

0 0 0

0 0 0

0 0 1

0 0 0

−2 1 0

1 −2 1

𝜙"
𝜙.
𝜙!
⋮

𝜙,/.
𝜙,
𝜙,-.
⋮

𝜙0/!
𝜙0/.
𝜙0

=

𝜌"
𝜌.
𝜌!
⋮

𝜌,/.
𝜌,
𝜌,-.
⋮

𝜌0/!
𝜌0/.
𝜌0

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

becomes a matrix of form

This doesn’t work for the first/last rows of matrix. Instead, we must use boundary conditions there.

Constructing the matrix – boundary conditions

−𝜖"

Δ𝑥!

−𝛾Δ𝑥!/𝜖" 0 0

1 −2 1

0 1 −2

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

⋮ ⋮ ⋮
0

0

0

0

0

0

1

0

0
⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2

1

0

1

−2

1

0

1

−2
⋮ ⋮ ⋮

⋮ ⋮ ⋮
0

0

1

0

0

0

0

0

0
⋮ ⋮ ⋮

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

−2 1 0

1 −2 1

0 0 −𝜇Δ𝑥!/𝜖"

𝜙"
𝜙.
𝜙!
⋮

𝜙,/.
𝜙,
𝜙,-.
⋮

𝜙0/!
𝜙0/.
𝜙0

=

𝛾𝜙#$%&

𝜌.
𝜌!
⋮

𝜌,/.
𝜌,
𝜌,-.
⋮

𝜌0/!
𝜌0/.

𝜇𝜙'()*&

becomes
𝜙" = 𝜙#$%&

𝜙0 = 𝜙'()*&

Changes in the right-hand side vector (charge density) are necessary to implement the BCs.

Rescaling factors 𝛾, 𝜇 can be used to adjust the matrix condition number.

Canonical form: Ax = b.

linearSolveUpdater – solving the
Poisson equation

Now let’s look at how this is done in the vsim.in file.

One of VSim’s built-in FieldUpdater blocks is the linearSolveUpdater, which

solves equations of the form Ax = b.

Looking at vsim.in – linearSolveUpdater
<FieldUpdater esSolve>
kind = linearSolveUpdater

lowerBounds = [0]

upperBounds = [11]

readFields = [ChargeDensity]

readComponents = [0]
writeFields = [Phi]

writeComponents = [0]

writeEquationToFile = 0

<MatrixFiller interiorFiller>
kind = stFuncStencilFiller

verbosity = 127

minDim = 1

lowerBounds = [1 1 1]

upperBounds = [10 11 12]
component = 0

<STFunc coeff>

kind = expression

expression = -8.854187817591624e-12
</STFunc>

...

= −𝜖"

1D linear solve

3D matrix template (even

though we only need 1D)

Input: scalar 𝜌

Output: scalar 𝜙

Can use this to look at the matrix (we

will do this in a moment)

(inclusive)

(exclusive)

(inclusive)

(exclusive)

MatrixFiller blocks do just what they sound like – filling rows in the matrix.

A FieldUpdater

object

(mathematical

operation) that

solves a matrix

equation Ax=b.

linearSolveUpdater - StencilElements

<STFuncStencilElement phi_dxp>
value = -100.0

minDim = 1

cellOffset = [0 0 0]

functionOffset = [0.5 0. 0.]

rowFieldIndex = 0
columnFieldIndex = 0

</STFuncStencilElement>

<STFuncStencilElement phi_dxm>

value = -100.0

minDim = 1

cellOffset = [0 0 0]

functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0

columnFieldIndex = 0

</STFuncStencilElement>

<STFuncStencilElement phi_npx>
value = 100.0

minDim = 1

cellOffset = [1 0 0]

functionOffset = [0.5 0. 0.]

rowFieldIndex = 0
columnFieldIndex = 0

</STFuncStencilElement>

<STFuncStencilElement phi_nmx>

value = 100.0

minDim = 1

cellOffset = [-1 0 0]

functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0

columnFieldIndex = 0

</STFuncStencilElement>

1/𝛥x2-1/𝛥x2

+1 cell

-1 cell

No offset

No offset

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 P ⋯ 0 𝑝ℎ𝑖+91 (𝑝ℎ𝑖:19+𝑝ℎ𝑖:1;) 𝑝ℎ𝑖+;1 0 ⋯

