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A brief introduction to me…

• Senior Research Scientist, 10.5 years at Tech-X

• Ph.D. @ Princeton/PPPL (2007), developing numerical methods for gyrokinetic PIC simulation

• Postdoc @ UW-Madison, working on RF/MHD coupling for electron cyclotron current drive in fusion plasmas

• Current research interests:

• methods for speeding up particle-in-cell simulations (SLPIC)

• modeling RF sheaths/impurity sputtering in fusion devices

• kinetic theory – wave/particle interactions, etc.

• PIC modeling of low-temperature plasmas

• Website, where this talk and many other talks/papers/presentations are posted:

http://nucleus.txcorp.com/~tgjenkins



This talk focuses on how VSim works ’under 
the hood’

• VSim’s Visual Setup interface is designed to quickly bring new users up the VSim learning curve

• Allows common actions to be done quickly and systematically, with visual cues

-defining grids -importing shapes

-applying boundary conditions -adding particle species

• Shows users options consistent with their previous choices, while hiding others

-electrostatic vs. electromagnetic -direct vs. iterative matrix solve

• Visual Setup tools are adequate for many user needs (and we welcome suggestions for their 

improvement and development).

• Not everything that users want to do can be done in visual setup.

• Exercise experimental or developing code features

• Verify that the equations being solved are the ones the user intended

• ?
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My objective for this talk

Physics

problem

Numerical 

discretization

Visual Setup 

input file

Text

input file

Simulation

data

Running 

VSim

The “Experienced User” approach

• Understand the structure of text input files 

• Understand how numerical discretization techniques are implemented in text input files

• Understand how to add to/edit text input files to get the result you want

• Some complexity unavoidable!  But we’ll look at things in stages, and periodically 

review and regroup, to make things easier.



Useful resources for this talk
• VSim online documentation:

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html

• Slides for this talk:

http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf

• Download page for the VSim input files I will use in this talk:

http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html
http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf
http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html


Choose a simple electrostatics problem: 1D Poisson

𝑑!𝜙(𝑥)

𝑑𝑥!
= −

𝜌 𝑥

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%& , 𝜙 𝑥 = 𝐿 = 𝜙'()*& ; 𝑥 ∈ [0, 𝐿]

Numerical approach: discretize on a grid with N cells.

Δ𝑥 =
𝐿

𝑁
; 𝑥+ = 𝑛Δ𝑥 ∀ 𝑛 = 0,1, … , 𝑁Define the grid:

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

Use a finite-difference approximation to the second derivative, at interior gridpoints:

Apply boundary conditions, at edge gridpoints:

𝜙" = 𝜙#$%&

𝜙0 = 𝜙'()*&

Solve the ensuing system of linear equations.

Physics

problem

Numerical 

discretization



Solution error scales as 1/N2

𝑑!𝜙(𝑥)

𝑑𝑥!
= −

𝜌" sin
𝜋𝑥
𝐿

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%& , 𝜙 𝑥 = 𝐿 = 𝜙'()*& 𝑜𝑛 [0, 𝐿]

has exact solution

𝜙 𝑥 = 𝜙#$%& + 𝜙'()*& − 𝜙#$%&
𝑥

𝐿
+
𝜌"𝐿

!

𝜖"𝜋
!
sin

𝜋𝑥

𝐿

On the discrete grid, we have

𝜙,
$123& = 𝜙#$%& + 𝜙'()*& − 𝜙#$%&

,

0
+

4!5
"

6!7
"
sin

7,

0
;   𝜌,

$123& = 𝜌" sin
7,

0

Putting these functions into the discretized Poisson equation yields

−
𝜌"

𝜖"
sin

𝜋𝑗

𝑁

2𝑁!

𝜋!
1 − cos

𝜋

𝑁
≈ −

𝜌"

𝜖"
sin

𝜋𝑗

𝑁

2𝑁!

𝜋!
1 − 1 −

𝜋!

2𝑁!
+

𝜋8

24𝑁8
+⋯ ≈ 1

Physics

problem:

exact 

solution

Numerical 

discretization: 

approximate 

solution



What does this look like in VSim?

