
USimReferenceManual
Release 3.0.1

Tech-X Corporation

May 03, 2018

2

CONTENTS

1 Introduction 1

2 Macros 3
2.1 Mathphys Macro . 3
2.2 Grid Macro . 3
2.3 Euler Macro . 8
2.4 Ideal MHD Macro . 15
2.5 Anisotropic Conductivity Macro . 21

3 Grid 25
3.1 cart (1d, 2d, 3d) . 25
3.2 bodyFitted (1d, 2d, 3d) . 26
3.3 unstructured . 28

4 DataStruct 31
4.1 bin . 31
4.2 dynVector . 32
4.3 nodalArray . 32

5 DataStructAlias 33

6 UpdateStep 35

7 UpdateSequence 37

8 Updater 39
8.1 initialize (1d, 2d, 3d) . 39
8.2 linearCombiner (1d, 2d, 3d) . 41
8.3 uniformCombiner (1d, 2d, 3d) . 41
8.4 combiner (1d, 2d, 3d) . 42
8.5 dynVectorOperator . 43
8.6 equation (1d, 2d, 3d) . 45
8.7 computePrimitiveState(1d, 2d, 3d) . 45
8.8 vertexJetUpdater (1d, 2d, 3d) . 46
8.9 firstOrderMusclUpdater (1d, 2d, 3d) . 48
8.10 classicMusclUpdater (1d, 2d, 3d) . 50
8.11 unstructMusclUpdater (1d, 2d, 3d) . 52
8.12 thirdOrderMusclUpdater (1d, 2d, 3d) . 54
8.13 vector (1d, 2d, 3d) . 56
8.14 diffusion (1d, 2d, 3d) . 58
8.15 navierStokesViscousOperator (1d, 2d, 3d) . 60

i

8.16 kOmegaOperator (1d, 2d, 3d) . 63
8.17 kEpsilonOperator (1d, 2d, 3d) . 65
8.18 generalizedOhmsLaw (1d, 2d, 3d) . 67
8.19 resitiveOperator (1d, 2d, 3d) . 69
8.20 multiUpdater (1d, 2d, 3d) . 71
8.21 implicitMultiUpdater (1d, 2d, 3d) . 72
8.22 localOdeIntegrator (1d, 2d, 3d) . 76
8.23 timeStepRestrictionUpdater (1d, 2d, 3d) . 77
8.24 boundaryEntityGenerator (1d, 2d, 3d) . 79
8.25 characteristicCellLength (1d, 2d, 3d) . 79
8.26 entityGenerator (1d, 2d, 3d) . 80
8.27 minDistanceToWall (1d, 2d, 3d) . 80
8.28 operatorEntityGenerator (1d, 2d, 3d) . 81
8.29 paintEntity (1d, 2d, 3d) . 82
8.30 binCells (1d, 2d, 3d) . 82
8.31 fieldAtPoint (1d, 2d, 3d) . 83
8.32 intCombinedFields (1d, 2d, 3d) . 83
8.33 lineIntegral (1d, 2d, 3d) . 84
8.34 maxCombinedFields (1d, 2d, 3d) . 85
8.35 surfaceIntegral (1d, 2d, 3d) . 86
8.36 surfaceVariables (1d, 2d, 3d) . 87
8.37 nanChecker (1d, 2d, 3d) . 89
8.38 pressureDensityCorrector (1d, 2d, 3d) . 90
8.39 valueCorrector (1d, 2d, 3d) . 91

9 Time Integrator 93

10 Preconditioner 95

11 Hyperbolic Equations 97
11.1 eulerEqn . 97
11.2 realGasEqn . 99
11.3 realGasEosEqn . 100
11.4 tenMomentEqn . 101
11.5 multiSpeciesSingleVelocityEqn . 103
11.6 mhdDednerEqn . 104
11.7 mhdDednerEosEqn . 108
11.8 gasDynamicMhdDednerEqn . 112
11.9 simpleTwoTemperatureMhdDednerEqn . 117
11.10 twoTemperatureMhdDednerEqn . 122
11.11 maxwellEqn . 127
11.12 maxwellDednerEqn . 129
11.13 gasDynamicMaxwellDednerEqn . 132
11.14 twoFluidEqn . 138
11.15 userDefinedEqn . 139

12 Algebraic Equations 143
12.1 eulerSym . 144
12.2 mhdSym . 148
12.3 maxwellSym . 150
12.4 multiSpeciesSym . 151
12.5 twoFluidSym . 152
12.6 exprHyperSrc . 153
12.7 mhdSrc . 154
12.8 tenMomentFluidSrc . 158

ii

12.9 twoFluidSrc . 160
12.10 idealGasVariables . 166
12.11 idealGasComputeVariables . 167
12.12 propaceosVariables . 169
12.13 propaceosComputeVariables . 171
12.14 sesameVariables . 173
12.15 sesameComputeVariables . 175
12.16 vanDerWaalsVariables . 177
12.17 vanDerWaalsComputeVariables . 179
12.18 bremsPowerSrc . 180
12.19 radiationAbsorption . 181
12.20 radiationEmission . 182
12.21 coilFieldEqn . 182
12.22 current . 183
12.23 lorentzForce . 184
12.24 wireFieldEqn . 186
12.25 computeChargeError . 187
12.26 hyperbolicCleanSym . 188
12.27 collisionFrequency . 188
12.28 conductivityTensor . 191
12.29 momentumEnergyExchange . 192
12.30 NFluidSrc . 194
12.31 reactionTableRhs . 195
12.32 temperatureRelaxation . 197
12.33 transportCoeffSrc . 198

13 Boundary Conditions 207
13.1 copy (1d, 2d, 3d) . 207
13.2 eulerBc (1d, 2d, 3d) . 208
13.3 functionBc (1d, 2d, 3d) . 208
13.4 generalBc (1d, 2d, 3d) . 209
13.5 maxwellBc (1d, 2d, 3d) . 210
13.6 mhdBc (1d, 2d, 3d) . 210
13.7 periodicCartBc (1d, 2d, 3d) . 211
13.8 simpleBc (1d, 2d, 3d) . 211
13.9 sufaceEvaporation (1d, 2d, 3d) . 212
13.10 tenMomentBc (1d, 2d, 3d) . 212

14 Time Step Restriction 215
14.1 cyclotronFrequency (1d, 2d, 3d) . 215
14.2 frequency (1d, 2d, 3d) . 216
14.3 hyperbolic (1d, 2d, 3d) . 217
14.4 plasmaFrequency (1d, 2d, 3d) . 260
14.5 positiveValue (1d, 2d, 3d) . 261
14.6 quadratic (1d, 2d, 3d) . 262
14.7 whistlerWave (1d, 2d, 3d) . 263

15 Multi-Species Data Files 265
15.1 Multi-Species Chemical Reactions . 265
15.2 Multi-Species Specific Heat At Constant Pressure . 267
15.3 Multi-Species Energy of Formation, Molecular Weight, Molecular Diameter and Degrees of Freedom 269

Index 271

iii

iv

CHAPTER

ONE

INTRODUCTION

USim Reference is a quick-reference manual for USim users to look up specific USim features and code block syntax
for use in editing a USim input file. To learn about the complete USim simulation process, including details regarding
input file format and the USim tutorials, or see examples of using USim to simulate real-world physics models, please
refer to USim-in-depth.

1

USimReferenceManual, Release 3.0.1

2 Chapter 1. Introduction

CHAPTER

TWO

MACROS

2.1 Mathphys Macro

This macro can be imported to an input file with $ import mathphys

mathphys: In many of the input file examples that are supplied in USimComposer, you will see macros from
mathphys invoked. Macros available in mathphys define a series of physical and mathematical constants
that are commonly used in simulations. Refer to the mathphys file under Macros in USimComposer to see
which constants are available.

2.2 Grid Macro

This macro file can be imported to an input file with $ import grid.mac.

This collection of macros can be used to add different types of grids to the input file.

Contents

• addGrid Macro
• addCylindricalGrid Macro
• addBodyFittedGrid Macro
• addCylindricalBodyFittedGrid Macro
• addExodusGrid Macro
• addExodusTetrahedralGrid Macro
• addCylindricalExodusTetrahedralGrid Macro
• addCylindricalExodusGrid Macro
• addGmshGrid Macro
• addGmshTetrahedralGrid Macro
• addCylindricalGmshGrid Macro
• addCylindricalGmshTetrahedralGrid Macro
• addGridVariable Macro
• addGridPreExpression Macro
• addGridExpression Macro
• addEntityMaskVariable Macro
• addEntityMaskPreExpression Macro
• addEntityMaskExpression Macro
• createNewEntityFromMask (newEntityNameVar) Macro
• createNewEntityFromMask (newEntityNameVar, entityToCreateFromVar) Macro

3

USimReferenceManual, Release 3.0.1

2.2.1 addGrid Macro

addGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a structured Cartesian grid

addGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [XMIN YMIN ZMIN]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [NX NY NZ]

periodicDirections: List of directions that are periodic

periodicDirections = [0] (x-direction periodic)
periodicDirections = [0 1] (x,y-directions periodic)
periodicDirections = [0 1 2] (x,y,z-directions periodic)

2.2.2 addCylindricalGrid Macro

addCylindricalGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a structured cylin-
drical grid

addCylindricalGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [XMIN YMIN ZMIN]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [NX NY NZ]

periodicDirections: List of directions that are periodic

periodicDirections = [0] (x-direction periodic)
periodicDirections = [0 1] (x,y-directions periodic)
periodicDirections = [0 1 2] (x,y,z-directions periodic)

2.2.3 addBodyFittedGrid Macro

addBodyFittedGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a body-fitted carte-
sian grid

addBodyFittedGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [XMIN YMIN ZMIN]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [NX NY NZ]

periodicDirections: List of directions that are periodic

4 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

periodicDirections = [0] (x-direction periodic)
periodicDirections = [0 1] (x,y-directions periodic)
periodicDirections = [0 1 2] (x,y,z-directions periodic)

2.2.4 addCylindricalBodyFittedGrid Macro

addCylindricalBodyFittedGrid (lowerBounds, upperBounds, numCells, periodicDirections): Add a
body-fitted cylindrical grid

addCylindricalBodyFittedGrid Macro Parameters

lowerBounds: Vector of coordinates for lower edge of grid, lowerBounds = [XMIN YMIN ZMIN]

upperBounds: Vector of coordinates for upper edge of grid, upperBounds = [XMAX YMAX ZMAX
]

numCells: Vector of number of cells in grid, numCells = [NX NY NZ]

periodicDirections: List of directions that are periodic

periodicDirections = [0] (x-direction periodic)
periodicDirections = [0 1] (x,y-directions periodic)
periodicDirections = [0 1 2] (x,y,z-directions periodic)

2.2.5 addExodusGrid Macro

addExodusGrid (name): Add a unstructured grid in ExodusII format

addExodusGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.6 addExodusTetrahedralGrid Macro

addExodusTetrahedralGrid (name): Add a unstructured grid composed of tetrahedra in ExodusII format

addExodusTetrahedralGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.7 addCylindricalExodusTetrahedralGrid Macro

addCylindricalExodusTetrahedralGrid (name): Add a unstructured cylindrical grid composed of tetra-
hedra in ExodusII format

addCylindricalExodusTetrahedralGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2. Grid Macro 5

USimReferenceManual, Release 3.0.1

2.2.8 addCylindricalExodusGrid Macro

addCylindricalExodusGrid (name): Add a unstructured cylindrical grid in ExodusII format

addCylindricalExodusGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.9 addGmshGrid Macro

addGmshGrid (name): Add a unstructured grid in Gmsh format

addGmshGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.10 addGmshTetrahedralGrid Macro

addGmshTetrahedralGrid (name): Add a unstructured grid composed of tetrahedra in Gmsh format

addGmshTetrahedralGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.11 addCylindricalGmshGrid Macro

addCylindricalGmshGrid (name): Add a unstructured cylindrical grid in Gmsh format

addCylindricalGmshGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.12 addCylindricalGmshTetrahedralGrid Macro

addCylindricalGmshTetrahedralGrid (name): Add a unstructured cylindrical grid composed of tetrahe-
dra in Gmsh format

addCylindricalGmshTetrahedralGrid Macro Parameters

name: Name of grid WITHOUT extension

2.2.13 addGridVariable Macro

addGridVariable (varName, varValue): Specify a variable for defining a body-fitted grid

6 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

addGridVariable Macro Parameters

varName: Name to assign quantity that is independent of grid position

varValue: Value to assign quantity that is independent of grid position

2.2.14 addGridPreExpression Macro

addGridPreExpression (expression): Specify a preExpression for defining a body-fitted grid

addGridPreExpression Macro Parameters

expression: A mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.2.15 addGridExpression Macro

addGridExpression (expression): Specify an Expression for defining a body-fitted grid

addGridExpression Macro Parameters

expression: A mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.2.16 addEntityMaskVariable Macro

addEntityMaskVariable (newEntityNameVar, varName, varValue): Specify a variable for defining a mask
on the grid

addEntityMaskVariable Macro Parameters

newEntityNameVar: Name of the new entity

varName: Name to assign quantity that is independent of grid position

varValue: Value to assign quantity that is independent of grid position

2.2.17 addEntityMaskPreExpression Macro

addEntityMaskPreExpression (newEntityNameVar, expression): Specify a preExpression for defining a
mask on the grid

addEntityMaskPreExpression Macro Parameters

expression: A mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.2.18 addEntityMaskExpression Macro

addEntityMaskExpression (newEntityNameVar, expression): Specify an Expression for defining a mask on
the grid

2.2. Grid Macro 7

USimReferenceManual, Release 3.0.1

addEntityMaskExpression Macro Parameters

expression: A mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.2.19 createNewEntityFromMask (newEntityNameVar) Macro

createNewEntityFromMask (newEntityNameVar): Create a new entity within the grid based on mask func-
tion

createNewEntityFromMask Macro Parameters

newEntityNameVar: Name of the new entity

2.2.20 createNewEntityFromMask (newEntityNameVar, entityToCreateFromVar)
Macro

createNewEntityFromMask (newEntityNameVar, entityToCreateFromVar): Create a new entity within the
grid based on mask function

createNewEntityFromMask Macro Parameters

newEntityNameVar: Name of the new entity

entityToCreateFromVar: Name of the entity to create the new entity from

2.3 Euler Macro

This macro file can be imported to an input file with $ import euler.mac.

This collection of macros can be used to define quantities required for the Euler equations to input files.

8 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

Contents

• initializeFluidSimulation Macro
• createFluidSimulation Macro
• addVariable Macro
• addPreExpression Macro
• addExpression Macro
• finiteVolumeScheme Macro
• addGravitationalAcceleration Macro
• addBoundaryConditionVariable (name, varName, varValue) Macro
• addBoundaryConditionVariable (name, entityName, varName, varValue) Macro
• addBoundaryConditionPreExpression (name, expression) Macro
• addBoundaryConditionPreExpression (name, entityName, expression) Macro
• addBoundaryConditionExpression (name, expression) Macro
• addBoundaryConditionExpression (name, entityName, expression) Macro
• boundaryCondition (type) Macro
• boundaryCondition (type, entityName) Macro
• boundaryCondition (name, type, entityName) Macro
• timeAdvance Macro
• diffusionTimeAdvance Macro
• implicitTimeAdvance Macro
• addOutputDiagnostic (name) Macro
• addOutputDiagnostic (name, numberOfComponents, isVector) Macro
• addOutputDiagnosticParameter Macro
• addOutputDiagnosticPreExpression Macro
• addOutputDiagnosticExpression Macro
• runFluidSimulation Macro

2.3.1 initializeFluidSimulation Macro

initializeFluidSimulation (dimensionality,tStart,tEnd,numFrames,cflNum,gammaIn,writeRestartIn,debugIn):
Define quanties required for the Euler equations.

initializeFluidSimulation Macro Parameters

dimensionality: 1,2,3. Number of dimensions for the simulation

tStart: Start time for simulation

tEnd: End time for simulation

numFrames: Number of data outputs

cflNum: Cfl limit, typically ∆𝑡 = 𝑐𝑓𝑙𝑁𝑢𝑚 * ∆𝑥/𝑉𝑚𝑎𝑥

gammaIn: Adiabatic index for ideal gas eqn. of state. Pressure = (gammaIn - 1.0) * density * internal
energy

writeRestartIn: Output data required for simulation restart

debugIn: Run simulation in debug mode

2.3. Euler Macro 9

USimReferenceManual, Release 3.0.1

2.3.2 createFluidSimulation Macro

createFluidSimulation (): Define and add the various data structures, initial conditions and primitive variable
computations required for the Euler equations.

2.3.3 addVariable Macro

addVariable (varName, varValue): Specify a variable in the initial condition

addVariable Macro Parameters

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.3.4 addPreExpression Macro

addPreExpression (expression): Specify a preExpression in the initial condition

addPreExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.3.5 addExpression Macro

addExpression (expression): Specify an Expression in the initial condition

addExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.3.6 finiteVolumeScheme Macro

finteVolumeScheme (diffusive): Add a finite volume scheme for solving the Euler equations

finiteVolumeScheme Macro Parameters

diffusive: True/False. Utilize a diffusive, but robust scheme to solve the system

2.3.7 addGravitationalAcceleration Macro

addGravitationalAcceleration (gravitationalAcceleration): Add a gravitational acceleration source
block to the finiteVolumeScheme

addGravitationalAccleration Macro Parameters

gravitationalAcceleration: Acceleration to apply in negative y-direction

10 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

2.3.8 addBoundaryConditionVariable (name, varName, varValue) Macro

addBoundaryConditionVariable (name, varName, varValue): Specify a variable on a userSpecified
boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.3.9 addBoundaryConditionVariable (name, entityName, varName, varValue)
Macro

addBoundaryConditionVariable (name, entityName, varName, varValue): Specify a variable on a user-
Specified boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

entityName: The boundary entity to apply boundary condition on

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.3.10 addBoundaryConditionPreExpression (name, expression) Macro

addBoundaryConditionPreExpression (name, expression): Specify a preExpression on a userSpecified
boundary condition on the ghost entity.

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.3.11 addBoundaryConditionPreExpression (name, entityName, expression)
Macro

addBoundaryConditionPreExpression (name, entityName, expression): Specify a preExpression on a
userSpecified boundary condition on the ghost entity.

2.3. Euler Macro 11

USimReferenceManual, Release 3.0.1

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

entityName: The boundary entity to apply boundary condition on

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.3.12 addBoundaryConditionExpression (name, expression) Macro

addBoundaryConditionExpression (name, expression): Specify an Expression on a userSpecified bound-
ary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.3.13 addBoundaryConditionExpression (name, entityName, expression) Macro

addBoundaryConditionExpression (name, entityName, expression): Specify an Expression on a user-
Specified boundary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

entityName: The boundary entity to apply boundary condition on

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.3.14 boundaryCondition (type) Macro

boundaryCondition (type): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall,
noInflow, noSlip.

2.3.15 boundaryCondition (type, entityName) Macro

boundaryCondition (type, entityName): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall,
noInflow, noSlip.

entityName: The boundary entity to apply boundary condition on

12 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

2.3.16 boundaryCondition (name, type, entityName) Macro

boundaryCondition (name, type, entityName): Apply a boundary condition for the Euler equations on the
ghost entity

boundaryCondition Macro Parameters

name: The name to assign to the boundary condition

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall,
noInflow, noSlip.

entityName: The boundary entity to apply boundary condition on

2.3.17 timeAdvance Macro

timeAdvance (order): Advance simulation in time using an explicit Runge-Kutta method

timeAdvance Macro Parameters

order: The order of explicit Runge-Kutta method. Can be first, second, third, fourth

2.3.18 diffusionTimeAdvance Macro

diffusionTimeAdvance (order): Advance simulation in time using an explicit Super-Time Step method for
diffusion problems

diffusionTimeAdvance Macro Parameters

order: The order of explicit Super-Time Step method. Can be first, second

2.3.19 implicitTimeAdvance Macro

implicitTimeAdvance (order): Advance simulation in time using an implicit method for Poisson type problems

implicitTimeAdvance Macro Parameters

order: The order of implicit method. Currently only None is supported

2.3.20 addOutputDiagnostic (name) Macro

addOutputDiagnostic (name): Add a scalar output diagnostic

addOutputDiagnostic Macro Parameters

name: The name of the output diagnostic

2.3. Euler Macro 13

USimReferenceManual, Release 3.0.1

2.3.21 addOutputDiagnostic (name, numberOfComponents, isVector) Macro

addOutputDiagnostic (name, numberOfComponents, isVector): Add a multi-component output diagnostic

addOutputDiagnostic Macro Parameters

name: The name of the output diagnostic

numberOfComponents: The number of components for the output diagnostic

isVector: True/False. Is the output diagnostic a vector quantity.

2.3.22 addOutputDiagnosticParameter Macro

addOutputDiagnosticParameter (name, varName, varValue): Specify a paramter in an output diagnostic

addOutputDiagnosticParameter Macro Parameters

name: The type of the output diagnostic

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.3.23 addOutputDiagnosticPreExpression Macro

addOutputDiagnosticPreExpression (name, expression): Specify a preExpression in an output diagnos-
tic. Available pre-defined quantities are

preDefined = [rho rhoVx rhoVy rhoVz En Vx Vy Vz P]

addOutputDiagnosticPreExpression Macro Parameters

name: The type of the output diagnostic

expression: The mathematical expression to evaluate. f=f(preExpression,preDefined,variable,t,x,y,z)

2.3.24 addOutputDiagnosticExpression Macro

addOutputDiagnosticExpression (name, expression): Specify an Expression in an output diagnostic.
Available pre-defined quantities are

preDefined = [rho rhoVx rhoVy rhoVz En Vx Vy Vz P]

addOutputDiagnosticExpression Macro Parameters

name: The type of the output diagnostic

expression: The mathematical expression to evaluate. f=f(preExpression,preDefined,variable,t,x,y,z)

14 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

2.3.25 runFluidSimulation Macro

runFluidSimulation (): Evaluate all macros added to the .pre file and generate the .in file

2.4 Ideal MHD Macro

This macro file can be imported to an input file with $ import idealmhd.mac.

This collection of macros can be used to define quantities required for the MHD equations.

Contents

• initializeFluidSimulation Macro
• createFluidSimulation Macro
• addVariable Macro
• addPreExpression Macro
• addExpression Macro
• finiteVolumeScheme (diffusive) Macro
• finiteVolumeScheme (diffusive,basementPressureIn,basementDensityIn) Macro
• addGravitationalAcceleration Macro
• addBoundaryConditionVariable (name, varName, varValue) Macro
• addBoundaryConditionVariable (name, entityName, varName, varValue) Macro
• addBoundaryConditionPreExpression (name, expression) Macro
• addBoundaryConditionPreExpression (name, entityName, expression) Macro
• addBoundaryConditionExpression (name, expression) Macro
• addBoundaryConditionExpression (name, entityName, expression) Macro
• boundaryCondition (type) Macro
• boundaryCondition (type, entityName) Macro
• timeAdvance Macro
• diffusionTimeAdvance Macro
• implicitTimeAdvance Macro
• addOutputDiagnostic (name) Macro
• addOutputDiagnostic (name, numberOfComponents, isVector) Macro
• addOutputDiagnosticParameter Macro
• addOutputDiagnosticPreExpression Macro
• addOutputDiagnosticExpression Macro
• runFluidSimulation Macro

2.4.1 initializeFluidSimulation Macro

initializeFluidSimulation (dimensionality,tStart,tEnd,numFrames,cflNum,gammaIn,muIn,writeRestartIn,debugIn):
Define quanties required for the Euler equations.

initializeFluidSimulation Macro Parameters

dimensionality: 1,2,3. Number of dimensions for the simulation

tStart: Start time for simulation

tEnd: End time for simulation

numFrames: Number of data outputs

2.4. Ideal MHD Macro 15

USimReferenceManual, Release 3.0.1

cflNum: Cfl limit, typically ∆𝑡 = 𝑐𝑓𝑙𝑁𝑢𝑚 * ∆𝑥/𝑉𝑚𝑎𝑥

gammaIn: Adiabatic index for ideal gas eqn. of state. Pressure = (gammaIn - 1.0) * density * internal
energy

muIn: Permeability of free space

writeRestartIn: Output data required for simulation restart

debugIn: Run simulation in debug mode

2.4.2 createFluidSimulation Macro

createFluidSimulation (): Define and add the various data structures, initial conditions and primitive variable
computations required for the MHD equations.

2.4.3 addVariable Macro

addVariable (varName, varValue): Specify a variable in the initial condition

addVariable Macro Parameters

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.4.4 addPreExpression Macro

addPreExpression (expression): Specify a preExpression in the initial condition

addPreExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.4.5 addExpression Macro

addExpression (expression): Specify an Expression in the initial condition

addExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.4.6 finiteVolumeScheme (diffusive) Macro

finteVolumeScheme (diffusive): Add a finite volume scheme for solving the MHD equations

finiteVolumeScheme Macro Parameters

diffusive: True/False. Utilize a diffusive, but robust scheme to solve the system

16 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

2.4.7 finiteVolumeScheme (diffusive,basementPressureIn,basementDensityIn)
Macro

finteVolumeScheme (diffusive,basementPressureIn,basementDensityIn): Add a finite volume scheme for
solving the MHD equations with a density, pressure floor

finiteVolumeScheme Macro Parameters

diffusive: True/False. Utilize a diffusive, but robust scheme to solve the system

basementPressureIn: Floor value for pressure

basementDensityIn: Floor value for density

2.4.8 addGravitationalAcceleration Macro

addGravitationalAcceleration (gravitationalAcceleration): Add a gravitational acceleration source
block to the finiteVolumeScheme

addGravitationalAcceleration Macro Parameters

gravitationalAcceleration: Acceleration to apply in negative y-direction

2.4.9 addBoundaryConditionVariable (name, varName, varValue) Macro

addBoundaryConditionVariable (name, varName, varValue): Specify a variable on a userSpecified
boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.4.10 addBoundaryConditionVariable (name, entityName, varName, varValue)
Macro

addBoundaryConditionVariable (name, entityName, varName, varValue): Specify a variable on a user-
Specified boundary condition on the ghost entity

addBoundaryConditionVariable Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

entityName: The boundary entity to apply boundary condition on

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.4. Ideal MHD Macro 17

USimReferenceManual, Release 3.0.1

2.4.11 addBoundaryConditionPreExpression (name, expression) Macro

addBoundaryConditionPreExpression (name, expression): Specify a preExpression on a userSpecified
boundary condition on the ghost entity.

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.4.12 addBoundaryConditionPreExpression (name, entityName, expression)
Macro

addBoundaryConditionPreExpression (name, entityName, expression): Specify a preExpression on a
userSpecified boundary condition on the ghost entity.

addBoundaryConditionPreExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

entityName: The boundary entity to apply boundary condition on

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.4.13 addBoundaryConditionExpression (name, expression) Macro

addBoundaryConditionExpression (name, expression): Specify an Expression on a userSpecified bound-
ary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.4.14 addBoundaryConditionExpression (name, entityName, expression) Macro

addBoundaryConditionExpression (name, entityName, expression): Specify an Expression on a user-
Specified boundary condition on the ghost entity.

addBoundaryConditionExpression Macro Parameters

name: The type of the boundary condition to apply. Must be userSpecified.

entityName: The boundary entity to apply boundary condition on

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

18 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

2.4.15 boundaryCondition (type) Macro

boundaryCondition (type): Apply a boundary condition for the MHD equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall,
noInflow, noSlip.

2.4.16 boundaryCondition (type, entityName) Macro

boundaryCondition (type, entityName): Apply a boundary condition for the Euler equations on the ghost entity

boundaryCondition Macro Parameters

type: The type of the boundary condition to apply. Can be one of: periodic, copy, userSpecified, wall,
noInflow, noSlip.

entityName: The boundary entity to apply boundary condition on

2.4.17 timeAdvance Macro

timeAdvance (order): Advance simulation in time using an explicit Runge-Kutta method

timeAdvance Macro Parameters

order: The order of explicit Runge-Kutta method. Can be first, second, third, fourth

2.4.18 diffusionTimeAdvance Macro

diffusionTimeAdvance (order): Advance simulation in time using an explicit Super-Time Step method for
diffusion problems

diffusionTimeAdvance Macro Parameters

order: The order of explicit Super-Time Step method. Can be first, second

2.4.19 implicitTimeAdvance Macro

implicitTimeAdvance (order): Advance simulation in time using an implicit method for Poisson type problems

implicitTimeAdvance Macro Parameters

order: The order of implicit method. Currently only None is supported

2.4. Ideal MHD Macro 19

USimReferenceManual, Release 3.0.1

2.4.20 addOutputDiagnostic (name) Macro

addOutputDiagnostic (name): Add a scalar output diagnostic

addOutputDiagnostic Macro Parameters

name: The name of the output diagnostic

2.4.21 addOutputDiagnostic (name, numberOfComponents, isVector) Macro

addOutputDiagnostic (name, numberOfComponents, isVector): Add a multi-component output diagnostic

addOutputDiagnostic Macro Parameters

name: The name of the output diagnostic

numberOfComponents: The number of components for the output diagnostic

isVector: True/False. Is the output diagnostic a vector quantity.

2.4.22 addOutputDiagnosticParameter Macro

addOutputDiagnosticParameter (name, varName, varValue): Specify a paramter in an output diagnostic

addOutputDiagnosticParameter Macro Parameters

name: The type of the output diagnostic

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.4.23 addOutputDiagnosticPreExpression Macro

addOutputDiagnosticPreExpression (name, expression): Specify a preExpression in an output diagnos-
tic. Available pre-defined quantities are

preDefined = [rho rhoVx rhoVy rhoVz En Vx Vy Vz P Pb divB Jx Jy Jz]

addOutputDiagnosticPreExpression Macro Parameters

name: The type of the output diagnostic

expression: The mathematical expression to evaluate. f=f(preExpression,preDefined,variable,t,x,y,z)

20 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

2.4.24 addOutputDiagnosticExpression Macro

addOutputDiagnosticExpression (name, expression): Specify an Expression in an output diagnostic.
Available pre-defined quantities are

preDefined = [rho rhoVx rhoVy rhoVz En Vx Vy Vz P Pb divB Jx Jy Jz]

addOutputDiagnosticExpression Macro Parameters

name: The type of the output diagnostic

expression: The mathematical expression to evaluate. f=f(preExpression,preDefined,variable,t,x,y,z)

2.4.25 runFluidSimulation Macro

runFluidSimulation (): Evaluate all macros added to the .pre file and generate the .in file

2.5 Anisotropic Conductivity Macro

This macro file can be imported to an input file with $ import anisotropicConductivity.mac.

This collection of macros can be used to add the computation of anisotropic conductivity tensor to MHD input files.

Contents

• addAnisotropicConductivity () Macro
• addAnisotropicConductivity (DIFFUSION_CFL) Macro
• addKPerpendicularParameter Macro
• addKPerpendicularPreExpression Macro
• addKPerpendicularExpression Macro
• addKParallelParameter Macro
• addKParallelPreExpression Macro
• addKParallelExpression Macro
• anisotropicDiffusionScheme Macro
• diffusionTimeAdvance Macro

2.5.1 addAnisotropicConductivity () Macro

addAnisotropicConductivity (): Adds computation of anisotropic conductivity tensor to MDH input files.

2.5.2 addAnisotropicConductivity (DIFFUSION_CFL) Macro

addAnisotropicConductivity (DIFFUSION_CFL): Adds computation of anisotropic conductivity tensor
to MDH input files.

addAnisotropicConductivity Macro Parameters

DIFFUSION_CFL: Apply a separate CFL condition to the diffusion solve, specified by the value of
DIFFUSION_CFL

2.5. Anisotropic Conductivity Macro 21

USimReferenceManual, Release 3.0.1

2.5.3 addKPerpendicularParameter Macro

addKPerpendicularParameter (varName, varValue): Specify a variable for computing kPerpendicular

addKPerpendicularParameter Macro Parameters

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.5.4 addKPerpendicularPreExpression Macro

addKPerpendicularPreExpression (expression): Specify a preExpression for computing kPerpendicular

addKPerpendicularPreExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.5.5 addKPerpendicularExpression Macro

addKPerpendicularExpression (expression): Specify an Expression for computing kPerpendicular

addKPerpendicularExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(expression,variable,t,x,y,z)

2.5.6 addKParallelParameter Macro

addKParallelParameter (varName, varValue): Specify a variable for computing kParallel

addKParallelParameter Macro Parameters

varName: Name to assign the quantity that is independent of grid position

varValue: Value to assign the quantity that is independent of grid position

2.5.7 addKParallelPreExpression Macro

addKParallelPreExpression (expression): Specify a preExpression for computing kParallel

addKParallelPreExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(preExpression,variable,t,x,y,z)

2.5.8 addKParallelExpression Macro

addKParallelExpression (expression): Specify an Expression for computing kParallel

22 Chapter 2. Macros

USimReferenceManual, Release 3.0.1

addKParallelExpression Macro Parameters

expression: The mathematical expression to evaluate. f=f(expression,variable,t,x,y,z)

2.5.9 anisotropicDiffusionScheme Macro

anisotroipcDiffusionScheme (): Add a finite volume discretization of an anisotropic diffusion operator,
∇ · 𝜅∇Φ

2.5.10 diffusionTimeAdvance Macro

diffusionTimeAdvance (order): Add an explicit Super-Time Step scheme for evolving the total energy of the
gas with an anisotropic conductivity tensor

diffusionTimeAdvance Macro Parameters

order: Order of the method. Can be ‘first’, ‘second’.

2.5. Anisotropic Conductivity Macro 23

USimReferenceManual, Release 3.0.1

24 Chapter 2. Macros

CHAPTER

THREE

GRID

Defines the simulation grid for USim. An example Grid block is shown below:

<Grid domain>
kind = cart1d
ghostLayers = 2
lower = [0.0]
upper = [1.0]
cells = [512]

</Grid>

The common parameters accepted by this updater block are listed below:

kind (string) All Grid blocks take a string kind that species the type of USim simulation grid. The different kinds
of grid available in USim are:

3.1 cart (1d, 2d, 3d)

Used for defining a grid with regular spacing in the x, y, and z directions.

3.1.1 Parameters

lower (float vector) Defines the lower x, y, z coordinates in the form lower=[XLOWER, YLOWER,
ZLOWER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra compo-
nents are ignored.

upper (float vector) Defines the upper x, y, z coordinates in the form upper=[XUPPER, YUPPER, ZUPPER].
In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra components are
ignored.

cells (integer vector) Defines the number of cells in the domain, cells=[CELLSX, CELLSY, CELLSZ].
Extra components are ignored, and in 1D only the first component is used, similarly in 2D only the first 2
components are used and in 3D the first 3 components are used.

isRadial (boolean) Defines whether or not coordinates are radial (r, 𝜃, z) or Cartesian (x, y, z).

periodicDirs (integer vector) Define the directions where periodic boundary conditions will be applied.
perioddicDirs = [0, 1] tells USim that the grid is periodic in the X and Y directions if a periodicCartBc is
called.

ghostLayers (integer) Tell USim how many ghost layers the grid should use. The default value is 1.

writeGeom (boolean) Tell USim whether or not to write out geometrical data. Defaults to false.

writeConn (boolean) Tell USim whether or not to write out connectivity data. Defaults to false.

25

USimReferenceManual, Release 3.0.1

writeHalos (boolean) Tell USim whether the halo data and grid should be dumped. Defaults to false. Useful
for debugging.

3.1.2 Example

Sample code block

<Grid domain>
kind = cart2d
ghostLayers = 2
lower = [0.0, 0.0]
upper = [1.0, 1.0]
cells = [CELLX, CELLSY]
periodicDirs = [0]
isRadial = false

</Grid>

3.2 bodyFitted (1d, 2d, 3d)

Used for defining block structured body fitted grid by defining the vertices of each cell. Maps a regular Cartesian
grid to a more complex grid with curved boundaries. Instructions on generating body fitted meshes are given in
usimbase-tutorial-lesson-4.

3.2.1 Parameters

Vertices (block) Defines the coordinates of the vertices of the grid

lower (float vector) Defines the lower mapping x, y, z coordinates in the form lower=[XLOWER, YLOWER,
ZLOWER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra compo-
nents are ignored.

upper (float vector) Defines the upper mapping x, y, z coordinates in the form upper=[XUPPER, YUPPER,
ZUPPER]. In 1D only 1 component is required, in 2D 2 components, in 3D 3 components. Extra compo-
nents are ignored.

When combined with the Vertex, kind = funcVertCalc, the vertex mapping in the x direction ranges from
XLOWER to XUPPER and the true x position is xnew = f(x) for x between XLOWER and XUPPER

cells (integer vector) Defines the number of cells in the domain, cells=[CELLSX, CELLSY, CELLSZ].
Extra components are ignored, and in 1D only the first component is used, similarly in 2D only the first 2
components are used and in 3D the first 3 components are used.

isRadial (boolean) Defines whether or not coordinates are radial (r, 𝜃, z) or Cartesian (x, y, z). Defaults to
false or cartesian coordinates

ghostLayers (integer) Tell USim how many ghost layers the grid should use. The default value is 1.

writeGeom (boolean) Tell USim whether or not to write out geometrical data. Defaults to false.

writeConn (boolean) Tell USim whether or not to write out connectivity data. Defaults to false.

writeHalos (boolean) Tell USim whether the halo data and grid should be dumped. Defaults to false. Useful
for debugging.

26 Chapter 3. Grid

USimReferenceManual, Release 3.0.1

3.2.2 Example

Sample code block

<Grid domain>
kind = bodyFitted2d

lower = [0.0, 0.0]
upper = [1.0, 1.0]
cells = [R_CELLS, $Z_INLET_CELLS+Z_CURVE_CELLS$]
ghostLayers = 2

isRadial = 1

<Vertices vertices>
kind = funcVertCalc

<Function f>
kind = exprFunc

z_inlet = Z_INLET

z_inlet_cells = $Z_INLET_CELLS*1.0$
z_curve_cells = $Z_CURVE_CELLS*1.0$

r_inner = R_INNER
r_outer = R_OUTER
r_cells = $R_CELLS*1.0$

dz_inlet = Z_INLET/Z_INLET_CELLS

circ_rad = CIRC_RAD

cell spacings in computational space
dzc = $1.0/(Z_INLET_CELLS+Z_CURVE_CELLS)$
drc = $1.0/R_CELLS$
zc_inlet = $1.0*Z_INLET_CELLS/(Z_INLET_CELLS+Z_CURVE_CELLS)$

preExprs = [\
"r = x", \
"z = y", \
"iz = rint(z/dzc)", \
"ir = rint(r/drc)", \
"zp_inlet = if (iz<=z_inlet_cells, dz_inlet*iz, 0.0)", \
"rp_inlet = if (iz<=z_inlet_cells, r_inner+ir*(r_outer-r_inner)/r_cells, 0.0)", \
"rr = r_inner + r*(r_outer-r_inner)", \
"zz = 0.5*_pi*(z-zc_inlet)/(1.0-zc_inlet)", \
"rp_curve = if (iz>z_inlet_cells, rr*cos(zz), 0.0)", \
"zp_curve = if (iz>z_inlet_cells, rr*sin(zz) + z_inlet, 0.0)", \
"rp = rp_curve+rp_inlet", \
"zp = zp_curve+zp_inlet" \
]

exprs = ["rp", "zp"]

</Function>
</Vertices>

</Grid>

3.2. bodyFitted (1d, 2d, 3d) 27

USimReferenceManual, Release 3.0.1

3.3 unstructured

Reads an unstructured grid generated by an external tool into USim. Currently USim does not do its own
decomposition so it is assumed that the decomposition data is stored in the grid. Details on generating grids
using GMSH and CUBIT/Trelis are given in usimbase-tutorial-lesson-5.

3.3.1 Parameters

Creator (block) Defines the what type of grid will be read in. USim currently supports 2 different types of
grids: Exodus meshes (frequently generated by CUBIT or Trelis):

<Creator ctor>
kind = exodus
ndim = 3
file = NElementCube_1000.g

</Creator>

or

<Creator ctor>
kind = exodus
ndim = 3
file = NElementCube_1000.exo

</Creator>

and meshes generated with gmsh:

<Creator ctor>
kind = gmsh
ndim = 2
file = rampgeom.msh

</Creator>

isRadial (boolean) Defines whether or not coordinates are radial (r, 𝜃, z) or Cartesian (x, y, z). Defaults to
false or cartesian coordinates

ghostLayers (integer) Tell USim how many ghost layers the grid should use. The default value is 1.

writeGeom (boolean) Tell USim whether or not to write out geometrical data. Defaults to false.

writeConn (boolean) Tell USim whether or not to write out connectivity data. Defaults to false.

writeHalos (boolean) Tell USim whether the halo data and grid should be dumped. Defaults to false. Useful
for debugging.

3.3.2 Example

Sample code block

<Grid domain>
kind = unstructured

ghostLayers = 2

<Creator ctor>
kind = gmsh
ndim = 2

28 Chapter 3. Grid

https://cubit.sandia.gov/
http://www.csimsoft.com/trelis.jsp
http://geuz.org/gmsh/

USimReferenceManual, Release 3.0.1

file = rampgeom.msh
</Creator>

</Grid>

3.3. unstructured 29

USimReferenceManual, Release 3.0.1

30 Chapter 3. Grid

CHAPTER

FOUR

DATASTRUCT

Basic data structure of USim. Updaters perform operations on DataStructs and write out to DataStructs. An example
DataStruct block is shown below:

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 9

</DataStruct>

The parameters accepted by this updater block are listed below:

onGrid (string) All data structures take a string that tells the data structure which grid it is defined on.

writeOut (boolean) Tells USim whether to write out data from the DataStruct or not.

kind (string) All DataStruct blocks take a string kind that specifies the type of DataStruct. The different kinds of
DataStruct available in USim are:

4.1 bin

A bin is a data structure for grouping unstructured grid elements into a regular grid. The bin superimposes
a regular grid over a structured or unstructured grid. Each element of the bin stores data about which cells
within the structured or unstructured grid are contained within its boundaries. The data structure is used for
such things as computing line integrals on unstructured meshes since it reduces the search time for finding what
cell a particular point belong in.

4.1.1 Parameters

scale (float) Estimate for how much larger (in length) a typical bin element is than the average grid size. If
domain is a regular grid with size 100X100 and scale = 2.0 then the bin would be a regular grid with size
50X50 with the same extents as the domain.

4.1.2 Example

<DataStruct cellBin>
kind = bin
onGrid = domain
scale = 2.0

</DataStruct>

31

USimReferenceManual, Release 3.0.1

4.2 dynVector

A dynVector is a single vector that has the same value on all processor domains. The dynVector changes with
time and its value is recorded at every time step in the output files when writeOut = true. An example of the use
of of the dynVector would be storing the total energy of the system at every time step.

4.2.1 Parameters

numComponents (integer) Defines the number of components in the dynVector.

4.2.2 Example

<DataStruct totalMass>
kind = dynVector
onGrid = domain
numComponents = 1

</DataStruct>

4.3 nodalArray

A nodalArray is a distributed array. This means during parallel runs the array is distributed across the different
MPI domains. The nodalArray knows how to synchronize domain boundaries.

4.3.1 Parameters

numComponents (integer) Defines the number of components in the distributed array. Solving the Euler
equations requires 5 variables per grid point so in this case numComponents=5.

useEpetraVector (boolean) Use an Epetra compatible version of the nodal component array. Required if
the data structured is used as an input/output vector for implicitMultiUpdater (1d, 2d, 3d)

4.3.2 Example

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 18

</DataStruct>

32 Chapter 4. DataStruct

CHAPTER

FIVE

DATASTRUCTALIAS

DataStructAlias is a pointer to a DataStruct. The DataStructAlias can be used everywhere a DataStruct can be used.
An example DataStructAlias block is shown below:

<DataStructAlias electronDensity>
kind = nodalArray
target = q
componentRange = [0,1]
writeOut = false

</DataStructAlias>

The parameters accepted by this updater block are listed below:

kind (string) The kind of DataStruct. This must be nodalArray.

target (string) The DataStruct that the DataStructAlias is pointing to. DataStructAlias only works with DataStruct
of kind = nodalArray

componentRange (integer vector) The vector must have 2 components. The first component specifies the starting
index of DataStruct that the DataStructAlias points to. The second value is the upper limit that the DataStruc-
tAlias points to - DataStructAlias can access up to, but not included the index of the second component.

An example follows. Suppose we have the DataStruct

<DataStruct q>
kind = nodalArray
onGrid = domain
numComponents = 9

</DataStruct>

with DataStructAlias

<DataStructAlias electronDensity>
kind = nodalArray
target = q
componentRange = [3,5]
writeOut = false

</DataStructAlias>

The DataStructAlias points to element 3, 4 of DataStruct.

writeOut (boolean) Tells USim whether to write out data from the DataStructAlias or not.