A generic interior row in the 1D Poisson matrix is

functionOffset is irrelevant for node-centered fields

Inside the MatrixFiller block, we have various StencilElements:

n, d = non-diagonal or

diagonal matrix element

m, p = - / +

cell/function offset

linearSolveUpdater – boundary conditions
<MatrixFiller RIGHTBCFiller>
kind = stencilFiller

verbosity = 127
minDim = 1
lowerBounds = [10 0 0]

upperBounds = [11 12 13]
component = 0

<StencilElement ident>

value = 1.7708375635183248e-09
minDim = 0
cellOffset = [0 0 0]

rowFieldIndex = 0
columnFieldIndex = 0

</StencilElement>
</MatrixFiller>

<VectorWriter RIGHTBCWriter>
kind = stFuncVectorWriter

verbosity = 127
minDim = 1

lowerBounds = [10 0 0]
upperBounds = [11 12 13]
component = 0

<STFunc function>

kind = expression
expression = 1.0

</STFunc>

scaling = 1.7708375635183248e-09
</VectorWriter>

Only rightmost cell

Only rightmost cell

= 2𝜖"/Δ𝑥
! (this is the

𝜇 factor from the earlier

slide, on the LHS)

= 2𝜖"/Δ𝑥
! (again, the

𝜇 factor from the earlier

slide, on the RHS)
VRIGHT (chosen

boundary condition)

LHS (matrix)

RHS (vector)

linearSolveUpdater – the linearSolver block

<LinearSolver linearSolver>

kind = directSolver
solverType = superLU

verbosity = 127

</LinearSolver>

Solve Ax = b by computing A-1 directly.

Simplest VSim solver option (by the

length-of-input-file metric, at least), but

not useful if your matrix is too large.

All other VSim solver types are iterative:

• generalized minimum residual

• conjugate gradient

• biconjugate gradient

• etc.

Iterative solvers can be sped up by appropriate multigrid preconditioners (for which

many options are available in VSim).

Let’s look at the matrix VSim creates
• Edit the vsim.in file so that writeEquationToFile = 1.

• NOTE: If you now hit the ”Save” button, VSim Composer will

• re-read the vsim.sdf file, and

• generate a new .in file from the information it finds there.

• This will overwrite the change you just made, since the sdf file defaults to

writeEquationToFile = 0.

• Therefore: if you want to do text-based problem setup starting from a Visual Setup

file, you’ll need to generally do something like the following:

• Generate the initial .in file from the sdf file with the “Save” button

• Using your computer’s file management utilities, copy the .in file to a .pre file

with a different prefix name, e.g. vsim.in becomes vsimTextBased.pre

• Edit this new .pre file in the way you want to

• Open the modified .pre file in VSim, and run VSim as normal (the visual setup

utilities will no longer work, but the physics engine will still parse and run the

input file that you’ve modified)

Assuming Ax=b, A is in esSolveMatrix.mtx
%%MatrixMarket matrix coordinate real general