Parameters (5)

VLEFT  = 0

VRIGHT = 1

LX = 1

NX = 10

RHOZERO = 20

Let’s set up a basic simulation with Visual Setup and run it for one step:

Basic Settings (4)

number of steps = 1

steps between dumps = 1

dimensionality = 1

field solver = electrostatic

SpaceTimeFunctions (1)

RHOxt=RHOZERO*sin(PI*x/LX)

Grids (3)

xMin = 0

xMax = LX

xCells = NX
Field Dynamics: Fields (1)

Background Charge Density RHO=RHOxt

Field Dynamics: FieldBoundaryConditions (2)

Dirichlet on lower x: VLEFT

Dirichlet on upper x: VRIGHT

Field Dynamics: PoissonSolver (2)

preconditioner = no preconditioner

solver = SuperLU

ChargeDensity

Phi

Visual 

Setup 

input 

file



VSim generates .pre and .in files from the 
Visual Setup .sdf file, when we Save and Setup

.pre file – an intermediate object 

not of much immediate use to us 

(if generated by Visual Setup 

from a .sdf file)

.in file – the text input file we 

want to learn how to work with



Looking at vsim.in – input blocks

Frontmatter

<Grid globalGrid>
...

</Grid>

<Decomp decomp>
...

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>
...

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>
...

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
...

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>
...

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]

</MultiField>

Key VSim concept 0: 

block structures

Or very generally,

<OBJECT objectName>
…

object features
…

</OBJECT>



Looking at vsim.in – overall structure
Frontmatter

<Grid globalGrid>
...

</Grid>

<Decomp decomp>
...

</Decomp>

<MultiField NAME_OF_MULTIFIELD>

<Field NAME_OF_FIELD>
...

</Field>

<FieldUpdater NAME_OF_FIELDUPDATER>
...

</FieldUpdater>

<InitialUpdateStep NAME_OF_INITIALUPDATESTEP>
...

</InitialUpdateStep>

<UpdateStep NAME_OF_UPDATESTEP>
...

</UpdateStep>

updateStepOrder = [NAME_OF_UPDATESTEP_1 NAME_OF_UPDATESTEP2 ...]

</MultiField>

define scalar or vector objects: e.g. electric field, charge density, potential, …

define mathematical operations on field objects: e.g. taking the 

gradient of a scalar field and directing the output to a vector field

define initial conditions – done only once at simulation outset

Call the previously defined FieldUpdaters to manipulate the fields

Key VSim concept 1: the 

MultiField block

in a specified ordered sequence of operations



Looking at vsim.in – Frontmatter, Grid block

nsteps = 1

dumpPeriodicity = 1
dt = 1.0

dimension = 1

floattype = double
verbosity = 127

copyHistoryAtEachDump = 0
useGridBndryRestore = False

constructUniverse = False

<Grid globalGrid>

verbosity = 127
numCells = [10 11 12]

lengths = [1.0 1.0 1.0]

startPositions = [0.0 -0.5 0.0]
maxCellXings = 1

</Grid>

1D simulation

3D grid: default y, z values

𝛥x = 1/10 ; 𝛥y = 1/11 ; 𝛥z = 1/12

(extra y, z dimensions are not used in 

this 1D computation, but may still be 

present in several parts of the input file)

number of steps in simulation

write data every 1 timestep

timestep (in units of seconds)

How detailed the VSim output should 

be (= 2M – 1) ; larger M = more detail

defines 

spatial grid 

properties

defines 

some 

global 

simulation 

parameters



Looking at vsim.in – Field blocks
<Field E>

numComponents = 3

offset = edge

kind = regular

overlap = [1 1]

labels = [E_x E_y E_z]

</Field>

<Field Phi>

numComponents = 1

offset = none

kind = regular

overlap = [1 2]

labels = [Phi]

</Field>

<Field ChargeDensity>

numComponents = 1

offset = none

kind = depField

overlap = [1 2]

labels = [ChargeDensity]

</Field>

vector field

lives on edges between grid points

scalar field

lives on grid points

scalar field

lives on grid points

Ex0 Ex1

𝜙0 𝜙1 𝜙2

what to name the field components in the output file

default VSim field type

messaging instructions for parallel computing: 

include data from guard cells in a different way

special VSim field type, built from particle data

defines a 

scalar or 

vector field 

to be used 

in the 

simulation



Looking at vsim.in – FieldUpdater blocks

<FieldUpdater gradPhi>

kind = gradVecUpdater

factor = -1.0

lowerBounds = [0 0 0]

upperBounds = [10 11 12]

readFields = [Phi]

writeFields = [E]