33

USimReferenceManual, Release 3.0.1

34 Chapter 5. DataStructAlias

CHAPTER

SIX

UPDATESTEP

Defines an update step. An update step is a sequence of updaters with a possible synchronization that occurs at the end
of the update steps. Synchronization is used in parallel runs for updating ghost cell values along the specified domains.
An example UpdateStep code block is given below:

<UpdateStep bcStep>
updaters = [bcLeft, bcRight, bcTop, bcBottomIon, bcBottomElectron, bcBottomEm]
syncVars = [qnew]

</UpdateStep>

In this code block all the boundary condition updaters are called then “qnew” is synchronized across MPI barriers.
The parameters for this UpdateStep have the following meanings:

updaters (string vector, required) Defines the list of updaters called in this update step. The updaters are called
in the order they are presented in the list.

syncVars (string vector, optional) Defines a list of nodalArrays that are synchronized accross MPI boundaries at
the completion of the update step.

operation (string, optional) Used in combination with multiUpdater (1d, 2d, 3d) and implicitMultiUpdater (1d,
2d, 3d). Accepted values are integrate or operate. When integrate is used, integration is performed imediately
after it is called. When operate is called an operation is performed on the newly integrated values (for each sub
step of the runge-kutta method). If operation is not used then the updaters are simply evaluated.

35

USimReferenceManual, Release 3.0.1

36 Chapter 6. UpdateStep

CHAPTER

SEVEN

UPDATESEQUENCE

Update sequence takes a series of update steps and processes them in order. An example UpdateSequence is shown
below:

<UpdateSequence sequence>
startOnly = [initStep]
restartOnly = [restoreStep]
loop = [restrictions, hyperStep, correctionStep, bcStep, copyStep]
writeOnly = [pressureStep]

</UpdateSequence>

The parameters for this UpdateSequence have the following meanings:

startOnly (string vector) Defines a list of UpdateSteps to apply only at the beginning of the simulation.

restartOnly (string vector) Defines a list of UpdateSteps to apply only in the restore phase of a restarted simu-
lation.

loop (string vector) Defines a list of UpdateSteps that are continually looped over until the simulation completes.

writeOnly (string vector) Defines a list of UpdateSteps to apply only at data output time.

37

USimReferenceManual, Release 3.0.1

38 Chapter 7. UpdateSequence

CHAPTER

EIGHT

UPDATER

Updaters are the fundamental computation infrastructure in USim. Given a set of input data structures, in, an Updater
computes a set of output data structures out according to a set of rules defined by the kind of Updater. A simple updater
based on a combiner (1d, 2d, 3d) Updater for computing the gas and magnetic pressure of a magnetohydrodynamic
plasma is given below:

<Updater pressCalc>
kind = combiner1d

onGrid = domain
input array

in = [q]

ouput data-structures
out = [pressure]

labels for components in the input q array
indVars_q = ["rho", "rhou", "rhov", "rhow", "Er","bx","by","bz", "psi"]

Adiabatic index, or ratio of specific heats
gasGamma = GAS_GAMMA

Permeability of free space
mu0 = $MU0$
preExprs = ["pr = (gasGamma-1)*(Er - (0.5*(rhou^2+rhov^2+rhow^2)/rho)-\

(0.5/mu0)*(bx*bx+by*by+bz*bz))", \
"pm = (0.5/mu0)*(bx*bx+by*by+bz*bz)"]

exprs = ["pr", "pm"]
</Updater>

The following parameters are common to all Updater blocks:

onGrid (string, required) All updaters take a string that says which grid the updater is applied to. This grid corre-
sponds to that which the input nodalArray is defined on

kind (string, required) All updater blocks take a string kind that species the type of updater block.

The following Updater kind attributes can be specified to perform simple operations (initialize, copy, transform)
on nodalArray and dynVector data structures:

8.1 initialize (1d, 2d, 3d)

Initializes a nodalArray according to a user specified function block.

39

USimReferenceManual, Release 3.0.1

8.1.1 Data

out (string vector, required) Outputs 1 to N are nodalArrays which are initialized according to the function of
this updater. If multiple outs are specified, then each nodalArray must have the same number components.

8.1.2 Parameters

There are no additional parameters for this kind of Updater

8.1.3 Sub-Blocks

Function (block, required) exprFunc for specifying the initial condition.

8.1.4 Example

The following code block specificies the initial condition for a magnetized shock tube for a two temperature
plasma:

<Updater init>
kind = initialize1d
onGrid = domain
out = [q]

<Function func>
kind = exprFunc

pr = 1.0
pl = 0.1

rhor = 1.0
rhol = 0.125
mu0 = MU0
gas_gamma = GAMMA

preExprs = [\
"rho = if (x > 0.0, rhol, rhor)", \
"P = if(x > 0.0, pl, pr)", \
"bx = 0.75*sqrt(mu0)", \
"by = if(x>0.0, -1.0*sqrt(mu0), 1.0*sqrt(mu0))", \
"bz = 0.0",\
"phi = 0.0",\

]

exprs = ["rho", "0.0", "0.0", "0.0", \
"P/(gas_gamma-1)+(0.5/mu0)*(bx*bx+by*by)",\
"bx","by","bz","phi","0.5*P/(gas_gamma-1)"]

</Function>
</Updater>

40 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.2 linearCombiner (1d, 2d, 3d)

Sum a user specified list of input nodalArrays, where each component can be scaled by a scalar factor and store
the ouput in a single user-specifed nodalArray. All input and output data structures must have the same number
of components.

The linearCombiner accepts the following parameters, in addition to those required by Updater:

8.2.1 Data

in (string vector, required) Input 1 to N are input nodalArrays to be summed. Each component can be scaled
by a scalar factor.

out (string vector, required) Output is a nodalArray which will contain the sum of the inputs.

8.2.2 Parameters

coeffs (float vector, required) A vector of n scalars, such that out =
∑︀𝑛−1

𝑠=0 𝑐𝑠in𝑠

8.2.3 Example

The following code block copies input nodalArray qnew to output nodalArray q:

<Updater copier>
kind = linCombinerUpdater
onGrid = domain

in = [qnew]
out = [q]

coeffs = [1.0]
</Updater>

8.3 uniformCombiner (1d, 2d, 3d)

Performs an identical arithmetic operation on all components of a set of input nodalArrays and stores the ouput
in a single user-specifed nodalArray using an expression evaluator. All input and output data structures must
have the same number of components. The expression evaluator recognizes positions x, y, z and time t, along
with the current timestep, dt, and the cell volume, dVolume. The expression evaluator checks the user supplied
expression for validity and errors on finding undefined expressions.

The uniformCombiner accepts the following parameters, in addition to those required by Updater:

8.3.1 Data

in (string vector, required) Inputs 1 to N are input nodalArrays which will be supplied to the expression
evaluator.

out (string vector, required) Output is a nodalArray which will contain the evaluation.

8.2. linearCombiner (1d, 2d, 3d) 41

USimReferenceManual, Release 3.0.1

8.3.2 Parameters

indVars_inName (string vector, required) For each input variable an “indVars” string vector must be de-
fined. So if in = [q1,k2] where q1 and electricField are both nodalArray then the uniformCombiner block
must define indVars_q1 = [”q1”] and indVars_k2 = [”k2”]. Note that the labels “q1” and “k2” are arbi-
trary; the requirement is that there is a single unique name for each input data structure, irrespective of the
number of components of that data structure.

exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the
output array. Only one string can be supplied; this same expression is applied to all components of the
input arrays uniformly. Available command are defined by the muParser (http://muparser.sourceforge.net/)

preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities
based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined
by the muParser (http://muparser.sourceforge.net)

other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs.

8.3.3 Example

The code block below demonstrates the addition of two input nodalArray and placing the result into one single
output nodalArray:

<Updater computeQ2>
kind = uniformCombiner1d
onGrid = domain

in = [q1, k2]
out = [q2]

indVars_q1 = ["q1"]
indVars_k2 = ["k2"]

exprs = ["q1+dt*k2"]
</Updater>

8.4 combiner (1d, 2d, 3d)

Performs arithmetic operations on a set of input nodalArrays and stores the ouput in a single user-specifed
nodalArray using an expression evaluator. The expression evaluator recognizes positions x, y, z and time t,
along with the current dt and the cell volume, dVolume. The expression evaluator checks the user supplied
expression for validity and errors on finding undefined expressions.

The combiner accepts the following parameters, in addition to those required by Updater:

8.4.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the expression eval-
uator.

dynVectors (string vector) Input 1 to N are input dynVectors which will be supplied to the expression eval-
uator.

out (string vector, required) Output is a nodalArray which will contain the output of the evaluation.

42 Chapter 8. Updater

http://muparser.sourceforge.net/
http://muparser.sourceforge.net

USimReferenceManual, Release 3.0.1

8.4.2 Parameters

indVars_inName (string vector, required) For each input variable an “indVars” string vector must be de-
fined. So if in = [magneticField, electricField] where magneticField and electricField are each 3-
component nodalArrays then the combiner block must define indVars_magneticField = [”bx”, “by”,
“bz”] and indVars_electricField = [”ex”, “ey”, “ez”]. Note that the labels “bx”, “by”, “bz” and “ex”,
“ey”, “ez” are arbitrary; the requirement is that there is a unique name for each component of each input
data structure.

dynVars_ (string vector) For each dynVector variable a “dynVars” string vector must be defined. So if dyn-
Vectors = [a, b] where a and b are each 3-component dynVectors then the combine block must define
dynVectorVars_a = [”a1”,”a2”,”a3”] and dynVectorVars_b = [”b1”,”b2”,”b3”]. Note that the labels
“a1”,”a2”,”a3” and “b1”,”b2”,”b3” are arbitrary; the requirement is that there is a unique name for each
component of each input data structure.

exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the
output array. The number of strings must be identical to the number of components in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities
based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined
by the muParser (http://muparser.sourceforge.net)

other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs.

8.4.3 Example

The following code block demonstrates the use of a combiner to compute the cross product of two 3-component
nodalArrays (magneticField and electricField) using preExprs, and store the output multiplied by a user-
specifed constant (factor) in a 3-component nodalArray (eCrossB)

<Updater computeECrossB>
kind = combiner2d
onGrid = domain

in = [magneticField, electricField]
out = [eCrossB]

indVars_magneticField = ["bx", "by", "bz"]
indVars_electricField = ["ex", "ey", "ez"]

factor = 10.0

preExprs = ["Sx = (ey*bz-ez*by)", "Sy = (ez*bx-ex*bz)", "Sz =
(ex*by-ey*bx)"]

exprs = ["factor*Sx", "factor*Sy", "factor*Sz"]
</Updater>

8.5 dynVectorOperator

Performs arithmetic operations on a set of input dynVectors and stores the ouput in a single user-specifed dyn-
Vector using an expression evaluator. The expression evaluator recognizes time t, along with the current timestep

8.5. dynVectorOperator 43

http://muparser.sourceforge.net/
http://muparser.sourceforge.net

USimReferenceManual, Release 3.0.1

dt. The expression evaluator checks the user supplied expression for validity and errors on finding undefined
expressions.

The dynVectorOperator accepts the following parameters, in addition to those required by Updater:

8.5.1 Data

in (string vector, required) Input 1 to N are input dynVectors which will be supplied to the expression evalu-
ator.

out (string vector, required) Output is a dynVector which will contain the evaluation.

8.5.2 Parameters

indVars_inName (string vector, required) For each input variable an indVars string vector must be de-
fined. So if in = [charge, current] where charge and current are each 1-component dynVectors then the
dynVectorOperator block must define indVars_charge = [”Q”] and indVars_current = [”I”]. Note that
the labels “Q” and “I” are arbitrary; the requirement is that there is a unique name for each component of
each input data structure.

exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the
output array. The number of strings must be identical to the number of components in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities
based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined
by the muParser (http://muparser.sourceforge.net)

other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs.

8.5.3 Example

The following code block demonstrates the use of a dynVectorOperator to compute update the current associated
with the flow of charge. Two input dynVectors (charge and current) are combined in an exprs and the output is
stored in a dynVector (current). Note that a dynVector can be both an input data structure and and output data
structure for this updater.

<Updater integrateCurrent>
kind = dynVectorOperator
in = [charge, current]
out = [current]

indVars_charge = ["Q"]
indVars_current = ["I"]
C = CAPACITANCE
bgL = L0

exprs = ["I-dt*(1.0/bgL)*(Q/C)"]
</Updater>

The following Updater kind attributes can be specified to perform more advanced operations based on pre-
defined USim capabilities:

44 Chapter 8. Updater

http://muparser.sourceforge.net/
http://muparser.sourceforge.net

USimReferenceManual, Release 3.0.1

8.6 equation (1d, 2d, 3d)

The equation updater is used to update a Algebraic Equations and evaluates a set of input nodalArrays and stores
the ouput in one or more user-specified nodalArrays. The number of inputs and outputs are defined by the kind
of Algebraic Equations being used for the Equation.

The equation updater accepts the following parameters, in addition to those required by Updater:

8.6.1 Data

in (string vector, required) Inputs 1 to N are nodalArrays which will be supplied to the source through the
Equation block.

out (string vector, required) Outputs 1 to N are nodalArrays which will contain the output of the Source.

8.6.2 Parameters

There are no additional parameters for this kind of Updater.

8.6.3 Sub-Blocks

Equation Defines the kind of source being solved. Equation in this case is actually a kind of Algebraic
Equations. If multiple <Equation> blocks are defined then the results are added together to produce the
output.

8.6.4 Example

The following code block demonstrates the usage of the equation updater combined with the bremsPowerSrc
source

<Updater radiationSourceUpdater>
kind = equation1d
onGrid = domain
in = [elecNumDensity, temperature, zeffective]
out = [radiationPower]

<Equation Bremsstrahlung>
kind = bremsPowerSrc

</Equation>
</Updater>

8.7 computePrimitiveState(1d, 2d, 3d)

The computePrimitiveState updater computes a vector of primitive variables, w = w(q), (e.g. density, ve-
locity, pressure), given a vector of conserved variables q (e.g. density, momentum, total energy) according to
relationship specified by a Hyperbolic Equations.

The computePrimitiveState updater accepts the parameters below, in addition to those required by Updater.

8.6. equation (1d, 2d, 3d) 45

USimReferenceManual, Release 3.0.1

8.7.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined
by the choice of Hyperbolic Equations.

out (string vector, required) Output is a nodalArray which will contain w (q). The number of components
is defined by the choice of Hyperbolic Equations.

8.7.2 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines q, ℱ (w), w = w(q), along with the
eigensystem associated with ℱ (w).

8.7.3 Example

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with computePrim-
itiveState(1d, 2d, 3d) to compute w (q)

<Updater computePrimitiveState>
kind = computePrimitiveState1d

onGrid = domain
input data-structures

in = [q,electricField,current,chargeState,resistivity]

ouput data-structures
out = [w]

<Equation mhd>
kind = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"

</Equation>

</Updater>

8.8 vertexJetUpdater (1d, 2d, 3d)

Initializes a fluid jet based on a tip location and the vector from a center point. Can be used to initialize multiple
jets based on ideal gas laws or general equation of state using Propaceos tables. This updater was designed for
simulating plasma jet merging experiments.

8.8.1 Data

out (string vector, required) The nodalArray in which to store the initialized fluid jet variables. If multiple
out nodalArray are specified, then each nodalArray must have the same number components; each out
data structure will be initialized according to this updater.

46 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.8.2 Parameters

width (float) The width of the initialization region. The jet is initialized in a region with width width which
is perpendicular to the direction from the jet vertex to the origin.

length (float) The length of the initialization region. The jet is initialized in a region from the vertex to a
distance length from the tip of the vertex away from the origin.

model (string) The equation system that should be used to model the jet. Model should be a fluid system
such as eulerEqnEqn, idealMhdEqn, twoTemperatureMhdEqn, twoTemperatureMhdEosEqn. USim will
request that values that need to be initialized in the individual models be initialized in this updater as well.

origin (float vector) The location where the jet points.

radialVelocity (float) Required only if the velocityFunction block is not specified. Provides a bulk ve-
locity for the jet.

numberDensity (float) Characteristic number density of the fluid. If the normalizedDensityFunction has a
peak value of 1 then the peak value of the number density of the jet will be numberDensity. Required if
speciesMass is specified. This term is also required if a propaceos filename is specified.

speciesMass (float) Mass of the atomic species (in Kg). Required if numberDensity is specified. The
parameter is also required if a propaceos filename is specified.

density (float) If neither numberDensity or speciesMass is specified then USim expects the characteristic
mass density density to be specified.

pressure (float) The pressure of the jet (constant throughout the jet). Either the pressure or temperature for
the jet must be defined. USim checks if the pressure is set first and if it is it uses that for initialization,
otherwise it checks for temperature.

temperature (float) The temperature of the jet. Either the pressure or the temperature for the jet must be
defined. USim checks if the pressure is set first and if it is it uses that for initialization, otherwise it checks
for temperature.

vertex_n (float vector) vertex_n defines the tip of the nth jet. n must be a number from 0 to the number of
jets in the simulation. If you skip a number the subsequent jets will be ignored. Each jet has the exact
same properties, but different orientations. The jet points towards the origin.

xAxis (float vector) Allows the user to define an alternative xAxis. The coordinates for the jet vertex will be
rotated to the new axis. Magnitude of the vector does not matter.

yAxis (float vector) If the user defines an xAxis they may also define a yAxis otherwise USim picks its own
y Axis. The yAxis should be chosen perpendicular to the xAxis. The Magnitude of the vector does not
matter.

filename (string) Name of the propaceos file to use if a general equation of state is required.

includeElectronTemperature (boolean) If filename is specified then you may or may not need to have
the electron energy initialized by USim, depending on the model being used. A two-temperature model
will need to set the electron energy along with the bulk energy.

electronTemperatureIndex (int) If the includeElectronTemperature is true then the user will need to
specify the index in the in vector for the electron energy equation so USim knows where to initialize the
electron energy.

8.8.3 Sub-Blocks

normalizedDensityFunction (block) The desired plasma jet density is scaled by the normalized den-
sity function. As a result the normalized density function should have values that range from 0 to 1. The

8.8. vertexJetUpdater (1d, 2d, 3d) 47

USimReferenceManual, Release 3.0.1

density function is a function of x,y,z where x is measured from the tip of the jet along its axis. y and z are
perpendicular to this direction.

velocityFunction (block) The velocity function specifies the velocity of the jet as a function of space
x,y,z. The density function is a function of x,y,z where x is measured from the tip of the jet along its axis.
y and z are perpendicular to this direction.

8.8.4 Example

<Updater jetSet>
kind = vertexJetUpdater3d

origin = [0.0, 0.0, 0.0]
width = 0.05
length = 0.5

radialVelocity = $-U$

numberDensity = RHO_JET/MI
speciesMass = MI
temperature = TKELVIN

<normalizedDensityFunction>
kind = exprFunc
preExprs = ["R=1.1e-2","zd=4.5e-2","r=sqrt(y*y+z*z)","alpha=3.8",\

"G=exp(-(r*r/(R*R)))","kappa=(x/(alpha*zd))^alpha"]
exprs = ["max(1.0*G*kappa*exp(alpha-(x/zd)),1.0e-6)"]

</normalizedDensityFunction>

vertex0 = [0.25, 0.0, 0.0]
vertex1 = [0.0, 0.25, 0.0]
vertex2 = [0.0, 0.0, 0.25]

model = idealMhdEosEqn
mu0 = MU0

onGrid = domain
filename = Ar_Ni_1e^10_10group_NLTE_20110427.prp

out = [q]
</Updater>

The following Updater kind attributes can be specified to compute finite volume discretizations of a range of
vector calculus operators:

8.9 firstOrderMusclUpdater (1d, 2d, 3d)

The firstOrderMusclUpdater computes an first order upwind discretization of the spatial component of a non-
linear hyperbolic system, possibly with source terms:

∇ · [ℱ (w)] − 𝒮 (w)

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux
tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), w = w(q) and 𝒮 (w) is
some source term.

48 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

The firstOrderMuscl updater accepts the parameters below, in addition to those required by Updater.

8.9.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined
by the choice of Hyperbolic Equations.

out (string vector, required) Output is a nodalArray which will contain ∇ · [ℱ (w)]−𝒮 (w). The number of
components is defined by the choice of Hyperbolic Equations.

waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh
required by some equation systems (e.g. mhdDednerEqn).

8.9.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation

numericalFlux (string, required) Defines the numerical flux need to compute an upwind approximation
to the non-linear flux ℱ (w)

cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error
code if this condition is violated during a timestep. Defaults to (# of dimensions)−1.

checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should
be set to false if combined with implicitMultiUpdater (1d, 2d, 3d).

sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a
Source block (see below).

8.9.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines q, ℱ (w), w = w(q), along with the
eigensystem associated with ℱ (w).

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.9.4 Example

The following block demonstrates the firstOrderMuscl updater used in combination with the mhdDednerEqn to
compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=firstOrderMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use

8.9. firstOrderMusclUpdater (1d, 2d, 3d) 49

USimReferenceManual, Release 3.0.1

numericalFlux= hlldFlux

CFL number to use
cfl=0.3

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=mhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

8.10 classicMusclUpdater (1d, 2d, 3d)

The classicMusclUpdater computes an second order upwind discretization (that is suitable for use on good
quality tetrahedral and hexahedral meshes) of the spatial component of a non-linear hyperbolic system, possibly
with source terms:

∇ · [ℱ (w)] − 𝒮 (w)

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux
tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), w = w(q) and 𝒮 (w) is
some source term.

The classicMuscl updater accepts the parameters below, in addition to those required by Updater.

8.10.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined
by the choice of Hyperbolic Equations.

out (string vector, required) Output is a nodalArray which will contain ∇ · [ℱ (w)]−𝒮 (w). The number of
components is defined by the choice of Hyperbolic Equations.

waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh
required by some equation systems (e.g. mhdDednerEqn).

8.10.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation

numericalFlux (string, required) Defines the numerical flux need to compute an upwind approximation
to the non-linear flux ℱ (w)

limiter (string vector, required) Defines the limiter to be applied to the input variables; one entry required
per input variable.

variableForm (string, required) Whether the reconstruction will occur in primitive or conservative vari-
ables. All systems can be reconstructed in conservative form. A number of fluid systems can be also be
solved in primitive form.

50 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

preservePositivity (boolean, optional) A number of equation systems can produce negative densities
or pressures. The preservePositivity option checks whether the reconstructed values produce positive
values for pressure and density. If they do not then it drops the order of reconstruction to first order.

cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error
code if this condition is violated during a timestep. Defaults to (# of dimensions)−1.

checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should
be set to false if combined with implicitMultiUpdater (1d, 2d, 3d).

sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a
Source block (see below).

8.10.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines q, ℱ (w), w = w(q), along with the
eigensystem associated with ℱ (w).

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.10.4 Example

The following block demonstrates the classicMuscl updater used in combination with the mhdDednerEqn to
compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=mhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

8.10. classicMusclUpdater (1d, 2d, 3d) 51

USimReferenceManual, Release 3.0.1

</Updater>

8.11 unstructMusclUpdater (1d, 2d, 3d)

The unstructMusclUpdater computes an second order upwind discretization (that is suitable for use on general
unstructured tetrahedral and hexahedral meshes) of the spatial component of a non-linear hyperbolic system,
possibly with source terms:

∇ · [ℱ (w)] − 𝒮 (w)

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux
tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), w = w(q) and 𝒮 (w) is
some source term.

The unstructMuscl updater accepts the parameters below, in addition to those required by Updater.

8.11.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined
by the choice of Hyperbolic Equations.

out (string vector, required) Output is a nodalArray which will contain ∇ · [ℱ (w)]−𝒮 (w). The number of
components is defined by the choice of Hyperbolic Equations.

waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh
required by some equation systems (e.g. mhdDednerEqn).

8.11.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation

numericalFlux (string, required) Defines the numerical flux need to compute an upwind approximation
to the non-linear flux ℱ (w)

limiter (string vector, required) Defines the limiter to be applied to the input variables; one entry required
per input variable.

variableForm (string, required) Whether the reconstruction will occur in primitive or conservative vari-
ables. All systems can be reconstructed in conservative form. A number of fluid systems can be also be
solved in primitive form.

preservePositivity (boolean, optional) A number of equation systems can produce negative densities
or pressures. The preservePositivity option checks whether the reconstructed values produce positive
values for pressure and density. If they do not then it drops the order of reconstruction to first order.

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

52 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2
or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order
varies on the problem type and the mesh used. Defaults to 2.

formulation (string, optional) Whether to use a reconstruction based on constant or spline interpolation.
Defaults to constant.

If formulation = “spline”, then the following options can be specified:

leastSquaresBasis (string, optional) The spline basis to use for the least squares problem.
Options are: wendland, wu and bumann. Defaults to buhmann.

leastSquaresBasisOrder (string, optional) Order of polynomial to use for the least
squares basis. Can accept up to 6th order polynomials, dependent on the choice of spline ba-
sis.

cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error
code if this condition is violated during a timestep. Defaults to (# of dimensions)−1.

checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should
be set to false if combined with implicitMultiUpdater (1d, 2d, 3d).

sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a
Source block (see below).

8.11.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines q, ℱ (w), w = w(q), along with the
eigensystem associated with ℱ (w).

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.11.4 Example

The following block demonstrates the classicMuscl updater used in combination with the mhdDednerEqn to
compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

8.11. unstructMusclUpdater (1d, 2d, 3d) 53

USimReferenceManual, Release 3.0.1

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=mhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

8.12 thirdOrderMusclUpdater (1d, 2d, 3d)

The thirdOrderMusclUpdater uses third order accurate spatial reconstruction that is suitable for use on general
unstructured tetrahedral and hexahedral meshes to compute an upwind discretization of the spatial component
of a non-linear hyperbolic system, possibly with source terms:

∇ · [ℱ (w)] − 𝒮 (w)

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux
tensor computed from a vector of primitive variables, (e.g. density, velocity, pressure), w = w(q) and 𝒮 (w) is
some source term.

The thirdOrderMuscl updater accepts the parameters below, in addition to those required by Updater.

8.12.1 Data

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined
by the choice of Hyperbolic Equations.

out (string vector, required) Output is a nodalArray which will contain ∇ · [ℱ (w)]−𝒮 (w). The number of
components is defined by the choice of Hyperbolic Equations.

waveSpeeds (string vector, optional) Defines the dynVector containing the fastest wave speeds in the mesh
required by some equation systems (e.g. mhdDednerEqn).

8.12.2 Parameters

equations (string vector, required) List of equation systems to solve. Accepts at most one equation

numericalFlux (string, required) Defines the numerical flux need to compute an upwind approximation
to the non-linear flux ℱ (w)

limiter (string vector, required) Defines the limiter to be applied to the input variables; one entry required
per input variable.

variableForm (string, required) Whether the reconstruction will occur in primitive or conservative vari-
ables. All systems can be reconstructed in conservative form. A number of fluid systems can be also be
solved in primitive form.

54 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

preservePositivity (boolean, optional) A number of equation systems can produce negative densities
or pressures. The preservePositivity option checks whether the reconstructed values produce positive
values for pressure and density. If they do not then it drops the order of reconstruction to first order.

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2
or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order
varies on the problem type and the mesh used. Defaults to 2.

formulation (string, optional) Whether to use a reconstruction based on constant or spline interpolation.
Defaults to constant.

If formulation = “spline”, then the following options can be specified:

leastSquaresBasis (string, optional) The spline basis to use for the least squares problem.
Options are: wendland, wu and bumann. Defaults to buhmann.

leastSquaresBasisOrder (string, optional) Order of polynomial to use for the least
squares basis. Can accept up to 6th order polynomials, dependent on the choice of spline ba-
sis.

cfl (float, optional) Defines the CFL condition for the finite volume scheme. The updater returns an error
code if this condition is violated during a timestep. Defaults to (# of dimensions)−1.

checkCfl (bool, optional) Whether to check the CFL condition during an updater, defaults to true. Should
be set to false if combined with implicitMultiUpdater (1d, 2d, 3d).

sources (string vector, optional) List of sources to apply. Each source listed here must be associated with a
Source block (see below).

8.12.3 Sub-Blocks

Equation (block, required) The Hyperbolic Equations that defines q, ℱ (w), w = w(q), along with the
eigensystem associated with ℱ (w).

Source (block) Adds a Algebraic Equations to the hyperbolic equation system.

8.12.4 Example

The following block demonstrates the classicMuscl updater used in combination with the mhdDednerEqn to
compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

8.12. thirdOrderMusclUpdater (1d, 2d, 3d) 55

USimReferenceManual, Release 3.0.1

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=mhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

8.13 vector (1d, 2d, 3d)

The vector updater computes a range of first derivatives of quanties defined on the USim computational mesh
using a least squares gradient method. This updater differs from the firstOrderMusclUpdater (1d, 2d, 3d),
classicMusclUpdater (1d, 2d, 3d), unstructMusclUpdater (1d, 2d, 3d) and thirdOrderMusclUpdater (1d, 2d,
3d) updaters in that no upwinding is performed here. As such, the vector updater is only suitable for problems
that do not require upwind stabilization.

The vector updater accepts the parameters below, in addition to those required by Updater.

8.13.1 Data

in (string vector, required) Defined by the choice of the derivative attribute, as detailed below.

out (string vector, required) Defined by the choice of the derivative attribute, as detailed below.

8.13.2 Parameters

orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of
1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of
order varies on the problem type and the mesh used.

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

56 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion
updater.

derivative (string, required) The type of derivative that will be performed. Available derivatives are:

gradient (derivative = gradient) Computes 𝑐∇𝜑 where 𝜑 is a scalar quantity defined on the grid
and c is a constant coefficient. When derivative = gradient is specified, the following input and
output variables should be specified:

in 𝜑 (nodalArray, 1-component, required): scalar quantity to compute the gradient of.

out 𝑐∇𝜑 (nodalArray, 3-components, required): gradient of 𝜑

curl (derivative = curl) Computes 𝑐∇ × v where v is a vector quantity defined on the grid and
c is a constant coefficient. When derivative = curl is specified, the following input and output
variables should be specified:

in v (nodalArray, 3-components, required): vector quantity to compute the curl of.

out 𝑐∇× v (nodalArray, 3-components, required): curl of v

divergence (derivative = divergence) Computes 𝑐∇ · v where v is a vector quantity defined on
the grid and c is a constant coefficient. When derivative = divergence is specified, the following
input and output variables should be specified:

in v (nodalArray, 3-components, required); vector quantity to compute the divergence of.

out 𝑐∇ · v (nodalArray, 3-components, required); divergence of v

8.13.3 Example

The following code block demonstrates the least squares gradient operator for computing the gradient of a scalar
quantity:

<Updater derivative>
kind = vector2d
derivative = gradient
coefficient = 1.0
numberOfInterpolationPoints = 8
orderAccuracy = 2
onGrid = domain
in = [phi]
out = [gradPhi]

</Updater>

The following code block demonstrates the least squares curl operator for computing the curl of a vector quan-
tity:

<Updater copier>
kind = vector2d
onGrid = domain
derivative = curl
coefficient = 1.0
orderAccuracy = 1

8.13. vector (1d, 2d, 3d) 57

USimReferenceManual, Release 3.0.1

numberOfInterpolationPoints = 5
in = [q]
out = [qnew]

</Updater>

The following code block demonstrates the least squares divergence operator for computing the divergence of a
vector quantity:

<Updater copier>
kind = vector2d
onGrid = domain
derivative = divergence
orderAccuracy = 2
coefficient = 1.0
numberOfInterpolationPoints = 8 # 7 for 1st degree polynomial
in = [q]
out = [qnew]

</Updater>

8.14 diffusion (1d, 2d, 3d)

The diffusion updater computes a range of second derivatives of quanties defined on the USim computational
mesh using a least squares gradient method. The specific form of the operator can be chosen by derivative to
the desired type, as detailed below.

The diffusion updater accepts the parameters below, in addition to those required by Updater.

8.14.1 Data

in (string vector, required) Defined by the choice of the derivative attribute, as detailed below.

out (string vector, required) Defined by the choice of the derivative attribute, as detailed below.

8.14.2 Parameters

orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of
1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of
order varies on the problem type and the mesh used.

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion
updater.

derivative (string, required) The type of derivative that will be performed. Available derivatives are:

58 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

diffusion (derivative = diffusion) Computes 𝑐∇ · (𝜅∇𝜑) where 𝜑 and 𝜅 are scalar quantities
defined on the grid and c is a constant coefficient. When derivative = diffusion is specified, the
following input and output variables should be specified:

in

1. 𝜑 (nodalArray, n-components, required); scalar quantity to compute the Laplacian. If
𝑛 > 1 then the Laplacian of each component is computed independently.

2. 𝜅 (nodalArray, n-components, required); scalar diffusion coefficient. n must be the same
as for 𝜑

out

1. 𝑐∇ · (𝜅∇𝜑) (nodalArray, n-components, required); Laplacian of 𝜑. n must be the same
as for 𝜑

anisotropicDiffusion (derivative = anisotropicDiffusion) Computes 𝑐∇ · (𝒦∇𝜑) where 𝜑
is a scalar quantity and 𝒦 is a tensor quantity defined on the grid and c is a constant coefficient.
When derivative = anisotropicDiffusion is specified, the following input and output variables
should be specified:

in

1. 𝜑 (nodalArray, 1 component, required); scalar quantity to compute the Laplacian.

2. 𝒦 (nodalArray, 9-components, required); 9-component diffusion tesnore. Note that in
one- and two-dimensions, the ignorable coordinates will be multiplied by zero.

out

1. 𝑐∇ · (𝒦∇𝜑) (nodalArray, 1-component, required); Laplacian of 𝜑.

gradientOfDivergence (derivative = gradientOfDivergence) Computes 𝑐∇ (𝜅∇ · v) where
v is a vector quantity and 𝜅 is a scalar quantity defined on the grid and c is a constant coef-
ficient. When derivative = gradientOfDivergence is specified, the following input and output
variables should be specified:

in

1. v (nodalArray, 3-components, required); vector quantity to compute the Laplacian.

2. 𝜅 (nodalArray, 1-component, required); scalar diffusion coefficient.

out

1. 𝑐∇ (𝜅∇ · v) (nodalArray, 1-components, required); Laplacian of v.

8.14.3 Example

The following code block demonstrates the least squares diffusion operator for computing the laplacian of a
scalar quantity with a scalar diffusion coefficient:

<Updater leastSquaresDiffusion>
kind = diffusion2d
onGrid = domain
derivative = diffusion
numScalars = 2
coefficient = 1.0
numberOfInterpolationPoints = 8
in = [q,D]
out = [qnew]

</Updater>

8.14. diffusion (1d, 2d, 3d) 59

USimReferenceManual, Release 3.0.1

The following code block demonstrates the least squares diffusion operator for computing the laplacian of a
scalar quantity with a tensor diffusion coefficient:

<Updater computeDiffusion>
kind = diffusion2d
derivative = anisotropicDiffusion
onGrid = domain
numScalars = 3
coefficient = 1.0

orderAccuracy = 1
numberOfInterpolationPoints = 8

in = [temperature, conductivityTensor]
out = [temperatureNew]

</Updater>

The following code block demonstrates the least squares diffusion operator for computing the laplacian of a
vector quantity with a scalar diffusion coefficient:

<Updater derivative>
kind = diffusion2d
derivative = gradientOfDivergence
coefficient = 1.0
numberOfInterpolationPoints = 8
orderAccuracy = 2
onGrid = domain
in = [q, diffusionCoefficient]
out = [qnew]

</Updater>

The following Updater kind attributes can be specified can be used to compute finite volume discretizations of
Navier-Stokes and RANS viscous operators:

8.15 navierStokesViscousOperator (1d, 2d, 3d)

The navierStokesViscousOperator computes the viscous stress and thermal conduction terms, with contributions
from laminar (and optionally, turbulent) viscosity in the Navier Stokes equations using a conservative least
squares interpolation scheme.

USim implements the viscous stress terms in the momentum and total energy equations in the Navier-Stokes
operator using the form:

𝒮 (w) =

[︂
𝒮𝜌u (w)
𝑆𝐸 (w)

]︂
=

[︂
𝑐∇ · S (w)

𝑐∇ · {S (w) · u}

]︂
S (w) = 2 [𝜇+ 𝜇turb]

[︃
∇u + (∇u)

T

2
− I

3
∇ · u

]︃
− 2I

3
𝜇turb𝜌𝑘

Here, w is the primitive state vector, u is the fluid velocity, 𝜇 is the laminar viscosity, 𝜇turb is the turbulent
viscosity, 𝜌 is the fluid density and 𝑘 is the local local turbulent kinetic energy. The laminar viscosity can be
computed through (e.g.) Sutherland’s law:

𝜇 = 𝜇0

(︂
𝑇

𝑇0

)︂ 3
2
(︂
𝑇0 + 𝑆

𝑇0 + 𝑆

)︂

60 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

where 𝜇0 = 1.716 × 10−5kg (ms)−1, 𝑇0 = 491.6𝑅, 𝑆 = 198.6𝑅.

USim implements the thermal conduction terms in the total energy equation in the Navier-Stokes operator using
the form:

𝑆𝐸 (w) = 𝑐∇ · [− (𝜅+ 𝜅turb)∇𝑇]

where 𝜅 and 𝜅turb are the laminar and turbulent heat conductivity, which can be modelled through:

𝜅 =
𝑐𝑝𝜇

Pr
; 𝜅turb =

𝑐𝑝𝜇turb

Prturb

where 𝑐𝑝 is the heat capacity at constant pressure and Pr and Prturb are the laminar and turbulent Prandtl
numbers.

8.15.1 Data

in (string vector, required) Defined by the choice of the enableThermal, enableViscous, and
enableTurbulence flags defined below in the Parameters section. Input variables must be in the
order listed below. The rules for the which arrays should be included in the vector are as follows:

• fluid velocity: required if enableViscous = true or enableTurbulence = true

• total viscosity: required if enableViscous = true or enableTurbulence = true

• fluid temperature: required if enableThermal = true or enableTurbulence = true

• total thermal conductivity: required if enableThermal = true or enableTurbulence = true

• turbulence model: required if enableTurbulence = true

• turbulence viscosity: required if enableTurbulence = true

Note: If enableTurbulence is true and enableViscous is false, then enableTurbulence has no effect.

If enableTurbulence and enableThermal don’t impact each other algorithmically.

If enableTurbulence is true, then the input variables are required to be present.

Fluid velocity (nodalArray, 3-components, optional) Vector of fluid velocities, required if en-
ableViscous = true: 0. 𝑢î = u · î: velocity in the î direction 1. 𝑢ĵ = u · ĵ: velocity in the ĵ

direction 2. 𝑢k̂ = u · k̂: velocity in the k̂ direction

Total viscosity (nodalArray, 1-components, optional) Sum of the laminar and turbulent viscosi-
ties, 𝜇+ 𝜇turb (if turbulence is not modelled, the latter can be ommitted). Required if enableViscous
= true:

Fluid Temperature (nodalArray, 1-components, optional) Required if enableThermal = true.

Total thermal conductivity (nodalArray, 1-components, optional) Sum of the laminar and
turbulent thermal conductivities, 𝜇+𝜇turb (if turbulence is not modelled, the latter can be ommitted).
Required if enableThermal = true.

Turbulence model (nodalArray, 1-components, optional) Required if enableTurbulence = true.
One of:

Turbulent kinetic energy density 𝜌𝑘 − 𝜌𝜖

Turbulent kinetic energy density dissipation rate 𝜌𝑘 − 𝜌𝜔

Turbulent viscosity (nodalArray, 1-components, optional) Turbulent viscosities, 𝜇turb. Re-
quired if enableTurbulence = true:

8.15. navierStokesViscousOperator (1d, 2d, 3d) 61

USimReferenceManual, Release 3.0.1

out (string vector, required)

Vector of Fluxes (nodalArray, 4-components)

0. 𝒮
(︀
𝜌 𝑢î
)︀
: î momentum flux

1. 𝒮
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

2. 𝒮
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

3. 𝒮 (𝐸): total energy flux

8.15.2 Parameters

The navierStokesViscousOperator updater accepts the parameters below, in addition to those required by Up-
dater:

orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of
1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of
order varies on the problem type and the mesh used.

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion
updater.

enableThermal (boolean, optional) Tell USim whether to include the contribution from heat conduction.
Default true.

enableViscous (boolean, optional) Tell USim whether to inclue the contribution from viscous stress. De-
fault true.

enableTurbulence (boolean, optional) Tell USim whether to include the turbulence. Default false.

8.15.3 Examples

<Updater computeViscousSource>
kind = navierStokesViscousOperator2d
onGrid = domain

coefficient = 1.0

numberOfInterpolationPoints = 8
orderAccuracy = 2

enableThermal = false
enableViscous = true

in = [velocity, dynamicViscosity, temperature, thermalCoefficient]

62 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

out = [viscousSource]
</Updater>

<Updater computeViscousSource>
kind = navierStokesViscousOperator2d
onGrid = domain
isRadial = true
coefficient = 1.0

numberOfInterpolationPoints = 8

enableThermal = false
enableViscous = true
enableTurbulence = true
temperatureIndex = 0

in = [velocity, totalVisc, avgTemp, totalCond, kEpsilon, turbulentViscosity]
out = [viscousSource]

</Updater>

8.16 kOmegaOperator (1d, 2d, 3d)

The kOmegaOperator implements the right-hand side of the “Standard” Menter SST Two-Equation Model:

𝜕 (𝜌𝑘)

𝜕𝑡
+ ∇ · [𝜌u𝑘] = 𝑃 − 𝛽⋆𝜌𝜔𝑘 + ∇ · [(𝜇+ 𝜎𝑘𝜇turb)∇𝑘]

𝜕 (𝜌𝜔)

𝜕𝑡
+ ∇ · [𝜌u𝜔] =

𝛾

𝜈turb
𝑃 − 𝛽⋆𝜌𝜔2 + ∇ · [(𝜇+ 𝜎𝑘𝜇turb)∇𝜔] + 2 (1 − 𝐹1)

𝜌𝜎𝜔
𝜔2

∇𝑘∇𝜔

The full details of this model, including the definition of the various constants, etc. can be found at
http://turbmodels.larc.nasa.gov/sst.html

The kOmegaOperator operator computes the right-hand side of this model:

𝒮𝜌𝑘 = 𝑃 − 𝛽⋆𝜌𝜔𝑘 + ∇ · [(𝜇+ 𝜎𝑘𝜇turb)∇𝑘]

𝒮𝜌𝜔 =
𝛾

𝜈turb
𝑃 − 𝛽⋆𝜌𝜔2 + ∇ · [(𝜇+ 𝜎𝑘𝜇turb)∇𝜔] + 2 (1 − 𝐹1)

𝜌𝜎𝜔
𝜔2

∇𝑘∇𝜔

The advective terms, ∇·[𝜌u𝑘] and ∇·[𝜌u𝜔] can be computed using classicMusclUpdater (1d, 2d, 3d) combined
with multiSpeciesSingleVelocityEqn.

8.16.1 Data

in (string vector of 7, required)

Fluid Model (nodalArray, 5-components, required) The vector of conserved quantities for the fluid
model, q has 5 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2: total energy density

8.16. kOmegaOperator (1d, 2d, 3d) 63

http://turbmodels.larc.nasa.gov/sst.html

USimReferenceManual, Release 3.0.1

Turbulence model (nodalArray, 2-components, required) The vector of conserved quantities for
the turbulence model:

0. 𝜌𝑘

1. 𝜌𝜔

Fluid velocity (nodalArray, 3-components, required) Vector of fluid velocities, required if en-
ableViscous = true:

0. 𝑢î = u · î: velocity in the î direction

1. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

2. 𝑢k̂ = u · k̂: velocity in the k̂ direction

Fluid Temperature (nodalArray, 1-components, required)

Dynamic Viscosity (nodalArray, 1-components, required)

Thermal Conductivity (nodalArray, 1-components, required)

Distance from Wall (nodalArray, 1-components, required)

out (string vector of 4, required) Vector of Fluid Model Source terms (nodalArray, 5-
components, required)

0. 𝒮 (𝜌): mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum source

4. 𝒮 (𝐸): total energy source

Vector of Turbulence Model Source terms (nodalArray, 2-components, required)

0. 𝒮 (𝜌𝑘)

1. 𝒮 (𝜌𝜔)

Turbulent viscosity (nodalArray, 1-component, required)

Maximum turbulent diffusion (nodalArray, 1-component, required)

8.16.2 Parameters

The kOmegaOperator updater accepts the parameters below, in addition to those required by Updater:

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

64 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2
or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order
varies on the problem type and the mesh used. Defaults to 2.

turbulentPrandtlNumber (float, required) Prandtl number for turbulent flows, which is the ratio of
eddy diffusivities of momentum and heat transfer

Cp (float, required) Specific heat at constant pressure

8.16.3 Example

<Updater computeRansSource>
kind = kOmegaOperator2d
onGrid = domain
coefficient = 1.0
numberOfInterpolationPoints = 16
turbulentPrandtlNumber = 0.85
Cp = CP
in = [q, kOmega, velocity, temperature, visc, cond, distance]
out = [dummySource, kOmegaSource, turbulentViscosity, maxTurbulentDiffusion]

</Updater>

8.17 kEpsilonOperator (1d, 2d, 3d)

Estimates the turbulent viscosity using k-epsilon model (http://turbmodels.larc.nasa.gov/ke-chien.html).