11 11 29

1 1 1.7708375635183248e-09

2 1 -8.8541900000000002e-10

2 2 1.7708380000000000e-09

2 3 -8.8541900000000002e-10

3 2 -8.8541900000000002e-10

3 3 1.7708380000000000e-09

3 4 -8.8541900000000002e-10

4 3 -8.8541900000000002e-10

4 4 1.7708380000000000e-09

4 5 -8.8541900000000002e-10

5 4 -8.8541900000000002e-10

5 5 1.7708380000000000e-09

5 6 -8.8541900000000002e-10

6 5 -8.8541900000000002e-10

6 6 1.7708380000000000e-09

6 7 -8.8541900000000002e-10

7 6 -8.8541900000000002e-10

7 7 1.7708380000000000e-09

7 8 -8.8541900000000002e-10

8 7 -8.8541900000000002e-10

8 8 1.7708380000000000e-09

8 9 -8.8541900000000002e-10

9 8 -8.8541900000000002e-10

9 9 1.7708380000000000e-09

9 10 -8.8541900000000002e-10

10 9 -8.8541900000000002e-10

10 10 1.7708380000000000e-09

10 11 -8.8541900000000002e-10

11 11 1.7708375635183248e-09

%%MatrixMarket matrix coordinate real general

11 11 29

1 1 2*eps0/dx^2

2 1 -eps0/dx^2

2 2 2*eps0/dx^2

2 3 -eps0/dx^2

3 2 -eps0/dx^2

3 3 2*eps0/dx^2

3 4 -eps0/dx^2

4 3 -eps0/dx^2

4 4 2*eps0/dx^2

4 5 -eps0/dx^2

5 4 -eps0/dx^2

5 5 2*eps0/dx^2

5 6 -eps0/dx^2

6 5 -eps0/dx^2

6 6 2*eps0/dx^2

6 7 -eps0/dx^2

7 6 -eps0/dx^2

7 7 2*eps0/dx^2

7 8 -eps0/dx^2

8 7 -eps0/dx^2

8 8 2*eps0/dx^2

8 9 -eps0/dx^2

9 8 -eps0/dx^2

9 9 2*eps0/dx^2

9 10 -eps0/dx^2

10 9 -eps0/dx^2

10 10 2*eps0/dx^2

10 11 -eps0/dx^2

11 11 2*eps0/dx^2

−𝜖!

Δ𝑥"

−2 0 0

1 −2 1

0 1 −2

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

⋮ ⋮ ⋮

0

0

0

0

0

0

1

0

0

⋮ ⋮ ⋮

⋮ ⋮ ⋮

−2

1

0

1

−2

1

0

1

−2

⋮ ⋮ ⋮

⋮ ⋮ ⋮

0

0

1

0

0

0

0

0

0

⋮ ⋮ ⋮

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

−2 1 0

1 −2 1

0 0 −2

Assuming Ax=b, x and b are esSolve vectors

%%MatrixMarket matrix array real general

11 1

0.0000000000000000e+00

6.1803398874989481e+00

1.1755705045849464e+01

1.6180339887498949e+01

1.9021130325903069e+01

2.0000000000000000e+01

1.9021130325903069e+01

1.6180339887498949e+01

1.1755705045849465e+01

6.1803398874989499e+00

1.7708375635183248e-09 =
2𝜖"

Δ𝑥!
P 𝜙'()*&

= 20 sin
𝜋𝑥,

𝐿
= 𝜌,

=
2𝜖"

Δ𝑥!
P 𝜙#$%&

esSolveWriteVector.mtx (b)
%%MatrixMarket matrix array real general

11 1

0.0000000000000000e+00

7.1308064483412903e+10

1.3563599878269949e+11

1.8668693648958243e+11

2.1946365612852356e+11

2.3075774401243900e+11

2.1946365612872348e+11

1.8668693648998233e+11

1.3563599878329944e+11

7.1308064484212875e+10

1.0000000000000000e+00 = 𝜙'()*&

= 𝜙,

= 𝜙#$%&

esSolveReadVector.mtx (x)

Regroup and Review
So far, we have:

-solved the discrete 1D Poisson equation ‘by hand’ and looked at the matrix and the vectors involved in that process

-looked at how VSim builds this matrix and these vectors with a FieldUpdater (of kind linearSolveUpdater), using

MatrixFiller and StencilElement and LinearSolver blocks

-seen how to modify the .in file

-seen how to examine the matrix and vectors VSim builds.

But:

-most interesting problems are not 1D

-most interesting problems involve particles, complicated geometries, and/or complicated boundary conditions

Let’s add some interesting features to our input file, and see how the .in file changes.