</FieldUpdater>

<FieldUpdater RHO>

kind = STFuncUpdater

operation = add

lowerBounds = [0 0 0]

upperBounds = [11 12 13]

writeFields = [ChargeDensity]

component = 0

cellsToUpdateAboveDomain = [False False False]

<STFunc f>

kind = expression

expression = (20.0*sin(3.141592653589793*x/1.0))

</STFunc>

</FieldUpdater>

𝐸 = −∇𝜙.

in other words,

Ex0 Ex1

𝜙0 𝜙1 𝜙2

names of previously defined Field blocks:

scalar input, vector output for this FieldUpdater kind.

built-in operation that computes the gradient of a scalar

(inclusive)

(exclusive)

= 𝜌" sin
71

5
, from our input parameters

(inclusive)

(exclusive)

scalar

adds (subtracts, multiplies, etc.) the specified 

STFunc to the specified writeField

built-in operation that manipulates SpaceTimeFunction objects

defines a 

mathematical 

operation on 

Field objects



Looking at vsim.in – InitialUpdateStep blocks

<InitialUpdateStep RHOInitStep>

alsoAfterRestore = True

updaters = [RHO]

messageFields = []

</InitialUpdateStep>

<InitialUpdateStep esSolveInitStep>

alsoAfterRestore = True

updaters = [esSolve]

messageFields = [Phi]

</InitialUpdateStep>

<InitialUpdateStep gradPhiInitStep>

alsoAfterRestore = True

updaters = [gradPhi]

messageFields = [E]

</InitialUpdateStep>

Also do this step when restarting a simulation

Previously defined field updater, defines ChargeDensity field

Previously defined field updater, solves Poisson equation 

for phi field

Previously defined field updater, computes E from phi.

These updates are performed only once, at the simulation outset.

Sets initial 

conditions for 

Field objects



Looking at vsim.in – UpdateStep blocks

<UpdateStep RHOStep>

toDtFrac = 1.0

updaters = [RHO]

messageFields = []

</UpdateStep>

<UpdateStep esSolveStep>

toDtFrac = 1.0

updaters = [esSolve]

messageFields = [Phi]

</UpdateStep>

<UpdateStep gradPhiStep>

toDtFrac = 1.0

updaters = [gradPhi]

messageFields = [E]

</UpdateStep>

…

updateStepOrder = [RHOStep esSolveStep gradPhiStep]

Advance the specified field to the next full timestep in this update

Previously defined field updater, defines ChargeDensity

field (just as in InitialUpdateStep call)

Previously defined field updater, solves Poisson equation 

for phi field (just as in InitialUpdateStep call)

Previously defined field updater, computes E from phi (just 

as in InitialUpdateStep call).

These updates are performed at every timestep in the simulation.

UpdateSteps can appear in the input file in any order you like, the 

updateStepOrder determines which ones will be called when.

Apply various 

FieldUpdater

operations to 

Field objects, 

in a given 

sequence



Regroup and Review

So far, we have:

-built an .sdf file in VSim, using Visual Setup, that solves the 1D Poisson equation

-found the .in text input file that VSim built from our initial .sdf file

-looked at the general block structure of that .in file

-looked at some typical blocks that live in the larger MultiField block, and their contents

*Field *FieldUpdater

*InitialUpdateStep *UpdateStep

Now, we’ll do a bit of a deeper dive into how VSim solves the Poisson equation, and learn a bit more about 

how data is organized ‘under the hood’ in VSim.



Electrostatic solves, without VSim

VSim solves the Poisson equation

𝑑!𝜙(𝑥)

𝑑𝑥!
= −

𝜌 𝑥

𝜖"
; 𝜙 𝑥 = 0 = 𝜙#$%& , 𝜙 𝑥 = 𝐿 = 𝜙'()*& ; 𝑥 ∈ [0, 𝐿]

with Fields and FieldUpdaters and UpdateSteps.

Δ𝑥 =
𝐿

𝑁
; 𝑥+ = 𝑛Δ𝑥 ∀ 𝑛 = 0,1, … , 𝑁

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

𝜙" = 𝜙#$%&

𝜙0 = 𝜙'()*&

Let’s build a discretized version of this problem “by hand”, to see what kinds of things we 

might expect VSim to be doing:

N-cell grid:

Discrete Poisson 

equation:

Boundary 

conditions:

Physics

problem

Numerical 

discretization

Result: a linear system of equations 

for the unknown 𝜙j values.