The kEpsilonOperator implements the right-hand side of the “Standard” Menter SST Two-Equation Model:

𝜕 (𝜌𝑘)

𝜕𝑡
+ ∇ · [𝜌u𝑘] = 𝑃 − 𝜌𝜖+ ∇ ·

[︂(︂
𝜇+

𝜇turb

𝜎𝑘

)︂
∇𝑘
]︂

+ 𝜌𝐿𝑘

𝜕 (𝜌𝜖)

𝜕𝑡
+ ∇ · [𝜌u𝜖] =

𝐶𝜖1𝑓1𝜖

𝑘
𝑃 − 𝐶𝜖2𝑓2𝜌𝜖

2

𝑘
+ ∇ ·

[︂(︂
𝜇+

𝜇turb

𝜎𝜖

)︂
∇𝜖
]︂

+ 𝜌𝐿𝜖

The full details of this model, including the definition of the various constants, etc. can be found at
(http://turbmodels.larc.nasa.gov/ke-chien.html)

The kEpsilonOperator operator computes the right-hand side of this model:

𝒮𝜌𝑘 = 𝑃 − 𝜌𝜖+ ∇ ·
[︂(︂
𝜇+

𝜇turb

𝜎𝑘

)︂
∇𝑘
]︂

+ 𝜌𝐿𝑘

𝒮𝜌𝜔 =
𝐶𝜖1𝑓1𝜖

𝑘
𝑃 − 𝐶𝜖2𝑓2𝜌𝜖

2

𝑘
+ ∇ ·

[︂(︂
𝜇+

𝜇turb

𝜎𝜖

)︂
∇𝜖
]︂

+ 𝜌𝐿𝜖

The advective terms, ∇·[𝜌u𝑘] and ∇·[𝜌u𝜔] can be computed using classicMusclUpdater (1d, 2d, 3d) combined
with multiSpeciesSingleVelocityEqn.

8.17.1 Data

in (string vector of 7, required)

Fluid Model (nodalArray, 5-components, required) The vector of conserved quantities for the fluid
model, q has 5 entries:

0. 𝜌: mass density

8.17. kEpsilonOperator (1d, 2d, 3d) 65

http://turbmodels.larc.nasa.gov/ke-chien.html
http://turbmodels.larc.nasa.gov/ke-chien.html

USimReferenceManual, Release 3.0.1

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2: total energy density

Turbulence model (nodalArray, 2-components, required) The vector of conserved quantities for
the turbulence model:

0. 𝜌𝑘

1. 𝜌𝜖

Fluid velocity (nodalArray, 3-components, required) Vector of fluid velocities, required if en-
ableViscous = true:

0. 𝑢î = u · î: velocity in the î direction

1. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

2. 𝑢k̂ = u · k̂: velocity in the k̂ direction

Fluid Temperature (nodalArray, 1-components, required)

Dynamic Viscosity (nodalArray, 1-components, required)

Thermal Conductivity (nodalArray, 1-components, required)

Distance from Wall (nodalArray, 1-components, required)

out (string vector of 4, required) Vector of Fluid Model Source terms (nodalArray, 5-
components, required)

0. 𝒮 (𝜌): mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum source

4. 𝒮 (𝐸): total energy source

Vector of Turbulence Model Source terms (nodalArray, 2-components, required)

0. 𝒮 (𝜌𝑘)

1. 𝒮 (𝜌𝜖)

Turbulent viscosity (nodalArray, 1-component, required)

Maximum turbulent diffusion (nodalArray, 1-component, required)

8.17.2 Parameters

The kEpsilonOperator updater accepts the parameters below, in addition to those required by Updater:

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

66 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

orderAccuracy (integer, option) Order of the polynomial that is used to form the operator. Choice of 1, 2
or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of order
varies on the problem type and the mesh used. Defaults to 2.

turbulentPrandtlNumber (float, required) Prandtl number for turbulent flows, which is the ratio of
eddy diffusivities of momentum and heat transfer

Cp (float, required) Specific heat at constant pressure

minDt (float, required) The dissipation time step is proportion to 𝑘/𝜖, which can go to infinity. We limit this
ratio to the value specified by minDt.

computeViscosity (bool, required) Whether to compute the turbulent viscosity

computeSource (bool, required) Whether to compute source terms for the turbulence model.

8.17.3 Example

<Updater computeRansSource>
kind = kEpsilonOperator2d
onGrid = domain
coefficient = 1.0
numberOfInterpolationPoints = 16
turbulentPrandtlNumber = 0.85
minDt = MINDT
computeViscosity = false
computeSource = true
Cp = CP
in = [q, kEpsilon, velocity, temperature, visc, cond, distance]
out = [dummySource, kEpsilonSource, turbulentViscosity, maxTurbulentDiffusion]

</Updater>

The following Updater kind attributes can be specified can be used to compute the generalized Ohm’s law for
an ionized plasma:

8.18 generalizedOhmsLaw (1d, 2d, 3d)

The generalizedOhmsLaw updater computes the electric field determined by parameters in the generalized
Ohm’s law.

E = 𝜂J + [− (J− Jion) ×B + ∇𝑃𝑒] (𝑛𝑒𝑞𝑒)
−1 (8.-12)

8.18.1 Data

in (string vector of 3, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of con-
served quantities, q has 9 entries:

0. 𝜌: mass density

8.18. generalizedOhmsLaw (1d, 2d, 3d) 67

USimReferenceManual, Release 3.0.1

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

Current Density (nodalArray, 3-components, required) Vector of plasma currents:

0. 𝐽î = J · î: current in the î direction

1. 𝐽ĵ = J · ĵ: current in the ĵ direction

2. 𝐽k̂ = J · k̂: current in the k̂ direction

Charge State (nodalArray, 1-component, required) 𝑍, the ionization state.

out (string vector, required)

Electric field (nodalArray, 3-components, required) Vector of electric fields:

0. 𝐸î = E · î: electric field in the î direction

1. 𝐸ĵ = E · ĵ: electric field in the ĵ direction

2. 𝐸k̂ = E · k̂: electric field in the k̂ direction

resistivity (nodalArray, 1-component, optional) Scalar resistivity: if this term exists, then the resistive
term is included in the evaluation of E.

electronPressureDerivative (nodalArray, 3-components, optional) ∇𝑃𝑒 If this term is set then the
diamagnetic drift term is used in determining the electric field.

8.18.2 Parameters

The generalizedOhmsLaw updater accepts the parameters below, in addition to those required by Updater:

idealTerm (boolean) Set to false if the ideal term u ×B should be ignored, otherwise set to true. Defaults
to true.

hallTerm (boolean) Set to false if the Hall term should be ignored, otherwise set to true. Defaults to false.

fundamentalCharge (float) The charge of a proton

ionMass (float) mass of the ion. Currently assumes only one ion species

electronMass (float) mass of the electron.

boltzmannConstant (float) boltzmann’s constant

8.18.3 Example

68 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

<Updater computeE>
kind = generalizedOhmsLaw1d
onGrid = domain

in = [q, J, Zbar]
out = [E]
electronPressureDerivative = gradPe
resistivity = etaJ

hallTerm = true

fundamentalCharge = CHARGE
ionMass = MI
electronMass = ME
boltzmannConstant = KB

</Updater>

8.19 resitiveOperator (1d, 2d, 3d)

The resistiveOperator computes sources terms for the MHD equations using a conservative least squares gradi-
ent method:

𝒮 (w) =

[︂
𝑆𝐸 (w)
𝑆B (w)

]︂
=

[︂
∇ ·
(︀
𝜇−1
0 EExtended ×B

)︀
∇×EExtended

]︂
EExtended = 𝜇−1

0 [𝜂Ohmic∇×B− 𝜂Hall (∇×B) ×B]

𝜂Hall = −
(︂
𝜌𝑄𝑍

𝑚ion

)︂−1

Here, 𝜂Ohmic is the Ohmic resistvity, 𝜂Hall is the Hall coefficient, 𝑟ℎ𝑜 is the fluid density, 𝑄 is the charge on a
proton, 𝑍 is the ion charge state and 𝑚ion is the ion mass.

8.19.1 Data

in (string vector of 4, required)

Magnetic field (nodalArray, 3-components, required)

0. 𝐵î = B · î: magnetic field in the î direction

1. 𝐵ĵ = B · ĵ: magnetic field in the ĵ direction

2. 𝐵k̂ = B · k̂: magnetic field in the k̂ direction

Ohmic Resistivity (nodalArray, 1-components, optional) Scalar ohmic resistivity, 𝜂Ohmic; re-
quired if enableOhmicTerm = true (see below).

Mass density (nodalArray, 1-components, optional) Fluid mass density, 𝜌; required if enableHall-
Term = true (see below).

Charge State (nodalArray, 1-components, optional) Fluid charge state, 𝑍; required if enablePar-
tiallyIonized = true (see below).

8.19. resitiveOperator (1d, 2d, 3d) 69

USimReferenceManual, Release 3.0.1

8.19.2 Parameters

The resistiveOperator updater accepts the parameters below, in addition to those required by Updater:

orderAccuracy (integer, required) Order of the polynomial that is used to form the operator. Choice of
1, 2 or 3 corresponding, respectively to first, second and third order accuracy. The appropriate choice of
order varies on the problem type and the mesh used.

numberOfInterpolationPoints (integer, required) Number of points to be considerd for the least
squares fit. This parameter varies from mesh to mesh and should be determined by computing a known
function on the mesh.

The numberOfInterpolationPoints must be greater than (or equal to) the number of coefficients in the
polynomial approximation. This means that in 1d the value is 4, in 2D the value is at least 6 and in 3D the
value is at least 10.

These choices do not guarantee that a matrix inverse will be found. The following values though appear to
be adequate in general: in 1D 4; in 2D 8 and in 3D 20.

coefficient (float, required) Constant floating point value, c that multiplies the output of the diffusion
updater.

permeability (float, required) The permeability of free space, 𝜇0.

enableOhmicTerm (bool, optional) Include Ohmic resistivity, 𝜂Ohmic∇×B in the extended MHD electric
field. Default: true.

enableHallTerm (bool, optional) Include the Hall effect, 𝜂Hall (∇×B)×B in the extended MHD electric
field. Default: false.

If enableHallTerm = true, then the following parameters are available:

ionMass (float, optional) The mass of an ion. Default value is 1.0.

fundamentalCharge (float, optional) The charge of a proton. Default value is 1.0.

enablePartiallyIonized (bool, optional) Whether to include the ion ionization state in
the Hall effect. Default is false, in which case the ion is assumed to be singly ionized.

8.19.3 Example

<Updater computeResistiveSources>
kind = resistiveOperator2d
onGrid = domain

coefficient = 1.0
permeability = 1.0

numberOfInterpolationPoints = 8

in = [magneticField, resistivity]
out = [source]

</Updater>

The following Updater kind attributes can be specified to perform operations related to time advance (time
integration, time step restrictions):

70 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.20 multiUpdater (1d, 2d, 3d)

The multiUpdater references several updaters and uses them to perform an explicit time-integration. The mul-
tiUpdater typically used to advance systems of the form:

𝜕q

𝜕𝑡
+ ∇ · [ℱ (w)] = 𝒮 (w)

Time integration schemes currently supported by multiUpdater include 1st, 2nd and 3rd order Runge-Kutta,
subcycling and 1st, 2nd order accurate Super Time Step methods.

The multiUpdater updater accepts the parameters required by Updater.

The operations performed by the multiUpdater are specified using the UpdateStep and UpdateSequence pattern
used for the main USim input file. Note that only the loop attribute for the UpdateSequence is used by the
multiUpdater and that the attribute “operation = integrate” must be specified in the final UpdateStep in the loop
in order for USim to perform the time integration.

The time integration scheme used by the multiUpdater is specified by the use of a Time Integrator block.

8.20.1 Data

in (string vector, required) Input 1 to N are input nodalArrays to be used in the updaters specified in the
UpdateStep.

out (string vector, required) Output 1 to N are output nodalArrays resulting from the integration UpdateStep.

8.20.2 Sub-Blocks

TimeIntegrator Time Integrator Currently only one time integration scheme can be specified.

Time integration schemes currently supported by multiUpdater include 1st, 2nd and 3rd order Runge-
Kutta, subcycling and 1st, 2nd order accurate Super Time Step methods.

UpdateSequence UpdateSequence This block is used to set the sequence of update steps

UpdateStep UpdateStep The steps used in the update

8.20.3 Example

The code block below demonstrates the use of a multiUpdater to solve a multi-species fluid problem with
collision operators and boundary conditions:

<Updater rkUpdater>
kind = multiUpdater1d
onGrid = domain

in = [q, q1, q2, q3]
out = [qnew, qnew1, qnew2, qnew3]

<TimeIntegrator rkIntegrator>
kind = rungeKutta1d
ongrid = domain
scheme = third

</TimeIntegrator>

8.20. multiUpdater (1d, 2d, 3d) 71

USimReferenceManual, Release 3.0.1

<UpdateSequence sequence>
loop = [boundaries,hyper]

</UpdateSequence>

<UpdateStep boundaries>
updaters = [openBoundaries, openBoundaries1, openBoundaries2, openBoundaries3]
syncVars = [q, q1, q2, q3]

</UpdateStep>

<UpdateStep hyper>
operation = "integrate"
updaters = [\

computeN1, computeN2, computeN3, \
computeT1, computeT2, computeT3, \
computeV1, computeV2, computeV3, \
collisionFrequency, \
momentumSource, energySource,\
hyper, hyper1, hyper2, hyper3, \
addThermalRelaxation1, addThermalRelaxation2, addThermalRelaxation3 \
]

syncVars = [qnew, qnew1, qnew2, qnew3]
</UpdateStep>

</Updater>

8.21 implicitMultiUpdater (1d, 2d, 3d)

The implicitMultiUpdater provides Jacobian Free Newton-Krylov methods with a range of non-linear and linear
solvers and preconditioning strategies for solving elliptic or implicit hyperbolic problems. The implicitMultiUp-
dater casts these problems in residual form:

ℛ (q) = 0

This formulation can then be used to solve linear problems, such as Poisson’s equation:

ℛ (q) = ∇2𝜑−
∑︁

species

𝑄species

or, non linear problems such as a backward Euler discretization of a non-linear hyperbolic equation:

ℛ (q) = 𝑞𝑛+1 − 𝑞𝑛 + ∆𝑡
{︀
∇ ·
[︀
ℱ
(︀
w𝑛+1

)︀]︀
− 𝒮

(︀
w𝑛+1

)︀}︀
The operations performed by the implictMultiUpdater are specified using the UpdateStep and UpdateSequence
pattern used for the main USim input file. Note that only the loop attribute for the UpdateSequence is used
by the implicitMultiUpdater. If the implictMultiUpdater is being used to solve a system that includes a time
discretization (e.g. the backward Euler example above), then the attribute “operation = integrate” must be
specified in the final UpdateStep in the loop in order for USim to perform the time integration. The UpdateStep
attribute “operation = operate” is not compatible with the implicitMultiUpdater.

The time integration scheme used by the multiUpdater is specified by the use of a Time Integrator block.

Preconditioning of the implictMultiUpdater can be specified by the addition of a Preconditioner block. one
preconditioner can be specified.

72 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.21.1 Data

in (string vector, required) The implicitMultiUpdater accepts exactly one input variable:

Vector of Unknowns (nodalArray, n-components, required) The vector of unknowns, q at time 𝑡𝑛.
Must have the attribute useEpetraVector = true defined in the associated dataStruct block.

out (string vector, required) The implicitMultiUpdater accepts exactly one output variable:

Vector of Unknowns (nodalArray, n-components, required) The vector of unknowns, q at time 𝑡𝑛+1.
Must have the attribute useEpetraVector = true defined in the associated dataStruct block and have the
same number of components as the input vector of unknows.

residual (string vector, optional) A string vector that specifies exactly one nodalArray to store the residual,
ℛ (q) at the end of the solve. The specified nodalArray must have the attribute useEpetraVector = true
defined in the associated dataStruct block.

solverPerf (string vector, optional) A string vector that specifies exactly one dynVector with 6 componets
to store the solver performance. Data is appended to this data structure at each Newton iteration. The
components correspond to:

0. Number of non-linear iterations.

1. The residual norm.

2. The number of linear iterations.

3. The achieved tolerance.

4. Time to solve the linear system.

5. Time to construct the preconditioner.

8.21.2 Parameters

The implicitMultiUpdater updater accepts the parameters below, in addition to those required by Updater:

maxNonlinearIterations (integer, required) Maximum number of outer Newton steps the solver will
take before returning an error code.

maxLinearIterations (integer, required) The maximum number of inner linear (Krylov) iterations to
take at each Newton iteration.

numItersToStagnation (integer, optional) The number of iterations that the stagnation condition (see
stagnationThreshold) is allowed to be violated for before the outer Newton solve exits. Defaults to
maxNonlinearIterations/4

linearTolerance (float, required) The tolerance required to achieve convergence in the inner linear
(Krylov) iterations for each Newton step.

relativeResidual (float, optional) The outer Newton problem converges when currentResidual ≤
relativeResidual × initialResidual. Required if convergenceCriteria = [relativeResidual] is specified.

absoluteResidual (float, optional) The outer Newton problem converges when currentResidual ≤
absoluteResidual. Required if convergenceCriteria = [absoluteResidual] is specified.

stagnationThreshold (float, optional) Causes the outer Newton solve to exit if currentResidual >
stagnationThreshold × previousResidual for numItersToStagnation iterations. Defaults to 1.0.

convergenceTest (string vector, optional) List of convergence tests to determine when the outer Newton
solve is converged. Options include:

8.21. implicitMultiUpdater (1d, 2d, 3d) 73

USimReferenceManual, Release 3.0.1

relativeResidual The outer Newton problem converges when currentResidual ≤
relativeResidual × initialResidual.

absoluteResidual The outer Newton problem converges when currentResidual ≤
absoluteResidual

normSolutionUpdate The outer Newton problem converges when the norm of the change
in the solution vector falls below 1.0e-3.

rmsSolutionUpdate The outer Newton problem converges when the weighted root mean
square norm fo the solution update satisfies⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(︃
(𝑞𝑘𝑖 − 𝑞𝑘−1

𝑖)

10−2|𝑞𝑘−1
𝑖 | + 10−8

)︃2

≤ 1.0

finiteResidual Causes the Newton solve to exit if NaN is encountered.

residualStagnation Causes the Newton solve to exit if currentResidual >
stagnationThreshold × previousResidual for numItersToStagnation iterations.

8.21.3 Sub-Blocks

TimeIntegrator Time Integrator Currently only one time integration scheme can be specified.

Preconditioner Preconditioner Currently, only one preconditioner can be specified.

UpdateSequence UpdateSequence This block is used to set the sequence of update steps

UpdateStep UpdateStep The steps used in the update

8.21.4 Examples

The code block below demonstrates the implicitMultiUpdater for solving a three-dimensional Poisson problem
using an algebraic multigrid preconditioner:

<Updater computeValues>
kind = implicitMultiUpdater3d
onGrid = domain
in = [phi]
out = [phiNew]
residual = [f]
solverPerf = [solverPerformance]
maxNonlinearIterations = 4
nonlinearTolerance = 1.e-12
maxLinearIterations = 128
linearTolerance = 1.e-14
computePreconditioningMatrix = 1
preconditioner = ML
newtonForceMethod = Constant
stencilUpdater = [computeNablaPhi]
writePreconditioningMatrixToFile = 0

<TimeIntegrator implicitUpdater>
kind = implicit3d
ongrid = domain
scheme = none

</TimeIntegrator>

74 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

<Preconditioner myPreconditioner>
None/ML/AztecOO/Ifpack/New Ifpack
preconditioner=ML
if 0, use a FD preconditioner
computePreconditioningMatrix = 1
write out the preconditioning matrix at startup
writePreconditioningMatrixToFile = 0
maximum age of preconditioner in outer Newton steps (needs a better name)
linearMaxPrecAge = 10
rebuild, reuse or recompute preconditioner (needs a better name)
linearReusePolicy = Reuse
mlStrategy=classicSA # SA/DD
stencilUpdater = [computeNablaPhi]
testPreconditioner = false
#mlDampingFactor=0.0675
#mlSmoother = BSGS-A

Block to allow arbitray parameters to be passed to the preconditioner XML list
#<ParameterList ml>
increasing or decreasing = "increasing"
#</ParameterList>

</Preconditioner>

<UpdateSequence sequence>
loop = [boundaries,hyper]

</UpdateSequence>

<UpdateStep hyper>
updaters = [computeNablaPhi,poisson,copyBc]
syncVars = [phiNew]

</UpdateStep>

<UpdateStep boundaries>
updaters = [dirchletBc]
syncVars = [phi]

</UpdateStep>

</Updater>

The code block demonstrates the implicitMultiUpdater for solving a 2 or 3 dimensional compressible flow
problem:

<Updater computeValues>
kind = implicitMultiUpdater$NDIM$d
onGrid = domain
inpIndices = [0]
in = [q]
out = [qNew]
residual = [f]
solverPerf = [solverPerformance]
maxNonlinearIterations = 100
nonlinearTolerance = 1.e-6
maxLinearIterations = 128
linearTolerance = 1.e-4
preconditioner = ML
#aztecPreconditioner = ilut
stencilUpdater = [hyper]
newtonForceMethod = Constant

8.21. implicitMultiUpdater (1d, 2d, 3d) 75

USimReferenceManual, Release 3.0.1

computePreconditioningMatrix = 0

<TimeIntegrator implicitUpdater>
kind = implicit$NDIM$d
ongrid = domain
scheme = theta
theta = 0.5 #Crank-Nicholson
noInitialGuess = true

</TimeIntegrator>

<Preconditioner myPreconditioner>
kind=autoPreconditioner$NDIM$d
None/ML/AztecOO/Ifpack/New Ifpack
preconditioner=ML
if 0, use a FD preconditioner
computePreconditioningMatrix = 1
write out the preconditioning matrix at startup
writePreconditioningMatrixToFile = 0
testPreconditioner = false
maximum age of preconditioner in outer Newton steps (needs a better name)
linearMaxPrecAge = 10
rebuild, reuse or recompute preconditioner (needs a better name)
linearReusePolicy = Reuse
mlStrategy=DD # SA/DD
#mlSmoother="symmetric Gauss Seidel"
stencilUpdater = [hyper]
#mlDampingFactor=0.125
mlSmoother = BSGS-E

Block to allow arbitray parameters to be passed into the preconditioner XML list
#<ParameterList ml>
increasing or decreasing = "increasing"
#</ParameterList>

</Preconditioner>

<UpdateSequence sequence>
loop = [boundaries,hyper]

</UpdateSequence>

<UpdateStep hyper>
operation = "integrate"
updaters = [hyper,periodicFlux,copyQnewToFlux]
syncVars = [qNew]

</UpdateStep>

<UpdateStep boundaries>
updaters = [periodicQ]
syncVars = [q]

</UpdateStep>

</Updater>

8.22 localOdeIntegrator (1d, 2d, 3d)

The localOdeIntegrator is used to integrate a Algebraic Equations and evaluates a set of input nodalArrays and
stores the ouput in one or more user-specified nodalArrays. The number of inputs and outputs are defined by

76 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

the kind of Algebraic Equations being used for the Equation.

8.22.1 Data

in (string vector, required) Inputs 1 to N are nodalArrays which will be supplied to the source through the
Equation block.

out (string vector, required) Outputs 1 to N are nodalArrays which will contain the output of the Source.

8.22.2 Parameters

relativeErrorTolerance (float) The allowable error.

integrationScheme Integration scheme to use. Allowable types are bulirschStoer, rk5 and rosenbrock.
The integrations schemes are described in the boost, odeint library.

8.22.3 Sub-Blocks

Equation Defines the kind of source being solved. Equation in this case is actually a kind of Algebraic
Equations. If multiple <Equation> blocks are defined then the results are added together to produce the
output.

8.22.4 Example

The following code block demonstrates the usage of the‘localOdeIntegrator combined with the exprHyperSrc
source:

<Updater integrator>
kind = localOdeIntegrator1d
integrationScheme = bulirschStoer
onGrid = domain

relativeErrorTolerance = 0.1

in = [q]
out = [qnew]

<Equation gravity>
kind = exprHyperSrc
indVars = ["a","b"]
exprs = ["-x*b","x*a"]

</Equation>

</Updater>

8.23 timeStepRestrictionUpdater (1d, 2d, 3d)

The timeStepRestrictionUpdater computes the minimum time step and fastest wave speed based on specified
restrictions. This data can both be used to determine the time step that the simulation will be advanced over and
(optionally) store this data in a dynVector that can be passed to, e.g Time Integrator or classicMusclUpdater (1d,
2d, 3d).

8.23. timeStepRestrictionUpdater (1d, 2d, 3d) 77

USimReferenceManual, Release 3.0.1

8.23.1 Data

in (string vector, required) Inputs 1 to N are nodalArrays which will be supplied to the time step restriction.
Defined by the choice of Time Step Restriction.

timeSteps (string, optional) At most one dynVector that will contain the time step associated with each of
the Time Step Restriction blocks. The dynVector must have the same number of components as the number
of Time Step Restriction blocks.

waveSpeeds (string, optional) At most one dynVector that will contain the fastest wave speed associated
with each of the Time Step Restriction blocks. The dynVector must have the same number of components
as the number of Time Step Restriction blocks.

8.23.2 Parameters

courantCondition (float, required) The CFL condition to apply to the time-step restrictions computed
by this updater.

restrictions (string vector, required) Names of 1 to N time step restrictions to compute using this up-
dater. The names must correspond to the names of Time Step Restriction subblocks specified in this updater.

8.23.3 Sub-Blocks

TimeStepRestriction (block) The Time Step Restriction that defines the time-step and fastest wave speed
to be computed by this updater. At least one Time Step Restriction must be specifed and This updater
requires at least one TimeStepRestriction block. Each of the block names used should be put into the
restrictions list.

8.23.4 Example

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with timeStepRe-
strictionUpdater (1d, 2d, 3d), hyperbolic (1d, 2d, 3d) and quadratic (1d, 2d, 3d) to compute 𝑑𝑡min, 𝑑𝑡diff and
𝑐fast for resistive two-temperature MHD:

<Updater getHypDT>
kind = timeStepRestrictionUpdater1d
in = [q,electricField,current,chargeState,resistivity]

onGrid = domain
waveSpeeds = [waveSpeed]
timeSteps = [diffDT]
restrictions = [idealMhd,quadratic]
courantCondition = CFL

<TimeStepRestriction idealMhd>
kind = hyperbolic1d
cfl = CFL
model = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
correctNans = true
correct = true
correctNans = true
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"

78 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

currentVector = "current"
storeTimeStep = False

</TimeStepRestriction>

<TimeStepRestriction quadratic>
kind = quadratic1d
in = [resistivity]
cfl = CFL

</TimeStepRestriction>
</Updater>

The following Updater kind attributes can be specified to perform operations on the grid:

8.24 boundaryEntityGenerator (1d, 2d, 3d)

Generates ghost cells for a particular entity so that an updater requiring ghost cells can be used on a subset of
the full domain.

8.24.1 Parameters

onEntity (string) The entity which will be used to construct ghost layers around. This can be considered the
interior region

boundaryName (string) The name of the new entity that contains the boundary ghost cells of the interior
region

layers (integer) The number of ghost layers to define

8.24.2 Example

<Updater generateVacuumBoundary>
kind = boundaryEntityGenerator2d
onGrid = domain
layers = 2
boundaryName = vacuumBoundary
onEntity = vacuum

</Updater>

8.25 characteristicCellLength (1d, 2d, 3d)

Computes a characteristic cell length scale for every cell in the domain. This length scale is similar to the
shortest side side length of a cell and can be used to determine maximum stable diffusion terms.

8.25.1 Data

out (string vector, required) The output is a nodalArray containing the characteristic length for each cell in
the domain. This value is computed from geometry alone so no Inputs are required.

8.24. boundaryEntityGenerator (1d, 2d, 3d) 79

USimReferenceManual, Release 3.0.1

8.25.2 Parameters

coefficient (float) A constant factor that is multiplied by every component of the output vector

8.25.3 Example

<Updater computeCellDx>
kind = characteristicCellLength2d
onGrid = domain
out = [cellDx]
coefficient = 1.0

</Updater>

8.26 entityGenerator (1d, 2d, 3d)

Generates entities which can be used in defining regions for boundary conditions.

8.26.1 Parameters

onEntity (string) The entity generator will be a subset of the entity reference by onEntity. For boundary
conditions this onEntity = ghost or a subset of ghost

newEntityName (string) The name of the newEntity that can then be used in updaters that are applied to
entities.

8.26.2 Sub-Blocks

Function (block) Function which defines the entity. Wherever the function is positive and belongs the entity
onEntity is defined the entity newEntityName will be defined.

8.26.3 Example

<Updater generateOpen>
kind = entityGenerator2d
onGrid = domain
newEntityName = openBoundary
onEntity = ghost
<Function mask>

kind = exprFunc
exprs = ["if((x>0.001) and (y>0.34),1.0,-1.0)"]

</Function>
</Updater>

8.27 minDistanceToWall (1d, 2d, 3d)

Calculates the shortest distance from the grid boundary to each cell in the domain.

80 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.27.1 Parameters

entity (string) The name of the grid boundary

computeUt (boolean) Specify whether to compute the shear velocity. If true, out vector must be of size 2.

8.27.2 Data

in (string vector of 3, required)

• input 1 is fluid vector

• input 2 is gradient of the velocity-magnitude

• input 3 is laminar viscosity

out (string vector, required) out is a single vector consisting of the shortest distance in component-1. If
computeUt=true, shear velocity will be stored in component-2.

8.27.3 Example

<Updater computeDistancesToPlate>
kind = minDistanceToWall2d
onGrid = domain
entity = plate
computeUt = true
in = [q, gradU, visc]
out = [distance]

</Updater>

8.28 operatorEntityGenerator (1d, 2d, 3d)

Performs logical operations (not, and, or) on a list of entities to produce a new entity.

8.28.1 Data

entities (string vector) A list of entities that the logical operation will be performed on to produce the new
entity.

8.28.2 Parameters

entityName (string) The name of the new entity resulting from the logical operations.

operation (string) The operation to be performed on the list of entities. The operation can have values (not,
and, or).

8.28.3 Example

8.28. operatorEntityGenerator (1d, 2d, 3d) 81

USimReferenceManual, Release 3.0.1

<Updater generatePlasma>
kind = operatorEntityGenerator2d
onGrid = domain
operation = not
entityName = plasma
entities = [vacuum]

</Updater>

8.29 paintEntity (1d, 2d, 3d)

Sets the output variable to 0 everywhere the entity is not defined and 1 everywhere it is defined. This is useful
for debugging boundary conditions.

8.29.1 Data

out (string vector) A nodalArray where the domain of the entity is stored. If you are looking at boundary
conditions make sure to set writeHalos=true in the grid.

8.29.2 Example

<Updater init>
kind = paintEntity2d
onGrid = domain
out = [q]
entity = ghost

</Updater>

The following Updater kind attributes can be specified to compute output diagnostics from a simulation:

8.30 binCells (1d, 2d, 3d)

Initializes a bin dataStruct by storing cell data inside the bin structure. Every cell partially or completely inside
the bin is stored in the bin.

8.30.1 Data

out (string vector) output bin where the cell binning data is stored

8.30.2 Example

<Updater fillBin>
kind = binCells2d
onGrid = domain
out = [cellBin]

</Updater>

82 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.31 fieldAtPoint (1d, 2d, 3d)

Record a field at a particular point in space

8.31.1 Data

in (string vector, required)

Sampled Data The first variable is the data we will be sampling

bin The second variable is the bin used to determine what cell the point is located in.

out (string vector, required) Output dynVector where the result of the operation is stored

8.31.2 Parameters

point (vector float) This is the point where the data will be computed

inpIndices (vector integer) These are the indexes of the input array that will be stored in the output vector

8.31.3 Example

<Updater computeValues>
kind = fieldAtPoint1d
onGrid = domain
point = [-0.25,0.0,0.0]

inpIndices = [0, 1, 2]
in = [em, cellBin]

out = [E]
</Updater>

8.32 intCombinedFields (1d, 2d, 3d)

Integrates a quantity over the volume of the domain and writes to a dynVector

8.32.1 Data

in (string vector) Input 1 to N are input nodalArrays on which operations will be performed. Example in =
[E, B]

out (string vector) output dynVector where the result of the operation is stored

8.32.2 Parameters

indVars_name (string vector) For each input variable an “indVars” array must be defined. So if in = [E,
B] then indVars_E and indVars_B must be defined. If indVars_E = [”Ex”,”Ey”,”Ez”] then operations are
performed on “Ex”,”Ey” and “Ez” in the expression evaluator.

8.31. fieldAtPoint (1d, 2d, 3d) 83

USimReferenceManual, Release 3.0.1

preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based
on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by
the muParser (http://muparser.sourceforge.net)

exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs

Also, the updater has predefined variables including x,y,z representing the spatial location of the cell and t
the time.

8.32.3 Example

<Updater computeTotalE>
kind = intCombinedFields2d
onGrid = domain

in = [qnew]
out = [totalE]
mi = MI
mu0 = MU0
gamma = GAMMA
k=KB
indVars_qnew = ["rho","mx","my","mz","en","bx","by","bz","phi"]
exprs = ["en"]

</Updater>

8.33 lineIntegral (1d, 2d, 3d)

Performs operations on a set of input nodalArray to produce a dynVector by integrating along a specified tra-
jectory. Uses an expression updater to evaluate the expression. The expression evaluator recognizes positions
“x”,”y”,”z” and time “t” and these can be used to evaluate functions of time and space.

8.33.1 Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in = [E,
B]

out (string) output dynVector where the result of the operation is stored

layout (string) The name of the bin to use when constructing the line integral. The line integral requires that
a bin be constructed. The updater binCells (1d, 2d, 3d) can be used to initialize a bin dataStruct.

8.33.2 Parameters

startPosition The starting position of the line integral

endPosition The end position of the line integral

numberOfSamples The number of sample points along the line to be used in computing the line integral

84 Chapter 8. Updater

http://muparser.sourceforge.net
http://muparser.sourceforge.net/

USimReferenceManual, Release 3.0.1

indVars_inName For each input variable an “indVars” array must be defined. So if in = [E, B] then ind-
Vars_E and indVars_B must be defined. If indVars_E = [”Ex”,”Ey”,”Ez”] then operations are performed
on “Ex”,”Ey” and “Ez” in the expression evaluator.

preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based
on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by
the muParser (http://muparser.sourceforge.net)

exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs

Also, the combiner has predefined variables including x,y,z representing the spatial location of the cell, t
and dt, representing time and time step and dVolume representing the volume of a cell.

8.33.3 Example

<Updater computeLineIntegral>
kind = lineIntegral2d
onGrid = domain
startPosition = [0.0, 0.0]
endPosition = [0.5, 0.5]
numberOfSamples = 100

layout = [cellBin]
in = [potential]
indVars_potential = ["phi"]
exprs = ["phi"]
out = [lineIntegralPhi]

</Updater>

8.34 maxCombinedFields (1d, 2d, 3d)

Computes the maximum value (pressure or energy for example) over the domain. The value is stored in a
dynVector.

8.34.1 Data

in (string vector) Input 1 to N are input nodalArrays on which operations will be performed. Example in =
[E, B]

out (string vector) output dynVector where the result of the operation is stored

8.34.2 Parameters

indVars_name (string vector) For each input variable an “indVars” array must be defined. So if in = [E,
B] then indVars_E and indVars_B must be defined. If indVars_E = [”Ex”,”Ey”,”Ez”] then operations are
performed on “Ex”,”Ey” and “Ez” in the expression evaluator.

8.34. maxCombinedFields (1d, 2d, 3d) 85

http://muparser.sourceforge.net
http://muparser.sourceforge.net/

USimReferenceManual, Release 3.0.1

preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based
on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by
the muParser (http://muparser.sourceforge.net)

exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs

Also, the updater has predefined variables including x,y,z representing the spatial location of the cell and t
the time.

8.34.3 Example

<Updater computeMaxP>
kind = maxCombinedFields2d
onGrid = domain

in = [qnew]
out = [maxP]
mi = MI
mu0 = MU0
gamma = GAMMA
k=KB
indVars_qnew = ["rho","mx","my","mz","en","bx","by","bz","phi"]
exprs = ["(gamma-1)*(en-(0.5/mu0)*(bx*bx+by*by+bz*bz)-0.5*(mx*mx+my*my+mz*mz)/rho)"]
</Updater>

8.35 surfaceIntegral (1d, 2d, 3d)

Computes a surface integral as a function of nodalArray values and dumps the results in a dynVector.

8.35.1 Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in = [E,
B]

out (string vector) The dynVector where the result of the surface integral is stored.

8.35.2 Parameters

onEntity (string) Name of the entity on which the surface integral will be applied.

indVars_name (string vector) For each input variable an “indVars” array must be defined. So if in = [E,
B] then indVars_E and indVars_B must be defined. If indVars_E = [”Ex”,”Ey”,”Ez”] then operations are
performed on “Ex”,”Ey” and “Ez” in the expression evaluator. This expression evaluator takes, “x”, “y”,
“z”, “NormalX”, “NormalY” and “NormalZ” as parameters, where “Normal” are the component normals
to the surface location.

preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based
on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by
the muParser (http://muparser.sourceforge.net)

86 Chapter 8. Updater

http://muparser.sourceforge.net
http://muparser.sourceforge.net/
http://muparser.sourceforge.net

USimReferenceManual, Release 3.0.1

exprs (string vector) Strings must be put in quotes. The strings are evaluated and placed in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs

Also, the updater has predefined variables including x,y,z representing the spatial location of the surface, t
representing time and NormalX, NormalY and NormalZ representing the surface normal to the boundary.

8.35.3 Example

<Updater computeSurfaceCurrent>
kind = surfaceIntegral2D
onGrid = domain
entity = ghost

length = LENGTH
in = [J]
out = [surfaceCurrent]

indVars_J = ["Jx","Jy","Jz"]
exprs = ["2*3.14159*x*Jx"]

</Updater>

8.36 surfaceVariables (1d, 2d, 3d)

Obtains the variables such as temperature, heat flux, evaporation flux etc at the solid fluid interface. The interface
can be specified using domain boundary entities of interest. The standard updater block is given below:

<Updater SurfaceVariable>
kind = surfaceVariables2d
onGrid = domain
variablesType = ablation
storeSurfaceProperty = 1

in = [surfTemp]
out = [abSurfProp]

entity = left
</Updater>

The parameters required by this updater block are listed below:

storeSurfaceProperty (boolean)

Store the surfaceVariables in the first row of cells along the boundary entity

entity (string)

Name of the boundary on which surfaceVariables have to be evaluated.

variablesType (string)

The type of surface variable to compute. Currently implemented surfaceVariables are

8.36. surfaceVariables (1d, 2d, 3d) 87

http://muparser.sourceforge.net/

USimReferenceManual, Release 3.0.1

8.36.1 ablation (1d, 2d, 3d)

Computes the surface evaporation parameters for a given material. The description of the parameters
specific to ablation is given blelow:

Parameters

variablesType = ablation

storeSurfaceProperty = 1. This should be true to vizulaize and utilize the evaluated vari-
ables in boundary conditions

in = vector containing the surface temperature

ablationModel option to chose the type of ablation model. currently implemented model is
sonic, which assumes the vapor expands to sonic speed at the fluid interface.

numConstituents (integer) is the number of material elements present inside the compound
material.

satPressure (real) The material specific variables of Claussius-Clapeyron equation to obtain
the saturation pressure at a given temperature. Each element requires 3 constants reference
pressure (𝑃𝑎), enthalpy of evaporation (𝐽/𝑚𝑜𝑙) and reference temperature (𝐾). If there are
two elements in the cmpound material, the constants of the second element should be entered
right after the first element.

moleFraction (real) Molefractions of the constiTuents

averageMolecularWeight (real) average molecular weight of the compound material

out the result vector consisting of Density (𝑘𝑔/𝑚3), velocity (𝑚/𝑠), temperature (𝐾), pressure
(𝑃𝑎), saturation pressure (𝑃𝑎), and number density (1/𝑚3) of the compound material.

Example

Code block

<Updater computeAbSurfProp>
kind = surfaceVariables2d
onGrid = domain
variablesType = ablation
storeSurfaceProperty = 1
dynVectors = []

in = [surfTemp]

ablationModel = sonic
numConstituents = 2
satPressure = [p01 dh1 T01 p02 dh2 T02]
moleFraction = [MolF1 MolF2]
averageMolecularWeight = MWAvg

out = [abSurfProp]

entity = left
</Updater>

88 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.36.2 temperatureAndHeatFlux (1d, 2d, 3d)

Evaluates the temperature and heatflux on the boundary of interest. The description of specific pa-
rameters is given blelow:

Parameters

variablesType = temperatureAndHeatFlux

storeSurfaceProperty = 1. This should be true to vizulaize and utilize the evaluated vari-
ables in boundary conditions

in = vectors containing the thermal conductivity and temperature gradient. Note that temperature
gradient vector will have three components.

heatFluxBalanceModel option to chose the type of heat flux balance. currently implemented
model is radiationEquilibrium.

emissivity (real) is the surface emissivity.

baseTemperature (real) minimum possible surface temperature.

averageMolecularWeight (float) average molecular weight of the compound material

out the result vector consisting of surface temperature (𝐾) and surface heat flux (𝑊/𝑚2)

Example

Code block

<Updater computeSurfTemp>
kind = surfaceVariables2d
onGrid = domain
variablesType = temperatureAndHeatFlux
storeSurfaceProperty = 1

dynVectors = []
in = [D,gradTemp]

heatFluxBalanceModel = radiationEquilibrium
emissivity = 0.9
baseTemperature = BASETEMP

out = [surfTemp]

entity = ghost
</Updater>

The following Updater kind attributes can be specified to fix unphysical behaviour (e.g. NaN, negative density,
pressures) in a simulation:

8.37 nanChecker (1d, 2d, 3d)

Checks a nodalArray to see if any of the numbers are undefined nan, inf etc... Throws an exception of a nan is
found and provides the index.

8.37. nanChecker (1d, 2d, 3d) 89

USimReferenceManual, Release 3.0.1

8.37.1 Data

in The nodalArray that will be searched for nans

8.37.2 Example

<Updater init>
kind = nanChecker2d
onGrid = domain
out = [q]

</Updater>

8.38 pressureDensityCorrector (1d, 2d, 3d)

Computes the pressure and density in a nodalArray and modifies the pressure and density if they are below
basement values. This is a simple way to prevent pressures and densities from becoming too small but is also
non-conservative.

8.38.1 Data

out (string vector) Output 1 stores the nodalArray that will have its pressure and density corrected. The
nodalArray must have the same number of components as is required by the chosen model.

8.38.2 Parameters

model (string) The model equation used for determining how to compute pressure and density. The model
must be a fluid model such as eulerEqn. Will not work with maxwellEqn since no pressure or density
is defined. When the model is initialized it will request additional variables required by that model, for
example gasGamma and mu0 for MHD type equations.

basementDensity (float) basementDensity used in determining when to switch between accurate and pos-
itive solutions. Default is 0.0.

basementPressure (float) basementPressure used in determining when to switch between accurate and
positive solutions. Default is 0.0.

8.38.3 Example

<Updater correct>
kind = pressureDensityCorrector2d
model = eulerEqn
basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE
gasGamma = GAS_GAMMA
onGrid = domain
out = [q]

</Updater>

90 Chapter 8. Updater

USimReferenceManual, Release 3.0.1

8.39 valueCorrector (1d, 2d, 3d)

Cleans a nodalArray of “bad” values. If a value in the array is below a basment value or is undefined (nan,inf
etc), the value corrector sets the value to the basement value. Cleans every value in the output vector so if your
output is length 6 it cleans all 6 components.