Moving to 2D

Parameters

LY = 1

NY = 15

RHOZERO = 2.0e-10

SpaceTimeFunctions

RHOxt=RHOZERO*sin(PI*x/LX)*sin(PI*y/LY)

LINEARPHIxt=VLEFT+(VRIGHT-VLEFT)*x/LX

Basic Settings

dimensionality = 2

Grid

yMin=0

yMax=LY

yCells=NY

FieldBoundaryConditions

TOPBC: Dirichlet, LINEARPHIxt, upper y

BOTTOMBC: Dirichlet, LINEARPHIxt, lower y

Let’s copy the simulation we had before into a new simulation, and add:

save as vsim2D.sdf

Matrix is larger, no longer tridiagonal

Now 176 x 176 [176 = 11*16 = (NX+1)*(NY+1)] and band-structured

𝜌 and 𝜙 arrays are now representing 2D

quantities in a vector, e.g.

𝜌.,.
⋮

𝜌.,0
𝜌!,.
⋮

𝜌!,0
⋮

𝜌=,0

The same approach generalizes to 3D also; we will have large sparse matrices.

In general this 2D input file looks pretty similar to the 1D version.

Additional StencilElements relevant in 2D/3D

<STFuncStencilElement phi_npy>
value = 225.0

minDim = 2

cellOffset = [0 1 0]

functionOffset = [0. 0.5 0.]

rowFieldIndex = 0
columnFieldIndex = 0

</STFuncStencilElement>

...

<STFuncStencilElement phi_nmz>

value = 144.0

minDim = 3
cellOffset = [0 0 -1]

functionOffset = [0. 0. -0.5]

rowFieldIndex = 0

columnFieldIndex = 0

</STFuncStencilElement>

𝛥y2

Only if ≥ 2D

+1 cell in y

𝛥z2

Only if ≥ 3D

-1 cell in z

Typical stencil elements:

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (⋯ 0 𝑝ℎ𝑖!"# ⋯ 𝑝ℎ𝑖!"$ (𝑝ℎ𝑖%$"+𝑝ℎ𝑖%$& + 𝑝ℎ𝑖%#" + 𝑝ℎ𝑖%#&) 𝑝ℎ𝑖!&$ ⋯ 𝑝ℎ𝑖!&# 0 ⋯

In 2D, general matrix row is

Adding GridBoundary geometric features

Geometries

CSG: Add Primitive: cylinder

material = PEC

length = 0.5

radius = 0.1

x position = 0.5

y position = 0.5

z position = -0.25

axis direction x = 0.0

axis direction y = 0.0

axis direction z = 1.0

FieldBoundaryConditions

CYLBC: Dirichlet, on cylinder, -2.0 V

Let’s modify our simulation some more, to add geometric features:

save as vsim2Dcyl.sdf

Materials

PEC: add to simulation

New: Material and GridBoundary blocks
<EmMaterial PEC>
kind = conductor

resistance = 0.0

</EmMaterial>

<GridBoundary cylinder0>
kind = gridRgnBndry

calculateVolume = 1

dmFrac = 0.5

polyfilename = cylinder0.stl

flipInterior = True
scale = [1.0 1.0 1.0]

printGridData = False

mappedPolysfile = cylinder0_mapped.stl

</GridBoundary>

See documentation…

https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/vsimComposerMaterials.html

and

https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/blocks_gridboundary.html

https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/vsimComposerMaterials.html
https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/blocks_gridboundary.html

New: GridBoundary MatrixFillers

<MatrixFiller CYLINDERFiller>
kind = nodeStencilFiller

gridBoundary = cylinder0

rowInteriorosity = [cutByBoundary outsideBoundary]

colInteriorosity = [cutByBoundary outsideBoundary]

component = 0
minDim = 1

lowerBounds = [1 1 1]

upperBounds = [10 15 12]

<StencilElement ident>
value = 5.7552220814345554e-09

minDim = 1

cellOffset = [0 0 0]

rowFieldIndex = 0

columnFieldIndex = 0
</StencilElement>

</MatrixFiller>

<VectorWriter CYLINDERWriter>
kind = stFuncNodeVectorWriter

gridBoundary = cylinder0

minDim = 1

lowerBounds = [1 1 1]

upperBounds = [10 15 12]
component = 0

interiorosity = [cutByBoundary outsideBoundary]

<STFunc function>

kind = expression
expression = -2.0

</STFunc>

scaling = 5.7552220814345554e-09

</VectorWriter>

As before, we could go and look at the matrix again, to see how these operations changed it,

and get a sense for what VSim is doing behind-the-scenes.