Constructing the matrix – interior points

−
𝜖"

Δ𝑥!

1 −2 1

0 1 −2

0 0 0

1 0 0

0 0 0

0 0 0
⋮ ⋮ ⋮
0

0

0

0

0

0

1

0

0
⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2

1

0

1

−2

1

0

1

−2
⋮ ⋮ ⋮

⋮ ⋮ ⋮
0

0

1

0

0

0

0

0

0
⋮ ⋮ ⋮

0 0 0

0 0 0

0 0 1

0 0 0

−2 1 0

1 −2 1

𝜙"
𝜙.
𝜙!
⋮

𝜙,/.
𝜙,
𝜙,-.
⋮

𝜙0/!
𝜙0/.
𝜙0

=

𝜌"
𝜌.
𝜌!
⋮

𝜌,/.
𝜌,
𝜌,-.
⋮

𝜌0/!
𝜌0/.
𝜌0

−𝜖"
𝜙,-. − 2𝜙, + 𝜙,/.

Δ𝑥!
= 𝜌, ∀ 𝑗 = 1,2, … , 𝑁 − 1

becomes a matrix of form

This doesn’t work for the first/last rows of matrix.  Instead, we must use boundary conditions there.



Constructing the matrix – boundary conditions

−𝜖"

Δ𝑥!

−𝛾Δ𝑥!/𝜖" 0 0

1 −2 1

0 1 −2

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

⋮ ⋮ ⋮
0

0

0

0

0

0

1

0

0
⋮ ⋮ ⋮

⋮ ⋮ ⋮
−2

1

0

1

−2

1

0

1

−2
⋮ ⋮ ⋮

⋮ ⋮ ⋮
0

0

1

0

0

0

0

0

0
⋮ ⋮ ⋮

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

−2 1 0

1 −2 1

0 0 −𝜇Δ𝑥!/𝜖"

𝜙"
𝜙.
𝜙!
⋮

𝜙,/.
𝜙,
𝜙,-.
⋮

𝜙0/!
𝜙0/.
𝜙0

=

𝛾𝜙#$%&

𝜌.
𝜌!
⋮

𝜌,/.
𝜌,
𝜌,-.
⋮

𝜌0/!
𝜌0/.

𝜇𝜙'()*&

becomes
𝜙" = 𝜙#$%&

𝜙0 = 𝜙'()*&

Changes in the right-hand side vector (charge density) are necessary to implement the BCs.

Rescaling factors 𝛾, 𝜇 can be used to adjust the matrix condition number. 

Canonical form: Ax = b.



linearSolveUpdater – solving the 
Poisson equation

Now let’s look at how this is done in the vsim.in file.

One of VSim’s built-in FieldUpdater blocks is the linearSolveUpdater, which 

solves equations of the form Ax = b.



Looking at vsim.in – linearSolveUpdater
<FieldUpdater esSolve>
kind = linearSolveUpdater

lowerBounds = [0]

upperBounds = [11]

readFields = [ChargeDensity]

readComponents = [0]
writeFields = [Phi]

writeComponents = [0]

writeEquationToFile = 0

<MatrixFiller interiorFiller>
kind = stFuncStencilFiller

verbosity = 127

minDim = 1

lowerBounds = [1 1 1]

upperBounds = [10 11 12]
component = 0

<STFunc coeff>

kind = expression

expression = -8.854187817591624e-12
</STFunc>

...

= −𝜖"

1D linear solve

3D matrix template (even 

though we only need 1D)

Input: scalar 𝜌

Output: scalar 𝜙

Can use this to look at the matrix (we 

will do this in a moment)

(inclusive)

(exclusive)

(inclusive)

(exclusive)

MatrixFiller blocks do just what they sound like – filling rows in the matrix.

A FieldUpdater

object 

(mathematical 

operation) that 

solves a matrix 

equation Ax=b.



linearSolveUpdater - StencilElements

<STFuncStencilElement phi_dxp>
value = -100.0

minDim = 1

cellOffset = [0 0 0]

functionOffset = [0.5 0. 0.]

rowFieldIndex = 0
columnFieldIndex = 0

</STFuncStencilElement>

<STFuncStencilElement phi_dxm>

value = -100.0

minDim = 1

cellOffset = [0 0 0]

functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0

columnFieldIndex = 0

</STFuncStencilElement>

<STFuncStencilElement phi_npx>
value = 100.0

minDim = 1

cellOffset = [1 0 0]

functionOffset = [0.5 0. 0.]