8.39.1 Data

out (string vector) The variable that will be modified

8.39.2 Parameters

basementValue (float) Minimum value the nodalArray is allowed to have. If the value drops below this
then it will be reset to basementValue

8.39.3 Example

<Updater init>
kind = valueCorrector1d
onGrid = domain
out = [q]
basementValue = 1.0

</Updater>

8.39. valueCorrector (1d, 2d, 3d) 91

USimReferenceManual, Release 3.0.1

92 Chapter 8. Updater

CHAPTER

NINE

TIME INTEGRATOR

Time integrators in USim allow updaters such as multiUpdater (1d, 2d, 3d) and implicitMultiUpdater (1d, 2d, 3d)
to discretize partial differential equations in time. USim provides support for total variation diminsighing explicit
Runge-Kutta schemes at up to fourth order; super-time-step schemes at first and second order, subcycling methods and
implicit discretizations at up to second order.

An example demonstrating an explicit third order Runge-Kutta scheme is below:

<TimeIntegrator rkIntegrator>
kind = rungeKutta1d
ongrid = domain
scheme = third

</TimeIntegrator>

The following parameters are common to all TimeIntegrator blocks:

kind (string, required) Specifies the time-integration scheme to use: Available options are:

rungeKutta(1d,2d,3d) Specifices explicit Runge Kutta integration methods in 1, 2 or 3 di-
mensions. Appropriate for hyperbolic problems.

superTimeStep(1d,2d,3d) Specifices explicit super time step integration methods in 1, 2 or
3 dimensions. Appropriate for diffusion problems.

implicit(1d,2d,3d) Specifices implicit integration methods in 1, 2 or 3 dimensions.

onGrid (string, required) The Grid the time integration is performed on.

scheme (string, required) The order of the time integration method to use. Available options are:

None Do not integrate in time. Only available for kind = implicit(1d,2d,3d). Used for solving
problems that are not discretized in time, e.g. Poisson’s equation.

theta Only available for kind = implicit(1d,2d,3d). Provides an implicit discretization of the form

q𝑛+1 − q𝑛 − ∆𝑡𝜃
[︀
∇ · ℱ

(︀
w𝑛+1

)︀
− 𝒮

(︀
w𝑛+1

)︀]︀
− ∆𝑡 [1 − 𝜃] [∇ · ℱ (w𝑛) − 𝒮 (w𝑛)] ‘

Here, 𝜃 = 1 corresponds to backwards Euler, 𝜃 = 1/2 corresponds to Crank-Nicholson and 𝜃 = 0
corresponds to forward Euler. I

zeroth First order subcycling scheme. Only available for kind = superTimeStep(1d,2d,3d).

first First order accurate schemes. Only available for kind = rungeKutta(1d,2d,3d), kind = super-
TimeStep(1d,2d,3d).

second Second order accurate schemes. Only available for kind = rungeKutta(1d,2d,3d), kind =
superTimeStep(1d,2d,3d).

third Third order accurate schemes. Only available for kind = rungeKutta(1d,2d,3d).

fourth Fourth order accurate schemes. Only available for kind = rungeKutta(1d,2d,3d).

93

USimReferenceManual, Release 3.0.1

timeStepRestrictions (string vector, optional) List of dynVector that holds the timestep associated with the
diffusion operator that forms the right-hand side of the equation. Required if kind = superTimeStep(1d,2d,3d).

theta (float, optional) Specifies 𝜃 for implicit discretizations. Required if kind = implicit(1d,2d,3d) and scheme =
theta.

94 Chapter 9. Time Integrator

CHAPTER

TEN

PRECONDITIONER

Preconditioner blocks are used in combination with implicitMultiUpdater (1d, 2d, 3d). They allow USim to solve
linear systems in an efficient, scalable fashion. An example Preconditioner block is given below

<Preconditioner myPreconditioner>
preconditioner = ML # None/ML/AztecOO/Ifpack/New Ifpack
computePreconditioningMatrix = 1 # if 0, use a FD preconditioner
writePreconditioningMatrixToFile = 0 # write out the preconditioning matrix at startup
linearMaxPrecAge = 10 # maximum age of preconditioner in outer Newton steps
linearReusePolicy = Reuse # rebuild, reuse or recompute preconditioner
stencilUpdater = [computeNablaPhi]
mlStrategy=classicSA # SA/DD

</Preconditioner>

The following parameters are common to all Preconditioner blocks.

kind (string, required) Specify the method for computing the matrix for preconditioning the linear system. Avail-
able options are:

preconditioner(1,2,3)d With this choice, USim computes the matrix through the stencil
supplied by a single updater specied by the stencilUpdater parameter. This option is useful when the
operator to be solved has a simple signature (e.g. the Laplacian ∇2)

autoPreconditioner(1,2,3)d With this choice, USim uses an efficient finite difference
method to compute the matrix for the system of equations specified by the UpdateSequence block
in the implicitMultiUpdater (1d, 2d, 3d). This option is useful for systems that solve multiphysics
problems.

preconditioner (string, required) Options are None, ML, AztecOO, Ifpack and New Ifpack. ML (Multi-Level)
preconditioners are the preferred option for USim due to the highly anisotropic nature of the matrix produced by
USim operators. These preconditioner are based on the ML package (https://trilinos.org/packages/ml/). Other
options include preconditioners based on the AztecOO package (https://trilinos.org/packages/aztecoo/) and If-
pack (https://trilinos.org/packages/ifpack/)

computePreconditioningMatrix (int, required) If computePreconditioningMatrix = 1, then compute a ma-
trix based on a user-specified updater (if kind = preconditioner(1,2,3)d) or using an efficient finite difference
method (if kind = autoPreconditioner(1,2,3)d. If computePreconditioningMatrix = 0, then the matrix is de-
termined using a (slow) finite-difference computation. This latter option, allows for debugging the system of
equations.

writePreconditioningMatrixToFile (int, required) If writePreconditioningMatrixToFile = 1, then the
matrix used to precondition the non-linear problem is written out each time it is filled in Matrix Market for-
mat. This option is expensive, both in terms of simulation time and storage space and so it is recommended that
writePreconditioningMatrixToFile = 0 except if needing to debug the simulation.

stencilUpdater (string vector, optional) Tell the solver which updater to compute the matrix to use as a pre-
conditioner. Required if kind = preconditioner(1,2,3)d and computePreconditioningMatrix = 1. Currently, only

95

https://trilinos.org/packages/ml/
https://trilinos.org/packages/aztecoo/
https://trilinos.org/packages/ifpack/

USimReferenceManual, Release 3.0.1

accepts one entry.

linearMaxPrecAge (int, required) The number of outer Newton steps to take between each update of the pre-
conditioner. Determining this value is problem dependent and requires careful experimentation by the user.

The following options are available if preconditioner = ML:

testPreconditioner (bool) Test the ability of the preconditioner to invert the matrix

testSmoother (bool) Test the ability of the range of smoothers available in ML to invert the matrix.

mlStrategy (string) Determines whether or not to use smoothed aggregation or domain decomposition for the
multi-level solver. Available options are:

SA Specify smoothed aggregation methods.

DD Specify domain decomposition methods.

classicSA Specify smoothed aggregation methods appropriate for diffusion-type problems.

classicDD Specify domain decomposition methods appropriate for diffusion-type problems.

mlSmoother (string) Specify the smoother strategy used to compute the ML hierarcy when Options include:

Jacobi

block Gauss-Seidel

symmetric Gauss-Seidel

BSGS-A

BSGS-E

The choice of smoother is best determined for a given problem by first running the problem with testPrecondi-
tioner = true and testSmoother = true. This combination of options will provide information about the ability
of the different mlSmoother options to solve the matrix. The mlSmoother option can then be set appropriately
and the testPreconditioner, testSmoother options can be set to false in order to improve efficiency.

mlNumPDE (int, optional) Specify the number of PDE’s represented in the matrix. Typically, this option should
match the number of components for the input nodalArray input to the implicitMultiUpdater (1d, 2d, 3d).

The following subblocks can be supplied to the preconditioner:

ParameterList A ParameterList block can be supplied to any preconditioner block. The ParameterList
block should contain options accepted by the Trilinos preconditioner specified by the preconditioner
string parameter, documented at https://trilinos.org/packages/ml/, https://trilinos.org/packages/aztecoo/) and
https://trilinos.org/packages/ifpack/

96 Chapter 10. Preconditioner

https://trilinos.org/packages/ml/
https://trilinos.org/packages/aztecoo/
https://trilinos.org/packages/ifpack/

CHAPTER

ELEVEN

HYPERBOLIC EQUATIONS

An Equation block that describes a hyperbolic conservation law of the form:

𝜕q

𝜕𝑡
+ ∇ · [ℱ (w)] = 0

where q is a vector of conserved variables (e.g. density, momentum, total energy), ℱ (w) is a non-linear flux tensor
computed from a vector of primitive variables, (e.g. density, velocity, pressure), w = w(q). The choice of hyperbolic
equation defines q, ℱ (w), w = w(q), along with the eigensystem associated with ℱ (w).

An Equation block is owned by an updater (e.g. classicMusclUpdater (1d, 2d, 3d)). The updater that owns the
Equation sets the input, output and any additional data structures that are required by the Equation system.

The following parameters are common to all Equation blocks:

kind (string) All Equation blocks take a string kind that species the type of hyperbolic equation. The following
equations can be used to simulate neutral plasmas:

11.1 eulerEqn

Defines the equations of inviscid compressible hydrodynamics:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u] = 0

Here, I is the identity matrix, 𝑃 = 𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and
𝛾 is the adiabatic index (ratio of specific heats).

11.1.1 Parameters

gasGamma (float) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

97

USimReferenceManual, Release 3.0.1

11.1.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of con-
served quantities, q has 5 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2: total energy density

out (string vector, required) For the eulerEqn, one of four output variables are computed, depending on
whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater (1d,
2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated with the CFL
condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid (timeStepRestric-
tionUpdater (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 5-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

Vector of Primitive States (nodalArray, 5-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

Time Step (dynVector, 1-component) When combined with the kind=hyperblic, model=eulerEqn
timeStepRestrictionUpdater (1d, 2d, 3d), and storeTimeStep is true, the equation system returns the
time step consistent with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with the kind=hyperbolic,
model=eulerEqn timeStepRestrictionUpdater (1d, 2d, 3d), and storeWaveSpeed is true, the equation
system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.1.3 Example

The following block demonstrates the eulerEqn used in combination with classicMusclUpdater (1d, 2d, 3d) to
compute ∇ · ℱ (w):

98 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

<Updater hyper>
kind=classicMuscl1d
onGrid=domain
timeIntegrationScheme=none
numericalFlux=roeFlux
limiter=[muscl]
variableForm=primitive
in=[q]
out=[qnew]
cfl=0.3
equations=[euler]

<Equation euler>
kind=eulerEqn
gasGamma=1.4
basementDensity = 1.0e-5
basementPressure = 1.0e-6

</Equation>

</Updater>

11.2 realGasEqn

Real gas using a real gas equation of state. Requires the computation of specific heat and temperature and
assignment of zero point energy outside of the equation. Assumes single temperature. The equations are solved
in conservative form.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎝
𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧
𝑒

⎞⎟⎟⎟⎟⎠+ ∇ ·

⎛⎜⎜⎜⎜⎝
𝜌 𝑢𝑥 𝜌 𝑢𝑦 𝜌 𝑢𝑧

𝜌 𝑢2𝑥 + 𝑃 𝜌𝑢𝑥 𝑢𝑦 𝜌 𝑢𝑥 𝑢𝑧
𝜌 𝑢𝑦 𝑢𝑥 𝜌 𝑢𝑦 𝑢𝑦 + 𝑃 𝜌𝑢𝑦 𝑢𝑧
𝜌 𝑢𝑧 𝑢𝑥 𝜌 𝑢𝑧 𝑢𝑦 𝜌 𝑢𝑧 𝑢𝑧 + 𝑃

𝑢𝑥 (𝑒+ 𝑃) 𝑢𝑦 (𝑒+ 𝑃) 𝑢𝑧 (𝑒+ 𝑃)

⎞⎟⎟⎟⎟⎠ = 0

The energy is given by

𝑒 =
1

2
𝜌
(︀
𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧

)︀
+
∑︁
𝑖

𝑛𝑖 (𝐶𝑣𝑖𝑇 + 𝑒0 𝑖) (11.-2)

11.2.1 Parameters

numSpecies (float) The number of species modeled in the real gas system.

basementPressure (float) The minimum pressure allowed. Defaults to 0.

basementDensity (float) The minimum density allowed. Defaults to 0.

Note: basementPressure and basementDensity are only used if correct=true

correct (boolean) Tells whether or not densities or pressures should be corrected when the fall below base-
ment pressures or basement densities. When set to true pressure=max(basementPressure, pressure) and
density = max(basementDensity, density). Defaults to false.

Note: Setting correctNans or correct to true can lead to energy conservation errors

11.2. realGasEqn 99

USimReferenceManual, Release 3.0.1

11.2.2 Parent Updater Data

in (string vector, required)

Vector of conserved quantities

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

2nd variable (3n+1) 3n+1 auxiliary variables with n the number of species

0. variables 0-(n-1). 𝑛𝑖 species number density

1. variables n-(2n-1). 𝐶𝑣𝑖 species specific heat at constant volume

2. variables n-(3n-1). 𝑒0 𝑖 species zero point energy density

3. variables 3n. 𝑇 Temperature in Kelvin

11.2.3 Example

An example realGas equation block is given below

<Equation realGas>
kind = realGasEqn
numSpecies = 7

</Equation>

11.3 realGasEosEqn

Gas dynamics with a general equation of state. The equations are solved in conservative form.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎝
𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧
𝑒

⎞⎟⎟⎟⎟⎠+ ∇ ·

⎛⎜⎜⎜⎜⎝
𝜌 𝑢𝑥 𝜌 𝑢𝑦 𝜌 𝑢𝑧

𝜌 𝑢2𝑥 + 𝑃 𝜌𝑢𝑥 𝑢𝑦 𝜌 𝑢𝑥 𝑢𝑧
𝜌 𝑢𝑦 𝑢𝑥 𝜌 𝑢𝑦 𝑢𝑦 + 𝑃 𝜌𝑢𝑦 𝑢𝑧
𝜌 𝑢𝑧 𝑢𝑥 𝜌 𝑢𝑧 𝑢𝑦 𝜌 𝑢𝑧 𝑢𝑧 + 𝑃

𝑢𝑥 (𝑒+ 𝑃) 𝑢𝑦 (𝑒+ 𝑃) 𝑢𝑧 (𝑒+ 𝑃)

⎞⎟⎟⎟⎟⎠ = 0

11.3.1 Parameters

basementPressure (float) The minimum pressure allowed. Default is 0.

basementDensity (float) The minimum density allowed. Default is 0.

Note: basementPressure and basementDensity are only used if correct=true

correct (boolean) Tells whether or not densities or pressures should be corrected when the fall below base-
ment pressures or basement densities. When set to true pressure=max(basementPressure, pressure) and
density = max(basementDensity, density)

100 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

11.3.2 Parent Updater Data

in (string vector, required)

Vector of conserved quantities (5 components)

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

fluid pressure (1 component)

0. 𝑃 total fluid pressure (not magnetic pressure included)

gas dynamic sound speed (1 component)

0. 𝑎 estimate of the fluid sound speed

11.3.3 Example

An example realGasEos equation block is given below:

<Equation realGasEos>
kind = realGasEosEqn

</Equation>

11.4 tenMomentEqn

Ideal compressible 10 moment fluid equations. The equations are solved in conservative form.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧

𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥

𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦

𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧

𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦

𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧

𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ∇ · 𝑃 = 0

11.4. tenMomentEqn 101

USimReferenceManual, Release 3.0.1

where 𝑃 is defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌 𝑢𝑥 𝜌 𝑢𝑦 𝜌 𝑢𝑧
𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧

𝜌 𝑢𝑦 𝑢𝑥 + 𝑃𝑥 𝑦 𝜌 𝑢𝑦 𝑢𝑦 + 𝑃𝑦 𝑦 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧

𝜌 𝑢𝑧 𝑢𝑥 + 𝑃𝑥 𝑧 𝜌 𝑢𝑧 𝑢𝑦 + 𝑃𝑦 𝑧 𝜌 𝑢𝑧 𝑢𝑧 + 𝑃𝑧 𝑧

𝜌 𝑢3𝑥 + 3𝑢𝑥𝑃𝑥 𝑥 𝜌 𝑢𝑦𝑢
2
𝑥 + 𝑢𝑥𝑃𝑦 𝑦 + 2𝑢𝑥𝑃𝑥 𝑦 𝜌 𝑢𝑧𝑢

2
𝑥 + 𝑢𝑧𝑃𝑥 𝑥 + 2𝑢𝑥𝑃𝑥 𝑧

𝜌 𝑢2𝑥𝑢𝑦 + 2𝑢𝑥 𝑃𝑥 𝑦 + 𝑢𝑦𝑃𝑥 𝑥 0 0
𝜌 𝑢2𝑥𝑢𝑧 + 2𝑢𝑥 𝑃𝑥 𝑧 + 𝑢𝑧𝑃𝑥 𝑥 0 0
𝜌 𝑢𝑥𝑢

2
𝑦 + 𝑢𝑥𝑃𝑦 𝑦 + 2𝑢𝑦𝑃𝑥 𝑦 𝜌 𝑢3𝑦 + 3𝑢𝑦𝑃𝑦 𝑦 0

𝜌 𝑢𝑥𝑢𝑦𝑢𝑧 + 𝑢𝑥𝑃𝑦 𝑧 + 𝑢𝑦𝑃𝑥 𝑧 + 𝑢𝑧𝑃𝑥 𝑦 0 0
𝜌 𝑢𝑥𝑢

2
𝑧 + 𝑢𝑥𝑃𝑧 𝑧 + 2𝑢𝑧𝑃𝑥 𝑧 0 𝜌 𝑢3𝑧 + 3𝑢𝑧𝑃𝑧 𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

11.4.1 Parameters

basementPressure (float) The minimum pressure allowed. Defaults to 0.

basementDensity (float) The minimum density allowed. Defaults to 0.

11.4.2 Parent Updater Data

in (string vector, required)

1st variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 xx energy density

5. 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 xy energy density

6. 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧 xz energy density

7. 𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦 yy energy density

8. 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧 yz energy density

9. 𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧 zz energy density

11.4.3 Example

An example tenMoment equation block is given below:

<Equation tenMoment>
kind = tenMomentEqn

</Equation>

102 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

11.5 multiSpeciesSingleVelocityEqn

This equation represents continuity equations for n species. The species continuity equation is given by

𝜕𝑛𝑖
𝜕𝑡

+ ∇𝑗 (𝑛𝑖 𝑢𝑗) = 0 (11.-4)

11.5.1 Parameters

basementNumberDensity (float) The minimum species number density allowed

basementDensity (float) The minimum auxiliary variable mass density allowed. Defaults to 0.

numberOfSpecies (integer) The number of species that have continuity equations.

useParentEigenvalues (boolean) When set to true the eigenvalues of the parent system are used in com-
puting dissipation in fluxes such as the localLaxFlux as well as time step restrictions. When set to false,
the eigenvalue is simply 𝑢 normal to the direction of interest.

11.5.2 Sub-Blocks

Equation (block) Defines the parent equation type of the system. The parent equation could be eulerEqn
or idealMhdEqn for example. The first 4 components must be density, followed by the 3 components of
momentum. This equation is used to compute the advection velocity and if useParentEigenvalues=true
then the eigenvalues of this system are used to compute the level of dissipation in the flux functions.

11.5.3 Parent Updater Data

in (string vector, required)

Species densities Entries 1-𝑁 where 𝑁 is the number of species

0. variables 0-(N-1) 𝑛𝑖 number density of species i

Vector of conserved quantities Entries are determined by the Equation sub-block and only
the first 4 entries are used in this equation. Entries 1-𝑁 where 𝑁 the number variables in the parent
equation

0. 𝜌 species density

1. 𝜌 𝑢𝑥 species x momentum

2. 𝜌 𝑢𝑦 species y momentum

3. 𝜌 𝑢𝑧 species z momentum

4. all components beyond 3 are ignored.

11.5.4 Example

An example multiSpeciesSingleVelocity equation block is given below

<Equation speciesContinuity>
kind = multiSpeciesSingleVelocityEqn
useParentEigenvalues = true
inputVariables = [qSpecies, q]

11.5. multiSpeciesSingleVelocityEqn 103

USimReferenceManual, Release 3.0.1

numberOfSpecies = NSPECIES

<Equation realGas>
kind = realGasEqn
inputVariables = [q, realGasVariables]
numSpecies = NSPECIES

</Equation>

</Equation>

The following equations can be used to simulate ionized, quasi-neutral plasmas in the magnetohydrodynamic
limit:

11.6 mhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃 + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, I is the identity matrix, 𝑃 = 𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and
𝛾 is the adiabatic index (ratio of specific heats). The quantity 𝑐fast corresponds to the fastest wave speed over
the entire simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal and
bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equations.

11.6.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

mu0 (float, optional) Optional value for the constant 𝜇0. Defaults to 4𝜋 × 10−7.

externalEfield (string, optional) Specifies the name of the data structure containing the externally com-
puted electric field, eexternal.

104 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

externalBfield (string, optional) Specifies the name of the data structure containing the externally com-
puted magnetic field, bexternal.

11.6.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of con-
served quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional
terms in the generalized Ohm’s law, Eexternal, computed “externally” to the ideal magnetohydro-
dynamic system. The data structure containing eexternal is specified by the “externalEField” option
described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized by

permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized by

permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized by

permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional
contribution to the magnetic field, bexternal, which is not evolved by the induction equation, but
does contribute to the Lorentz force and the work done on the plasma. The data structure containing
bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

11.6. mhdDednerEqn 105

USimReferenceManual, Release 3.0.1

out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending
on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater
(1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated with the
CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid (hyperbolic
(1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.6.3 Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d, 2d,
3d) to compute ∇ · ℱ (w) with an externally supplied magnetic field:

106 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=mhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

The following block demonstrates the mhdDednerEqn used in combination with timeStepRestrictionUpdater
(1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied magnetic field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=1.0

<TimeStepRestriction idealMhd>
kind=hyperbolic1d
model=mhdDednerEqn
gasGamma= 1.4

11.6. mhdDednerEqn 107

USimReferenceManual, Release 3.0.1

externalBfield=True
includeInTimeStep=False

</TimeStepRestriction>
</Updater>

11.7 mhdDednerEosEqn

Defines the equations of ideal compressible magnetohydrodynamics with and arbitrary equation of state (EOS)
and divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃 + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, I is the identity matrix and 𝑃 is the pressure as specified by an external EOS. Updaters that compute
all the data required from an EOS are found in vanDerWaalsComputeVariables, sesameComputeVariables and
propaceosComputeVariables. The quantity 𝑐fast corresponds to the fastest wave speed over the entire simulation
domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal and
bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equations.

11.7.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

mu0 (float, optional) Optional value for the constant 𝜇0. Defaults to 4𝜋 × 10−7.

externalEfield (string, optional) Specifies the name of the data structure containing the externally com-
puted electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally com-
puted magnetic field, bexternal.

11.7.2 Parent Updater Data

in (string vector, required)

108 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of con-
served quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝜌𝜖+ 1
2𝜌|u|

2 + 1
2 |b|

2: total energy density where 𝜖 is the specific internal energy

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Pressure (nodalArray, 1-component, required) Value of the pressure as computed by the external
EOS.

Sound speed squared (nodalArray, 1-component, required) Value of the sound speed squared as
computed by the external EOS.

internal energy (nodalArray, 1-component, required) Value of the internal energy (𝜌𝜖) as com-
puted by the external EOS.

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional
terms in the generalized Ohm’s law, Eexternal, computed “externally” to the ideal magnetohydro-
dynamic system. The data structure containing eexternal is specified by the “externalEField” option
described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized by

permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized by

permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized by

permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional
contribution to the magnetic field, bexternal, which is not evolved by the induction equation, but
does contribute to the Lorentz force and the work done on the plasma. The data structure containing
bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

11.7. mhdDednerEosEqn 109

USimReferenceManual, Release 3.0.1

out (string vector, required) For the mhdDednerEosEqn, one of four output variables are computed, depend-
ing on whether the equation is combined with an updater capable of computing fluxes (classicMusclUp-
dater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated with
the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid (hyper-
bolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.7.3 Examples

The following block demonstrates the mhdDednerEosEqn used in combination with classicMusclUpdater (1d,
2d, 3d) to compute ∇ · ℱ (w):

110 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

<Updater hyper>
kind = classicMuscl2d
onGrid = domain

input nodal component arrays
in=[q, pressure, soundSqr, intEnergy]

output nodal component arrays
out = [qNew]

input dynVector containing fastest wave speed
waveSpeeds = [waveSpeed]

the numerical flux to use
numericalFlux = hlldFlux

CFL number to use
cfl = 0.5

determines solve is conservative or primitive
variableForm = conservative

Limiter; one per input nodal component array
limiter=[muscl, muscl, muscl, muscl]

list of equations to solve
equations = [mhd]

<Equation mhd>
kind=mhdDednerEosEqn
mu0=1.0

</Equation>

</Updater>

The following block demonstrates the mhdDednerEosEqn used in combination with timeStepRestrictionUpdater
(1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied magnetic field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater2d
onGrid=domain

input nodal component arrays
in=[q, pressure, soundSqr, intEnergy]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=0.5

<TimeStepRestriction idealMhd>
kind=hyperbolic1d
model=mhdDednerEosEqn
mu0=1.0

11.7. mhdDednerEosEqn 111

USimReferenceManual, Release 3.0.1

</TimeStepRestriction>
</Updater>

11.8 gasDynamicMhdDednerEqn

Defines the equations of inviscid fluid dynamics coupled to pre-Maxwell’s equations in source term form with
divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕 (𝜌u)

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
=
∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u] =

∑︁
species

Jspecies ·Especies

𝜕Bplasma

𝜕𝑡
+ ∇×E + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, 𝑞species is the species charge density, Jspecies is the species current density, I is the identity matrix, 𝑃 =
𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and 𝛾 is the adiabatic index (ratio
of specific heats). The quantity 𝑐fast corresponds to the fastest wave speed over the entire simulation domain;
divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following standard
identities (note that the use of these identities does not require an assumption of quasi-neutrality):

∑︁
species

(︀
𝑞speciesE + Jspecies ×B

)︀
= −𝜕𝑐

−2SEM

𝜕𝑡
+ ∇ · 𝒯 EM

∑︁
species

Jspecies ·E = −𝜕𝐸
EM

𝜕𝑡
−∇ · SEM

Here, 𝒯 EM is the electromagnetic stress tensor and SEM is the electromagnetic energy (Poynting) flux vector,
which are defined as:

𝒯 EM =
1

𝜇0

(︂
EE𝑇

𝑐2
+ BB𝑇

)︂
+ I𝐸EM =

ee𝑇

𝑐2
+ bb𝑇 + I𝐸EM

SEM = 𝜇−1
0 E×B = e× b

𝐸EM =
1

2𝜇0

(︃
|E|2

𝑐2
+ |B|2

)︃
=

1

2

(︃
|e|2

𝑐2
+ |b|2

)︃

Here, 𝐸EM is the electromagnetic energy density and the electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal and
bexternal are electromagnetic fields computed “externally” to the pre-Maxwell equations.

112 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

With these identitifications, the gasDynamicMhdDednerEqn takes the form:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕
(︀
𝜌u + 𝑐−2SEM

)︀
𝜕𝑡

+ ∇ ·
[︀
𝜌uu𝑇 + I𝑃 − 𝒯 EM

]︀
= 0

𝜕
(︀
𝐸 + 𝐸EM

)︀
𝜕𝑡

+ ∇ ·
[︀
(𝐸 + 𝑃)u + SEM

]︀
= 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

This flux-conservative formulation is implemented in USim.

11.8.1 Parameters

lightSpeed (float, optional) The speed of light in m/s. Defaults to 2.99792458e8.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

externalEfield (string, optional) Specifies the name of the data structure containing the externally com-
puted electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally com-
puted magnetic field, bexternal.

11.8.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of con-
served quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î + 𝑐−2𝑆EM
î

=
(︀
𝜌u + 𝑐−2SEM

)︀
· î: total momentum density in the î direction

2. 𝜌 𝑢ĵ + 𝑐−2𝑆EM
ĵ

=
(︀
𝜌u + 𝑐−2SEM

)︀
· ĵ: total momentum density in the ĵ direction

3. 𝜌 𝑢k̂ + 𝑐−2𝑆EM
k̂

=
(︀
𝜌u + 𝑐−2SEM

)︀
· k̂: total momentum density in the k̂ direction

4. 𝐸 + 𝐸EM = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 𝐸EM: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

11.8. gasDynamicMhdDednerEqn 113

USimReferenceManual, Release 3.0.1

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional
terms in the generalized Ohm’s law, Eexternal, computed “externally” to the ideal magnetohydro-
dynamic system. The data structure containing eexternal is specified by the “externalEField” option
described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized by

permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized by

permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized by

permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional
contribution to the magnetic field, bexternal, which is not evolved by the induction equation, but
does contribute to the Lorentz force and the work done on the plasma. The data structure containing
bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are computed,
depending on whether the equation is combined with an updater capable of computing fluxes (classicMus-
clUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated
with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid
(hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︁
𝜌 𝑢î + 𝑐−2𝑆EM

î

)︁
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ + 𝑐−2𝑆EM

ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︁
𝜌 𝑢k̂ + 𝑐−2𝑆EM

k̂

)︁
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

114 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

Vector of Primitive States (nodalArray, 9-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.8.3 Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d, 2d,
3d) to compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

11.8. gasDynamicMhdDednerEqn 115

USimReferenceManual, Release 3.0.1

<Equation mhd>
kind=gasDynamicMhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRestric-
tionUpdater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied magnetic
field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=1.0

<TimeStepRestriction idealMhd>
kind=hyperbolic1d
model=gasDynamicMhdDednerEqn
gasGamma= 1.4
externalBfield=True
includeInTimeStep=False

</TimeStepRestriction>
</Updater>

116 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

11.9 simpleTwoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an electron
entropy equation:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃tot + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

𝜕𝑆electron

𝜕𝑡
+ ∇ · [𝑆electron u] = 0

Here, I is the identity matrix, 𝑃tot = 𝑃ion + 𝑃electron = 𝜌ion𝜖ion(𝛾ion − 1) + 𝜌electron𝜖electron(𝛾electron − 1) is
the total plasma pressure, 𝜖ion,electron is the specific internal energy of ions and electrons and 𝛾ion,electron is the
adiabatic index (ratio of specific heats) for the ions and electrons. The quantity 𝑐fast corresponds to the fastest
wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

𝑆electron = 𝑃electron𝑛
−(𝛾electron+1)
electron ; 𝑛electron =

𝜌

𝑚electron + 𝑚ion

𝑍

Here, 𝑛electron is the electron number density,𝑚electron is the electron mass,𝑚ion is the ion mass and𝑍 is the ion
charge state. with the fluid velocity, u. In order to advect the electron entropy with the electron velocity, refer to
twoTemperatureMhdDednerEqn. The method provided by simpleTwoTemperatureMhdDednerEqn is generally
more robust and has lower computational cost than that provided by twoTemperatureMhdDednerEqn. If, for
example, heating of electrons by (for example) magnetic dissipation is required, then this can be accomplished
by adding source terms of the electron entropy equation, see, e.g. mhdSrc.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal and
bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equations.

11.9.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure, 𝛾.
Defaults to 5/3.

11.9. simpleTwoTemperatureMhdDednerEqn 117

USimReferenceManual, Release 3.0.1

electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the electrons,
𝛾electron. Defaults to 5/3.

electronMass (float, optional) Specifies the electron mass, 𝑚electron. Defaults to (1836)−1.

ionMass (float, optional) Specifies the ion mass, 𝑚ion. Defaults to 1.

chargeState (float, optional) Specifies the charge on an ion, 𝑍. Defaults to 1.

currentVector (string, required) Specifies the name of the data structure containing the total (ion + elec-
tron) plasma current, Jplasma.

externalEfield (string, optional) Specifies the name of the data structure containing the externally com-
puted electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally com-
puted magnetic field, bexternal.

11.9.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector of
conserved quantities, q has 10 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑆electron: electron entropy

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional
terms in the generalized Ohm’s law, Eexternal, computed “externally” to the ideal magnetohydro-
dynamic system. The data structure containing eexternal is specified by the “externalEField” option
described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized by

permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized by

permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized by

permeability of free-space in the k̂ direction

118 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional
contribution to the magnetic field, bexternal, which is not evolved by the induction equation, but
does contribute to the Lorentz force and the work done on the plasma. The data structure containing
bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending
on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater
(1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated with the
CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid (hyperbolic
(1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

9. ∇ · ℱ (𝑆electron): electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

11.9. simpleTwoTemperatureMhdDednerEqn 119

USimReferenceManual, Release 3.0.1

8. 𝜓: correction potential

9. 𝑃electron: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.9.3 Examples

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with clas-
sicMusclUpdater (1d, 2d, 3d) to compute ∇ · ℱ (w)

<Updater hyper>
kind = classicMuscl1d
onGrid = domain

input data-structures
in = [q,electricField]

output data-structures
out = [qnew]

the time integration scheme, rk1 for first order runge-kutta
timeIntegrationScheme = none

the numerical flux to use
numericalFlux = roeFlux

CFL number to use
cfl = 0.4

Form of variables to limit
variableForm = primitive

Limiter to use
limiter = [muscl,muscl]

waveSpeeds = [waveSpeed]

list of equations to solve
equations = [mhd]

<Equation mhd>
kind = simpleTwoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"

</Equation>

</Updater>

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with com-
putePrimitiveState(1d, 2d, 3d) to compute w (q)

<Updater computePrimitiveState>
kind = computePrimitiveState1d

onGrid = domain

120 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

input data-structures
in = [q,electricField]

ouput data-structures
out = [w]

<Equation mhd>
kind = simpleTwoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"

</Equation>

</Updater>

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with
timeStepRestrictionUpdater (1d, 2d, 3d), hyperbolic (1d, 2d, 3d) and quadratic (1d, 2d, 3d) to compute 𝑑𝑡min,
𝑑𝑡diff and 𝑐fast for resistive two-temperature MHD:

<Updater getHypDT>
kind = timeStepRestrictionUpdater1d
in = [q,electricField]

onGrid = domain
waveSpeeds = [waveSpeed]
timeSteps = [diffDT]
restrictions = [idealMhd]
courantCondition = CFL

<TimeStepRestriction idealMhd>
kind = hyperbolic1d
cfl = CFL
model = simpleTwoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
correctNans = true
correct = true
correctNans = true
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
storeTimeStep = False

</TimeStepRestriction>

</Updater>

11.9. simpleTwoTemperatureMhdDednerEqn 121

USimReferenceManual, Release 3.0.1

11.10 twoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an electron
entropy equation:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃tot + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

𝜕𝑆electron

𝜕𝑡
+ ∇ · [𝑆electron uelectron] = 0

Here, I is the identity matrix, 𝑃tot = 𝑃ion + 𝑃electron = 𝜌ion𝜖ion(𝛾ion − 1) + 𝜌electron𝜖electron(𝛾electron − 1) is
the total plasma pressure, 𝜖ion,electron is the specific internal energy of ions and electrons and 𝛾ion,electron is the
adiabatic index (ratio of specific heats) for the ions and electrons. The quantity 𝑐fast corresponds to the fastest
wave speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

𝑆electron = 𝑃electron𝑛
−(𝛾electron+1)
electron ; 𝑛electron =

𝜌

𝑚electron + 𝑚ion

𝑍

Here, 𝑛electron is the electron number density, 𝑚electron is the electron mass, 𝑚ion is the ion mass and 𝑍 is the
ion charge state. The electron entropy is advected by the electron velocity, uelectron, computed as:

uelectron = −Jplasma − 𝑞𝑍𝑚−1
ion𝜌u

𝑞𝑛electron
; Jplasma = 𝜇

−1/2
0 ∇× bplasma = 𝜇−1

0 ∇×Bplasma

Here, Jplasma is the total (ion+electron) plasma current and 𝑞 is the fundamental change (−𝑞 is the charge on an
electron). As defined above, the electron entropy is advected with the electron density. If, for example, heating
of electrons by (for example) magnetic dissipation is required, then this can be accomplished by adding source
terms of the electron entropy equation, see, e.g. mhdSrc.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal and
bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equations.

11.10.1 Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

122 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure, 𝛾.
Defaults to 5/3.

electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the electrons,
𝛾electron. Defaults to 5/3.

electronMass (float, optional) Specifies the electron mass, 𝑚electron. Defaults to (1836)−1.

ionMass (float, optional) Specifies the ion mass, 𝑚ion. Defaults to 1.

chargeState (float, optional) Specifies the charge on an ion, 𝑍. Defaults to 1.

currentVector (string, required) Specifies the name of the data structure containing the total (ion + elec-
tron) plasma current, Jplasma.

externalEfield (string, optional) Specifies the name of the data structure containing the externally com-
puted electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally com-
puted magnetic field, bexternal.

11.10.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector of
conserved quantities, q has 10 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑆electron: electron entropy

Current Density (nodalArray, 3-components, required) The total (ion and electron) current in the
plasma, typically calculated from from pre-Maxwell form of Ampere’s law, Jplasma = 𝜇

1/2
0 ∇ ×

bplasma, which can be computed through, e.g. vector (1d, 2d, 3d). The data structure containing
Jplasma is specified by the “currentVector” option described below.

0. 𝐽plasma

î
= Jplasma · î: total (ion and electron) current in the plasma in the î direction.

1. 𝐽plasma

ĵ
= Jplasma · ĵ: total (ion and electron) current in the plasma in the ĵ direction

2. 𝐽plasma

k̂
= Jplasma · k̂: total (ion and electron) current in the plasma in the k̂ direction

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

11.10. twoTemperatureMhdDednerEqn 123

USimReferenceManual, Release 3.0.1

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional
terms in the generalized Ohm’s law, Eexternal, computed “externally” to the ideal magnetohydro-
dynamic system. The data structure containing eexternal is specified by the “externalEField” option
described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized by

permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized by

permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized by

permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional
contribution to the magnetic field, bexternal, which is not evolved by the induction equation, but
does contribute to the Lorentz force and the work done on the plasma. The data structure containing
bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, depending
on whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater
(1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated with the
CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid (hyperbolic
(1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

9. ∇ · ℱ (𝑆electron): electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

124 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑃electron: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.10.3 Examples

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with classicMus-
clUpdater (1d, 2d, 3d) to compute ∇ · ℱ (w), including resistive effects

<Updater hyper>
kind = classicMuscl1d
onGrid = domain

input data-structures
in = [q,electricField,current,chargeState,resistivity]

output data-structures
out = [qnew]

the time integration scheme, rk1 for first order runge-kutta
timeIntegrationScheme = none

the numerical flux to use
numericalFlux = roeFlux

CFL number to use
cfl = 0.4

Form of variables to limit
variableForm = primitive

Limiter to use
limiter = [muscl,muscl,muscl,muscl,muscl]

waveSpeeds = [waveSpeed]

list of equations to solve
equations = [mhd]

list of sources to add
source = [mhdSource]

11.10. twoTemperatureMhdDednerEqn 125

USimReferenceManual, Release 3.0.1

<Equation mhd>
kind = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"

</Equation>

<Source mhdSource>
kind = mhdSrc
model = twoTemperatureMhdDednerEqn
externalEfield = true
inputVariables = [q, electricField,current,chargeState,resistivity]
ionMass = ION_MASS
fundamentalCharge = FUNDAMENTAL_CHARGE

</Source>

</Updater>

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with computePrim-
itiveState(1d, 2d, 3d) to compute w (q)

<Updater computePrimitiveState>
kind = computePrimitiveState1d

onGrid = domain
input data-structures

in = [q,electricField,current,chargeState,resistivity]

ouput data-structures
out = [w]

<Equation mhd>
kind = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"

</Equation>

</Updater>

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with timeStepRe-
strictionUpdater (1d, 2d, 3d), hyperbolic (1d, 2d, 3d) and quadratic (1d, 2d, 3d) to compute 𝑑𝑡min, 𝑑𝑡diff and
𝑐fast for resistive two-temperature MHD:

<Updater getHypDT>
kind = timeStepRestrictionUpdater1d
in = [q,electricField,current,chargeState,resistivity]

onGrid = domain
waveSpeeds = [waveSpeed]
timeSteps = [diffDT]
restrictions = [idealMhd,quadratic]
courantCondition = CFL

126 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

<TimeStepRestriction idealMhd>
kind = hyperbolic1d
cfl = CFL
model = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
correctNans = true
correct = true
correctNans = true
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"
storeTimeStep = False

</TimeStepRestriction>

<TimeStepRestriction quadratic>
kind = quadratic1d
in = [resistivity]
cfl = CFL

</TimeStepRestriction>
</Updater>

The following equations can be used to simulate Maxwell’s equations and non-neutral plasmas:

11.11 maxwellEqn

Fluxes and eigensystem for Maxwell’s equations in vacuum with divergence cleaning.

𝜕E

𝜕𝑡
+ 𝑐2∇×B + ∇Φ = 0

𝜕B

𝜕𝑡
−∇×E + ∇𝜓 = 0

𝜕Φ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastE

]︀
= 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastB

]︀
= 0

Coupling of Maxwell’s equations to a plasma is accomplished using current.

11.11.1 Parameters

c0 (float) The speed of light

gamma (float) Magnetic correction potential propagation factor. 𝛾𝑐0 is the magnetic correction potential prop-
agation speed.

chi (float) Electric correction potential propagation factor. 𝜒𝑐0 is the correction propagation speed.

11.11.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 8-components, required) The vector of con-
served quantities, q has 8 entries:

11.11. maxwellEqn 127

USimReferenceManual, Release 3.0.1

0. 𝐸î = E · î: electric field in the î direction.

1. 𝐸ĵ = E · ĵ: electric field in the ĵ direction

2. 𝐸k̂ = E · k̂: electric field in the k̂ direction

3. 𝐵î = B · î: magnetic field in the î direction

4. 𝐵ĵ = B · ĵ: magnetic field in the ĵ direction

5. 𝐵k̂ = B · k̂: magnetic field in the k̂ direction

6. Φ electric field correction potential

7. Ψ magnetic field correction potential

out (string vector, required) For the maxwellEqn, one of three output variables are computed, depending on
whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater (1d,
2d, 3d)), the time step associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the
fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ
(︀
𝐸î

)︀
: î electric field flux

1. ∇ · ℱ
(︁
𝐸ĵ

)︁
: î electric field flux

2. ∇ · ℱ
(︀
𝐸k̂

)︀
: ĵ electric field flux

3. ∇ · ℱ
(︀
𝐵î

)︀
: î magnetic field flux

4. ∇ · ℱ
(︁
𝐵ĵ

)︁
: î magnetic field flux

5. ∇ · ℱ
(︀
𝐵k̂

)︀
: ĵ magnetic field flux

6. ∇ · ℱ (𝜓): electric correction potential flux

7. ∇ · ℱ (𝜓): magnetic correction potential flux

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.11.3 Example

The following block demonstrates the maxwellEqn used in combination with classicMusclUpdater (1d, 2d, 3d)
to compute ∇ · ℱ (w):

<Updater hyperEm>
kind = classicMuscl3d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = fWaveFlux
limiterType = component
limiter = [minmod, none, none]
variableForm = conservative

128 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

in = [em, electrons, ions]
out = [emNew]

cfl = CFL
equations = [maxwell]

<Equation maxwell>
kind = maxwellEqn
c0 = SPEED_OF_LIGHT
gamma = BP
chi = 0.0

</Equation>

</Updater>

The following block demonstrates the maxwellEqn used in combination with timeStepRestrictionUpdater (1d,
2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast:

<Updater getWaveSpeed>
kind = timeStepRestrictionUpdater2d
in = [q]
waveSpeeds = [waveSpeed]
onGrid = domain
restrictions = [hyperbolic]
cfl = CFL
courantCondition = CFL

<TimeStepRestriction hyperbolic>
kind = hyperbolic2d
model = maxwellEqn
cfl = CFL
c0 = SPEED_OF_LIGHT
gamma = 0.0
chi = 0.0
includeInTimeStep = False

</TimeStepRestriction>
</Updater>

11.12 maxwellDednerEqn

Fluxes and eigensystem for Maxwell’s equations in vacuum with divergence cleaning.

𝜕E

𝜕𝑡
+ 𝑐2∇×B + ∇Φ = 0

𝜕B

𝜕𝑡
−∇×E + ∇𝜓 = 0

𝜕Φ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastE

]︀
= 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastB

]︀
= 0

Coupling of Maxwell’s equations to a plasma is accomplished using current.

11.12. maxwellDednerEqn 129

USimReferenceManual, Release 3.0.1

11.12.1 Parameters

mu0 (float, optional) Permeability of free space. Default value is 1.256e-06.

epsilon0 (float, optional) Permittivity of free space. Default value is 8.854e-12.

cfl (float, optional) CFL number. Default value is 1.0.