See documentation…

Adding particles to an input file

• Instead of doing this through the visual setup, let’s just open an example and

test our developing .in-file-reading skills.

• File > New From Example > VSim for Plasma Discharges > Capacitively Coupled

Plasma > Turner Case 2

• I’ll show a quick movie of this discharge so that you have a sense for what we’ll

be looking at: available here:

http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

• Neutral gas is contained between two parallel plates; one plate is grounded and

the other biased with RF. The motion of free electrons creates plasma between

the plates, and the formation of plasma sheaths is observed. The long-time

steady state of the discharge is a balance between collisional ionization (source)

and wall losses (sink).

http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

Looking at the Turner .in file - ScalarDepositors
• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: ScalarDepositor, Species, Fluid, History, collisional physics, etc.

<ScalarDepositor ChargeDensityDep>

kind = areaWeighting
depField = esMultiField.ChargeDensity

</ScalarDepositor>

ScalarDepositors act like “buckets” that collect particle charge on the simulation grid.

When all particles have been put into the bucket, its contents are then put into the

specified depField.

charge-collecting algorithm

where to store collected charge

Looking at the Turner .in file - Species
• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: ScalarDepositor, Species, Fluid, History, collisional physics, etc.

<Species electrons>
kind = nonRelBoris

charge = -1.6021766208e-19

mass = 9.10938215e-31

...

<ParticleSource particleLoaderE>
...

<PositionGenerator posGen>

...

</PositionGenerator>

<VelocityGenerator velGen>
...

</VelocityGenerator>

</ParticleSource>

<ParticleSink leftElecAbsorber>

...
</ParticleSink>

</Species>

Species = almost everything having to

do with the particle-in-cell aspects of

VSim. Details beyond the scope of this

already-long talk, but the principles are

the same – nested block structures that

describe objects and their interactions

with other objects.

Looking at the Turner .in file - History
• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: ScalarDepositor, Species, Fluid, History, collisional physics, etc.

<History numElec>

kind = speciesNumberOf
species = [electrons]

</History>

<History leftIonCurr>

kind = speciesCurrAbs
species = [He1]

ptclAbsorbers = [leftIonAbsorber]

</History>

History blocks create a record of various physics events on a per-timestep basis, rather than on

a per-dump-step basis (e.g. current entering a wall, number of particles in the simulation, etc.)

specify the species

specify the absorbing region

measure absorbed particle current from a species

specify the species

count the number of macroparticles in a species

Exercises to test your text-file reading skills

• Look at the Turner.in file and see if you can identify how a species identifies the

electric and magnetic fields that its particles respond to.

• Look in the VSim documentation at the different “kinds” of particle species (besides

nonRelBoris) that are available. Could a nonRelES species work equally well for the

Turner example?

• See if you can determine how particles are loaded in velocity space in the Turner.in

input file. How would you add a mean flow to the particles?

• See if you can add a history block to Turner.in that records various properties

(kinetic energy, velocity, loss time, etc.) of electrons that strike the left wall of the

simulation and are lost.

Useful resources: reminder
• VSim online documentation:

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html

• Slides for this talk:

http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf

• Download page for the VSim input files I used in this talk:

http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html

• Also potentially of interest: Slides for other VSim talks I’ve given in the past

(visualization, plasma sheath modeling, RF antenna simulations, CCPs, etc.):

http://nucleus.txcorp.com/~tgjenkins/informal.html

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html
http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf
http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html
http://nucleus.txcorp.com/~tgjenkins/informal.html

Summary/Overview

• This talk was only a top-level view of the kinds of things you’ll see if you edit text-based VSim input

files… it’s certainly possible to dig deeper.

• But if you’re comfortable with the idea of block structures, and with digging into the documentation,

I’ve hopefully given you enough information that you can start to tackle your own problems.

• Nevertheless, it’s good to ask questions if you get stuck - please feel free to do so as you’re figuring

this stuff out. There are quite a few “power-users” of VSim who have probably had to wrestle with

many of the problems you’ll run into.

• Thanks for your attention!