rowFieldIndex = 0
columnFieldIndex = 0

</STFuncStencilElement>

<STFuncStencilElement phi_nmx>

value = 100.0

minDim = 1

cellOffset = [-1 0 0]

functionOffset = [-0.5 0. 0.]
rowFieldIndex = 0

columnFieldIndex = 0

</STFuncStencilElement>

1/𝛥x2-1/𝛥x2

+1 cell

-1 cell

No offset

No offset

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 P ⋯ 0 𝑝ℎ𝑖+91 (𝑝ℎ𝑖:19+𝑝ℎ𝑖:1;) 𝑝ℎ𝑖+;1 0 ⋯

A generic interior row in the 1D Poisson matrix is 

functionOffset is irrelevant for node-centered fields

Inside the MatrixFiller block, we have various StencilElements:

n, d = non-diagonal or 

diagonal matrix element

m, p = - / +

cell/function offset



linearSolveUpdater – boundary conditions
<MatrixFiller RIGHTBCFiller>
kind = stencilFiller

verbosity = 127
minDim = 1
lowerBounds = [10 0 0]

upperBounds = [11 12 13]
component = 0

<StencilElement ident>

value = 1.7708375635183248e-09
minDim = 0
cellOffset = [0 0 0]

rowFieldIndex = 0
columnFieldIndex = 0

</StencilElement>
</MatrixFiller>

<VectorWriter RIGHTBCWriter>
kind = stFuncVectorWriter

verbosity = 127
minDim = 1

lowerBounds = [10 0 0]
upperBounds = [11 12 13]
component = 0

<STFunc function>

kind = expression
expression = 1.0

</STFunc>

scaling = 1.7708375635183248e-09
</VectorWriter>

Only rightmost cell

Only rightmost cell

= 2𝜖"/Δ𝑥
! (this is the 

𝜇 factor from the earlier 

slide, on the LHS)

= 2𝜖"/Δ𝑥
! (again, the 

𝜇 factor from the earlier 

slide, on the RHS)
VRIGHT (chosen 

boundary condition)

LHS (matrix)

RHS (vector)



linearSolveUpdater – the linearSolver block

<LinearSolver linearSolver>

kind = directSolver
solverType = superLU

verbosity = 127

</LinearSolver>

Solve Ax = b by computing A-1 directly.

Simplest VSim solver option (by the 

length-of-input-file metric, at least), but 

not useful if your matrix is too large.

All other VSim solver types are iterative:

• generalized minimum residual

• conjugate gradient

• biconjugate gradient

• etc.

Iterative solvers can be sped up by appropriate multigrid preconditioners (for which 

many options are available in VSim).



Let’s look at the matrix VSim creates
• Edit the vsim.in file so that writeEquationToFile = 1.

• NOTE: If you now hit the ”Save” button, VSim Composer will

• re-read the vsim.sdf file, and

• generate a new .in file from the information it finds there.

• This will overwrite the change you just made, since the sdf file defaults to 

writeEquationToFile = 0.

• Therefore: if you want to do text-based problem setup starting from a Visual Setup 

file, you’ll need to generally do something like the following:

• Generate the initial .in file from the sdf file with the “Save” button

• Using your computer’s file management utilities, copy the .in file to a .pre file 

with a different prefix name, e.g. vsim.in becomes vsimTextBased.pre

• Edit this new .pre file in the way you want to

• Open the modified .pre file in VSim, and run VSim as normal (the visual setup 

utilities will no longer work, but the physics engine will still parse and run the 

input file that you’ve modified)



Assuming Ax=b, A is in esSolveMatrix.mtx
%%MatrixMarket matrix coordinate real general