11.12.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 8-components, required) The vector of con-
served quantities, q has 8 entries:

0. 𝐸î = E · î: electric field in the î direction.

1. 𝐸ĵ = E · ĵ: electric field in the ĵ direction

2. 𝐸k̂ = E · k̂: electric field in the k̂ direction

3. 𝐵î = B · î: magnetic field in the î direction

4. 𝐵ĵ = B · ĵ: magnetic field in the ĵ direction

5. 𝐵k̂ = B · k̂: magnetic field in the k̂ direction

6. Φ electric field correction potential

7. Ψ magnetic field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

out (string vector, required) For the maxwellDednerEqn, one of three output variables are computed, de-
pending on whether the equation is combined with an updater capable of computing fluxes (classicMus-
clUpdater (1d, 2d, 3d)), the time step associated with the CFL condition (timeStepRestrictionUpdater (1d,
2d, 3d)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that computes ∇·
ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ
(︀
𝐸î

)︀
: î electric field flux

1. ∇ · ℱ
(︁
𝐸ĵ

)︁
: î electric field flux

2. ∇ · ℱ
(︀
𝐸k̂

)︀
: ĵ electric field flux

3. ∇ · ℱ
(︀
𝐵î

)︀
: î magnetic field flux

4. ∇ · ℱ
(︁
𝐵ĵ

)︁
: î magnetic field flux

5. ∇ · ℱ
(︀
𝐵k̂

)︀
: ĵ magnetic field flux

6. ∇ · ℱ (𝜓): electric correction potential flux

7. ∇ · ℱ (𝜓): magnetic correction potential flux

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

130 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.12.3 Example

The following block demonstrates the maxwellDednerEqn used in combination with classicMusclUpdater (1d,
2d, 3d) to compute ∇ · ℱ (w):

<Updater hyper>
kind=classicMuscl2d
onGrid=domain
timeIntegrationScheme=none
numericalFlux=hlleFlux
limiter=[none]
variableForm=conservative
preservePositivity=false
in=[q]
out=[qNew]
waveSpeeds=[waveSpeed]
cfl=0.4
equations=[maxwell]

<Equation maxwell>
kind=maxwellDednerEqn
epsilon0=1.0
mu0=1.0
cfl=0.4

</Equation>

</Updater>

The following block demonstrates the maxwellDednerEqn used in combination with timeStepRestrictionUp-
dater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater2d
in=[q]
waveSpeeds=[waveSpeed]
onGrid=domain
restrictions=[hyperbolic]
cfl=0.4
courantCondition=0.4

<TimeStepRestriction hyperbolic>
kind=hyperbolic2d
model=maxwellEqn
cfl=0.4
c0=1.0
gamma=0.0
chi=0.0
includeInTimeStep=False

</TimeStepRestriction>

</Updater>

11.12. maxwellDednerEqn 131

USimReferenceManual, Release 3.0.1

11.13 gasDynamicMaxwellDednerEqn

Defines the equations of inviscid fluid dynamics coupled to Maxwell’s equations in source term form with
divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕 (𝜌u)

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
=
∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u] =

∑︁
species

Jspecies ·E

𝜕Bplasma

𝜕𝑡
+ ∇×E + ∇Ψ = 0

𝜕Eplasma

𝜕𝑡
− 𝑐2∇×B + ∇Φ = −𝜖−1

0

∑︁
species

Jspecies

𝜕Ψ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastB

plasma
]︀

= 0

𝜕Φ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastE

plasma
]︀

=
∑︁

species

𝑞species

Here, 𝑞species is the species charge density, Jspecies is the species current density, I is the identity matrix, 𝑃 =
𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and 𝛾 is the adiabatic index (ratio
of specific heats). The quantity 𝑐fast corresponds to the fastest wave speed over the entire simulation domain;
divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following standard
identities (note that the use of these identities does not require an assumption of quasi-neutrality):∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
= −𝜕𝑐

−2SEM

𝜕𝑡
+ ∇ · 𝒯 EM

∑︁
species

Jspecies ·E = −𝜕𝐸
EM

𝜕𝑡
−∇ · SEM

Here, 𝒯 EM is the electromagnetic stress tensor and SEM is the electromagnetic energy (Poynting) flux vector,
which are defined as:

𝒯 EM =
1

𝜇0

(︂
EE𝑇

𝑐2
+ BB𝑇

)︂
+ I𝐸EM =

ee𝑇

𝑐2
+ bb𝑇 + I𝐸EM

SEM = 𝜇−1
0 E×B = e× b

𝐸EM =
1

2𝜇0

(︃
|E|2

𝑐2
+ |B|2

)︃
=

1

2

(︃
|e|2

𝑐2
+ |b|2

)︃

Here, 𝐸EM is the electromagnetic energy density and the electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
= 𝜇

−1/2
0 B

e = eplasma + eexternal = 𝜇
−1/2
0

(︀
Eplasma + Eexternal

)︀
= 𝜇

−1/2
0 E

Here, bplasma is the magnetic field induced in the plasma, eplasma is the electric field associated with net charge
in the plasma, while eexternal and bexternal are electromagnetic fields computed “externally” to Maxwell’s

132 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

equations inside the plasma. With these identitifications, the fluid part of the gasDynamicMaxwellDednerEqn
takes the form:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕
(︀
𝜌u + 𝑐−2SEM

)︀
𝜕𝑡

+ ∇ ·
[︀
𝜌uu𝑇 + I𝑃 − 𝒯 EM

]︀
= 0

𝜕
(︀
𝐸 + 𝐸EM

)︀
𝜕𝑡

+ ∇ ·
[︀
(𝐸 + 𝑃)u + SEM

]︀
= 0

The electromagnetic part of the system is solved in USim as:

𝜕bplasma

𝜕𝑡
−∇× e + ∇𝜓 = 0

𝜕eplasma

𝜕𝑡
+ 𝑓2𝑐2fast∇× b + ∇𝜑 = −𝑓2𝑐2fast𝜇

1/2
0

∑︁
species

Jspecies

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

plasma
]︀

= 0

𝜕𝜑

𝜕𝑡
+ ∇ ·

[︀
𝑐2faste

plasma
]︀

= 𝜇
−1/2
0

∑︁
species

𝑞species

Here, we have written 𝑐2 = 𝑓2𝑐2fast = (𝜖0𝜇0)−1, where 𝑓 is a dimensionless number that defines the ratio of the
speed of light to the fatest wave in the mesh and we have further defined 𝜓 = 𝜇

−1/2
0 Ψ and Φ = 𝜇

−1/2
0 Φ.

In order to close the electromagnetic part of the equations, a model for the current density and charge is required.
An example of such a model that is provided with USim is mhdSrc. However, the user is also free to construct
their own closure that returns:

𝜇
−1/2
0

∑︁
species

𝑞species; 𝜇
1/2
0

∑︁
species

Jspecies

11.13.1 Parameters

lightSpeed (float, optional) The speed of light in m/s. Used to specify the speed of light in the fluid mo-
mentum and energy equations. Defaults to 2.99792458e8.

lightSpeedFactor (float, optional) Dimensionless number, used to specify the ratio of the speed of light
to the fastest wave speed in the grid. Defaults to 1.0e3.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

externalEfield (string, optional) Specifies the name of the data structure containing the externally com-
puted electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally com-
puted magnetic field, bexternal.

11.13. gasDynamicMaxwellDednerEqn 133

USimReferenceManual, Release 3.0.1

11.13.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 12-components, required) The vector of
conserved quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î + 𝑐−2𝑆EM
î

=
(︀
𝜌u + 𝑐−2SEM

)︀
· î: total momentum density in the î direction

2. 𝜌 𝑢ĵ + 𝑐−2𝑆EM
ĵ

=
(︀
𝜌u + 𝑐−2SEM

)︀
· ĵ: total momentum density in the ĵ direction

3. 𝜌 𝑢k̂ + 𝑐−2𝑆EM
k̂

=
(︀
𝜌u + 𝑐−2SEM

)︀
· k̂: total momentum density in the k̂ direction

4. 𝐸 + 𝐸EM = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 𝐸EM: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝑒i = e · î = 𝜇
−1/2
0 E · î: electric field normalized by permeability of free-space in the î direction

9. 𝑒ĵ = e · ĵ = 𝜇
−1/2
0 E · ĵ: electric field normalized by permeability of free-space in the ĵ direction

10. 𝑒k̂ = e · k̂ = 𝜇
−1/2
0 E · k̂: electric field normalized by permeability of free-space in the k̂ direction

11. 𝜓: magnetic field correction potential

12. 𝜑: electric field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the entire
simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional) Additional
contribution to the electric field, eexternal, which is not evolved by Ampere’s equation, but does
contribution to the induction equation, the Lorentz force and the work done on the plasma. The data
structure containing eexternal is specified by the “externalEField” option described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized by

permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized by

permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized by

permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional) Additional
contribution to the magnetic field, bexternal, which is not evolved by the induction equation, but
does contribute to Ampere’s equation, the Lorentz force and the work done on the plasma. The data
structure containing bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

134 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are computed,
depending on whether the equation is combined with an updater capable of computing fluxes (classicMus-
clUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated
with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid
(hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 12-components) When combined with an updater that computes
∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︁
𝜌 𝑢î + 𝑐−2𝑆EM

î

)︁
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ + 𝑐−2𝑆EM

ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︁
𝜌 𝑢k̂ + 𝑐−2𝑆EM

k̂

)︁
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ
(︀
𝑒i
)︀
: î electric field flux

9. ∇ · ℱ
(︁
𝑒ĵ

)︁
: ĵ electric field flux

10. ∇ · ℱ
(︀
𝑒k̂
)︀
: k̂ electric field flux

11. ∇ · ℱ (𝜓): magnetic correction potential flux

12. ∇ · ℱ (𝜑): electric correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an updater
that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

11.13. gasDynamicMaxwellDednerEqn 135

USimReferenceManual, Release 3.0.1

8. 𝑒i = e · î = 𝜇
−1/2
0 E · î: electric field normalized by permeability of free-space in the î direction

9. 𝑒ĵ = e · ĵ = 𝜇
−1/2
0 E · ĵ: electric field normalized by permeability of free-space in the ĵ direction

10. 𝑒k̂ = e · k̂ = 𝜇
−1/2
0 E · k̂: electric field normalized by permeability of free-space in the k̂ direction

11. 𝜓: magnetic field correction potential

12. 𝜑: electric field correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d, 3d),
the equation system returns the time step consisten with the CFL condition across the entire simulation
domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d), the
equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

11.13.3 Examples

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with classicMus-
clUpdater (1d, 2d, 3d) to compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind = gasDynamicMaxwellDednerEqn
gasGamma = GAS_GAMMA
lightSpeedFactor =LIGHT_SPEED_FACTOR
externalBfield = EXTERNAL_FIELD
basementPressure = BASEMENT_PRESSURE
basementDensity = BASEMENT_DENSITY

</Equation>

<Source mhdSrc>

136 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

kind = gasDynamicMhdDednerSrc
scalarConductivity = $1.0/OHMIC_RESISTIVITY$

</Source>

<Source mhdClean>
kind = mhdSrc
model = mhdDednerEqn
momentumEnergySource = 1
inputVariables = [q,divB,gradPsi]

</Source>

</Updater>

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with computePrim-
itiveState(1d, 2d, 3d) to compute w:

<Updater computePrimitiveState>
kind = computePrimitiveState$NDIM$d

onGrid = domain
input array
in = [q]

ouput data-structures
out = [w]

<Equation fluid>
kind = gasDynamicMaxwellDednerEqn
gasGamma = GAS_GAMMA
lightSpeedFactor =LIGHT_SPEED_FACTOR
externalBfield = EXTERNAL_FIELD
basementPressure = BASEMENT_PRESSURE
basementDensity = BASEMENT_DENSITY

</Equation>

</Updater>

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRestric-
tionUpdater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied magnetic
field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=1.0

<TimeStepRestriction idealMhd>
kind = hyperbolic1d

11.13. gasDynamicMaxwellDednerEqn 137

USimReferenceManual, Release 3.0.1

model = gasDynamicMaxwellDednerEqn
gasGamma = GAS_GAMMA
lightSpeedFactor =LIGHT_SPEED_FACTOR
externalBfield = EXTERNAL_FIELD
basementPressure = BASEMENT_PRESSURE
basementDensity = BASEMENT_DENSITY

</TimeStepRestriction>
</Updater>

11.14 twoFluidEqn

Two fluid equations written as total mass density, momentum density, total charge density total current density
and ion and electron energy. The two-fluid equations can also be written as two separate sets of euler equations,
however, this form has the advantage that numerical diffusion is applied to the total charge density so that
quasi-neutrality is enforced numerically.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧
𝜌𝑐
𝑗𝑥
𝑗𝑦
𝑗𝑧
𝑒𝑖
𝑒𝑒

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ∇ · 𝑃 = 0

where 𝑃 is defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌𝑖 𝑢𝑥 𝑖 + 𝜌𝑖 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒

𝜌𝑖 𝑢
2
𝑥 𝑖 + 𝑃𝑖 + 𝜌𝑒 𝑢

2
𝑥 𝑒 + 𝑃𝑒 𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑧 𝑒

𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑥 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑦 𝑖 + 𝑃𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑦 𝑒 + 𝑃𝑒 𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑧 𝑒

𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑥 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑧 𝑖 + 𝑃𝑖 + 𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑧 𝑒 + 𝑃𝑒

𝜌𝑖 𝑢𝑥 𝑖 + 𝜌𝑖 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒

𝑟𝑖(𝜌𝑖 𝑢
2
𝑥 𝑖 + 𝑃𝑖) + 𝑟𝑒(𝜌𝑒 𝑢

2
𝑥 𝑒 + 𝑃𝑒) 𝑟𝑖𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑦 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑦 𝑒 𝑟𝑖𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑧 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑧 𝑒

𝑟𝑖𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑥 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑥 𝑒 𝑟𝑖(𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑦 𝑖 + 𝑃𝑖) + 𝑟𝑒(𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑦 𝑒 + 𝑃𝑒) 𝑟𝑖𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑧 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑧 𝑒

𝑟𝑖𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑥 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑥 𝑒 𝑟𝑖𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑦 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑦 𝑒 𝑟𝑖(𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑧 𝑖 + 𝑃𝑖) + 𝑟𝑒(𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑧 𝑒 + 𝑃𝑒)
𝑢𝑥 𝑖 (𝑒𝑖 + 𝑃𝑖) 𝑢𝑦 𝑖 (𝑒𝑖 + 𝑃𝑖) 𝑢𝑧 𝑖 (𝑒𝑖 + 𝑃𝑖)
𝑢𝑥 𝑒 (𝑒𝑒 + 𝑃𝑒) 𝑢𝑦 𝑒 (𝑒𝑒 + 𝑃𝑒) 𝑢𝑧 𝑒 (𝑒𝑒 + 𝑃𝑒)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
With 𝑟𝑖 = 𝑞𝑖/𝑚𝑖 and 𝑟𝑒 = 𝑞𝑒/𝑚𝑒 where 𝑞𝑒 is the electron charge, 𝑞𝑖 is the ion charge, 𝑚𝑒 is the electron mass
and 𝑚𝑖 is the ion mass. In addition the variables (𝜌𝛼, 𝑢𝑥𝛼, 𝑢𝑦 𝛼, 𝑢𝑥𝛼, 𝑒𝛼, 𝑃𝛼) are the species mass density,
species x velocity, species y velocity, species z velocity, species total energy density, and species pressure
respectively. In this case 𝛼 represents the species, either 𝑒 for electron or 𝑖 for ion.

11.14.1 Parameters

ionGamma (float) Specific heat ratio for the ions

electronGamma (float) Specific heat ratio for the electrons. Defaults to 5/3

ionMass (float) ion mass

electronMass (float) electron mass

138 Chapter 11. Hyperbolic Equations

USimReferenceManual, Release 3.0.1

ionCharge (float) ion charge

electronCharge electron charge

basementPressure (float) The minimum pressure allowed. Defaults to 0.

basementDensity (float) The minimum density allowed for the ions. Defaults to 0. The electron base-
ment density is determined by multiplying by the mass ratio, therefore 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 =
(𝑚𝑒/𝑚𝑖)𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦

11.14.2 Parent Updater Data

in (string vector, required)

1st Input Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌𝑐 total charge density

5. 𝑗𝑥 x current density

6. 𝑗𝑦 y current density

7. 𝑗𝑧 z current density

8. 𝑒𝑖 ion energy density

9. 𝑒𝑒 electron energy density

11.14.3 Example

An example twoFluidEqn equation block is given below:

<Equation twoFluid>
kind = twoFluidEqn
ionGamma = GAS_GAMMA
electronGamma = GAS_GAMMA
ionMass = ION_MASS
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
electronCharge = ELECTRON_CHARGE
basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE

</Equation>

The following equation can be used to implement a hyperbolic equation system at the input file level:

11.15 userDefinedEqn

Define an arbitrary hyperbolic system. Built in hyperbolic equations should be used when they are available as
they are faster.

11.15. userDefinedEqn 139

USimReferenceManual, Release 3.0.1

11.15.1 Parameters

indVars_inName For each input variable an “indVars” array must be defined. So if in = [E, B] then ind-
Vars_E and indVars_B must be defined. If indVars_E = [”Ex”,”Ey”,”Ez”] then operations are performed
on “Ex”,”Ey” and “Ez” in the expression evaluator.

transform_inName For each variable there must be a vector that tells how the data is transformed upon
rotation. For example, for an electric field E, the transform would be transform_E = [vector] so that
USim knows the input data is a vector. If the input data is density, momentum, energy as in the euler
equations then we would have transform_q = [scalar, vector, scalar] which assumes that momentum has
3 components. The previous example transforms the first variable as if it were a scalar, then the next 3
variables as if they were part of a tensor and then the last variable as if it were a scalar. Available options
are scalar, vector and tensor. It is assumed that vector has 3 components even in 1D and 2D simulations.
Also it’s assumed that tensor has 6 components in the order Txx, Txy, Tx, Tyy, Tyz, Tzz and that the
remaining components are symmetric so are redundant.

preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities based
on indVars that can later be used in the exprs to evaluate the output. Available commands are defined by
the muParser (http://muparser.sourceforge.net)

flux (string vector) Strings must be put in quotes. The strings are used to evaluate the flux in the x-direction.
The fluxes in other directions are obtained through rotation of the input vector. Available command are
defined by the muParser (http://muparser.sourceforge.net/)

eigenvalues (string vector) Strings must be put in quotes. The strings are evaluated and placed in the
output array and are used to define the set of eigenvalues for the system. The eigenvalues are technically
the eigenvalues in the x-direction and values in other directions are obtained through rotation. Available
command are defined by the muParser (http://muparser.sourceforge.net/)

other (variable definition) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and flux and eigenvalues.

11.15.2 Parent Updater Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in = [E,
B]

out (string vector) output nodalArray where the result of the operation is stored

11.15.3 Example

<Updater hyper>
kind = classicMuscl1d
onGrid = domain

in = [q]
out = [qnew]
timeIntegrationScheme = none
numericalFlux = $RIEMANN_SOLVER$
cfl = CFL
variableForm = $VARIABLE_FORM$
limiter = [$LIMITER$]

equations = [euler]

<Equation euler>

140 Chapter 11. Hyperbolic Equations

http://muparser.sourceforge.net
http://muparser.sourceforge.net/
http://muparser.sourceforge.net/

USimReferenceManual, Release 3.0.1

kind = userDefinedEqn

indVars_q = ["rho","mx","my","mz","en"]
transform_q = [scalar, vector, scalar]

gamma = GAS_GAMMA
preExprs = ["p=(gamma-1.0)*(en-0.5*((mx*mx+my*my+mz*mz)/rho))"]
flux = ["mx","(mx*mx/rho)+p","(mx*my/rho)","(mx*mz/rho)","(mx/rho)*(en+p)"]
eigenvalues = ["sqrt(p*gamma/rho)+(mx/rho)"]

</Equation>

</Updater>

11.15. userDefinedEqn 141

USimReferenceManual, Release 3.0.1

142 Chapter 11. Hyperbolic Equations

CHAPTER

TWELVE

ALGEBRAIC EQUATIONS

A Source or Equation block in USim that defines a local non-linear algebraic transformation of a set of input nodalAr-
rays, qInput into a single output nodalArray through:

qOutput = 𝒮 (qInput, 𝑥, 𝑦, 𝑧, 𝑡)

where 𝒮 (qInput, 𝑥, 𝑦, 𝑧, 𝑡) represents a non-linear algebraic transformation that is applied locally, i.e.
𝒮 (qInput, 𝑥, 𝑦, 𝑧, 𝑡) only depends on the data in an indiviudal element in the Grid and not on elements adjacent
to that element.

Source and Equation blocks can be used for a range of purposes in USim. One particular example is the addition of
terms to the right-hand side of a hyperbolic equation system

𝜕q

𝜕𝑡
+ ∇ · [ℱ (w)] = 𝒮 (w, 𝑥, 𝑦, 𝑧, 𝑡)

A specific example of a source block that can be used in this way is the exprHyperSrc to apply a gravitational acceler-
ation to a neutral fluid:

<Source gravity>
kind = exprHyperSrc
gravity = GRAVITY
indVars = ["rho", "rhou", "rhov", "rhow", "Er"]
exprs = ["0.0", "0.0", "-rho*gravity", "0.0", "-gravity*rhov"]

</Source>

Note: Any kind listed below can be used as an Equation block in the localOdeIntegrator (1d, 2d, 3d) Updater or the
equation (1d, 2d, 3d) Updater.

Note: The firstOrderMusclUpdater (1d, 2d, 3d), classicMusclUpdater (1d, 2d, 3d), unstructMusclUpdater (1d, 2d,
3d), and thirdOrderMusclUpdater (1d, 2d, 3d) Updaters are the only updaters that use the following kinds as Source
blocks.

Note: None of the kinds listed below can be used as Equation blocks in the muscl updaters. The Equation blocks in
the muscle updaters are Hyperbolic Equations

The following parameters are common to all Source blocks:

kind (string) All Source and Equation blocks take a string kind that specifies the type of source.

The following kinds can be combined with Hyperbolic Equations to enable the use of curvilinear coordinates
for hyperbolic problems:

143

USimReferenceManual, Release 3.0.1

12.1 eulerSym

The eulerSym source computes additional (source) terms associated with curvilinear (cylindrical and spherical)
coordinate systems for inviscid compressible hydrodynamics. The eulerSym source is combined with (e.g.)
classicMusclUpdater (1d, 2d, 3d) and one of eulerEqn, eulerTwoTemp, eulerThreeTemp or realGasEosEqn.
Note that formulation of the cylindrical source term assumes axisymmetry and so can be used in 1- and 2-
dimensions, while the formulation of spherical coordinates assumes spherical symmetry and so can only be
used in one-dimension.

12.1.1 Parameters

symmetryType (string, required) The curvilinear cordinate system to be used. Available options are cylin-
drical or spherical

model (string, required) Determines the equation that the source term will be computed for. Available options
are:

eulerEqn Compute curvilinear source terms associated with eulerEqn.

realGasEosEqn Compute curvilinear source terms associated with realGasEosEqn.

eulerTwoTemp Compute curvilinear source terms associated with eulerTwoTemp.

eulerThreeTemp Compute curvilinear source terms associated with eulerThreeTemp.

gasGamma (float, required if model=eulerEqn) Specifies the adiabatic index (ratio of specific heats), 𝛾.

12.1.2 Parent Updater Data

in (string vector, required) The number and form of the input variables for eulerSym depends on the choice
of the parameter model.

model = eulerEqn (1 input variable)

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of
conserved quantities, q has 5 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2: total energy density

model = realGasEosEqn (2 input variables)

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of
conserved quantities, q has 5 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2: total energy density

144 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

Gas Pressure (nodalArray, 1-component, required) The gas pressure, 𝑃 .

model = eulerTwoTemp (3 input variables)

Vector of Conserved Quantities (nodalArray, 6-components, required) The vector of
conserved quantities, q has 6 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 =
𝑃heavy

𝛾heavy−1 + 𝑃electron

𝛾electron−1 + 1
2𝜌|u|

2: total energy density

5. 𝐸electron = 𝑃electron

𝛾electron−1 : electron internal energy density

Total Gas Pressure (nodalArray, 1-component, required) The total gas pressure, 𝑃heavy +
𝑃electron.

Electron Pressure (nodalArray, 1-component, required) The electron pressure, 𝑃electron.

model = eulerThreeTemp (3 input variables)

Vector of Conserved Quantities (nodalArray, 7-components, required) The vector of
conserved quantities, q has 7 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 =
𝑃heavy

𝛾heavy−1 + 𝑃electron

𝛾electron−1 + 1
2𝜌|u|

2: total energy density

5. 𝐸electron = 𝑃electron

𝛾electron−1 : electron internal energy density

6. 𝐸vibr: vibrational energy density

Total Gas Pressure (nodalArray, 1-component, required) The total gas pressure, 𝑃heavy +
𝑃electron.

Electron Pressure (nodalArray, 1-component, required) The electron pressure, 𝑃electron.

out (string vector, required) The form of the output variables for eulerSym depends on the choice of the
parameter model and symmetryType:

model = eulerEqn

Vector of Source terms (nodalArray, 5-components) When symmetryType = cylindrical,
the output source vector has components:

0. 𝒮 (𝜌) = −𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −𝑟−1
(︁
𝜌 𝑢2

î
+ 𝜌 𝑢2

ĵ

)︁
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −2𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −𝑟−1𝑢î (𝐸 + 𝑃): total energy source

12.1. eulerSym 145

USimReferenceManual, Release 3.0.1

When symmetryType = spherical, the output source vector has components:

0. 𝒮 (𝜌) = −2𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −2𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −3𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −3𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −2𝑟−1𝑢î (𝐸 + 𝑃): total energy source

model = realGasEosEqn

Vector of Source terms (nodalArray, 5-components) When symmetryType = cylindrical,
the output source vector has components:

0. 𝒮 (𝜌) = −𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −2𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −𝑟−1𝑢î (𝐸 + 𝑃): total energy source

When symmetryType = spherical, the output source vector has components:

0. 𝒮 (𝜌) = −2𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −2𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −3𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −3𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −2𝑟−1𝑢î (𝐸 + 𝑃): total energy source

model = eulerTwoTemp

Vector of Source terms (nodalArray, 6-components) When symmetryType = cylindrical,
the output source vector has components:

0. 𝒮 (𝜌) = −𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −2𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −𝑟−1𝑢î (𝐸 + 𝑃): total energy source

5. 𝒮 (𝐸electron) = −𝑟−1𝑢î (𝐸electron + 𝑃electron): electron internal energy source

When symmetryType = spherical, the output source vector has components:

0. 𝒮 (𝜌) = −2𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −2𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −3𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

146 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −3𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −2𝑟−1𝑢î (𝐸 + 𝑃): total energy source

5. 𝒮 (𝐸electron) = −2𝑟−1𝑢î (𝐸electron + 𝑃electron): electron internal energy source

model = eulerThreeTemp

Vector of Source terms (nodalArray, 7-components) When symmetryType = cylindrical,
the output source vector has components:

0. 𝒮 (𝜌) = −𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −2𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −𝑟−1𝑢î (𝐸 + 𝑃): total energy source

5. 𝒮 (𝐸electron) = −𝑟−1𝑢î (𝐸electron + 𝑃electron): electron internal energy source

6. 𝒮 (𝐸vibr) = −𝑟−1𝑢î𝐸vibr: vibrational energy source

When symmetryType = spherical, the output source vector has components:

0. 𝒮 (𝜌) = −2𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −2𝑟−1𝜌 𝑢2
î

+ 𝜌 𝑢2
ĵ
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −3𝑟−1𝜌 𝑢î 𝑢ĵ: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −3𝑟−1𝜌 𝑢î 𝑢k̂: k̂ momentum source

4. 𝒮 (𝐸) = −2𝑟−1𝑢î (𝐸 + 𝑃): total energy source

5. 𝒮 (𝐸electron) = −2𝑟−1𝑢î (𝐸electron + 𝑃electron): electron internal energy source

6. 𝒮 (𝐸vibr) = −2𝑟−1𝑢î𝐸vibr: vibrational energy source

12.1.3 Example

The following block demonstrates eulerSym used in combination with classicMusclUpdater (1d, 2d, 3d) and
eulerEqn to compute ∇ · [ℱ (w)] − 𝒮 (w, 𝑥, 𝑦, 𝑧, 𝑡):

<Updater hyper>
kind = classicMuscl1d
onGrid = domain
timeIntegrationScheme = none
variableForm = conservative
preservePositivity = true

in = [q]
out = [qnew]

cfl = 0.5
limiter = [minmod]
numericalFlux = hllcEulerFlux

equations = [euler]
sources = [geometricSrc]

12.1. eulerSym 147

USimReferenceManual, Release 3.0.1

<Equation euler>
kind = eulerEqn
gasGamma = GAMMA # gas constant

</Equation>

<Source geometricSrc>
kind = eulerSym
symmetryType = spherical
model = eulerEqn
gasGamma = GAMMA

</Source>
</Updater>

12.2 mhdSym

The mhdSym source computes additional (source) terms associated with curvilinear coordinate systems for mag-
netohydrodynamics. Currently only cylindrical coordinates are supported. The mhdSym source is combined
with classicMusclUpdater (1d, 2d, 3d) and mhdDednerEqn. Note that formulation of the cylindrical source
term assumes axisymmetry and so can be used in 1- and 2-dimensions.

12.2.1 Parameters

symmetryType (string, required) The curvilinear cordinate system to be used. Available options are cylin-
drical.

model (string, required) Determines the equation that the source term will be computed for. Available options
are:

mhdDednerEqn Compute curvilinear source terms associated with mhdDednerEqn.

gasGamma (float, required) Specifies the adiabatic index (ratio of specific heats), 𝛾.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will be
replaced with this value. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be re-
placed with this value. Defaults to zero.

12.2.2 Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of con-
served quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

148 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

out (string vector, required)

model = mhdDednerEqn

Vector of Source terms (nodalArray, 9-components, required) When symmetryType =
cylindrical, the output source vector has components:

0. 𝒮 (𝜌) = −𝑟−1𝜌 𝑢î: mass source

1. 𝒮
(︀
𝜌 𝑢î
)︀

= −𝑟−1
(︁
𝜌 𝑢2

î
− 𝑏2

î
+ 𝜌 𝑢2

ĵ
− 𝑏2

ĵ
+ |b · b|

)︁
: î momentum source

2. 𝒮
(︁
𝜌 𝑢ĵ

)︁
= −2𝑟−1

(︁
𝜌 𝑢î 𝑢ĵ − 𝑏i𝑏ĵ

)︁
: ĵ momentum source

3. 𝒮
(︀
𝜌 𝑢k̂

)︀
= −𝑟−1

(︀
𝜌 𝑢î 𝑢k̂ − 𝑏i𝑏k̂

)︀
: k̂ momentum source

4. 𝒮 (𝐸) = −𝑟−1
[︁
𝑢î (𝐸 + 𝑃) + (e× b) · î

]︁
: total energy source

5. 𝒮
(︀
𝑏i
)︀

= 0: î magnetic field source

6. 𝒮
(︁
𝑏ĵ

)︁
= 0: ĵ magnetic field source

7. 𝒮
(︀
𝑏k̂
)︀

= −𝑒ĵ: k̂ magnetic field source

8. 𝒮 (𝜓) = −𝑐2fast𝑏i: correction potential source

12.2.3 Example

The following block demonstrates the mhdSym source used in combination with classicMusclUpdater (1d, 2d,
3d) and mhdDednerEqn to compute ∇ · [ℱ (w)] − 𝒮 (w, 𝑥, 𝑦, 𝑧, 𝑡):

<Updater hyper>
kind = classicMuscl2d
timeIntegrationScheme = none
onGrid = domain
limiter = [muscl,none,none]

variableForm = primitive
numericalFlux = roeFlux
preservePositivity = true
correctUnphysicalCells = false

orderAccuracy = 3
numberOfInterpolationPoints = 20
formulation = spline
leastSquaresBasisOrder = 6

in = [q,divB,gradPsi]
out = [qnew]
waveSpeeds = [waveSpeed]

cfl = CFL

12.2. mhdSym 149

USimReferenceManual, Release 3.0.1

equations = [mhd]
sources = [axisymmetricSource]

<Equation mhd>
kind = mhdDednerEqn
mu0 = 1.0
gasGamma = ADIABATIC_INDEX
correctionSpeed = CORRECTION_SPEED
basementdensity = BASEMENTDENSITY
basementpressure = BASEMENTPRESSURE

</Equation>

<Source axisymmetricSource>
kind = mhdSym
symmetryType = cylindrical
model = mhdDednerEqn
gasGamma = ADIABATIC_INDEX
correctionSpeed = CORRECTION_SPEED

</Source>

</Updater>

12.3 maxwellSym

Computes axisymmetric source term for the conservative form of the perfectly hyperbolic Maxwell’s equations.
The source term can be used as a source in a hyperbolic algorithm to solve axisymmetric problems.

𝑠 =
1

𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

𝑐2𝐵𝑦

0
0

−𝐸𝑦

−𝜒𝐸𝑥

−𝛾𝑐2𝐵𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Where 𝑐 is the speed of light, 𝜒 is electric correction potential speed factor, 𝛾 is the magnetic field correction
potential speed factor,𝐸𝑥 is x electric field,𝐸𝑦 is the y electric field,𝐵𝑥 is x magnetic field,𝐵𝑦 is the y magnetic
field and 𝑟 is the radial position.

12.3.1 Parameters

speedOfLight (float) speed of light

gamma (float) Magnetic field divergence error correction speed factor, speed=gamma*c0

chi (float) Electric field poisson error correction speed factor, speed=chi*c0

12.3.2 Example

<Source emAxisymmetricSource>
kind = maxwellSym
speedOfLight = SPEEDOFLIGHT

150 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

gamma = BP
chi = EP

</Source>

12.4 multiSpeciesSym

The multiSpeciesSym provides symmetry sources for the multi species continuity equations (multiSpeciesSin-
gleVelocity) for example. Choices are cylindrical and spherical symmetry. For a set of 𝑛 continuity equations
the cylindrical source is given by

𝑠𝑖 = −1

𝑟

(︀
𝑛𝑖 𝑢𝑥

)︀
and the spherical symmetry source by

𝑠𝑖 = −2

𝑟

(︀
𝑛𝑖 𝑢𝑥

)︀
12.4.1 Parameters

basementDensity (float) If the number density is below basementDensity then the density is set to the
basementNumber density in evaluating this source.

numberOfSpecies (int) The number of species

symmetryType (string) Either cylindrical or spherical

12.4.2 Parent Updater Data

in (string vector, required)

1st Variable (nodalArray) There are n species number densities

0. 𝑛𝑖 species number density

2nd Variable (density and momentum) (nodalArray)

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

12.4.3 Example

<Source multiSpeciesAxiSrc>
kind = multiSpeciesSym
symmetryType = cylindrical
numberOfSpecies = NSPECIES

</Source>

12.4. multiSpeciesSym 151

USimReferenceManual, Release 3.0.1

12.5 twoFluidSym

Computes symmetry source term for the conservative for of the combined two-fluid equations. The source just
converts the combined two-fluid into two separate euler fluids and computes the source for each fluid separately.
The result is then transformed back into the combined fluid.

12.5.1 Parameters common to all systems

model (string) The model whose source term will be computed

symmetryType (string) The symmetry type that will be used. This can be either cylindrical or spherical

12.5.2 Parameters (twoFluidEqn)

ionGamma (float) Specific heat ratio of the ions

electronGamma (float) Specific heat ratio of the electrons

mi (float) ion mass

me (float) electron mass

qi (float) ion charge

qe (float) electron charge

basementDensity (float) basement density of the ions. Basement density of the electrons is
(me/me)*basementDensity.

basementPressure (float) basement pressure of the electrons and ions separately.

12.5.3 Parent Updater Data (twoFluidEqn)

in (string vector, required) 10 primary variables

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌𝑐 total charge density

5. 𝑗𝑥 x current density

6. 𝑗𝑦 y current density

7. 𝑗𝑧 z current density

8. 𝑒𝑖 ion energy density

9. 𝑒𝑒 electron energy density

152 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.5.4 Example

<Source axiSymSource>
kind = twoFluidSymSrc
symmetryType = cylindrical
model = twoFluidEqn
ionGamma = 1.666
electronGamma = 1.6666
qi = ION_CHARGE
qe = ELECTRON_CHARGE
mi = ION_MASS
me = ELECTRON_MASS
basementDensity = 0.0
basementPressure = 0.0

</Source>

The following kinds can be combined with Hyperbolic Equations to enable additional physics in hyperbolic
problems:

12.6 exprHyperSrc

Computes a source term based on input variables from N nodalArrays in combination with geometric factors.

12.6.1 Parameters

indVars_inName (string vector, required) For each input variable an “indVars” string vector must be de-
fined. So if in = [magneticField, electricField] where magneticField and electricField are each 3-
component nodalArrays then the combiner block must define indVars_magneticField = [”bx”, “by”,
“bz”] and indVars_electricField = [”ex”, “ey”, “ez”]. Note that the labels “bx”, “by”, “bz” and “ex”,
“ey”, “ez” are arbitrary; the requirement is that there is a unique name for each component of each input
data structure.

exprs (string vector, required) Strings must be put in quotes. The strings are evaluated and placed in the
output array. The number of strings must be identical to the number of components in the output array.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

preExprs (string vector, optional) Strings must be put in quotes. The preExprs is used to compute quantities
based on indVars that can later be used in the exprs to evaluate the output. Available commands are defined
by the muParser (http://muparser.sourceforge.net)

other (strings, optional) In addition, an arbitrary number of constants can be defined that can then be used
in evaluating expression in both preExprs and exprs.

12.6.2 Parent Updater Data

in (string vector, required) Inputs 1 to N are input nodalArrays which will be supplied to the expression
evaluator.

out (string vector, required) Output is a nodalArray which will contain evaluated source. The number of
components in the output array must be equal to the number of expressions.

12.6. exprHyperSrc 153

http://muparser.sourceforge.net/
http://muparser.sourceforge.net

USimReferenceManual, Release 3.0.1

12.6.3 Example

The following block demonstrates exprHyperSrc used in combination with classicMusclUpdater (1d, 2d, 3d)
and eulerEqn to compute ∇ · [ℱ (w)] − 𝒮 (w, 𝑥, 𝑦, 𝑧, 𝑡):

<Updater hyper>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = hllcEulerFlux

limiter = [muscl]
variableForm = primitive

in = [q]
out = [qnew]

cfl = 0.3

equations = [euler]
sources = [gravity]

<Equation euler>
kind = eulerEqn
correctNans = false
gasGamma = GAMMA

</Equation>

<Source gravity>
kind = exprHyperSrc
inpRange = [0,1,2,3,4]
outRange = [0,1,2,3,4]
gravity = GRAVITY # m/s^2
indVars = ["rho", "rhou", "rhov", "rhow", "Er"]
exprs = ["0.0", "0.0", "-rho*gravity", "0.0", "-gravity*rhov"]

</Source>

</Updater>

12.7 mhdSrc

Many of the MHD system require source terms as the hyperbolic part is not sufficient to describe the simple
system. This source contains the source terms that should be added to these models.

Sources include:

The idealMHD source terms. The ideal MHD case only applies when one does not convert the source terms to a
conservative flux. Note that we do not need separate source for general equation of state since the source terms

154 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

are independent of the relation between internal energy and pressure.

𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐽𝑦𝐵𝑧 − 𝐽𝑧𝐵𝑦

𝐽𝑧𝐵𝑥 − 𝐽𝑥𝐵𝑧

𝐽𝑥𝐵𝑦 − 𝐽𝑦𝐵𝑥

𝐽𝑥𝐸𝑥 + 𝐽𝑦𝐸𝑦 + 𝐽𝑧𝐸𝑧

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The gasDynamicMhdEqn source terms (which include an electron energy equation)

𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐽𝑦𝐵𝑧 − 𝐽𝑧𝐵𝑦

𝐽𝑧𝐵𝑥 − 𝐽𝑥𝐵𝑧

𝐽𝑥𝐵𝑦 − 𝐽𝑦𝐵𝑥

𝐽𝑥𝐸𝑥 + 𝐽𝑦𝐸𝑦 + 𝐽𝑧𝐸𝑧

0
0
0
0

𝐽𝑥 𝑒𝐸𝑥 + 𝐽𝑦 𝑒𝐸𝑦 + 𝐽𝑧 𝑒𝐸𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The twoTemperatureMhdEqn source terms

𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0

𝐽𝑥 𝑒𝐸𝑥 + 𝐽𝑦 𝑒𝐸𝑦 + 𝐽𝑧 𝑒𝐸𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

12.7.1 Parameters (twoTemperatureMhdEqn and twoTemperatureMhdEosEqn)

ionMass (float) The mass of an ion

fundamentalCharge proton charge

12.7.2 Parent Updater Data (idealMhd)

in (string vector, required) 1st Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

12.7. mhdSrc 155

USimReferenceManual, Release 3.0.1

5. 𝐵𝑥 x magnetic field

6. 𝐵𝑦 y magnetic field

7. 𝐵𝑧 z magnetic field

2nd Variable (current density)

0. 𝐽𝑥 x current density

1. 𝐽𝑦 y current density

2. 𝐽𝑧 z current density

3rd Variable (electric field)

0. 𝑒𝑥 x electric field

1. 𝑒𝑦 y electric field

2. 𝑒𝑧 z electric field

12.7.3 Parent Updater Data (twoTemperatureMhdEqn and gasDynamicMhd-
Eqn)

in (string vector, required) 1st Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

5. 𝐵𝑥 x magnetic field

6. 𝐵𝑦 y magnetic field

7. 𝐵𝑧 z magnetic field

8. 𝑃ℎ𝑖 correction potential

9. 𝑒𝑒 electron energy

2nd Variable (current density)

0. 𝐽𝑥 x current density

1. 𝐽𝑦 y current density

2. 𝐽𝑧 z current density

3rd Variable (electric field)

0. 𝑒𝑥 x electric field

1. 𝑒𝑦 y electric field

2. 𝑒𝑧 z electric field

4th Variable (charge state)

0. 𝑍 charge state

156 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.7.4 Parent Updater Data (twoTemperatureMhdEosEqn)

in (string vector, required) 1st Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

5. 𝐵𝑥 x magnetic field

6. 𝐵𝑦 y magnetic field

7. 𝐵𝑧 z magnetic field

8. 𝑒𝑒 electron energy equation

2nd Variable (current density)

0. 𝐽𝑥 x current density

1. 𝐽𝑦 y current density

2. 𝐽𝑧 z current density

3rd Variable (electric field)

0. 𝑒𝑥 x electric field

1. 𝑒𝑦 y electric field

2. 𝑒𝑧 z electric field

4th Variable (charge state)

0. 𝑍 charge state

12.7.5 Example

<Source axisymmetricSource>
kind = mhdSrc
model = gasDynamicMhdSrc

</Source>

12.7. mhdSrc 157

USimReferenceManual, Release 3.0.1

12.8 tenMomentFluidSrc

Computes the “lorentz force” for a 10 moment fluid given, particle mass, charge and permittivity.

𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝑟 𝜌 (𝐸𝑥 + 𝑢𝑦𝐵𝑧 − 𝑢𝑧𝐵𝑦)
𝑟 𝜌 (𝐸𝑦 + 𝑢𝑧𝐵𝑥 − 𝑢𝑥𝐵𝑧)
𝑟 𝜌 (𝐸𝑧 + 𝑢𝑥𝐵𝑦 − 𝑢𝑦𝐵𝑥)

2 𝑟 𝜌 𝑢𝑥𝐸𝑥 + 2𝑟 (𝐵𝑧Pxy −𝐵𝑦Px z)
𝑟 𝜌 (𝑢𝑥𝐸𝑦 + 𝑢𝑦𝐸𝑥) + 𝑟 (𝐵𝑧Py y +𝐵𝑦Py z −𝐵𝑧Pxx +𝐵𝑥Px z)
𝑟 𝜌 (𝑢𝑥𝐸𝑧 + 𝑢𝑧𝐸𝑥) + 𝑟 (𝐵𝑧Py z +𝐵𝑦Pxx −𝐵𝑦Pxx −𝐵𝑥Py y)

2𝑟 𝜌 𝑢𝑦𝐸𝑦 + 2𝑟 (𝐵𝑥Py z −𝐵𝑧Pxy)
𝑟 𝜌 (𝑢𝑦𝐸𝑧 + 𝑢𝑧𝐸𝑦) + 𝑟 (𝐵𝑦Pxy −𝐵𝑧Px z +𝐵𝑥Pz z −𝐵𝑥Py y)

2𝑟 𝜌 𝑢𝑧𝐸𝑧 + 2𝑟 (𝐵𝑦Px z −𝐵𝑥Py z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝑞 is the species charge, 𝑚 is the species mass 𝜖0 is the permittivity, 𝜌 is the fluid mass density, 𝑢𝑥 is the
fluid x velocity, 𝑢𝑦 is the fluid y velocity, 𝑢𝑧 is the fluid z velocity, 𝐸𝑥 is the x electric field, 𝐸𝑦 is the y electric
field, 𝐸𝑧 is the z electric field, 𝐵𝑥 is the x magnetic field, 𝐵𝑦 is the y magnetic field and 𝐵𝑧 is the z magnetic
field. Pi j = 𝑃𝑖 𝑗 + 𝜌 𝑢𝑖𝑢𝑗 with 𝑃𝑖 𝑗 the pressure tensor and 𝜌 the mass density and 𝑟 = 𝑞/𝑚 the charge to mass
ratio.