11 11 29

1 1 1.7708375635183248e-09

2 1 -8.8541900000000002e-10

2 2 1.7708380000000000e-09

2 3 -8.8541900000000002e-10

3 2 -8.8541900000000002e-10

3 3 1.7708380000000000e-09

3 4 -8.8541900000000002e-10

4 3 -8.8541900000000002e-10

4 4 1.7708380000000000e-09

4 5 -8.8541900000000002e-10

5 4 -8.8541900000000002e-10

5 5 1.7708380000000000e-09

5 6 -8.8541900000000002e-10

6 5 -8.8541900000000002e-10

6 6 1.7708380000000000e-09

6 7 -8.8541900000000002e-10

7 6 -8.8541900000000002e-10

7 7 1.7708380000000000e-09

7 8 -8.8541900000000002e-10

8 7 -8.8541900000000002e-10

8 8 1.7708380000000000e-09

8 9 -8.8541900000000002e-10

9 8 -8.8541900000000002e-10

9 9 1.7708380000000000e-09

9 10 -8.8541900000000002e-10

10 9 -8.8541900000000002e-10

10 10 1.7708380000000000e-09

10 11 -8.8541900000000002e-10

11 11 1.7708375635183248e-09

%%MatrixMarket matrix coordinate real general

11 11 29

1 1 2*eps0/dx^2

2 1 -eps0/dx^2

2 2 2*eps0/dx^2

2 3 -eps0/dx^2

3 2 -eps0/dx^2

3 3 2*eps0/dx^2

3 4 -eps0/dx^2

4 3 -eps0/dx^2

4 4 2*eps0/dx^2

4 5 -eps0/dx^2

5 4 -eps0/dx^2

5 5 2*eps0/dx^2

5 6 -eps0/dx^2

6 5 -eps0/dx^2

6 6 2*eps0/dx^2

6 7 -eps0/dx^2

7 6 -eps0/dx^2

7 7 2*eps0/dx^2

7 8 -eps0/dx^2

8 7 -eps0/dx^2

8 8 2*eps0/dx^2

8 9 -eps0/dx^2

9 8 -eps0/dx^2

9 9 2*eps0/dx^2

9 10 -eps0/dx^2

10 9 -eps0/dx^2

10 10 2*eps0/dx^2

10 11 -eps0/dx^2

11 11 2*eps0/dx^2

−𝜖!

Δ𝑥"

−2 0 0

1 −2 1

0 1 −2

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

⋮ ⋮ ⋮

0

0

0

0

0

0

1

0

0

⋮ ⋮ ⋮

⋮ ⋮ ⋮

−2

1

0

1

−2

1

0

1

−2

⋮ ⋮ ⋮

⋮ ⋮ ⋮

0

0

1

0

0

0

0

0

0

⋮ ⋮ ⋮

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

−2 1 0

1 −2 1

0 0 −2



Assuming Ax=b, x and b are esSolve vectors

%%MatrixMarket matrix array real general

11 1

0.0000000000000000e+00

6.1803398874989481e+00

1.1755705045849464e+01

1.6180339887498949e+01

1.9021130325903069e+01

2.0000000000000000e+01

1.9021130325903069e+01

1.6180339887498949e+01

1.1755705045849465e+01

6.1803398874989499e+00

1.7708375635183248e-09 =
2𝜖"

Δ𝑥!
P 𝜙'()*&

= 20 sin
𝜋𝑥,

𝐿
= 𝜌,

=
2𝜖"

Δ𝑥!
P 𝜙#$%&

esSolveWriteVector.mtx (b)
%%MatrixMarket matrix array real general

11 1

0.0000000000000000e+00

7.1308064483412903e+10

1.3563599878269949e+11

1.8668693648958243e+11

2.1946365612852356e+11

2.3075774401243900e+11

2.1946365612872348e+11

1.8668693648998233e+11

1.3563599878329944e+11

7.1308064484212875e+10

1.0000000000000000e+00 = 𝜙'()*&

= 𝜙,

= 𝜙#$%&

esSolveReadVector.mtx (x) 



Regroup and Review
So far, we have:

-solved the discrete 1D Poisson equation ‘by hand’ and looked at the matrix and the vectors involved in that process

-looked at how VSim builds this matrix and these vectors with a FieldUpdater (of kind linearSolveUpdater), using 

MatrixFiller and StencilElement and LinearSolver blocks

-seen how to modify the .in file

-seen how to examine the matrix and vectors VSim builds.

But:

-most interesting problems are not 1D

-most interesting problems involve particles, complicated geometries, and/or complicated boundary conditions

Let’s add some interesting features to our input file, and see how the .in file changes.



Moving to 2D

Parameters

LY = 1

NY = 15

RHOZERO = 2.0e-10

SpaceTimeFunctions

RHOxt=RHOZERO*sin(PI*x/LX)*sin(PI*y/LY)

LINEARPHIxt=VLEFT+(VRIGHT-VLEFT)*x/LX

Basic Settings

dimensionality = 2

Grid

yMin=0

yMax=LY

yCells=NY

FieldBoundaryConditions

TOPBC: Dirichlet, LINEARPHIxt, upper y

BOTTOMBC: Dirichlet, LINEARPHIxt, lower y

Let’s copy the simulation we had before into a new simulation, and add:

save as vsim2D.sdf



Matrix is larger, no longer tridiagonal

Now 176 x 176 [176 = 11*16 = (NX+1)*(NY+1)] and band-structured

𝜌 and 𝜙 arrays are now representing 2D 

quantities in a vector, e.g.

𝜌.,.
⋮

𝜌.,0
𝜌!,.
⋮

𝜌!,0
⋮

𝜌=,0

The same approach generalizes to 3D also; we will have large sparse matrices. 

In general this 2D input file looks pretty similar to the 1D version.



Additional StencilElements relevant in 2D/3D

<STFuncStencilElement phi_npy>
value = 225.0

minDim = 2

cellOffset = [0 1 0]

functionOffset = [0. 0.5 0.]

rowFieldIndex = 0
columnFieldIndex = 0

</STFuncStencilElement>

...

<STFuncStencilElement phi_nmz>

value = 144.0

minDim = 3
cellOffset = [0 0 -1]

functionOffset = [0. 0. -0.5]

rowFieldIndex = 0

columnFieldIndex = 0

</STFuncStencilElement>

𝛥y2

Only if ≥ 2D

+1 cell in y

𝛥z2

Only if ≥ 3D

-1 cell in z

Typical stencil elements:

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ( ⋯ 0 𝑝ℎ𝑖!"# ⋯ 𝑝ℎ𝑖!"$ (𝑝ℎ𝑖%$"+𝑝ℎ𝑖%$& + 𝑝ℎ𝑖%#" + 𝑝ℎ𝑖%#&) 𝑝ℎ𝑖!&$ ⋯ 𝑝ℎ𝑖!&# 0 ⋯

In 2D, general matrix row is



Adding GridBoundary geometric features

Geometries

CSG: Add Primitive: cylinder

material = PEC

length = 0.5

radius = 0.1

x position = 0.5

y position = 0.5

z position = -0.25

axis direction x = 0.0

axis direction y = 0.0

axis direction z = 1.0

FieldBoundaryConditions

CYLBC: Dirichlet, on cylinder, -2.0 V

Let’s modify our simulation some more, to add geometric features:

save as vsim2Dcyl.sdf

Materials

PEC: add to simulation



New: Material and GridBoundary blocks
<EmMaterial PEC>
kind = conductor

resistance = 0.0

</EmMaterial>

<GridBoundary cylinder0>
kind = gridRgnBndry

calculateVolume = 1 

dmFrac = 0.5

polyfilename = cylinder0.stl

flipInterior = True
scale = [1.0 1.0 1.0]

printGridData = False

mappedPolysfile = cylinder0_mapped.stl

</GridBoundary>

See documentation…

https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/vsimComposerMaterials.html

and

https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/blocks_gridboundary.html

https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/vsimComposerMaterials.html
https://www.txcorp.com/images/docs/vsim/latest/VSimReferenceManual/blocks_gridboundary.html


New: GridBoundary MatrixFillers

<MatrixFiller CYLINDERFiller>
kind = nodeStencilFiller

gridBoundary = cylinder0

rowInteriorosity = [cutByBoundary outsideBoundary]

colInteriorosity = [cutByBoundary outsideBoundary]

component = 0
minDim = 1

lowerBounds = [1 1 1]

upperBounds = [10 15 12]

<StencilElement ident>
value = 5.7552220814345554e-09

minDim = 1

cellOffset = [0 0 0]

rowFieldIndex = 0

columnFieldIndex = 0
</StencilElement>

</MatrixFiller>

<VectorWriter CYLINDERWriter>
kind = stFuncNodeVectorWriter

gridBoundary = cylinder0

minDim = 1

lowerBounds = [1 1 1]

upperBounds = [10 15 12]
component = 0

interiorosity = [cutByBoundary outsideBoundary]

<STFunc function> 

kind = expression
expression = -2.0

</STFunc>

scaling = 5.7552220814345554e-09

</VectorWriter>

As before, we could go and look at the matrix again, to see how these operations changed it, 

and get a sense for what VSim is doing behind-the-scenes.

See documentation…



Adding particles to an input file

• Instead of doing this through the visual setup, let’s just open an example and 

test our developing .in-file-reading skills.