12.8.1 Parameters

mass (float) The mass of the fluid species

charge (float) The charge of the fluid species

type (string, default=‘unsplit‘) One of either split or unsplit

12.8.2 Data

inputVariables (string vector)

1st Variable (nodalArray)

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 xx energy density

5. 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 xy energy density

6. 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧 xz energy density

7. 𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦 yy energy density

8. 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧 yz energy density

9. 𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧 zz energy density

2nd Variable (nodaArray)

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

158 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

12.8.3 Parent Updater Data

in (string vector, required) The nodalArrays should match the inputVariables in the source block.

1st Variable (nodalArray)

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 xx energy density

5. 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 xy energy density

6. 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧 xz energy density

7. 𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦 yy energy density

8. 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧 yz energy density

9. 𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧 zz energy density

2nd Variable (nodaArray)

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

out (string vector, required) The output nodalArray is a length 10 vector, but the first component is 0 so that
it works simply as a fluid source for the ten moment equations.

12.8.4 Example

<Updater hyperIons>
kind = classicMuscl2d
onGrid = domain
timeIntegrationScheme = none
numericalFlux = hlleFlux
preservePositivity = true
limiter = [mc,none]

variableForm = conservative

in = [ions, em]

12.8. tenMomentFluidSrc 159

USimReferenceManual, Release 3.0.1

out = [ionsNew]

cfl = CFL
equations = [euler]
sources = [lorentz]

<Equation euler>
kind = tenMomentEqn
basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE

</Equation>

<Source lorentz>
kind = tenMomentFluidSrc
type = split
inputVariables = [ions, em]
mass = ION_MASS
charge = ION_CHARGE

</Source>

</Updater>

12.9 twoFluidSrc

Applies the implicit source operator to the 5 moment two-fluid (ion, electron, EM) system or the two-fluid
system written as combined variables twoFluidEqn or the 10-5 system which is 10 moment ions and 5 moment
electrons and EM.

We want to solve the hyperbolic part of the multi-fluid equations explicitly and the source term implicitly. For a
first order scheme the discretization becomes.

𝑄𝑛+1 = 𝑄𝑛 + ∆𝑡∇𝑓𝑛 + ∆𝑡𝜓𝑛+1 (12.-9)

In the case of the two-fluid and 10 moment systems 𝜓𝑛+1 can be re-written exactly as 𝐴𝑛+1𝑄𝑛+1 where 𝐴 is a
matrix. As a result the equation can be re-written(︀

1 − ∆𝑡𝐴𝑛+1
)︀
𝑄𝑛+1 = ∆𝑡∇𝑓𝑛 (12.-9)

and therefore
𝑄𝑛+1 =

(︀
1 − ∆𝑡𝐴𝑛+1

)︀−1
∆𝑡∇𝑓𝑛 (12.-9)

Now, for a Runge-Kutta scheme this update is performed for each substep and ∆𝑡 is replaced by 𝛼∆𝑡 where 𝛼
is the fractional ∆𝑡 for each substep. The result is a high order time accurate implicit integration of the source
terms.

For the 5 moment system (and combined system) only one call to this source term is required. For the 10-5
system the update must be performed in 2 steps. Examples are given below. The technique used was originally
described for the 5 moment two-fluid system in

Kumar, Harish, and Siddhartha Mishra. “Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations.”
Journal of Scientific Computing 52.2 (2012): 401-425.

12.9.1 Parameters (All types)

type string Specifies the type of implicit matrix. Options are 5Moment for the 5 moment two-fluid system,
10MomentIonsStep1 for the first step of the 10 moment ion, 5 moment electron system. 10MomentIon-
Step2 for the second step of the 10 moment ion, 5 moment electron two-fluid system.

160 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.9.2 Parameters (5Moment or 5MomentCombined or 10MomentIonStep1)

useImposedField (bool) Tell USim if there will be an imposed magnetic field applied to the model. If true
an imposed field will be assumed, if false there is no imposed field.

electronCharge (float) The charge of the electron

electronMass (float) The mass of the electron

ionCharge (float) The charge of the ion

ionMass (float) The mass of the ion

epsilon0 Permittivity of free space

12.9.3 Parameters (10MomentIonStep2)

ionCharge (float) The charge of the ion

ionMass (float) The mass of the ion

12.9.4 Parent Updater Data (5Moment)

in (string vector, required) 1st Variable

0. 𝜌 electron mass density

1. 𝜌 𝑢𝑥 electron x momentum density

2. 𝜌 𝑢𝑦 electron y momentum density

3. 𝜌 𝑢𝑧 electron z momentum density

4. 𝑒 electron energy density

2nd Variable

0. 𝜌 ion mass density

1. 𝜌 𝑢𝑥 ion x momentum density

2. 𝜌 𝑢𝑦 ion y momentum density

3. 𝜌 𝑢𝑧 ion z momentum density

4. 𝑒 ion energy density

3rd Variable

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

12.9. twoFluidSrc 161

USimReferenceManual, Release 3.0.1

4th Variable (if useImposedField = true)

This term stores the perturbed field (the total field - the imposed field)

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

out (string vector, required) In all cases the output is 𝑄𝑛+1. For the 5 moment system there are 3 outputs
corresponding to electrons, ions and em (in that order).

12.9.5 Parent Updater Data (5Moment Combined)

in (string vector, required) 1st Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌𝑐 total charge density

5. 𝑗𝑥 x current density

6. 𝑗𝑦 y current density

7. 𝑗𝑧 z current density

8. 𝑒𝑖 ion energy density

9. 𝑒𝑒 electron energy density

2nd Variable

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

3rd Variable (if useImposedField = true)

This term stores the externally imposed field

162 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

out (string vector, required) In all cases the output is 𝑄𝑛+1. For the combined 5 moment systems there are
2 outputs, one for the combined fluid and the other for em (in that order).

12.9.6 Parent Updater Data (10MomentIonsStep1)

in (string vector, required) 1st Variable

0. 𝜌 electron mass density

1. 𝜌 𝑢𝑥 electron x momentum density

2. 𝜌 𝑢𝑦 electron y momentum density

3. 𝜌 𝑢𝑧 electron z momentum density

4. 𝑒 electron energy density

2nd Variable

0. 𝜌 ion mass density

1. 𝜌 𝑢𝑥 ion x momentum density

2. 𝜌 𝑢𝑦 ion y momentum density

3. 𝜌 𝑢𝑧 ion z momentum density

4. 𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 ion xx energy density

5. 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 ion xy energy density

6. 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧 ion xz energy density

7. 𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦 ion yy energy density

8. 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧 ion yz energy density

9. 𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧 ion zz energy density

3rd Variable

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

12.9. twoFluidSrc 163

USimReferenceManual, Release 3.0.1

4th Variable (if useImposedField = true)

This term stores the externally imposed field

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

out (string vector, required) In all cases the output is 𝑄𝑛+1. For the 5 moment electron, 10 moment ion
system in the case where type=10MomentIonStep1 the output is 5 moment electrons, 10 moment ions and
8 component EM system.

12.9.7 Parent Updater Data (10MomentIonsStep2)

in (string vector, required) 1st Variable

0. 𝜌 ion mass density

1. 𝜌 𝑢𝑥 ion x momentum density

2. 𝜌 𝑢𝑦 ion y momentum density

3. 𝜌 𝑢𝑧 ion z momentum density

4. 𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 ion xx energy density

5. 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 ion xy energy density

6. 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧 ion xz energy density

7. 𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦 ion yy energy density

8. 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧 ion yz energy density

9. 𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧 ion zz energy density

2nd Variable

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

3rd Variable (if useImposedField = true)

This term stores the externally imposed field

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

164 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

out (string vector, required) In all cases the output is 𝑄𝑛+1. In the case where type=10MomentIonStep2 the
output is 10 moment ions.

12.9.8 Example

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 5Moment
electronCharge = ELECTRON_CHARGE
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
ionMass = ION_MASS
epsilon0 = EPSILON0

</Equation>

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 5MomentCombined
useImposedField = false
electronCharge = ELECTRON_CHARGE
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
ionMass = ION_MASS
epsilon0 = EPSILON0

</Equation>

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 10MomentIonsStep1
electronCharge = ELECTRON_CHARGE
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
ionMass = ION_MASS
epsilon0 = EPSILON0

</Equation>

<Equation twofluidLorentz>
kind = twoFluidSrc
type = 10MomentIonsStep2
ionCharge = ION_CHARGE
ionMass = ION_MASS

</Equation>

The following kinds can be used to couple fluid models with equations of state:

12.9. twoFluidSrc 165

USimReferenceManual, Release 3.0.1

12.10 idealGasVariables

This source allows the user to compute specific internal energy (𝜖), pressure (𝑃), density (𝜌), and temperature
(𝑇) from the ideal gas law,

𝜌𝜖 = 𝑃/(Γ − 1) = 𝜌𝑘𝐵𝑇/𝑚𝑖(Γ − 1).

Here Γ is the adiabatic gas index, 𝑚𝑖 is the species mass and 𝑘𝐵 is the Boltzmann constant.

This updater is intended for usage as an example. As many equation updaters in USim assume an ideal gas
equation of state use of this updater is redundant and largely unnecessary. Rather, this is updater is used to
provide examples of EOS usage when EOS tables are not available.

12.10.1 Parameters

operations (string vector, required) The operation(s) to be performed. The standard direct operation is
“computeEOSFromTemperatureAndDensity” where “EOS” should be replaced by one of the following
values (the first word of each option should be used, the remainder offers a brief description and the
default units after conversion):

• energy - (𝐽𝑘𝑔−1)

• pressure - (𝑃𝑎)

To compute an inverse operation, simply permute the string to be “computeTemperatureFromEOSAnd-
Density” or “computeDensityFromTemperatureAndEOS”. The input is not case sensitive.

gasGamma (float, required) Specifies the adiabatic index (ratio of specific heats), Γ.

speciesMass (float, required) Specifies the species mass in 𝑘𝑔.

kboltz (float, optional) Specifies the Boltzmann constant. Defaults to 1.3806 × 10−23 (𝐽/𝐾).

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Con-
version to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

12.10.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The specific input variables and order depend on the operations input option. For direct EOS evalua-
tion, the input variables should be in = [temperature, density]. The order is critical where temperature

166 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

must be the first input and density must be the second input. For inverse operations, the temperature,
if an input, must be the first input and the density, if an input, must be the second input. The EOS
input should be placed in the correspondingly empty input location. Inputs are of type nodalArray
with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, required)

The number of out variables should be the same as the number of entries into the list of operations.
The result of each operation will be placed into the corresponding output variable, respectively. Out-
puts are of type nodalArray with one component each.

12.10.3 Example

<Updater computeEOS>
kind=equation2d
onGrid=domain
in=[temperature, density]
out=[energy, pressure]
<Equation thisGas>

kind=idealGasVariables
operations=["computeEnergyFromDensityAndTemperature", \

"computePressureFromDensityAndTemperature"]
</Equation>

</Updater>

12.11 idealGasComputeVariables

This source allows the user to compute specific internal energy (𝜖), pressure (𝑃), density (𝜌), and temperature
(𝑇) from the ideal gas law,

𝜌𝜖 = 𝑃/(Γ − 1) = 𝜌𝑘𝐵𝑇/𝑚𝑖(Γ − 1).

Here Γ is the adiabatic gas index, 𝑚𝑖 is the species mass and 𝑘𝐵 is the Boltzmann constant.

In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

𝑐2𝑠 =
𝜕𝑃

𝜕𝜖

𝑃

𝜌2
+
𝜕𝑃

𝜕𝜌

This updater is intended for usage as an example. As many equation updaters in USim assume an ideal gas
equation of state use of this updater is redundant and largely unnecessary. Rather, this is updater is used to
provide examples of EOS usage when EOS tables are not available.

12.11.1 Parameters

gasGamma (float, required) Specifies the adiabatic index (ratio of specific heats), Γ.

speciesMass (float, required) Specifies the species mass in 𝑘𝑔.

kboltz (float, optional) Specifies the Boltzmann constant. Defaults to 1.3806 × 10−23 (𝐽/𝐾).

delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor
determines the relative width of the stencil. The default is 10−6.

12.11. idealGasComputeVariables 167

USimReferenceManual, Release 3.0.1

soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared.
The default is 0.

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Con-
version to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with re-
spect to specific energy divided by the density, 𝜌−1𝜕𝑃/𝜕𝜖, is output. This output is required to compute
the EOS system eigenvectors. The default is false.

12.11.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are
of type nodalArray with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, 2 required and 3rd optional)

The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is
true, a third output variable that is the partial derivative of the pressure with respect to specific energy
divided by the density 𝜌−1𝜕𝑃/𝜕𝜖. This output is required to compute the EOS system eigenvectors.
Outputs are of type nodalArray with one component each.

12.11.3 Example

<Updater computePressureAndSoundSpeedSquared>
kind=equation2d
onGrid=domain
in=[rho, intEnergy]
out=[pressure, soundSqr]
<Equation thisGas>

kind=idealGasComputeVariables
delta=1.e-5
speciesMass=MI
gasGamma=1.667

</Equation>
</Updater>

168 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.12 propaceosVariables

This source allows the user to read in data from a PROPACEOS table and then compute energy, density, tem-
perature and single group and multi-group emissivities. PROPACEOS tables can be obtained from Prism Com-
putational Sciences (PROPACEOS link). Alternatively the PROPACEOS format can be used to create your own
tables. Tables specify an equation of state (EOS) for energy, single group and multi-group emissivities as a
function of temperature and density. To solve for temperature or density as a function of the EOS table value
an inverse operation must be applied. This operation holds the input temperature or density constant and as-
sumes the EOS table data is a monotonic function of the dependent variables (density and temperature). If these
assumptions do not hold, incorrect results may be produced.

A note on units. Units in USim are all MKS units. However, the PROPACEOS tables use CGS units and
eV for temperature. These units are converted to MKS by USim. This is important if one writes their own
PROPACEOS tables. The ability to specify custom unit conversion factors is available as an optional input.

Before running any case using the PROPACEOS EOS tables, it is prudent to make basic sanity checks by running
a modified version of the verifyEOSTable example with the specific PROPACEOS table that is intended for use.

12.12.1 Parameters

filename (string, required) Name of file that contains the PROPACEOS formatted table.

operations (string vector, required) The operation(s) to be performed. The standard direct opera-
tion is “computeEOSTableFromTemperatureAndDensity” where “EOSTable” is computed from the
PROPACEOS tables and should be replaced by one of the following values (the first word of each op-
tion should be used, the remainder offers a brief description and the default units after conversion):

• Zbar - the charge state

• Eint - Total internal energy (𝐽𝑘𝑔−1)

• Eion - Ion internal energy (𝐽𝑘𝑔−1)

• Eele - Electron internal energy (𝐽𝑘𝑔−1)

• Pion - Ion pressure (𝑃𝑎)

• Pele - Electron pressure (𝑃𝑎)

• Ptot - Pion+Pele (𝑃𝑎)

• IntRosseland - Integrated Rosseland Mean Opacity (𝑚2𝑘𝑔−1)

• IntAbsPlanck - Integrated Planck Mean Opacity (𝑚2𝑘𝑔−1)

• IntEmisPlank - Integrated Planck Mean Opacity (𝑚2𝑘𝑔−1)

• Zeffective - effective Z for Bremstrahlung radiation

• Rosseland - Rosseland mean opacity for frequency group (𝑚2𝑘𝑔−1)

• AbsPlanck - absorption Planck mean opacity for frequency group (𝑚2𝑘𝑔−1)

• EmisPlanck - emission Planck mean opacity for frequency group (𝑚2𝑘𝑔−1)

• IonizationFraction - the ionization fraction

To compute an inverse operation, simply permute the string to be “computeTemperatureFromEOSTable-
AndDensity” or “computeDensityFromTemperatureAndEOSTable”. The input is not case sensitive.

speciesMass (float, required) Mass of the species as required to convert from number to mass density.

12.12. propaceosVariables 169

http://www.prism-cs.com/Software/PROPACEOS/PROPACEOS.htm

USimReferenceManual, Release 3.0.1

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

element (string, optional) Element name used for computing ionization fraction.

elementList (string vector, optional) List of elements used in the table for computing Zeffective.

fixRanges (int vector, optional)

Whether the variables should be allowed to go beyond the table ranges or not. fixRanges = [1]
means that the first variable cannot go beyond the table ranges and if it does, it’s value is set to
the maximum (or minimum) of the table value. The default is false.

logInterpolation (int vector, optional)

Whether to use logarithmic interpolation when evaluating EOS table values. The default is false.

densityConversionCoefficient (float, optional)

Custom density unit conversion factor. Conversion to MKS mass density (𝑘𝑔𝑚−3) is the default.
The default conversion factor is divided by the custom conversion factor. Thus if using alternative
units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative
units.

temperatureConversionCoefficient (float, optional)

Custom temperature unit conversion factor. Conversion to MKS temperature (𝐾) is the default.
The default conversion factor is divided by the custom conversion factor. Thus if using alternative
units, set the unit conversion factor to to the MKS value that corresponds to unity in the alternative
units.

conversionCoefficients (float vector, optional)

Custom unit conversion factors for EOS table values. Conversion to MKS units is the default. The
default conversion factor is divided by the custom conversion factor. Thus if using alternative units,
set the unit conversion factor to to the MKS value that corresponds to unity in the alternative units.

12.12.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The specific input variables and order depend on the operations input option. For direct EOS evalua-
tion, the input variables should be in = [temperature, density]. The order is critical where temperature
must be the first input and density must be the second input. For inverse operations, the temperature,
if an input, must be the first input and the density, if an input, must be the second input. The EOS
input should be placed in the correspondingly empty input location. Inputs are of type nodalArray
with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, required)

The number of out variables should be the same as the number of entries into the list of operations.
The result of each operation will be placed into the corresponding output variable, respectively. Out-
puts are of type nodalArray with one component each.

170 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.12.3 Example

<Updater computeZavg>
kind = equation3d
onGrid = domain
in = [temperature, density]
out = [zAvg, intEmisPlanck]

<Equation thisGas>
kind = propaceosVariables
fixRanges = [1, 1]
filename = Ar_Ni_1e^10_10group_NLTE_20110427.prp
operations = ["computeZbarFromTemperatureAndDensity" \

"computeIntEmisPlanckFromTemperatureAndDensity"]
speciesMass=MI
elementList = [Ar]

</Equation>
</Updater>

12.13 propaceosComputeVariables

This source allows the user to read in data from a PROPACEOS table and then compute pressure and the
sound speed squared from density and the internal energy. PROPACEOS tables can be obtained from Prism
Computational Sciences (PROPACEOS link). Alternatively the PROPACEOS format can be used to create your
own tables. Tables specify an equation of state (EOS) for energy and pressure as functions of temperature and
density. Thus to solve for temperature, as an intermediate step, as a function of the internal energy an inverse
operation must be applied. This operation holds the input temperature or density constant and assumes the EOS
table data is a monotonic function of the dependent variables (density and temperature). If these assumptions
do not hold, incorrect results may be produced.

In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

𝑐2𝑠 =
𝜕𝑃

𝜕𝜖

𝑃

𝜌2
+
𝜕𝑃

𝜕𝜌

A note on units. Units in USim are all MKS units. However, the PROPACEOS tables use CGS units and
eV for temperature. These units are converted to MKS by USim. This is important if one writes their own
PROPACEOS tables. The ability to specify custom unit conversion factors is available as an optional input.

Before running any case using the PROPACEOS EOS tables, it is prudent to make basic sanity checks by running
a modified version of the verifyEOSTable example with the specific PROPACEOS table that is intended for use.

12.13.1 Parameters

filename (string, required) Name of file that contains the PROPACEOS formatted table.

speciesMass (float, required) Mass of the species as required to convert from number to mass density.

delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor
determines the relative width of the stencil. The default is 10−6.

soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared.
The default is 0.

12.13. propaceosComputeVariables 171

http://www.prism-cs.com/Software/PROPACEOS/PROPACEOS.htm

USimReferenceManual, Release 3.0.1

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

fixRanges (int vector, options) Whether the variables should be allowed to go beyond the table ranges or
not. fixRanges = [1] means that the first variable cannot go beyond the table ranges and if it does, it’s value
is set to the maximum (or minimum) of the table value. The default is false.

logInterpolation (int vector, optional) Whether to use logarithmic interpolation when evaluating EOS
table values. The default is false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS table values.
Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with re-
spect to specific energy divided by the density, 𝜌−1𝜕𝑃/𝜕𝜖, is output. This output is required to compute
the EOS system eigenvectors. The default is false.

12.13.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are
of type nodalArray with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, 2 required and 3rd optional)

The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is
true, a third output variable that is the partial derivative of the pressure with respect to specific energy
divided by the density 𝜌−1𝜕𝑃/𝜕𝜖. This output is required to compute the EOS system eigenvectors.
Outputs are of type nodalArray with one component each.

12.13.3 Example

<Updater computePressureAndSoundSpeedSquared>
kind=equation2d
onGrid=domain
in=[rho, intEnergy]
out=[pressure, soundSqr]
<Equation thisGas>

kind=propaceosComputeVariables
filename=propaceos.prp
delta=1.e-5

172 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

speciesMass=MI
</Equation>

</Updater>

12.14 sesameVariables

This source allows the user to read in data from a SESAME table and then compute energy, pressure, den-
sity, temperature and conductivity. SESAME tables can be obtained from Los Alamos National Laboratory
(SESAME link). Alternatively the SESAME format can be used to create your own tables. Tables specify an
equation of state (EOS) for energy, pressure, conductivities and opacity as a function of temperature and density.
To solve for temperature or density as a function of the EOS table value an inverse operation must be applied.
This operation holds the input temperature or density constant and assumes the EOS table data is a monotonic
function of the dependent variables (density and temperature). If these assumptions do not hold, incorrect results
may be produced.

A note on units. Units in USim are all MKS units. However, the SESAME tables use alternative units. These
units are converted to MKS by USim. This is important if one writes their own SESAME tables. The ability to
specify custom unit conversion factors is available as an optional input.

Before running any case using the SESAME EOS tables, it is prudent to make basic sanity checks by running a
modified version of the verifyEOSTable example with the specific SESAME table that is intended for use.

12.14.1 Parameters

filename (string, required) Name of file that contains the SESAME formatted table.

operations (string vector, required) The operation(s) to be performed. The standard direct operation is
“computeEOSTableFromTemperatureAndDensity” where “EOSTable” is computed from the SESAME
tables and should be replaced by one of the following values (the first word of each option should be used,
the remainder offers a brief description and the default units after conversion):

• 301energy - (𝐽𝑘𝑔−1)

• 301freeenergy - (𝐽𝑘𝑔−1)

• 301pressure - (𝑃𝑎)

• 303energy - (𝐽𝑘𝑔−1)

• 303freeenergy - (𝐽𝑘𝑔−1)

• 303pressure - (𝑃𝑎)

• 304energy - (𝐽𝑘𝑔−1)

• 304freeenergy - (𝐽𝑘𝑔−1)

• 304pressure - (𝑃𝑎)

• 305energy - (𝐽𝑘𝑔−1)

• 305freeenergy - (𝐽𝑘𝑔−1)

• 305pressure - (𝑃𝑎)

• 306energy - (𝐽𝑘𝑔−1)

• 306freeenergy - (𝐽𝑘𝑔−1)

• 306pressure - (𝑃𝑎)

12.14. sesameVariables 173

http://www.lanl.gov/org/padste/adtsc/theoretical/physics-chemistry-materials/sesame-database.php

USimReferenceManual, Release 3.0.1

• 601 - Mean Ion Charge (free electrons per atom)

• 602 - Electrical Conductivity (𝑠−1)

• 603 - Thermal Conductivity (𝑚−1𝑠−1)

• 604 - Thermoelectric Coefficient (𝑚−1𝑠−1)

• 605 - Electron Conductive Opacity (𝑚2𝑘𝑔−1)

Tables 301, and 303-306, which are decomposed into energy, freeenergy and pressure above are described
as follows:

• 301 - Total EOS (304+305+306)

• 303 - Ion EOS Plus Cold Curve (305+306)

• 304 - Electron EOS

• 305 - Ion EOS (Including Zero Point)

• 306 - Cold Curve (No Zero Point)

To compute an inverse operation, simply permute the string to be “computeTemperatureFromEOSTable-
AndDensity” or “computeDensityFromTemperatureAndEOSTable”. The input is not case sensitive.

materialID (int, required) Identifying material ID in the SESAME table.

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

speciesMass (float, optional) Mass of the species (in 𝑘𝑔) is required to convert if useParticleDensity=true.

fixRanges (int vector, options) Whether the variables should be allowed to go beyond the table ranges or
not. fixRanges = [1] means that the first variable cannot go beyond the table ranges and if it does, it’s value
is set to the maximum (or minimum) of the table value. The default is false.

logInterpolation (int vector, optional) Whether to use logarithmic interpolation when evaluating EOS
table values. The default is false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS table values.
Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

12.14.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The specific input variables and order depend on the operations input option. For direct EOS evalua-
tion, the input variables should be in = [temperature, density]. The order is critical where temperature
must be the first input and density must be the second input. For inverse operations, the temperature,

174 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

if an input, must be the first input and the density, if an input, must be the second input. The EOS
input should be placed in the correspondingly empty input location. Inputs are of type nodalArray
with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, required)

The number of out variables should be the same as the number of entries into the list of operations.
The result of each operation will be placed into the corresponding output variable, respectively. Out-
puts are of type nodalArray with one component each.

12.14.3 Example

<Updater computeEOS>
kind=equation2d
onGrid=domain
in=[temperature, density]
out=[energy, pressure]
<Equation thisGas>

kind=sesameVariables
filename=sesame.ses
materialID=58501
operations=["compute301EnergyFromDensityAndTemperature", \

"compute301PressureFromDensityAndTemperature"]
</Equation>

</Updater>

12.15 sesameComputeVariables

This source allows the user to read in data from a SESAME table and then compute pressure and the sound
speed squared from density and the internal energy. SESAME tables can be obtained from Los Alamos National
Laboratory (SESAME link). Alternatively the SESAME format can be used to create your own tables. Tables
specify an equation of state (EOS) for energy and pressure as functions of temperature and density. Thus to
solve for temperature, as an intermediate step, as a function of the internal energy an inverse operation must
be applied. This operation holds the input temperature or density constant and assumes the EOS table data is
a monotonic function of the dependent variables (density and temperature). If these assumptions do not hold,
incorrect results may be produced.

In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

𝑐2𝑠 =
𝜕𝑃

𝜕𝜖

𝑃

𝜌2
+
𝜕𝑃

𝜕𝜌

A note on units. Units in USim are all MKS units. However, the SESAME tables use alternative units. These
units are converted to MKS by USim. This is important if one writes their own SESAME tables. The ability to
specify custom unit conversion factors is available as an optional input.

Before running any case using the SESAME EOS tables, it is prudent to make basic sanity checks by running a
modified version of the verifyEOSTable example with the specific SESAME table that is intended for use.

12.15.1 Parameters

filename (string, required) Name of file that contains the SESAME formatted table.

12.15. sesameComputeVariables 175

http://www.lanl.gov/org/padste/adtsc/theoretical/physics-chemistry-materials/sesame-database.php

USimReferenceManual, Release 3.0.1

materialID (int, required) Identifying material ID in the SESAME table.

delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor
determines the relative width of the stencil. The default is 10−6.

soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared.
The default is 0.

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

speciesMass (float, optional) Mass of the species (in 𝑘𝑔) is required to convert if useParticleDensity=true.

fixRanges (int vector, options) Whether the variables should be allowed to go beyond the table ranges or
not. fixRanges = [1] means that the first variable cannot go beyond the table ranges and if it does, it’s value
is set to the maximum (or minimum) of the table value. The default is false.

logInterpolation (int vector, optional) Whether to use logarithmic interpolation when evaluating EOS
table values. The default is false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS table values.
Conversion to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with re-
spect to specific energy divided by the density, 𝜌−1𝜕𝑃/𝜕𝜖, is output. This output is required to compute
the EOS system eigenvectors. The default is false.

12.15.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are
of type nodalArray with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, 2 required and 3rd optional)

The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is
true, a third output variable that is the partial derivative of the pressure with respect to specific energy
divided by the density 𝜌−1𝜕𝑃/𝜕𝜖. This output is required to compute the EOS system eigenvectors.
Outputs are of type nodalArray with one component each.

176 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.15.3 Example

<Updater computePressureAndSoundSpeedSquared>
kind=equation2d
onGrid=domain
in=[rho, intEnergy]
out=[pressure, soundSqr]
<Equation thisGas>

kind=sesameComputeVariables
filename=sesame.ses
materialID=58501
delta=1.e-5

</Equation>
</Updater>

12.16 vanDerWaalsVariables

This source allows the user to compute specific internal energy (𝜖), pressure (𝑃), density (𝜌), and temperature
(𝑇) from the Van Der Waals gas law,

𝑃 =
𝑅

𝐶𝑉
(𝜖+ 𝜂𝑎𝜌)

𝜌

1 − 𝜂𝑏𝜌
− 𝜂𝑎𝜌

2

Here 𝑅 is the gas constant, 𝐶𝑉 is the specific heat at constant volume and 𝜂𝑎 and 𝜂𝑏 are constants accounting
for the intermolecular forces and the molecular size, respectively.

12.16.1 Parameters

operations (string vector, required) The operation(s) to be performed. The standard direct operation is
“computeEOSFromTemperatureAndDensity” where “EOS” should be replaced by one of the following
values (the first word of each option should be used, the remainder offers a brief description and the
default units after conversion):

• energy - (𝐽𝑘𝑔−1)

• pressure - (𝑃𝑎)

To compute an inverse operation, simply permute the string to be “computeTemperatureFromEOSAnd-
Density” or “computeDensityFromTemperatureAndEOS”. The input is not case sensitive.

Rr (float, required) Specifies the gas constant, 𝑅.

Cv (float, required) Specifies the gas specific heat at constant volume , 𝐶𝑉 .

etaA (float, required) Specifies the intermolecular force constant, 𝜂𝑎 in units of 𝑚3𝑘𝑔−1.

etaB (float, required) Specifies the molecular size constant, 𝜂𝑏 in units of 𝑚5𝑘𝑔−1𝑠−2.

speciesMass (float, required) Specifies the species mass in 𝑘𝑔.

kboltz (float, optional) Specifies the Boltzmann constant. Defaults to 1.3806 × 10−23 (𝐽/𝐾).

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

12.16. vanDerWaalsVariables 177

USimReferenceManual, Release 3.0.1

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Con-
version to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

12.16.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The specific input variables and order depend on the operations input option. For direct EOS evalua-
tion, the input variables should be in = [temperature, density]. The order is critical where temperature
must be the first input and density must be the second input. For inverse operations, the temperature,
if an input, must be the first input and the density, if an input, must be the second input. The EOS
input should be placed in the correspondingly empty input location. Inputs are of type nodalArray
with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, required)

The number of out variables should be the same as the number of entries into the list of operations.
The result of each operation will be placed into the corresponding output variable, respectively. Out-
puts are of type nodalArray with one component each.

12.16.3 Example

<Updater computeEOS>
kind=equation2d
onGrid=domain
in=[temperature, density]
out=[energy, pressure]
<Equation thisGas>

kind=vanDerWaalsVariables
Rr=2.0769
Cv=3.1156
etaA=0.0346
etaB=0.0238
speciesMass=6.64e-27
operations=["computeEnergyFromDensityAndTemperature", \

"computePressureFromDensityAndTemperature"]
</Equation>

</Updater>

178 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.17 vanDerWaalsComputeVariables

This source allows the user to compute pressure (𝑃) and the sound speed squared (𝑐2𝑠) from density (𝜌) and the
internal energy (𝜌𝜖) with the Van Der Waals gas law,

𝑃 =
𝑅

𝐶𝑉
(𝜖+ 𝜂𝑎𝜌)

𝜌

1 − 𝜂𝑏𝜌
− 𝜂𝑎𝜌

2

Here 𝑅 is the gas constant, 𝐶𝑉 is the specific heat at constant volume and 𝜂𝑎 and 𝜂𝑏 are constants accounting
for the intermolecular forces and the molecular size, respectively.

In this updater, the sound speed squared is computed from a formula for the generalized sound speed:

𝑐2𝑠 =
𝜕𝑃

𝜕𝜖

𝑃

𝜌2
+
𝜕𝑃

𝜕𝜌

12.17.1 Parameters

Rr (float, required) Specifies the gas constant, 𝑅.

Cv (float, required) Specifies the gas specific heat at constant volume , 𝐶𝑉 .

etaA (float, required) Specifies the intermolecular force constant, 𝜂𝑎 in units of 𝑚3𝑘𝑔−1.

etaB (float, required) Specifies the molecular size constant, 𝜂𝑏 in units of 𝑚5𝑘𝑔−1𝑠−2.

speciesMass (float, required) Specifies the species mass in 𝑘𝑔.

kboltz (float, optional) Specifies the Boltzmann constant. Defaults to 1.3806 × 10−23 (𝐽/𝐾).

delta (float, optional) A finite difference operation is applied to evaluate partial derivatives. This factor
determines the relative width of the stencil. The default is 10−6.

soundSpeedSquaredFloor (float, optional) Sets a minimum value for the output sound speed squared.
The default is 0.

useParticleDensity (int, optional) Whether to use the particle (true) or mass (false) density. Default is
false.

densityConversionCoefficient (float, optional) Custom density unit conversion factor. Conversion
to MKS mass density (𝑘𝑔𝑚−3) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

temperatureConversionCoefficient (float, optional) Custom temperature unit conversion factor.
Conversion to MKS temperature (𝐾) is the default. The default conversion factor is divided by the custom
conversion factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that
corresponds to unity in the alternative units.

conversionCoefficients (float vector, optional) Custom unit conversion factors for EOS values. Con-
version to MKS units is the default. The default conversion factor is divided by the custom conversion
factor. Thus if using alternative units, set the unit conversion factor to to the MKS value that corresponds
to unity in the alternative units.

outputPeRhoInv (int, optional) Boolean that determines if the partial derivative of the pressure with re-
spect to specific energy divided by the density, 𝜌−1𝜕𝑃/𝜕𝜖, is output. This output is required to compute
the EOS system eigenvectors. The default is false.

12.17. vanDerWaalsComputeVariables 179

USimReferenceManual, Release 3.0.1

12.17.2 Parent Updater Data

in (string vector, required)

input variables (nodalArray, 1-component each, 2 required)

The input variables (exactly 2) must be the density and the internal energy, in that order. Inputs are
of type nodalArray with one component each.

out (string vector, required)

output variables (nodalArray, 1-component each, 2 required and 3rd optional)

The output variables are the pressure and the sound speed squared, in that order. If outputPeRhoInv is
true, a third output variable that is the partial derivative of the pressure with respect to specific energy
divided by the density 𝜌−1𝜕𝑃/𝜕𝜖. This output is required to compute the EOS system eigenvectors.
Outputs are of type nodalArray with one component each.

12.17.3 Example

<Updater computePressureAndSoundSpeedSquared>
kind=equation2d
onGrid=domain
in=[rho, intEnergy]
out=[pressure, soundSqr]
<Equation thisGas>

kind=vanDerWaalsComputeVariables
delta=1.e-5
Rr=2.0769
Cv=3.1156
etaA=0.0346
etaB=0.0238
speciesMass=6.64e-27

</Equation>
</Updater>

The following kinds can be used to couple fluid models with radiation models:

12.18 bremsPowerSrc

Computes the Bremsstrahlung the power density loss term.

𝑠 =
(︁ 𝑛𝑒

7.69𝑒18

)︁2
𝑇

1/2
𝑒𝑉 𝑍𝑒𝑓𝑓

Where 𝑛𝑒 is the electron number density in 1/𝑚3, 𝑇𝑒𝑉 is electron temperature in electron volts (note that the
temperature is input in Kelvin), 𝑍𝑒𝑓𝑓 is the effective ion charge state.

12.18.1 Parent Updater Data

in (string vector, required) 1st Variable

0. 𝑛 number density

2nd Variable (1 component)

0. 𝑇𝑒𝑉 electron temperature in Kelvin

180 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

3rd Variable (1 component)

0. 𝑍 Z effective

12.18.2 Example

<Source radiationSource>
kind = bremsPowerSrc

</Source>

12.19 radiationAbsorption

Computes the absorbed power for each radiation group given the absorption coefficient and ion number density

12.19.1 Parameters

ionMass (float) The mass of the ion species

numberOfGroup (int) The number of groups that should be considered

12.19.2 Parent Updater Data

in (string vector, required) 1st Variable

The ion number density for the species 1/𝑚3

2nd Variable

The group radiation energy density 𝐽/𝑚3 for each group, each component represents a different
frequency group

3rd Variable

The absorption coefficient 𝑚2/𝐾𝑔 for each group, each component represents a different fre-
quency group

out (string vector, required) The output is the absorbed power density in 𝑊/𝑚3

12.19.3 Example

<Updater name>
kind = equation1d
onGrid = domain
in = [density, radiationEnergy, intAbsPlanck]
out = [absorbedPower]

<Equation thisGas>
kind = radiationAbsorption
numberOfGroups = 1
ionMass = MI

</Equation>
</Updater>

12.19. radiationAbsorption 181

USimReferenceManual, Release 3.0.1

12.20 radiationEmission

Computes the the radiated power for a plasma given ion mass density, temperature and the emission coefficient.

𝐶𝑔 = 6.49394 8𝜋 𝑘4𝑏/
(︀
𝑐2 ℎ3

)︀
(12.-17)

and the radiated power given by
𝑃𝑔 = 𝐶𝑔 𝜎𝑃𝑇

4
𝑒 𝑛𝑖𝑚𝑖 (12.-17)

12.20.1 Parameters

ionMass (float) The mass of the ion species

numberOfGroup (int) The number of groups that should be considered. For now numberOfGroups=1.

12.20.2 Parent Updater Data

in (string vector, required) 1st Variable

The ion number density for the species 1/𝑚3

2nd Variable

The temperature is in Kelvin

3rd Variable

The planck emission coefficient 𝑚2/𝐾𝑔

out (string vector, required) The output is the radiated power density in 𝑊/𝑚3

12.20.3 Example

<Updater emission>
kind = equation1d
onGrid = grid
in = [density, temperature, intEmisPlanck]
out = [radiationPower]

<Equation thisGas>
kind = radiationEmission
numberOfGroups = 1
ionMass = MI

</Equation>
</Updater>

The following kinds can be used to couple fluid systems with electromagnetic systems:

12.21 coilFieldEqn

Computes the analytic magnetic field from a single coil

182 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.21.1 Parameters

center (vector float) center of the coil

current (float) current in the coil

mu0 (float) permeability of free space

normal (vector float) normal to the plane of the coil

radius (float) radius of the coil

12.21.2 Example

<Source coilSource>
kind = coilFieldEqn
mu0 = 1.26e-6
center = [0.5, 0.5, 0.0]
normal = [1.0, 0.0, 0.0]
radius = 10.0
current = 1.0

</Source>

12.22 current

Computes the fluid “current” given from fluid variables, particle mass, charge and permittivity. This current
would be used as a source term for Maxwell’s equations.

𝑠 = − 1

𝜖0

𝑞

𝑚

⎛⎝ 𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧

⎞⎠
where 𝑞 is the species charge, 𝑚 is the species mass 𝜖0 is the permittivity, 𝜌 is the fluid mass density, 𝑢𝑥 is the
fluid x velocity, 𝑢𝑦 is the fluid y velocity and 𝑢𝑧 is the fluid z velocity.

12.22.1 Parameters

epsilon0 (float) permittivity of free space

mass (float) The mass of the fluid particles

charge (float) The charge of the fluid particles

startIndex (integer) Tells USim which variable in the input vector should be set to the zero position. For
example, if you pass in 𝑞 from the eulerEqn then startIndex would be 1 as the momentum density terms
correspond to indexes 1, 2, 3. In that case the 0 index corresponds to mass density. The default value for
startIndex is 0.

12.22.2 Parent Updater Data

in (string vector, required) 1st Variable

0. 𝜌 𝑢𝑥 x momentum density

1. 𝜌 𝑢𝑦 y momentum density

12.22. current 183

USimReferenceManual, Release 3.0.1

2. 𝜌 𝑢𝑧 z momentum density

12.22.3 Example

<Source ionCurrents>
kind = current
startIndex = 1
charge = ION_CHARGE
mass = ION_MASS
epsilon0 = 1.0

</Source>

12.23 lorentzForce

Computes the lorentz force given from fluid variables, particle mass, charge and permittivity. This lorentz force
would be used as a source term for fluid equations.

𝑠 = 𝜌
𝑞

𝑚

⎛⎜⎜⎜⎜⎝
0

𝐸𝑥 + 𝑢𝑦𝐵𝑧 − 𝑢𝑧𝐵𝑦

𝐸𝑦 + 𝑢𝑧𝐵𝑥 − 𝑢𝑥𝐵𝑧

𝐸𝑧 + 𝑢𝑥𝐵𝑦 − 𝑢𝑦𝐵𝑥

𝑢𝑥𝐸𝑥 + 𝑢𝑦 𝐸𝑦 + 𝑢𝑧 𝐸𝑧

⎞⎟⎟⎟⎟⎠
where 𝑞 is the species charge, 𝑚 is the species mass 𝜖0 is the permittivity, 𝜌 is the fluid mass density, 𝑢𝑥 is the
fluid x velocity, 𝑢𝑦 is the fluid y velocity, 𝑢𝑧 is the fluid z velocity, 𝐸𝑥 is the x electric field, 𝐸𝑦 is the y electric
field, 𝐸𝑧 is the z electric field, 𝐵𝑥 is the x magnetic field, 𝐵𝑦 is the y magnetic field and 𝐵𝑧 is the z magnetic
field.

In the case where the user wants the Lorentz term for the two-fluid form twoFluidEqn the source is written as

𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝜌𝑐𝐸𝑥 + 𝑗𝑦𝐵𝑧 − 𝑗𝑧𝐵𝑦

𝜌𝑐𝐸𝑦 + 𝑗𝑧𝐵𝑥 − 𝑗𝑥𝐵𝑧

𝜌𝑐𝐸𝑧 + 𝑗𝑥𝐵𝑦 − 𝑗𝑦𝐵𝑥

0
(𝑟2𝑖 𝜌𝑖 + 𝑟2𝑒𝜌𝑒)𝐸𝑥 + (𝑟2𝑖 𝜌𝑖𝑢𝑦 𝑖 + 𝑟2𝑒𝜌𝑒𝑢𝑦 𝑒)𝐵𝑧 − (𝑟2𝑖 𝜌𝑖𝑢𝑧 𝑖 + 𝑟2𝑒𝜌𝑒𝑢𝑧 𝑒)𝐵𝑦

(𝑟2𝑖 𝜌𝑖 + 𝑟2𝑒𝜌𝑒)𝐸𝑦 + (𝑟2𝑖 𝜌𝑖𝑢𝑧 𝑖 + 𝑟2𝑒𝜌𝑒𝑢𝑧 𝑒)𝐵𝑥 − (𝑟2𝑖 𝜌𝑖𝑢𝑥 𝑖 + 𝑟2𝑒𝜌𝑒𝑢𝑥 𝑒)𝐵𝑧

(𝑟2𝑖 𝜌𝑖 + 𝑟2𝑒𝜌𝑒)𝐸𝑧 + (𝑟2𝑖 𝜌𝑖𝑢𝑥 𝑖 + 𝑟2𝑒𝜌𝑒𝑢𝑥 𝑒)𝐵𝑦 − (𝑟2𝑖 𝜌𝑖𝑢𝑦 𝑖 + 𝑟2𝑒𝜌𝑒𝑢𝑦 𝑒)𝐵𝑥

𝑗𝑥 𝑖𝐸𝑥 + 𝑗𝑦 𝑖𝐸𝑦 + 𝑗𝑧 𝑖𝐸𝑧

𝑗𝑥 𝑒𝐸𝑥 + 𝑗𝑦 𝑒𝐸𝑦 + 𝑗𝑧 𝑒𝐸𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and this source can be chosen by choosing type=twoFluidEqn. The variables are defined as follows, 𝑟𝑖 = 𝑞𝑖/𝑚𝑖

and 𝑟𝑒 = 𝑞𝑒/𝑚𝑒 where 𝑞𝑒 is the electron charge, 𝑞𝑖 is the ion charge, 𝑚𝑒 is the electron mass and 𝑚𝑖 is the ion
mass. In addition the variables (𝜌𝛼, 𝑢𝑥𝛼, 𝑢𝑦 𝛼, 𝑢𝑥𝛼) are the species mass density, species x velocity, species y
velocity, and species z velocity. In this case 𝛼 represents the species, either 𝑒 for electron or 𝑖 for ion. In addition
(𝑗𝑥, 𝑗𝑦, 𝑗𝑧) are the total current densities in the x, y and z directions.