• File > New From Example > VSim for Plasma Discharges > Capacitively Coupled 

Plasma > Turner Case 2

• I’ll show a quick movie of this discharge so that you have a sense for what we’ll 

be looking at: available here: 

http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov

• Neutral gas is contained between two parallel plates; one plate is grounded and 

the other biased with RF.  The motion of free electrons creates plasma between 

the plates, and the formation of plasma sheaths is observed.  The long-time 

steady state of the discharge is a balance between collisional ionization (source) 

and wall losses (sink).

http://nucleus.txcorp.com/~tgjenkins/movies/ShortCCPmovie.mov


Looking at the Turner .in file - ScalarDepositors
• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: ScalarDepositor, Species, Fluid, History, collisional physics, etc.

<ScalarDepositor ChargeDensityDep>

kind = areaWeighting
depField = esMultiField.ChargeDensity

</ScalarDepositor>

ScalarDepositors act like “buckets” that collect particle charge on the simulation grid.

When all particles have been put into the bucket, its contents are then put into the 

specified depField.

charge-collecting algorithm

where to store collected charge



Looking at the Turner .in file - Species
• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: ScalarDepositor, Species, Fluid, History, collisional physics, etc.

<Species electrons>
kind = nonRelBoris

charge = -1.6021766208e-19

mass = 9.10938215e-31

...

<ParticleSource particleLoaderE>
...

<PositionGenerator posGen>

...

</PositionGenerator>

<VelocityGenerator velGen>
...

</VelocityGenerator>

</ParticleSource>

<ParticleSink leftElecAbsorber>

...
</ParticleSink>

</Species>

Species = almost everything having to 

do with the particle-in-cell aspects of 

VSim.  Details beyond the scope of this 

already-long talk, but the principles are 

the same – nested block structures that

describe objects and their interactions 

with other objects.



Looking at the Turner .in file - History
• Some familiar things: Fields, FieldUpdaters, UpdateSteps, MultiFields, etc.

• Some new things: ScalarDepositor, Species, Fluid, History, collisional physics, etc.

<History numElec>

kind = speciesNumberOf
species = [electrons]

</History>

<History leftIonCurr>

kind = speciesCurrAbs
species = [He1]

ptclAbsorbers = [leftIonAbsorber] 

</History>

History blocks create a record of various physics events on a per-timestep basis, rather than on 

a per-dump-step basis (e.g. current entering a wall, number of particles in the simulation, etc.)

specify the species

specify the absorbing region

measure absorbed particle current from a species

specify the species

count the number of macroparticles in a species



Exercises to test your text-file reading skills

• Look at the Turner.in file and see if you can identify how a species identifies the 

electric and magnetic fields that its particles respond to.

• Look in the VSim documentation at the different “kinds” of particle species (besides 

nonRelBoris) that are available.  Could a nonRelES species work equally well for the 

Turner example?

• See if you can determine how particles are loaded in velocity space in the Turner.in

input file.  How would you add a mean flow to the particles?

• See if you can add a history block to Turner.in that records various properties 

(kinetic energy, velocity, loss time, etc.) of electrons that strike the left wall of the 

simulation and are lost.



Useful resources: reminder
• VSim online documentation:

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html

• Slides for this talk:

http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf

• Download page for the VSim input files I used in this talk:

http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html

• Also potentially of interest: Slides for other VSim talks I’ve given in the past 

(visualization, plasma sheath modeling, RF antenna simulations, CCPs, etc.):

http://nucleus.txcorp.com/~tgjenkins/informal.html

https://www.txcorp.com/images/docs/vsim/latest/VSimDocumentation.html
http://nucleus.txcorp.com/~tgjenkins/pres/TWSSTalk2020.pdf
http://nucleus.txcorp.com/~tgjenkins/TWSS2020.html
http://nucleus.txcorp.com/~tgjenkins/informal.html


Summary/Overview

• This talk was only a top-level view of the kinds of things you’ll see if you edit text-based VSim input 

files… it’s certainly possible to dig deeper.  

• But if you’re comfortable with the idea of block structures, and with digging into the documentation, 

I’ve hopefully given you enough information that you can start to tackle your own problems.

• Nevertheless, it’s good to ask questions if you get stuck - please feel free to do so as you’re figuring 

this stuff out.  There are quite a few “power-users” of VSim who have probably had to wrestle with 

many of the problems you’ll run into.

• Thanks for your attention!