12.23.1 Parameters common to all systems

type (string) The type of source is split5 (the default), or twoFluidEqn

184 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.23.2 Parameters (type=split5)

mass (float) The mass of the fluid species

charge (float) The charge of the fluid species

12.23.3 Parameters (type=twoFluidEqn)

electronMass (float) The electron mass

ionMass (float) The ion mass

electronCharge (float) The electron charge

ionCharge (float) The ion charge

12.23.4 Parent Updater Data (type=split5) Default

in (string vector, required) 1st Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

2nd Variable

0. 𝑒𝑥 x electric field

1. 𝑒𝑦 y electric field

2. 𝑒𝑧 z electric field

3. 𝑏𝑥 x magnetic field

4. 𝑏𝑦 y magnetic field

5. 𝑏𝑧 z magnetic field

out (string vector, required) The output variable is a length 5 vector, but the first component is 0 so that it
works simply as a fluid source for the euler equations.

1st Variable

0. 0.0 mass density. No contribution from Lorentz force

1. 𝐿𝑥 x momentum density contribution of Lorentz force

2. 𝐿𝑦 y momentum density contribution of Lorentz force

3. 𝐿𝑧 z momentum density contribution of Lorentz force

4. 𝐸 · 𝐽 energy density contribution of Lorentz force

12.23.5 Parent Updater Data (type=twoFluidEqn)

in (string vector, required) 1st Variable

0. 𝜌 mass density

12.23. lorentzForce 185

USimReferenceManual, Release 3.0.1

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌𝑐 total charge density

5. 𝑗𝑥 x current density

6. 𝑗𝑦 y current density

7. 𝑗𝑧 z current density

8. 𝑒𝑖 ion energy density

9. 𝑒𝑒 electron energy density

2nd Variable

0. 𝑒𝑥 x electric field

1. 𝑒𝑦 y electric field

2. 𝑒𝑧 z electric field

3. 𝑏𝑥 x magnetic field

4. 𝑏𝑦 y magnetic field

5. 𝑏𝑧 z magnetic field

12.23.6 Example

<Source lorentzIon>
kind = lorentzForce
mass = ION_MASS
charge = ION_CHARGE

</Source>

<Source lorentz>
kind = lorentzForce
type = twoFluidEqn
ionMass = ION_MASS
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
electronCharge = ELECTRON_CHARGE

</Source>

12.24 wireFieldEqn

Computes the analytic magnetic field from a single wire

12.24.1 Parameters

point (vector float) a point that the wire passes through

current (float) current in the wire

mu0 (float) permeability of free space

186 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

normal (vector float) direction of the wire through the point

12.24.2 Example

<Source coilSource>
kind = wireFieldEqn
point = [0.0, 0.0, 1.0]
mu0 = 1.26e-6
normal = [1.0, 0.0, 0.0]
current = 1.0

</Source>

The following kinds can be used to control divergence errors in electromagnetic problems:

12.25 computeChargeError

Computes the simulation charge error which is measured as the difference in charge as computed from the
divergence of the electric field and that computed using the continuity equation. This source does not compute
∇ · 𝐸, instead this value is passed in.

𝛿 = ∇ · 𝐸 − 1

𝜖0

∑︁
𝑖

𝑞𝑖
𝑚𝑖

𝜌𝑖

where 𝐸 is the electric field, 𝑚𝑖 is the species mass, 𝑞𝑖 is the species charge, 𝜖0 is the permittivity, 𝜌𝑖 is the
species mass density.

12.25.1 Parameters

speciesCharge (vector float) Species charge in the order they appear in the input list.

speciesMass (vector float) The charge of the fluid species.

epsilon0 (float) The permittivity of free space.

12.25.2 Parent Updater Data

in (string vector, required) 1st Variable

0. ∇ · 𝐸 The divergence of the electric field

Remaining variables

This source takes an arbitrary number of species mass variables, but requires at least 1.

0. 𝜌 species mass density

out (string vector, required) The output is the charge error

1st Variable

0. 𝛿 The charge error.

12.25. computeChargeError 187

USimReferenceManual, Release 3.0.1

12.25.3 Example

<Equation>
kind = computeChargeError
speciesCharge = [ELECTRON_CHARGE, ION_CHARGE]
speciesMass = [ELECTRON_MASS, ION_MASS]
epsilon0 = EPSILON0

</Equation>

12.26 hyperbolicCleanSym

Provides the axisymmetric symmetry source terms for the hyperbolicCleanEqn

𝑠 = −1

𝑟

⎛⎜⎜⎝
0
0
0

𝛾2𝐵𝑥

⎞⎟⎟⎠
where 𝛾 is the correction wave speed.

12.26.1 Parameters

waveSpeed (float) Correction wave speed

12.26.2 Parent Updater Data

in (string vector, required) 4 primary variables

0. 𝐵𝑥 x magnetic field

1. 𝐵𝑦 y magnetic field

2. 𝐵𝑧 z magnetic field

3. Ψ correction potential

12.26.3 Example

<Source symSource>
kind = hyperbolicCleanSym
symmetryType = cylindrical
waveSpeed = CORRECTIONSPEED

</Source>

The following kinds can be used for coupling together multi-species fluid models:

12.27 collisionFrequency

Computes the collision frequency matrix for multiple fluids species or the collision time matrix if the inverse
quantities are stored. The two approaches used for collisions in fully ionized plasma are thermalSpecies which

188 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

ignores the relative drift of the fluids and ramboAndDenavit which takes into account the relative drift. ther-
malSpecies is identical to ramboAndDenavit with the velocities set to 0. A description of this collision model is
described in

Rambo, P. W., and J. Denavit. “Interpenetration and ion separation in colliding plasmas.” Physics of Plasmas 1
(1994): 4050.

For neutrals collisions, the collision cross section is obtained using hard sphere model. The relative velocity
includes thermal and bulk velocities. Collisions in partiallyIonized plasmas use ramboAndDenavit if both the
colliding particles are charged and uses neutrals otherwise.

12.27.1 Parameters

type (string) type should be either thermalSpecies or ramboAndDenavit or neutrals or partiallyIonized. The
thermalSpecies is the classical collision frequency assuming zero relative velocity between the fluids in
consideration. ramboAndDenavit assumes that there may be a large relative velocity between species.
neutrals uses the hard sphere model to compute collision cross section and the relative velocity includes
both thermal and bulk velocitis.

speciesMass (vector float) The mass of each fluid species

speciesDia (vector float) The diameter of each fluid species

inverse (boolean) If inverse is false the the collision frequency is computed, if inverse is true then the colli-
sion time is computed.

12.27.2 Parent Updater Data (type = thermalSpecies)

in (string vector, required) Each species has a Z, T and N variable that must be put into the in variable, so for
2 species in would be

in = [Z1, T1, N1, Z2, T2, N2]

1st Variable

0. Z Is the charge state of the species (positive value)

2nd Variable

0. T Is the temperature of the species

3rd Variable

0. N Is the number density of the species

out (string vector, required) The output is the collision matrix. The size of the matrix will be num-
Species*numSpecies where here numSpecies is the number of components in the speciesMass vector be-
low.

12.27.3 Parent Updater Data (type = ramboAndDenavit)

in (string vector, required) Each species has a Z, T, N, V variable that must be put into the in variable, so for
2 species in would be

in = [Z1, T1, N1, V1, Z2, T2, N2, V2]

1st Variable

0. Z Is the charge state of the species (positive value)

12.27. collisionFrequency 189

USimReferenceManual, Release 3.0.1

2nd Variable

0. T Is the temperature of the species

3rd Variable

0. N Is the number density of the species

4th Variable

0. Vx Is the velocity of the fluid in the X direction

1. Vy Is the velocity of the fluid in the Y direction

2. Vz Is the velocity of the fluid in the Z direction

out (string vector, required) The output is the collision matrix. The size of the matrix will be num-
Species*numSpecies where here numSpecies is the number of components in the speciesMass vector be-
low.

12.27.4 Parent Updater Data (type = neutrals)

in (string vector, required) Each species has a T, N, V variable that must be put into the in variable, so for 2
species in would be

in = [T1, N1, V1, T2, N2, V2]

1st Variable

0. T Is the temperature of the species

2nd Variable

0. N Is the number density of the species

3rd Variable

0. Vx Is the velocity of the fluid in the X direction

1. Vy Is the velocity of the fluid in the Y direction

2. Vz Is the velocity of the fluid in the Z direction

out (string vector, required) The output is the collision matrix. The size of the matrix will be num-
Species*numSpecies where here numSpecies is the number of components in the speciesMass vector be-
low.

12.27.5 Parent Updater Data (type = partiallyIonized)

in (string vector, required) Each species has a Z, T, N, V variable that must be put into the in variable, so for
2 species in would be

in = [Z1, T1, N1, V1, Z2, T2, N2, V2]

1st Variable

0. Z Is the charge state of the species (positive value)

2nd Variable

0. T Is the temperature of the species

3rd Variable

0. N Is the number density of the species

190 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

4th Variable

0. Vx Is the velocity of the fluid in the X direction

1. Vy Is the velocity of the fluid in the Y direction

2. Vz Is the velocity of the fluid in the Z direction

out (string vector, required) The output is the collision matrix. The size of the matrix will be num-
Species*numSpecies where here numSpecies is the number of components in the speciesMass vector be-
low.

12.27.6 Example

<Equation thisGas>
inverse = false
kind = collisionFrequency
type = ramboAndDenavit
speciesMass = [ELECTRON_MASS, ION_MASS, ION_MASS]

</Equation>

12.28 conductivityTensor

Specify a tensor that has different conductivity parallel and perpendicular to a given vector field. The Tensor is
specified as

given an input vector field 𝐵 that same field is used to generate a unit vector field 𝑏 that is then used to define
the tensor. Conductivity parallel to the magnetic field is specified as 𝐾‖ and perpendicular to the vector field as
𝐾⊥ and then the difference in conductivities 𝑑𝐾 = 𝐾‖ −𝐾⊥. The 9 tensor components are given as⎛⎝ 𝐾⊥ + 𝑑𝐾 𝑏2𝑥 𝐾‖𝑏𝑥𝑏𝑦 𝐾‖𝑏𝑥𝑏𝑧

𝐾‖ 𝑏𝑥𝑏𝑦 𝐾⊥ + 𝑑𝐾 𝑏2𝑦 𝐾‖𝑏𝑦𝑏𝑧
𝐾‖ 𝑏𝑥𝑏𝑧 𝐾‖𝑏𝑦𝑏𝑧 𝐾⊥ + 𝑑𝐾 𝑏2𝑧

⎞⎠

12.28.1 Parent Updater Data

in (string vector, required) 1st Variable

0. 𝑉𝑥 x vector component

1. 𝑉𝑦 y vector component

2. 𝑉𝑧 z vector component

2nd Variable

0. 𝐾‖ parallel conductivity

3rd Variable

0. 𝐾⊥ perpendicular conductivity

out (string vector, required) The output variable is a length 9 vector containing the 9 components of the
conductivity tensor

1st Variable

0. 𝑇𝑥𝑥

12.28. conductivityTensor 191

USimReferenceManual, Release 3.0.1

1. 𝑇𝑥𝑦

2. 𝑇𝑥𝑧

3. 𝑇𝑦𝑥

4. 𝑇𝑦𝑦

5. 𝑇𝑦𝑧

6. 𝑇𝑧𝑥

7. 𝑇𝑧𝑦

8. 𝑇𝑧𝑧

12.28.2 Example

<Updater initConductivityTensor>
kind = equation2d
onGrid = domain

in = [B, kParallel, kPerpendicular]

out = [conductivityTensor]

<Equation a>
kind = conductivityTensor

</Equation>
</Updater>

12.29 momentumEnergyExchange

Computes the momentum and energy exchange between multiple fluids due to ‘friction’. The momentum and
energy exchange terms are given by the RHS of the euler equations below. Note that this does NOT include
thermal relaxation as that is part of the temperatureRelaxation source.

The source for the continuity equation is zero, but added for convenience.

𝜕𝜌𝑖
𝜕𝑡

+ ∇ · [𝜌𝑖𝑈𝑖] = 0 (12.-21)

The momentum term contains the species exchange term 𝑅𝑖

𝜕𝜌𝑖𝑈𝑖

𝜕𝑡
+ ∇ · [𝜌𝑈𝑖𝑈𝑖 + 𝑃𝑖] = 𝑅𝑖 (12.-21)

And the energy term has a source due to changes in momentum 𝑉 ·𝑅𝑖

𝜕𝑒𝑖
𝜕𝑡

+ ∇ · [𝑈𝑖 · (𝑒𝑖 + 𝑃𝑖)] = 𝑉 ·𝑅𝑖 (12.-21)

Where 𝑉 is the bulk velocity given by

𝑉 =

∑︀
𝑖 𝜌𝑖𝑈𝑖∑︀
𝑖 𝜌𝑖

(12.-21)

and the momentum exchange term as

𝑅𝑖 = −
∑︁
𝑗

𝑛𝑖𝜇𝑖 𝑗𝜏
−1
𝑖 𝑗 (𝑈𝑖 − 𝑈𝑗) (12.-21)

192 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

Descriptions of this model can be found in

Zhdanov, Viktor Mikhailovich. “Transport processes in multicomponent plasma.” Plasma Physics and Con-
trolled Fusion 44.10 (2002): 2283.

12.29.1 Parameters

speciesMass (vector float) The particle mass of each fluid species

12.29.2 Parent Updater Data

in (string vector, required) 1st Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 total energy density, fluid and field

2nd Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 total energy density, fluid and field

Nth Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 total energy density, fluid and field

(N+1)th Variable

This variable is the collision frequency matrix that can be computed by the source collisionFre-
quency. The order of species should be the same as provided to collisionFrequency.

out (string vector, required) There are N outputs each at least length 5 corresponding to the source terms for
the 1st through Nth inputs. The first component (corresponding to mass density) is always 0 while the
remaining 4 components have non-zero values.

12.29.3 Example

<Equation thisGas>
kind = momentumEnergyExchange
speciesMass = [ELECTRON_MASS, ION_MASS, ION_MASS]

</Equation>

12.29. momentumEnergyExchange 193

USimReferenceManual, Release 3.0.1

12.30 NFluidSrc

Applies the implicit source operator to the 5 moment N-fluid (ion, electron, EM) system. This operator should
only really be applied to charged species as all the source terms are zero for neutral species so it can result in an
excessively large matrix if neutral species are included. The approach is described for the two-fluid system in,

Kumar, Harish, and Siddhartha Mishra. “Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations.”
Journal of Scientific Computing 52.2 (2012): 401-425.

The algorithm in USim though can be applied to an arbitrary number of charged species (anywhere from 1 to
N species!). A two-fluid version of this source is also in USIM twoFluidSrc and should be used when only two
charged species are required since the algorithm will be slightly faster.

12.30.1 Parameters (All types)

type string Specifies the type of implicit matrix. Options are 5Moment for the 5 moment two-fluid system.

12.30.2 Parameters (5Moment)

speciesCharge (float vector) List of species charges in the same order as the species in variables. There
should be the same number of charges as there are species.

speciesMass (float) List of species masses in the same order as the species in variables. There should be
the same number of masses as there are species.

epsilon0 Permittivity of free space

12.30.3 Parent Updater Data (5Moment)

in (string vector, required) 1st Variable

0. 𝜌 electron mass density

1. 𝜌 𝑢𝑥 electron x momentum density

2. 𝜌 𝑢𝑦 electron y momentum density

3. 𝜌 𝑢𝑧 electron z momentum density

4. 𝑒 electron energy density

2nd Variable

0. 𝜌 ion mass density

1. 𝜌 𝑢𝑥 ion x momentum density

2. 𝜌 𝑢𝑦 ion y momentum density

3. 𝜌 𝑢𝑧 ion z momentum density

4. 𝑒 ion energy density

Nth Variable

0. 𝜌 ion mass density

1. 𝜌 𝑢𝑥 ion x momentum density

2. 𝜌 𝑢𝑦 ion y momentum density

194 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

3. 𝜌 𝑢𝑧 ion z momentum density

4. 𝑒 ion energy density

(N+1)th Variable

0. 𝐸𝑥 x electric field

1. 𝐸𝑦 y electric field

2. 𝐸𝑧 z electric field

3. 𝐵𝑥 x magnetic field

4. 𝐵𝑦 y magnetic field

5. 𝐵𝑧 z magnetic field

6. Ψ𝐸 electric field correction potential

7. Ψ𝐵 magnetic field correction potential

out (string vector, required) In all cases the output is 𝑄𝑛+1. For the 5 moment system there are N+1 outputs
corresponding to each of the fluids (the same order as the input) and em field (in that order).

12.30.4 Example

<Updater NFluidLorentz>
kind = equation1d

onGrid = domain
in = [electronsNew, ionsNew, emNew]
out = [electronsNew, ionsNew, emNew]
#operation = add

<Equation fluidLorentz>
kind = NFluidSrc
type = 5Moment
speciesCharge = [ELECTRON_CHARGE, ION_CHARGE]
speciesMass = [ELECTRON_MASS, ION_MASS]
epsilon0 = 1.0

</Equation>
</Updater>

12.31 reactionTableRhs

Computes the right hand side of the reaction rate equation and the reaction energy change rate. This can then be
used in a time integration scheme. Any number of reactions can be added for a given set of species.

𝑑𝑛𝑖
𝑑𝑡

= 𝑠𝑖

𝑑𝑒

𝑑𝑡
= 𝑠𝑟𝑒

12.31. reactionTableRhs 195

USimReferenceManual, Release 3.0.1

12.31.1 Parameters

species (string vector) List of species to include in the reactions.

fileName Input file containing the reaction rate constants data (REACTIONS), specific heats data (CP) and
energy of formation (EOF). Refer to SpeciesDataFile for the input data format.

maxRate user specified value to limit the maximum rate of reactions.

outputEnergyRate option to specify whether to compute reaction energy using specific heats. NOTE: if
the option is false, then in vector requires only first and second variable as inputs. out vector requires only
first variable as input.

12.31.2 Parent Updater Data

in (string vector, required) 1st Variable

number densities of species 𝑚−3

2nd Variable

average temperature of the fluid 𝐾

3rd Variable

specific heat at constant pressure of the species 𝐽
𝑘𝑔𝐾

out (string vector, required) 1st Variable

time rate of change of species density 1
𝑚3𝑠

2nd Variable

time rate of change of energy 𝐽
𝑠

12.31.3 Example

<Updater sourceUpdater>
kind = equation1d
onGrid = domain

in = [speciesDensity, temperature, specificHeat]
out = [speciesDensitySource, reactionEnergySource]

equations = [reactionSource]

<Equation reactionSource>
kind = reactionTableRhs
species = [N2, N, O2, O, NO, NO_p1, e]
fileName = air7Species.txt
maxRate = 1.0e28
outputEnergyRate = 1

</Equation>

</Updater>

196 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

12.32 temperatureRelaxation

Computes the relaxation of temperature between separate fluid species due to collisions. The term 𝑄𝑖 below is
computed in this source and stored for each input species

The relaxation term is typically added to the energy equation below

𝜕𝑒𝑖
𝜕𝑡

+ ∇ · [𝑈𝑖 · (𝑒𝑖 + 𝑃𝑖)] = 𝑄𝑖 (12.-22)

and has the form

𝑄𝑖 = −
∑︁
𝑗

3 𝑘 𝑛𝑖

(︂
𝜇𝑖 𝑗

𝑚𝑖 +𝑚𝑗

)︂
𝜏−1
𝑖 𝑗 (𝑇𝑖 − 𝑇𝑗) (12.-22)

Descriptions of this model can be found in

Zhdanov, Viktor Mikhailovich. “Transport processes in multicomponent plasma.” Plasma Physics and Con-
trolled Fusion 44.10 (2002): 2283.

12.32.1 Parameters

speciesMass (vector float) The particle mass of each fluid species

isNumberDensity (boolean) True if the densities being passed in are number densities, false if they are
mass densities

12.32.2 Parent Updater Data

in (string vector, required) 1st Variable

0. 𝜌 mass density or number density of the first species

2nd Variable

0. 𝜌 mass density or number density of the second species

Nth Variable

0. 𝜌 mass density or number density of the nth species

(N+1)th Variable

0. 𝑇 temperature of the first species

(N+2)th Variable

0. 𝑇 temperature of the second species

(N+N)th Variable

0. 𝑇 temperature of the Nth species

(2N+1)th Variable

This variable is the collision frequency matrix that can be computed by the source collisionFre-
quency. The order of species should be the same as provided to collisionFrequency.

out (string vector, required) There are N outputs each of length 1 corresponding to the energy exchange
source term for the 1st through Nth inputs.

12.32. temperatureRelaxation 197

USimReferenceManual, Release 3.0.1

12.32.3 Example

<Equation thisGas>
kind = temperatureRelaxation
speciesMass = [ELECTRON_MASS, ION_MASS, ION_MASS]

</Equation>

12.33 transportCoeffSrc

Depending on the value of coeff, the transportCoeffSrc kind of Equation can have different out-
comes.

coeff =

• millikanWhiteParkVibTransRelaxationTime
• mWpAverageVtRelaxationTime
• binaryDiffusionCoeff
• chemicalEnergy
• tempAvgSpecicHeatCp
• massFractionAvg
• moleFractionAvg
• molecularWeightAvg

12.33.1 millikanWhiteParkVibTransRelaxationTime

Average relaxtion time for vibration-translation mode of energy of species “l” in a gas mixture

𝜏𝑙 =

∑︀
𝑚 𝑥𝑚∑︀

𝑙,𝑚 𝑥𝑚/𝜏𝑙,𝑚

𝜏𝑙,𝑚 is obtained using Millikan-White curvefit as follows

𝜏𝑙,𝑚 = 1
𝑃/101325𝑒𝑥𝑝

[︀
𝐴𝑙,𝑚

(︀
𝑇−1/3 −𝐵𝑙,𝑚

)︀
− 18.42

]︀
and
𝐴𝑙,𝑚 = 0.00116𝜇

1/2
𝑙,𝑚𝜃

4/3
𝑣,𝑙

𝐵𝑙,𝑚 = 0.015𝜇
1/4
𝑙,𝑚

𝜇𝑙,𝑚 = 𝑀𝑙𝑀𝑚

𝑀𝑙+𝑀𝑚

Definitions

𝑥𝑚 mole fraction of species m

𝜏𝑙,𝑚 relaxation time of vibration-translation energy between specis l and m

𝜃𝑣,𝑙 characteristic temperature of vibration of species l (parameter thetaS)

𝑀𝑚 molecular weight of species m (parameter molecularWeight)

𝑇 translational temperature

𝑃 pressure of gas

198 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): millikanWhiteParkVibTransRelaxationTime (fixed)

numSpecies (int): number of species

molecularWeight (vector): molecular weight of species m

thetaS (vector): characteristic temperature of vibration of species l. This is a material dependent constant
that must be user supplied.

function (string): millikanWhiteParkVibTransRelaxationTime (fixed)

Parent Updater Data

in (string vector, required) 1st In Variable

average temperature of the species 𝑇

2nd In Variable

pressure of gas 𝑃

3rd In Variable

number density of the species 𝑛

out (string vector, required) the average relaxtion time for vibration-translation mode of energy of species
“l” in a gas mixture

Example

<Equation vTrelaxationTime>
kind = transportCoeffSrc
coeff = millikanWhiteParkVibTransRelaxationTime
numSpecies = 7
molecularWeight = [M1 M2 M3 M4 M5 M6 M7]
thetaS = [th1 th2 th3 th4 th5 th6 th7]
function = millikanWhiteParkVibTransRelaxationTime

</Equation>

12.33.2 mWpAverageVtRelaxationTime

Average relaxtion time for vibration-traslation mode of energy of a gas mixture

𝜏 =

∑︀
𝑙 𝑥𝑙∑︀

𝑙 𝑥𝑙/𝜏𝑙

Definitions

𝑥𝑙 mole fraction of species l

𝜏𝑙 relaxtion time for vibration-translation mode of energy of species “l” in a gas mixture as calculated in coeff
millikanWhiteParkVibTransRelaxationTime

12.33. transportCoeffSrc 199

USimReferenceManual, Release 3.0.1

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): mWpAverageVtRelaxationTime (fixed)

numSpecies (int): number of species

molecularWeight (vector): molecular weight of species m

thetaS (vector): characteristic temperature of vibration of species l. This is a material dependent constant
that must be user supplied.

function (string): mWpAverageVtRelaxationTime (fixed)

Parent Updater Data

in (string vector, required) 1st In Variable

average temperature of the species 𝑇

2nd In Variable

pressure of gas 𝑃

3rd In Variable

number density of the species 𝑛

out (string vector, required) the average relaxtion time for vibration-traslation mode of energy of a gas mix-
ture

Example

<Equation vTrelaxationTime>
kind = transportCoeffSrc
coeff = mWpAverageVtRelaxationTime
numSpecies = 7
molecularWeight = [M1 M2 M3 M4 M5 M6 M7]
thetaS = [th1 th2 th3 th4 th5 th6 th7]
function = mWpAverageVtRelaxationTime

</Equation>

12.33.3 binaryDiffusionCoeff

Average mass diffusion coefficient of species “l” in a gas mixture

𝐷𝑙 =
∑︀

𝑚 𝑥𝑚∑︀
𝑙,𝑚 𝑥𝑚/𝐷𝑙,𝑚

𝐷𝑙,𝑚 is obtained using hard sphere model

𝐷𝑙,𝑚 = 2.63×−7
(𝑃/(101325)𝜎𝑙,𝑚)

(︁
𝑇 3(𝑀𝑙+𝑀𝑚)
2.0𝑀𝑙𝑀𝑚

)︁1/2
Definitions

𝑥𝑚 mole fraction of species m

𝑀𝑚 molecular weight of species m

200 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

𝑇 translational temperature

𝑃 pressure of gas

𝜎𝑙,𝑚 collision diameter between species l and m

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): binaryDiffusionCoeff (fixed)

numSpecies (int): number of species

molecularWeight (vector): molecular weight of species m

molecularDia (vector): molecular diameter of species m

function (string): binaryDiffusionCoeff (fixed)

Parent Updater Data

in (string vector, required) 1st In Variable

average temperature of the species 𝑇

2nd In Variable

pressure of gas 𝑃

3rd In Variable

number density of the species 𝑛

out (string vector, required) the average mass diffusion coefficient of species “l” in a gas mixture

Example

<Equation diffusionCoeff>
kind = transportCoeffSrc
coeff = binaryDiffusionCoeff
numSpecies = 7
molecularWeight = [M1 M2 M3 M4 M5 M6 M7]
molecularDia = [d1 d2 d3 d4 d5 d6 d7]
function = binaryDiffusionCoeff

</Equation>

12.33.4 chemicalEnergy

Total energy of formation of a mixture

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): chemicalEnergy (fixed)

numSpecies (int): number of species

12.33. transportCoeffSrc 201

USimReferenceManual, Release 3.0.1

fileName (string): name of the SpeciesDataFile containing the energy of formation data.

Parent Updater Data

in (string vector, required) 1st In Variable

number densities of the species 1/𝑚3

2nd In Variable

specific heat at constant pressure of the species 𝐽/(𝑘𝑔𝐾)

3rd In Variable

average temperature of the species 𝐾

out (string vector, required) the energy of formation in 𝐽/𝑚3

Example

<Updater computeChemEn>
kind = equation2d
onGrid = domain

in = [speciesDens,cpR,temperature]
out = [chemEn]

<Equation cp>
kind = transportCoeffSrc
coeff = chemicalEnergy
numSpecies = NSPECIES
fileName = REACTIONS_ATOMIC_DATA

</Equation>
</Updater>

12.33.5 tempAvgSpecicHeatCp

Specific heat at constant pressure

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): tempAvgSpecicHeatCp (fixed)

numSpecies (int): number of species

fileName (string): name of the SpeciesDataFile containing the cp data.

cpType (string): currently allowed option is kineticTheory, which requires molecular data specified in the
SpeciesDataFile. Defaults to Shomate polynomial type specificific heat, whch agian required polynomial
data specified in the SpeciesDataFile. In case of using using Shomate polynomial, addition parameters
lower, upper and steps should also be specified. These parameters specify the temperature range and the
number of intervals to evaluate the specific heats.

202 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

Parent Updater Data

in (string vector, required) 1st In Variable

average temperature of the species 𝐾

out (string vector, required) the specific heat 𝐽/(𝑘𝑔𝐾)

Example

<Updater computeCpR>
kind = equation2d
onGrid = domain

in = [temperature]
out = [cpR]

<Equation cpR>
kind = transportCoeffSrc
coeff = tempAvgSpecicHeatCp
fileName = REACTIONS_ATOMIC_DATA
cpType = kineticTheory
numSpecies = NSPECIES
#lower = 300.0
#upper = 30000.0
#steps = 100

</Equation>
</Updater>

12.33.6 massFractionAvg

Average mass fraction of the species

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): massFractionAvg (fixed)

numSpecies (int): number of species

fileName (string): name of the SpeciesDataFile containing the atomic data. Note that, massFractionAvg
requires MOLECULARWEIGHT entered in the SpeciesDataFile.

Parent Updater Data

in (string vector, required) 1st In Variable

species number density 1/𝑚3

2nd In Variable

species property

out (string vector, required) the average mass fraction

12.33. transportCoeffSrc 203

USimReferenceManual, Release 3.0.1

Example

<Updater computeCpAvg>
kind = equation2d
onGrid = domain

in = [speciesDens,cpR]
out = [cpAvg]

<Equation cp>
kind = transportCoeffSrc
coeff = massFractionAvg
numSpecies = NSPECIES
fileName = REACTIONS_ATOMIC_DATA

</Equation>
</Updater>

12.33.7 moleFractionAvg

Average molecular fraction of species

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): moleFractionAvg (fixed)

numSpecies (int): number of species

fileName (string): name of the SpeciesDataFile containing the atomic data.

Parent Updater Data

in (string vector, required) 1st In Variable

species number density 1/𝑚3

2nd In Variable

species property

out (string vector, required) the average molecular fraction

Example

<Updater computeCpAvg>
kind = equation2d
onGrid = domain

in = [speciesDens,cpR]
out = [cpAvg]

<Equation cp>
kind = transportCoeffSrc
coeff = massFractionAvg
numSpecies = NSPECIES

204 Chapter 12. Algebraic Equations

USimReferenceManual, Release 3.0.1

fileName = REACTIONS_ATOMIC_DATA
</Equation>

</Updater>

12.33.8 molecularWeightAvg

Average molecular weight of species

Parameters

kind (string): transportCoeffSrc (fixed)

coeff (string): molecularWeightAvg (fixed)

numSpecies (int): number of species

fileName (string): name of the SpeciesDataFile containing the MOLECULARWEIGHT data.

Parent Updater Data

in (string vector, required) 1st In Variable

species number density 1/𝑚3

out (string vector, required) the average-molecular-weight

Example

<Updater computeMwAvg>
kind = equation2d
onGrid = domain

in = [speciesDens]
out = [mwAvg]

<Equation mwavg>
kind = transportCoeffSrc
coeff = molecularWeightAvg
numSpecies = NSPECIES
fileName = REACTIONS_ATOMIC_DATA

</Equation>
</Updater>

12.33. transportCoeffSrc 205

USimReferenceManual, Release 3.0.1

206 Chapter 12. Algebraic Equations

CHAPTER

THIRTEEN

BOUNDARY CONDITIONS

Defines an Updater block that is only applied to the boundary of the domain. Modified boundary values are stored in
out. An example boundary condition updater block is given below:

<Updater Bc>
kind = copy2d
onGrid = domain
entity = ghost
out = [q]

</Updater>

The following parameters are common to all Boundary Condition blocks:

in (string vector) All boundary conditions have the option to take a string vector of input DataStruct. These DataS-
tructs may or may not be used by the boundary condition

out (string vector) All boundary conditions take an output dataStruct.

onGrid (string) All boundary conditions take a string that tells the boundary condition which grid it is applied to

entity (string) All boundary conditions (except the periodicBc) take an entity that tells the updater what boundary
the boundary condition will be applied to.

the entity ghost represents all boundaries for all USim grid types

the entities left (lower x boundary) right (upper x boundary) bottom (lower y boundary) top (upper y boundary)
back (lower z boundary) front (upper z boundary) are defined for ntBodyFitted and cart grids.

kind (string) All boundary condition blocks take a string kind that species the type of boundary condtion. The
different kinds of boundary condition available in USim are:

13.1 copy (1d, 2d, 3d)

Copies the data on the inside edge of the domain into the ghost cells for the given boundaries. When multiple
halo cells are present the data from the first halo is copied to the second, the second to the 3rd etc...

13.1.1 Example

<Updater bcLeft>
kind = copy2d
onGrid = domain
out = [q]
entity = ghost

</Updater>

207

USimReferenceManual, Release 3.0.1

13.2 eulerBc (1d, 2d, 3d)

Sets boundary conditions for euler type equation systems

13.2.1 Parameters

model (string) Defines the hyperEqn to use, this should generally be eulerEqn.

bcType (string) There are currently 3 valid boundary condition types.

• wall which is a slip wall boundary condition.

• noInflow which is a boundary condition that lets fluid flow out of the domain, but does not let it flow
in.

• noSlip which is a boundary condition where all components of velocity are set to zero at the wall.

13.2.2 Example

<Updater bcLeft>
kind = eulerBc2d
model = eulerEqn
onGrid = domain
out = [q]
entity = left

</Updater>

13.3 functionBc (1d, 2d, 3d)

Defines the boundary condition using a function

13.3.1 Sub-Blocks

Function (block) The function that is used to define the values in out

13.3.2 Example

<Updater bcLeft>
kind = functionBc2d

onGrid = domain
out = [q]
entity = left

<Function func>
kind = exprFunc

gamma = GAMMA
P0 = $2.0*BASEMENT_PRESSURE$
rho0 = $2.0*BASEMENT_DENSITY$
b0 = B0

208 Chapter 13. Boundary Conditions

USimReferenceManual, Release 3.0.1

preExprs = ["er = P0/(gamma-1)"]
exprs = ["rho0", "0.0", "0.0", "0.0", "er","0.0","0.0","b0","0.0"]

</Function>

</Updater>

13.4 generalBc (1d, 2d, 3d)

Applies a boundary condition that can be a general function of the input dataStructs as well as a separate list of
dynVectors.

13.4.1 Data

dynVectors (string vector) Input 1 to N are input dynVectors which will be used in specifying the boundary
condition.

13.4.2 Parameters

indVars_ (string vector) For each input variable an “indVars” string vector must be defined. So if in = [mag-
neticField, electricField] where magneticField and electricField are each 3-component nodalArrays then
the combiner block must define indVars_magneticField = [”bx”, “by”, “bz”] and indVars_electricField
= [”ex”, “ey”, “ez”]. Note that the labels “bx”, “by”, “bz” and “ex”, “ey”, “ez” are arbitrary; the
requirement is that there is a unique name for each component of each input data structure.

dynVectorVars_ (string vector) For each dynVector variable a “dynVars” string vector must be defined.
So if dynVectors = [a, b] where a and b are each 3-component dynVectors then the combine block must
define dynVectorVars_a = [”a1”,”a2”,”a3”] and dynVectorVars_b = [”b1”,”b2”,”b3”]. Note that the
labels “a1”,”a2”,”a3” and “b1”,”b2”,”b3” are arbitrary; the requirement is that there is a unique name
for each component of each input data structure.

preExprs (string vector) contains extra definitions that can be used in evaluating exprs. Expressions can
also contain the internally defined variables ‘x’,’y’,’z’,’t’,’dt’,’nX’,’nY’,’nZ’ where the last 3 variables are
surface normals.

exprs (string vector) Must be the size of the output vector q. Contains expressions representing each of the
components of the output vector. This expression can also use the same internal variables as described in
preExprs.

useModel (boolean) If useModel is set to true then model will need to be set. An example would be
model=eulerEqn. With this option the values put into exprs are assumed to be in local coordinates and
then USim will rotate them to global coordinates. Thus, with model=eulerEqn you can specify the input
momentum density normal to the surface by specifying the x component of momentum and setting the
remaining components to 0.

13.4.3 Example

<Updater bcBottom>
kind = generalBc2d
onGrid = domain

in = [q]

13.4. generalBc (1d, 2d, 3d) 209

USimReferenceManual, Release 3.0.1

dynVectors = []

indVars_q = ["rho","mx","my","mz","en"]
exprs = ["rho","-mx","-my","-mz","en"]

out = [q]
entity = bottom

</Updater>

13.5 maxwellBc (1d, 2d, 3d)

Sets boundary conditions specific to Maxwell’s equations

13.5.1 Parameters

model (string) Defines the hyperEqn to use, this should generally be maxwellEqn.

bcType (string) There are currently 2 valid boundary condition types.

• conductor which is a conducting wall boundary condition

• axisymmetric which is a boundary condition appropriate for cylindrical geometries on axis.

13.5.2 Example

<Updater emBcBottom>
kind = maxwellBc2d
model = maxwellEqn
bcType = conductor
onGrid = domain
out = [q]
entity = ghost

</Updater>

13.6 mhdBc (1d, 2d, 3d)

Sets the boundary condition for MHD type equations

13.6.1 Parameters

model (string) Defines the hyperbolic equation to use, this should generally be idealMhdEqn, mhdDednerEqn,
twoTemperatureMhdDednerEqn, twoTemperatureMhdEqn, gasDynamicMhdEqn, idealMhdEosEqn or
twoTemperatureMhdEosEqn

bcType (string) There are currently 3 valid boundary condition types.

• conductingWall which is a slip wall boundary condition.

• noInflow which is a boundary condition that lets fluid flow out of the domain, but does not let it flow
in.

• noSlip which is a boundary condition where all components of velocity are set to zero at the wall.

210 Chapter 13. Boundary Conditions

USimReferenceManual, Release 3.0.1

13.6.2 Example

<Updater bcOpen>
kind = mhdBc2d
bcType = noInflow
model = twoTemperatureMhdEosEqn
onGrid = domain
out = [q]
entity = sideSetHalosId1

</Updater>

13.7 periodicCartBc (1d, 2d, 3d)

Applies a periodic boundary condition on the boundaries set up in the cart grid as defined by periodicDirs.

13.7.1 Example

<Updater periodic>
kind = periodicCartBc2d
onGrid = domain
in = [q]
out = [q]

</Updater>

13.8 simpleBc (1d, 2d, 3d)

Sets the boundary condition for MHD type equations

13.8.1 Parameters

model (string) The hyperbolic equation that describes the system being modelled. This should be one of the
options available in Hyperbolic Equations and should match that used in (e.g) the classicMusclUpdater
(1d, 2d, 3d) updater used to evolve the system.

coefficients (integer vector) The size of the coefficients vector must be the same as the number of ele-
ments in the input vector and the hyperbolic equation refered to by model. For models containing vector
fields, the components of the vector are rotated into the coordinate system of the vector normal to the
boundary. Then, the components of the vector are multiplied by the coefficients vector to set the boundary
condition.

13.8.2 Example

In the example below, the hyperbolic equation is eulerEqn. This corresponds to a 5 component system with pri-
mary variables [𝑟ℎ𝑜,𝑚𝑥,𝑚𝑦,𝑚𝑧, 𝑒𝑛]. Components 2-4 of this equation system correspond to the momentum
vector, (𝑚𝑥,𝑚𝑦,𝑚𝑧), which are rotated so that𝑚𝑥 is aligned with the normal to the boundary. The coefficients
for this example are [1.0,−1.0, 1.0, 1.0, 1.0] and so the sign of the normal momentum is reversed at the bound-
ary, which is corresponds to a wall boundary condition. Other boundary conditions can therefore be created by
manipulating the coefficient vector.

13.7. periodicCartBc (1d, 2d, 3d) 211

USimReferenceManual, Release 3.0.1

<Updater fluidWall>
kind = simpleBc2d
model = eulerEqn
coefficients = [1.0,-1.0,1.0,1.0,1.0]
onGrid = domain
out = [q]
entity = bottom

</Updater>

13.9 sufaceEvaporation (1d, 2d, 3d)

Computes the surface evaporation rate of a compound material.

13.9.1 Data

dynVectors (string vector) A list of dynVectors that can be used in computing the boundary condition

in contains the surface temperature

13.9.2 Example

<Updater bcAbSurfProp>
kind = surfaceEvaporation2d
onGrid = domain
in = [surfTemp]
dynVectors = []
variablesType = ablation
storeSurfaceProperty = 1

ablationModel = sonic
numConstituents = 3
satPressure = [10.0 154699.92824 956.0 10.0 97419.99 617.0 1.3e-6 76899.999 293.0]
moleFraction = [MolF1 MolF2 MolF3]
averageMolecularWeight = MWAb

out = [abSurfProp]

entity = sideSetHalosId3
</Updater>

13.10 tenMomentBc (1d, 2d, 3d)

Sets boundary conditions for tenMomentEqn type equation systems

13.10.1 Parameters

model (string) Defines the hyperbolic equation to use, this should generally be tenMomentEqn.

bcType (string) There are currently 3 valid boundary condition types.

212 Chapter 13. Boundary Conditions

USimReferenceManual, Release 3.0.1

• wall which is a slip wall boundary condition.

• noInflow which is a boundary condition that lets fluid flow out of the domain, but does not let it flow
in.

• noSlip which is a boundary condition where all components of velocity are set to zero at the wall.

13.10.2 Example

<Updater bcLeft>
kind = tenMomentBc2d
model = tenMomentEqn
onGrid = domain
out = [q]
entity = left

</Updater>

13.10. tenMomentBc (1d, 2d, 3d) 213

USimReferenceManual, Release 3.0.1

214 Chapter 13. Boundary Conditions

CHAPTER

FOURTEEN

TIME STEP RESTRICTION

Computes a minimum time step based on physical quantities, grid quantities and time. It could be used to determine
the maximum explicitly stable time step based on wave speeds, or the maximum time step based on oscillations like
the electron plasma oscillation. The TimeStepRestriction is used in conjunction with timeStepRestrictionUpdater (1d,
2d, 3d). An example TimeStepRestriction is shown below:

<TimeStepRestriction wpe>
kind = plasmaFrequency
speciesCharge = ELECTRON_CHARGE
speciesMass = ELECTRON_MASS
epsilon0 = 1.0
massDensityIndex = 0

</TimeStepRestriction>

The following parameters are common to all TimeStepRestriction blocks:

in (string vector, optional) Specifies the nodalArrays within the in attribute for the timeStepRestrictionUpdater (1d,
2d, 3d) that should be used for computing this time step restriction.

includeInTimeStep (bool, optional) Whether to include this time step restriction in the time step returned by
the timeStepRestrictionUpdater (1d, 2d, 3d). Default true.

storeTimeStep (bool, optional) Whether to store this time step restriction in the timeSteps dynVector specified in
the timeStepRestrictionUpdater (1d, 2d, 3d). Default: true.

storeWaveSpeed (bool, optional) Whether to store the wave speed associated with this in the waveSpeeds dyn-
Vector specified in the timeStepRestrictionUpdater (1d, 2d, 3d). Default: true.

applyCFLRestriction (bool, optional) Whether to apply the CFL condition specified in the timeStepRestric-
tionUpdater (1d, 2d, 3d) to the time step computed in this restriction. Default: true.

kind (string, required) All TimeStepRestriction blocks take a string kind that species the type of time step restric-
tion. The remainder of this section describes the different options for this parameter that are available in USim.

14.1 cyclotronFrequency (1d, 2d, 3d)

Computes the inverse cyclotron frequency which will then be used in determining the time step restriction.

14.1.1 Parameters

speciesCharge (float, required) Charge of the species for which we are computing the cyclotron fre-
quency.

speciesMass (float, required) Mass of the species for which we are computing the cyclotron frequency.

215

USimReferenceManual, Release 3.0.1

magneticFieldIndexes (integer vector, required) The index of the magnetic field in the input data
structure in timeStepRestrictionUpdater (1d, 2d, 3d)

14.1.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
cyclotronFrequency Time Step Restriction.

in (string vector, required)

Mass Density (nodalArray, at least 1 component, required) The mass density of the plasma. The
component of the data structure that contains the mass density is specified with the parameter massIn-
dex (see below).

14.1.3 Example

The following block demonstrates cyclotronFrequency used in combination with timeStepRestrictionUpdater
(1d, 2d, 3d) and plasmaFrequency (1d, 2d, 3d) to compute the time-step restriction in a plasma:

<Updater twofluidTimeStepRestrictions>
kind = timeStepRestrictionUpdater1d
in = [q]
restrictions = [wpe, wce]
onGrid = domain
courantCondition = 1.0

<TimeStepRestriction wpe>
kind = plasmaFrequency1d
cfl = 1.0
speciesCharge = ELECTRON_CHARGE
speciesMass = ELECTRON_MASS
epsilon0 = 1.0
massDensityIndex = 0

</TimeStepRestriction>

<TimeStepRestriction wce>
kind = cyclotronFrequency1d
speciesCharge = ELECTRON_CHARGE
speciesMass = ELECTRON_MASS
magneticFieldIndexes = [23, 24, 25]
massDensityIndex = 0

</TimeStepRestriction>

</Updater>

14.2 frequency (1d, 2d, 3d)

Computes the minimum time step suggested by an array of frequencies.

14.2.1 Parameters

components (int, required) Number of components in the input array. Each of the values in the array will
be used to compute a time step restriction.

216 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

14.2.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
frequency Time Step Restriction.

in (string vector, required)

Reaction Frequency (nodalArray, N components, required) An set of reaction frequencies to
compute the restriction from

14.2.3 Example

The following block demonstrates frequency used in combination with timeStepRestrictionUpdater (1d, 2d, 3d)
to compute a time-step restriction for a set of reactions:

<Updater timestepRestriction>
kind = timeStepRestrictionUpdater2d
in = [reactionFreq]
onGrid = domain
restrictions = [reaction]
courantCondition = CFLR

<TimeStepRestriction reaction>
kind = frequency2d
components = 1

</TimeStepRestriction>
</Updater>

14.3 hyperbolic (1d, 2d, 3d)

Computes the minimum time step and fastest wave speed based on the courant condition for a specified Hyper-
bolic Equations.

14.3.1 Parameters

model (string, required) The Hyperbolic Equations used. Available options are:

eulerEqn

Defines the equations of inviscid compressible hydrodynamics:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u] = 0

Here, I is the identity matrix, 𝑃 = 𝜌𝜖(𝛾−1) is the pressure of an ideal gas, 𝜖 is the specific internal energy
and 𝛾 is the adiabatic index (ratio of specific heats).

14.3. hyperbolic (1d, 2d, 3d) 217

USimReferenceManual, Release 3.0.1

Parameters

gasGamma (float) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 5-components, required) The vector of
conserved quantities, q has 5 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2: total energy density

out (string vector, required) For the eulerEqn, one of four output variables are computed, depending on
whether the equation is combined with an updater capable of computing fluxes (classicMusclUpdater
(1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step associated with
the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed in the grid
(timeStepRestrictionUpdater (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 5-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

Vector of Primitive States (nodalArray, 5-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

218 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

Time Step (dynVector, 1-component) When combined with the kind=hyperblic, model=eulerEqn
timeStepRestrictionUpdater (1d, 2d, 3d), and storeTimeStep is true, the equation system returns
the time step consistent with the CFL condition across the entire simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with the kind=hyperbolic,
model=eulerEqn timeStepRestrictionUpdater (1d, 2d, 3d), and storeWaveSpeed is true, the equa-
tion system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Example

The following block demonstrates the eulerEqn used in combination with classicMusclUpdater (1d, 2d,
3d) to compute ∇ · ℱ (w):

<Updater hyper>
kind=classicMuscl1d
onGrid=domain
timeIntegrationScheme=none
numericalFlux=roeFlux
limiter=[muscl]
variableForm=primitive
in=[q]
out=[qnew]
cfl=0.3
equations=[euler]

<Equation euler>
kind=eulerEqn
gasGamma=1.4
basementDensity = 1.0e-5
basementPressure = 1.0e-6

</Equation>

</Updater>

realGasEqn

Real gas using a real gas equation of state. Requires the computation of specific heat and temperature and
assignment of zero point energy outside of the equation. Assumes single temperature. The equations are
solved in conservative form.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎝
𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧
𝑒

⎞⎟⎟⎟⎟⎠+ ∇ ·

⎛⎜⎜⎜⎜⎝
𝜌 𝑢𝑥 𝜌 𝑢𝑦 𝜌 𝑢𝑧

𝜌 𝑢2𝑥 + 𝑃 𝜌𝑢𝑥 𝑢𝑦 𝜌 𝑢𝑥 𝑢𝑧
𝜌 𝑢𝑦 𝑢𝑥 𝜌 𝑢𝑦 𝑢𝑦 + 𝑃 𝜌𝑢𝑦 𝑢𝑧
𝜌 𝑢𝑧 𝑢𝑥 𝜌 𝑢𝑧 𝑢𝑦 𝜌 𝑢𝑧 𝑢𝑧 + 𝑃

𝑢𝑥 (𝑒+ 𝑃) 𝑢𝑦 (𝑒+ 𝑃) 𝑢𝑧 (𝑒+ 𝑃)

⎞⎟⎟⎟⎟⎠ = 0

The energy is given by

𝑒 =
1

2
𝜌
(︀
𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧

)︀
+
∑︁
𝑖

𝑛𝑖 (𝐶𝑣𝑖𝑇 + 𝑒0 𝑖) (14.-2)

Parameters

numSpecies (float) The number of species modeled in the real gas system.

basementPressure (float) The minimum pressure allowed. Defaults to 0.

14.3. hyperbolic (1d, 2d, 3d) 219

USimReferenceManual, Release 3.0.1

basementDensity (float) The minimum density allowed. Defaults to 0.

Note: basementPressure and basementDensity are only used if correct=true

correct (boolean) Tells whether or not densities or pressures should be corrected when the fall be-
low basement pressures or basement densities. When set to true pressure=max(basementPressure,
pressure) and density = max(basementDensity, density). Defaults to false.

Note: Setting correctNans or correct to true can lead to energy conservation errors

Parent Updater Data

in (string vector, required)

Vector of conserved quantities

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

2nd variable (3n+1) 3n+1 auxiliary variables with n the number of species

0. variables 0-(n-1). 𝑛𝑖 species number density

1. variables n-(2n-1). 𝐶𝑣𝑖 species specific heat at constant volume

2. variables n-(3n-1). 𝑒0 𝑖 species zero point energy density

3. variables 3n. 𝑇 Temperature in Kelvin

Example

An example realGas equation block is given below

<Equation realGas>
kind = realGasEqn
numSpecies = 7

</Equation>

realGasEosEqn

Gas dynamics with a general equation of state. The equations are solved in conservative form.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎝
𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧
𝑒

⎞⎟⎟⎟⎟⎠+ ∇ ·

⎛⎜⎜⎜⎜⎝
𝜌 𝑢𝑥 𝜌 𝑢𝑦 𝜌 𝑢𝑧

𝜌 𝑢2𝑥 + 𝑃 𝜌𝑢𝑥 𝑢𝑦 𝜌 𝑢𝑥 𝑢𝑧
𝜌 𝑢𝑦 𝑢𝑥 𝜌 𝑢𝑦 𝑢𝑦 + 𝑃 𝜌𝑢𝑦 𝑢𝑧
𝜌 𝑢𝑧 𝑢𝑥 𝜌 𝑢𝑧 𝑢𝑦 𝜌 𝑢𝑧 𝑢𝑧 + 𝑃

𝑢𝑥 (𝑒+ 𝑃) 𝑢𝑦 (𝑒+ 𝑃) 𝑢𝑧 (𝑒+ 𝑃)

⎞⎟⎟⎟⎟⎠ = 0

220 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

Parameters

basementPressure (float) The minimum pressure allowed. Default is 0.

basementDensity (float) The minimum density allowed. Default is 0.

Note: basementPressure and basementDensity are only used if correct=true

correct (boolean) Tells whether or not densities or pressures should be corrected when the fall be-
low basement pressures or basement densities. When set to true pressure=max(basementPressure,
pressure) and density = max(basementDensity, density)

Parent Updater Data

in (string vector, required)

Vector of conserved quantities (5 components)

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝑒 energy density

fluid pressure (1 component)

0. 𝑃 total fluid pressure (not magnetic pressure included)

gas dynamic sound speed (1 component)

0. 𝑎 estimate of the fluid sound speed

Example

An example realGasEos equation block is given below:

<Equation realGasEos>
kind = realGasEosEqn

</Equation>

14.3. hyperbolic (1d, 2d, 3d) 221

USimReferenceManual, Release 3.0.1

tenMomentEqn

Ideal compressible 10 moment fluid equations. The equations are solved in conservative form.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧

𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥

𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦

𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧

𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦

𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧

𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ∇ · 𝑃 = 0

where 𝑃 is defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌 𝑢𝑥 𝜌 𝑢𝑦 𝜌 𝑢𝑧
𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧

𝜌 𝑢𝑦 𝑢𝑥 + 𝑃𝑥 𝑦 𝜌 𝑢𝑦 𝑢𝑦 + 𝑃𝑦 𝑦 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧

𝜌 𝑢𝑧 𝑢𝑥 + 𝑃𝑥 𝑧 𝜌 𝑢𝑧 𝑢𝑦 + 𝑃𝑦 𝑧 𝜌 𝑢𝑧 𝑢𝑧 + 𝑃𝑧 𝑧

𝜌 𝑢3𝑥 + 3𝑢𝑥𝑃𝑥 𝑥 𝜌 𝑢𝑦𝑢
2
𝑥 + 𝑢𝑥𝑃𝑦 𝑦 + 2𝑢𝑥𝑃𝑥 𝑦 𝜌 𝑢𝑧𝑢

2
𝑥 + 𝑢𝑧𝑃𝑥 𝑥 + 2𝑢𝑥𝑃𝑥 𝑧

𝜌 𝑢2𝑥𝑢𝑦 + 2𝑢𝑥 𝑃𝑥 𝑦 + 𝑢𝑦𝑃𝑥 𝑥 0 0
𝜌 𝑢2𝑥𝑢𝑧 + 2𝑢𝑥 𝑃𝑥 𝑧 + 𝑢𝑧𝑃𝑥 𝑥 0 0
𝜌 𝑢𝑥𝑢

2
𝑦 + 𝑢𝑥𝑃𝑦 𝑦 + 2𝑢𝑦𝑃𝑥 𝑦 𝜌 𝑢3𝑦 + 3𝑢𝑦𝑃𝑦 𝑦 0

𝜌 𝑢𝑥𝑢𝑦𝑢𝑧 + 𝑢𝑥𝑃𝑦 𝑧 + 𝑢𝑦𝑃𝑥 𝑧 + 𝑢𝑧𝑃𝑥 𝑦 0 0
𝜌 𝑢𝑥𝑢

2
𝑧 + 𝑢𝑥𝑃𝑧 𝑧 + 2𝑢𝑧𝑃𝑥 𝑧 0 𝜌 𝑢3𝑧 + 3𝑢𝑧𝑃𝑧 𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Parameters

basementPressure (float) The minimum pressure allowed. Defaults to 0.

basementDensity (float) The minimum density allowed. Defaults to 0.

Parent Updater Data

in (string vector, required)

1st variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌 𝑢2𝑥 + 𝑃𝑥 𝑥 xx energy density

5. 𝜌 𝑢𝑥 𝑢𝑦 + 𝑃𝑥 𝑦 xy energy density

6. 𝜌 𝑢𝑥 𝑢𝑧 + 𝑃𝑥 𝑧 xz energy density

7. 𝜌 𝑢2𝑦 + 𝑃𝑦 𝑦 yy energy density

8. 𝜌 𝑢𝑦 𝑢𝑧 + 𝑃𝑦 𝑧 yz energy density

9. 𝜌 𝑢2𝑧 + 𝑃𝑧 𝑧 zz energy density

222 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

Example

An example tenMoment equation block is given below:

<Equation tenMoment>
kind = tenMomentEqn

</Equation>

multiSpeciesSingleVelocityEqn

This equation represents continuity equations for n species. The species continuity equation is given by

𝜕𝑛𝑖
𝜕𝑡

+ ∇𝑗 (𝑛𝑖 𝑢𝑗) = 0 (14.-4)

Parameters

basementNumberDensity (float) The minimum species number density allowed

basementDensity (float) The minimum auxiliary variable mass density allowed. Defaults to 0.

numberOfSpecies (integer) The number of species that have continuity equations.

useParentEigenvalues (boolean) When set to true the eigenvalues of the parent system are used
in computing dissipation in fluxes such as the localLaxFlux as well as time step restrictions. When
set to false, the eigenvalue is simply 𝑢 normal to the direction of interest.

Sub-Blocks

Equation (block) Defines the parent equation type of the system. The parent equation could be eu-
lerEqn or idealMhdEqn for example. The first 4 components must be density, followed by the 3
components of momentum. This equation is used to compute the advection velocity and if usePar-
entEigenvalues=true then the eigenvalues of this system are used to compute the level of dissipation
in the flux functions.

Parent Updater Data

in (string vector, required)

Species densities Entries 1-𝑁 where 𝑁 is the number of species

0. variables 0-(N-1) 𝑛𝑖 number density of species i

Vector of conserved quantities Entries are determined by the Equation sub-block and
only the first 4 entries are used in this equation. Entries 1-𝑁 where 𝑁 the number variables in the
parent equation

0. 𝜌 species density

1. 𝜌 𝑢𝑥 species x momentum

2. 𝜌 𝑢𝑦 species y momentum

3. 𝜌 𝑢𝑧 species z momentum

4. all components beyond 3 are ignored.

14.3. hyperbolic (1d, 2d, 3d) 223

USimReferenceManual, Release 3.0.1

Example

An example multiSpeciesSingleVelocity equation block is given below

<Equation speciesContinuity>
kind = multiSpeciesSingleVelocityEqn
useParentEigenvalues = true
inputVariables = [qSpecies, q]
numberOfSpecies = NSPECIES

<Equation realGas>
kind = realGasEqn
inputVariables = [q, realGasVariables]
numSpecies = NSPECIES

</Equation>

</Equation>

mhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃 + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, I is the identity matrix, 𝑃 = 𝜌𝜖(𝛾−1) is the pressure of an ideal gas, 𝜖 is the specific internal energy
and 𝛾 is the adiabatic index (ratio of specific heats). The quantity 𝑐fast corresponds to the fastest wave
speed over the entire simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal

and bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equa-
tions.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

224 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

mu0 (float, optional) Optional value for the constant 𝜇0. Defaults to 4𝜋 × 10−7.

externalEfield (string, optional) Specifies the name of the data structure containing the externally
computed electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally
computed magnetic field, bexternal.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of
conserved quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm’s law, Eexternal, computed “externally” to the
ideal magnetohydrodynamic system. The data structure containing eexternal is specified by the
“externalEField” option described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized

by permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized

by permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized

by permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, bexternal, which is not evolved by the induc-
tion equation, but does contribute to the Lorentz force and the work done on the plasma. The
data structure containing bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

14.3. hyperbolic (1d, 2d, 3d) 225

USimReferenceManual, Release 3.0.1

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, de-
pending on whether the equation is combined with an updater capable of computing fluxes (clas-
sicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step
associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed
in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

226 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d,
2d, 3d) to compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=mhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

The following block demonstrates the mhdDednerEqn used in combination with timeStepRestrictionUp-
dater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied magnetic field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

14.3. hyperbolic (1d, 2d, 3d) 227

USimReferenceManual, Release 3.0.1

courant condition to apply to the timestep
courantCondition=1.0

<TimeStepRestriction idealMhd>
kind=hyperbolic1d
model=mhdDednerEqn
gasGamma= 1.4
externalBfield=True
includeInTimeStep=False

</TimeStepRestriction>
</Updater>

mhdDednerEosEqn

Defines the equations of ideal compressible magnetohydrodynamics with and arbitrary equation of state
(EOS) and divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃 + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, I is the identity matrix and 𝑃 is the pressure as specified by an external EOS. Updaters that compute
all the data required from an EOS are found in vanDerWaalsComputeVariables, sesameComputeVariables
and propaceosComputeVariables. The quantity 𝑐fast corresponds to the fastest wave speed over the entire
simulation domain; divergence errors are advected out of the domain with this speed.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal

and bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equa-
tions.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

mu0 (float, optional) Optional value for the constant 𝜇0. Defaults to 4𝜋 × 10−7.

externalEfield (string, optional) Specifies the name of the data structure containing the externally
computed electric field, eexternal.

228 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

externalBfield (string, optional) Specifies the name of the data structure containing the externally
computed magnetic field, bexternal.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of
conserved quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝜌𝜖+ 1
2𝜌|u|

2 + 1
2 |b|

2: total energy density where 𝜖 is the specific internal energy

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Pressure (nodalArray, 1-component, required) Value of the pressure as computed by the exter-
nal EOS.

Sound speed squared (nodalArray, 1-component, required) Value of the sound speed
squared as computed by the external EOS.

internal energy (nodalArray, 1-component, required) Value of the internal energy (𝜌𝜖) as
computed by the external EOS.

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm’s law, Eexternal, computed “externally” to the
ideal magnetohydrodynamic system. The data structure containing eexternal is specified by the
“externalEField” option described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized

by permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized

by permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized

by permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, bexternal, which is not evolved by the induc-
tion equation, but does contribute to the Lorentz force and the work done on the plasma. The
data structure containing bexternal is specified by the “externalBField” option described below.

14.3. hyperbolic (1d, 2d, 3d) 229

USimReferenceManual, Release 3.0.1

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the mhdDednerEosEqn, one of four output variables are computed,
depending on whether the equation is combined with an updater capable of computing fluxes (clas-
sicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step
associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed
in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

230 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Examples

The following block demonstrates the mhdDednerEosEqn used in combination with classicMusclUpdater
(1d, 2d, 3d) to compute ∇ · ℱ (w):

<Updater hyper>
kind = classicMuscl2d
onGrid = domain

input nodal component arrays
in=[q, pressure, soundSqr, intEnergy]

output nodal component arrays
out = [qNew]

input dynVector containing fastest wave speed
waveSpeeds = [waveSpeed]

the numerical flux to use
numericalFlux = hlldFlux

CFL number to use
cfl = 0.5

determines solve is conservative or primitive
variableForm = conservative

Limiter; one per input nodal component array
limiter=[muscl, muscl, muscl, muscl]

list of equations to solve
equations = [mhd]

<Equation mhd>
kind=mhdDednerEosEqn
mu0=1.0

</Equation>

</Updater>

The following block demonstrates the mhdDednerEosEqn used in combination with timeStepRestric-
tionUpdater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied magnetic
field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater2d
onGrid=domain

input nodal component arrays
in=[q, pressure, soundSqr, intEnergy]

14.3. hyperbolic (1d, 2d, 3d) 231

USimReferenceManual, Release 3.0.1

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=0.5

<TimeStepRestriction idealMhd>
kind=hyperbolic1d
model=mhdDednerEosEqn
mu0=1.0

</TimeStepRestriction>
</Updater>

gasDynamicMhdDednerEqn

Defines the equations of inviscid fluid dynamics coupled to pre-Maxwell’s equations in source term form
with divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕 (𝜌u)

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
=
∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u] =

∑︁
species

Jspecies ·Especies

𝜕Bplasma

𝜕𝑡
+ ∇×E + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

Here, 𝑞species is the species charge density, Jspecies is the species current density, I is the identity matrix,
𝑃 = 𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and 𝛾 is the adiabatic index
(ratio of specific heats). The quantity 𝑐fast corresponds to the fastest wave speed over the entire simulation
domain; divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following
standard identities (note that the use of these identities does not require an assumption of quasi-neutrality):∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
= −𝜕𝑐

−2SEM

𝜕𝑡
+ ∇ · 𝒯 EM

∑︁
species

Jspecies ·E = −𝜕𝐸
EM

𝜕𝑡
−∇ · SEM

Here, 𝒯 EM is the electromagnetic stress tensor and SEM is the electromagnetic energy (Poynting) flux
vector, which are defined as:

𝒯 EM =
1

𝜇0

(︂
EE𝑇

𝑐2
+ BB𝑇

)︂
+ I𝐸EM =

ee𝑇

𝑐2
+ bb𝑇 + I𝐸EM

SEM = 𝜇−1
0 E×B = e× b

𝐸EM =
1

2𝜇0

(︃
|E|2

𝑐2
+ |B|2

)︃
=

1

2

(︃
|e|2

𝑐2
+ |b|2

)︃

232 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

Here, 𝐸EM is the electromagnetic energy density and the electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal

and bexternal are electromagnetic fields computed “externally” to the pre-Maxwell equations.

With these identitifications, the gasDynamicMhdDednerEqn takes the form:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕
(︀
𝜌u + 𝑐−2SEM

)︀
𝜕𝑡

+ ∇ ·
[︀
𝜌uu𝑇 + I𝑃 − 𝒯 EM

]︀
= 0

𝜕
(︀
𝐸 + 𝐸EM

)︀
𝜕𝑡

+ ∇ ·
[︀
(𝐸 + 𝑃)u + SEM

]︀
= 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

This flux-conservative formulation is implemented in USim.

Parameters

lightSpeed (float, optional) The speed of light in m/s. Defaults to 2.99792458e8.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

externalEfield (string, optional) Specifies the name of the data structure containing the externally
computed electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally
computed magnetic field, bexternal.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 9-components, required) The vector of
conserved quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î + 𝑐−2𝑆EM
î

=
(︀
𝜌u + 𝑐−2SEM

)︀
· î: total momentum density in the î direction

2. 𝜌 𝑢ĵ + 𝑐−2𝑆EM
ĵ

=
(︀
𝜌u + 𝑐−2SEM

)︀
· ĵ: total momentum density in the ĵ direction

3. 𝜌 𝑢k̂ + 𝑐−2𝑆EM
k̂

=
(︀
𝜌u + 𝑐−2SEM

)︀
· k̂: total momentum density in the k̂ direction

4. 𝐸 + 𝐸EM = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 𝐸EM: total energy density

14.3. hyperbolic (1d, 2d, 3d) 233

USimReferenceManual, Release 3.0.1

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm’s law, Eexternal, computed “externally” to the
ideal magnetohydrodynamic system. The data structure containing eexternal is specified by the
“externalEField” option described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized

by permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized

by permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized

by permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, bexternal, which is not evolved by the induc-
tion equation, but does contribute to the Lorentz force and the work done on the plasma. The
data structure containing bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are com-
puted, depending on whether the equation is combined with an updater capable of computing fluxes
(classicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time
step associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave
speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︁
𝜌 𝑢î + 𝑐−2𝑆EM

î

)︁
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ + 𝑐−2𝑆EM

ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︁
𝜌 𝑢k̂ + 𝑐−2𝑆EM

k̂

)︁
: k̂ momentum flux

234 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Examples

The following block demonstrates the mhdDednerEqn used in combination with classicMusclUpdater (1d,
2d, 3d) to compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use

14.3. hyperbolic (1d, 2d, 3d) 235

USimReferenceManual, Release 3.0.1

numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind=gasDynamicMhdDednerEqn
gasGamma=1.4
externalBfield="backgroundB"

</Equation>

</Updater>

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRe-
strictionUpdater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied
magnetic field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for
restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=1.0

<TimeStepRestriction idealMhd>
kind=hyperbolic1d
model=gasDynamicMhdDednerEqn
gasGamma= 1.4
externalBfield=True
includeInTimeStep=False

</TimeStepRestriction>
</Updater>

236 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

simpleTwoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an elec-
tron entropy equation:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃tot + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

𝜕𝑆electron

𝜕𝑡
+ ∇ · [𝑆electron u] = 0

Here, I is the identity matrix, 𝑃tot = 𝑃ion+𝑃electron = 𝜌ion𝜖ion(𝛾ion−1)+𝜌electron𝜖electron(𝛾electron−1)
is the total plasma pressure, 𝜖ion,electron is the specific internal energy of ions and electrons and 𝛾ion,electron
is the adiabatic index (ratio of specific heats) for the ions and electrons. The quantity 𝑐fast corresponds to
the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain
with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

𝑆electron = 𝑃electron𝑛
−(𝛾electron+1)
electron ; 𝑛electron =

𝜌

𝑚electron + 𝑚ion

𝑍

Here, 𝑛electron is the electron number density, 𝑚electron is the electron mass, 𝑚ion is the ion mass and
𝑍 is the ion charge state. with the fluid velocity, u. In order to advect the electron entropy with the
electron velocity, refer to twoTemperatureMhdDednerEqn. The method provided by simpleTwoTemper-
atureMhdDednerEqn is generally more robust and has lower computational cost than that provided by
twoTemperatureMhdDednerEqn. If, for example, heating of electrons by (for example) magnetic dissipa-
tion is required, then this can be accomplished by adding source terms of the electron entropy equation,
see, e.g. mhdSrc.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal

and bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equa-
tions.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

14.3. hyperbolic (1d, 2d, 3d) 237

USimReferenceManual, Release 3.0.1

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure,
𝛾. Defaults to 5/3.

electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the elec-
trons, 𝛾electron. Defaults to 5/3.

electronMass (float, optional) Specifies the electron mass, 𝑚electron. Defaults to (1836)−1.

ionMass (float, optional) Specifies the ion mass, 𝑚ion. Defaults to 1.

chargeState (float, optional) Specifies the charge on an ion, 𝑍. Defaults to 1.

currentVector (string, required) Specifies the name of the data structure containing the total (ion +
electron) plasma current, Jplasma.

externalEfield (string, optional) Specifies the name of the data structure containing the externally
computed electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally
computed magnetic field, bexternal.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector
of conserved quantities, q has 10 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑆electron: electron entropy

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm’s law, Eexternal, computed “externally” to the
ideal magnetohydrodynamic system. The data structure containing eexternal is specified by the
“externalEField” option described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized

by permeability of free-space in the î direction.

238 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized

by permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized

by permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, bexternal, which is not evolved by the induc-
tion equation, but does contribute to the Lorentz force and the work done on the plasma. The
data structure containing bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, de-
pending on whether the equation is combined with an updater capable of computing fluxes (clas-
sicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step
associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed
in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

9. ∇ · ℱ (𝑆electron): electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

14.3. hyperbolic (1d, 2d, 3d) 239

USimReferenceManual, Release 3.0.1

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑃electron: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Examples

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with
classicMusclUpdater (1d, 2d, 3d) to compute ∇ · ℱ (w)

<Updater hyper>
kind = classicMuscl1d
onGrid = domain

input data-structures
in = [q,electricField]

output data-structures
out = [qnew]

the time integration scheme, rk1 for first order runge-kutta
timeIntegrationScheme = none

the numerical flux to use
numericalFlux = roeFlux

CFL number to use
cfl = 0.4

Form of variables to limit
variableForm = primitive

Limiter to use
limiter = [muscl,muscl]

waveSpeeds = [waveSpeed]

list of equations to solve
equations = [mhd]

<Equation mhd>
kind = simpleTwoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"

</Equation>

240 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

</Updater>

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with
computePrimitiveState(1d, 2d, 3d) to compute w (q)

<Updater computePrimitiveState>
kind = computePrimitiveState1d

onGrid = domain
input data-structures

in = [q,electricField]

ouput data-structures
out = [w]

<Equation mhd>
kind = simpleTwoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"

</Equation>

</Updater>

The following block demonstrates the simpleTwoTemperatureMhdDednerEqn used in combination with
timeStepRestrictionUpdater (1d, 2d, 3d), hyperbolic (1d, 2d, 3d) and quadratic (1d, 2d, 3d) to compute
𝑑𝑡min, 𝑑𝑡diff and 𝑐fast for resistive two-temperature MHD:

<Updater getHypDT>
kind = timeStepRestrictionUpdater1d
in = [q,electricField]

onGrid = domain
waveSpeeds = [waveSpeed]
timeSteps = [diffDT]
restrictions = [idealMhd]
courantCondition = CFL

<TimeStepRestriction idealMhd>
kind = hyperbolic1d
cfl = CFL
model = simpleTwoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
correctNans = true
correct = true
correctNans = true
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
storeTimeStep = False

</TimeStepRestriction>

</Updater>

14.3. hyperbolic (1d, 2d, 3d) 241

USimReferenceManual, Release 3.0.1

twoTemperatureMhdDednerEqn

Defines the equations of ideal compressible magnetohydrodynamics with divergence cleaning and an elec-
tron entropy equation:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕𝜌u

𝜕𝑡
+ ∇ ·

[︁
𝜌uu𝑇 − bb𝑇 + I

(︁
𝑃tot + 1

2 |b|
2
)︁]︁

= 0

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u + e× b] = 0

𝜕bplasma

𝜕𝑡
+ ∇× e + ∇𝜓 = 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

]︀
= 0

𝜕𝑆electron

𝜕𝑡
+ ∇ · [𝑆electron uelectron] = 0

Here, I is the identity matrix, 𝑃tot = 𝑃ion+𝑃electron = 𝜌ion𝜖ion(𝛾ion−1)+𝜌electron𝜖electron(𝛾electron−1)
is the total plasma pressure, 𝜖ion,electron is the specific internal energy of ions and electrons and 𝛾ion,electron
is the adiabatic index (ratio of specific heats) for the ions and electrons. The quantity 𝑐fast corresponds to
the fastest wave speed over the entire simulation domain; divergence errors are advected out of the domain
with this speed.

In order to track the electron temperature, USim evolves the electron entropy, defined as:

𝑆electron = 𝑃electron𝑛
−(𝛾electron+1)
electron ; 𝑛electron =

𝜌

𝑚electron + 𝑚ion

𝑍

Here, 𝑛electron is the electron number density, 𝑚electron is the electron mass, 𝑚ion is the ion mass and 𝑍
is the ion charge state. The electron entropy is advected by the electron velocity, uelectron, computed as:

uelectron = −Jplasma − 𝑞𝑍𝑚−1
ion𝜌u

𝑞𝑛electron
; Jplasma = 𝜇

−1/2
0 ∇× bplasma = 𝜇−1

0 ∇×Bplasma

Here, Jplasma is the total (ion+electron) plasma current and 𝑞 is the fundamental change (−𝑞 is the charge
on an electron). As defined above, the electron entropy is advected with the electron density. If, for exam-
ple, heating of electrons by (for example) magnetic dissipation is required, then this can be accomplished
by adding source terms of the electron entropy equation, see, e.g. mhdSrc.

The electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
e = −u× b + eexternal = 𝜇

−1/2
0

(︀
−u×B + Eexternal

)︀
Here, bplasma is the magnetic field induced in the plasma by the inductive electric field, e, while eexternal

and bexternal are electromagnetic fields computed “externally” to the ideal magnetohydrodynamic equa-
tions.

Parameters

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

242 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the total pressure,
𝛾. Defaults to 5/3.

electronGamma (float, optional) Specifies the adiabatic index (ratio of specific heats) for the elec-
trons, 𝛾electron. Defaults to 5/3.

electronMass (float, optional) Specifies the electron mass, 𝑚electron. Defaults to (1836)−1.

ionMass (float, optional) Specifies the ion mass, 𝑚ion. Defaults to 1.

chargeState (float, optional) Specifies the charge on an ion, 𝑍. Defaults to 1.

currentVector (string, required) Specifies the name of the data structure containing the total (ion +
electron) plasma current, Jplasma.

externalEfield (string, optional) Specifies the name of the data structure containing the externally
computed electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally
computed magnetic field, bexternal.

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 10-components, required) The vector
of conserved quantities, q has 10 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑆electron: electron entropy

Current Density (nodalArray, 3-components, required) The total (ion and electron) current
in the plasma, typically calculated from from pre-Maxwell form of Ampere’s law, Jplasma =

𝜇
1/2
0 ∇ × bplasma, which can be computed through, e.g. vector (1d, 2d, 3d). The data structure

containing Jplasma is specified by the “currentVector” option described below.

0. 𝐽plasma

î
= Jplasma · î: total (ion and electron) current in the plasma in the î direction.

1. 𝐽plasma

ĵ
= Jplasma · ĵ: total (ion and electron) current in the plasma in the ĵ direction

14.3. hyperbolic (1d, 2d, 3d) 243

USimReferenceManual, Release 3.0.1

2. 𝐽plasma

k̂
= Jplasma · k̂: total (ion and electron) current in the plasma in the k̂ direction

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional terms in the generalized Ohm’s law, Eexternal, computed “externally” to the
ideal magnetohydrodynamic system. The data structure containing eexternal is specified by the
“externalEField” option described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized

by permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized

by permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized

by permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, bexternal, which is not evolved by the induc-
tion equation, but does contribute to the Lorentz force and the work done on the plasma. The
data structure containing bexternal is specified by the “externalBField” option described below.

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the mhdDednerEqn, one of four output variables are computed, de-
pending on whether the equation is combined with an updater capable of computing fluxes (clas-
sicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time step
associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave speed
in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︀
𝜌 𝑢î
)︀
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︀
𝜌 𝑢k̂

)︀
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ (𝜓): correction potential flux

244 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

9. ∇ · ℱ (𝑆electron): electron entropy flux

Vector of Primitive States (nodalArray, 9-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝜓: correction potential

9. 𝑃electron: electron pressure

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Examples

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with classic-
MusclUpdater (1d, 2d, 3d) to compute ∇ · ℱ (w), including resistive effects

<Updater hyper>
kind = classicMuscl1d
onGrid = domain

input data-structures
in = [q,electricField,current,chargeState,resistivity]

output data-structures
out = [qnew]

the time integration scheme, rk1 for first order runge-kutta
timeIntegrationScheme = none

the numerical flux to use
numericalFlux = roeFlux

CFL number to use
cfl = 0.4

Form of variables to limit
variableForm = primitive

Limiter to use
limiter = [muscl,muscl,muscl,muscl,muscl]

waveSpeeds = [waveSpeed]

14.3. hyperbolic (1d, 2d, 3d) 245

USimReferenceManual, Release 3.0.1

list of equations to solve
equations = [mhd]

list of sources to add
source = [mhdSource]

<Equation mhd>
kind = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"

</Equation>

<Source mhdSource>
kind = mhdSrc
model = twoTemperatureMhdDednerEqn
externalEfield = true
inputVariables = [q, electricField,current,chargeState,resistivity]
ionMass = ION_MASS
fundamentalCharge = FUNDAMENTAL_CHARGE

</Source>

</Updater>

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with com-
putePrimitiveState(1d, 2d, 3d) to compute w (q)

<Updater computePrimitiveState>
kind = computePrimitiveState1d

onGrid = domain
input data-structures

in = [q,electricField,current,chargeState,resistivity]

ouput data-structures
out = [w]

<Equation mhd>
kind = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"

</Equation>

</Updater>

The following block demonstrates the twoTemperatureMhdDednerEqn used in combination with
timeStepRestrictionUpdater (1d, 2d, 3d), hyperbolic (1d, 2d, 3d) and quadratic (1d, 2d, 3d) to compute
𝑑𝑡min, 𝑑𝑡diff and 𝑐fast for resistive two-temperature MHD:

<Updater getHypDT>
kind = timeStepRestrictionUpdater1d

246 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

in = [q,electricField,current,chargeState,resistivity]
onGrid = domain
waveSpeeds = [waveSpeed]
timeSteps = [diffDT]
restrictions = [idealMhd,quadratic]
courantCondition = CFL

<TimeStepRestriction idealMhd>
kind = hyperbolic1d
cfl = CFL
model = twoTemperatureMhdDednerEqn
gasGamma = GAS_GAMMA
electronGamma = $ELECTRON_GAMMA$
correctNans = true
correct = true
correctNans = true
basementDensity = $BASEMENT_DENSITY$
basementPressure = $BASEMENT_PRESSURE$
externalEfield = "electricField"
currentVector = "current"
storeTimeStep = False

</TimeStepRestriction>

<TimeStepRestriction quadratic>
kind = quadratic1d
in = [resistivity]
cfl = CFL

</TimeStepRestriction>
</Updater>

maxwellDednerEqn

Fluxes and eigensystem for Maxwell’s equations in vacuum with divergence cleaning.

𝜕E

𝜕𝑡
+ 𝑐2∇×B + ∇Φ = 0

𝜕B

𝜕𝑡
−∇×E + ∇𝜓 = 0

𝜕Φ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastE

]︀
= 0

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastB

]︀
= 0

Coupling of Maxwell’s equations to a plasma is accomplished using current.

Parameters

mu0 (float, optional) Permeability of free space. Default value is 1.256e-06.

epsilon0 (float, optional) Permittivity of free space. Default value is 8.854e-12.

cfl (float, optional) CFL number. Default value is 1.0.

Parent Updater Data

in (string vector, required)

14.3. hyperbolic (1d, 2d, 3d) 247

USimReferenceManual, Release 3.0.1

Vector of Conserved Quantities (nodalArray, 8-components, required) The vector of
conserved quantities, q has 8 entries:

0. 𝐸î = E · î: electric field in the î direction.

1. 𝐸ĵ = E · ĵ: electric field in the ĵ direction

2. 𝐸k̂ = E · k̂: electric field in the k̂ direction

3. 𝐵î = B · î: magnetic field in the î direction

4. 𝐵ĵ = B · ĵ: magnetic field in the ĵ direction

5. 𝐵k̂ = B · k̂: magnetic field in the k̂ direction

6. Φ electric field correction potential

7. Ψ magnetic field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

out (string vector, required) For the maxwellDednerEqn, one of three output variables are computed,
depending on whether the equation is combined with an updater capable of computing fluxes (classic-
MusclUpdater (1d, 2d, 3d)), the time step associated with the CFL condition (timeStepRestrictionUp-
dater (1d, 2d, 3d)) or the fastest wave speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 9-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ
(︀
𝐸î

)︀
: î electric field flux

1. ∇ · ℱ
(︁
𝐸ĵ

)︁
: î electric field flux

2. ∇ · ℱ
(︀
𝐸k̂

)︀
: ĵ electric field flux

3. ∇ · ℱ
(︀
𝐵î

)︀
: î magnetic field flux

4. ∇ · ℱ
(︁
𝐵ĵ

)︁
: î magnetic field flux

5. ∇ · ℱ
(︀
𝐵k̂

)︀
: ĵ magnetic field flux

6. ∇ · ℱ (𝜓): electric correction potential flux

7. ∇ · ℱ (𝜓): magnetic correction potential flux

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Example

The following block demonstrates the maxwellDednerEqn used in combination with classicMusclUpdater
(1d, 2d, 3d) to compute ∇ · ℱ (w):

<Updater hyper>
kind=classicMuscl2d
onGrid=domain

248 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

timeIntegrationScheme=none
numericalFlux=hlleFlux
limiter=[none]
variableForm=conservative
preservePositivity=false
in=[q]
out=[qNew]
waveSpeeds=[waveSpeed]
cfl=0.4
equations=[maxwell]

<Equation maxwell>
kind=maxwellDednerEqn
epsilon0=1.0
mu0=1.0
cfl=0.4

</Equation>

</Updater>

The following block demonstrates the maxwellDednerEqn used in combination with timeStepRestric-
tionUpdater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater2d
in=[q]
waveSpeeds=[waveSpeed]
onGrid=domain
restrictions=[hyperbolic]
cfl=0.4
courantCondition=0.4

<TimeStepRestriction hyperbolic>
kind=hyperbolic2d
model=maxwellEqn
cfl=0.4
c0=1.0
gamma=0.0
chi=0.0
includeInTimeStep=False

</TimeStepRestriction>

</Updater>

14.3. hyperbolic (1d, 2d, 3d) 249

USimReferenceManual, Release 3.0.1

gasDynamicMaxwellDednerEqn

Defines the equations of inviscid fluid dynamics coupled to Maxwell’s equations in source term form with
divergence cleaning:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕 (𝜌u)

𝜕𝑡
+ ∇ ·

[︀
𝜌uu𝑇 + I𝑃

]︀
=
∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)u] =

∑︁
species

Jspecies ·E

𝜕Bplasma

𝜕𝑡
+ ∇×E + ∇Ψ = 0

𝜕Eplasma

𝜕𝑡
− 𝑐2∇×B + ∇Φ = −𝜖−1

0

∑︁
species

Jspecies

𝜕Ψ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastB

plasma
]︀

= 0

𝜕Φ

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastE

plasma
]︀

=
∑︁

species

𝑞species

Here, 𝑞species is the species charge density, Jspecies is the species current density, I is the identity matrix,
𝑃 = 𝜌𝜖(𝛾 − 1) is the pressure of an ideal gas, 𝜖 is the specific internal energy and 𝛾 is the adiabatic index
(ratio of specific heats). The quantity 𝑐fast corresponds to the fastest wave speed over the entire simulation
domain; divergence errors are advected out of the domain with this speed.

In order to integrate these equations, USim casts them into flux-conservative form using the following
standard identities (note that the use of these identities does not require an assumption of quasi-neutrality):∑︁

species

(︀
𝑞speciesE + Jspecies ×B

)︀
= −𝜕𝑐

−2SEM

𝜕𝑡
+ ∇ · 𝒯 EM

∑︁
species

Jspecies ·E = −𝜕𝐸
EM

𝜕𝑡
−∇ · SEM

Here, 𝒯 EM is the electromagnetic stress tensor and SEM is the electromagnetic energy (Poynting) flux
vector, which are defined as:

𝒯 EM =
1

𝜇0

(︂
EE𝑇

𝑐2
+ BB𝑇

)︂
+ I𝐸EM =

ee𝑇

𝑐2
+ bb𝑇 + I𝐸EM

SEM = 𝜇−1
0 E×B = e× b

𝐸EM =
1

2𝜇0

(︃
|E|2

𝑐2
+ |B|2

)︃
=

1

2

(︃
|e|2

𝑐2
+ |b|2

)︃

Here, 𝐸EM is the electromagnetic energy density and the electromagnetic fields are defined as:

b = bplasma + bexternal = 𝜇
−1/2
0

(︀
Bplasma + Bexternal

)︀
= 𝜇

−1/2
0 B

e = eplasma + eexternal = 𝜇
−1/2
0

(︀
Eplasma + Eexternal

)︀
= 𝜇

−1/2
0 E

Here, bplasma is the magnetic field induced in the plasma, eplasma is the electric field associated with
net charge in the plasma, while eexternal and bexternal are electromagnetic fields computed “externally”

250 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

to Maxwell’s equations inside the plasma. With these identitifications, the fluid part of the gasDynamic-
MaxwellDednerEqn takes the form:

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌u] = 0

𝜕
(︀
𝜌u + 𝑐−2SEM

)︀
𝜕𝑡

+ ∇ ·
[︀
𝜌uu𝑇 + I𝑃 − 𝒯 EM

]︀
= 0

𝜕
(︀
𝐸 + 𝐸EM

)︀
𝜕𝑡

+ ∇ ·
[︀
(𝐸 + 𝑃)u + SEM

]︀
= 0

The electromagnetic part of the system is solved in USim as:

𝜕bplasma

𝜕𝑡
−∇× e + ∇𝜓 = 0

𝜕eplasma

𝜕𝑡
+ 𝑓2𝑐2fast∇× b + ∇𝜑 = −𝑓2𝑐2fast𝜇

1/2
0

∑︁
species

Jspecies

𝜕𝜓

𝜕𝑡
+ ∇ ·

[︀
𝑐2fastb

plasma
]︀

= 0

𝜕𝜑

𝜕𝑡
+ ∇ ·

[︀
𝑐2faste

plasma
]︀

= 𝜇
−1/2
0

∑︁
species

𝑞species

Here, we have written 𝑐2 = 𝑓2𝑐2fast = (𝜖0𝜇0)−1, where 𝑓 is a dimensionless number that defines the
ratio of the speed of light to the fatest wave in the mesh and we have further defined 𝜓 = 𝜇

−1/2
0 Ψ and

Φ = 𝜇
−1/2
0 Φ.

In order to close the electromagnetic part of the equations, a model for the current density and charge is
required. An example of such a model that is provided with USim is mhdSrc. However, the user is also
free to construct their own closure that returns:

𝜇
−1/2
0

∑︁
species

𝑞species; 𝜇
1/2
0

∑︁
species

Jspecies

Parameters

lightSpeed (float, optional) The speed of light in m/s. Used to specify the speed of light in the fluid
momentum and energy equations. Defaults to 2.99792458e8.

lightSpeedFactor (float, optional) Dimensionless number, used to specify the ratio of the speed of
light to the fastest wave speed in the grid. Defaults to 1.0e3.

basementPressure (float, optional) The minimum pressure allowed. Pressures below this value will
be replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

basementDensity (float, optional) The minimum density allowed. Densities below this value will be
replaced with this value for primitive state, eigensystem and flux computations. Defaults to zero.

gasGamma (float, optional) Specifies the adiabatic index (ratio of specific heats), 𝛾. Defaults to 5/3.

externalEfield (string, optional) Specifies the name of the data structure containing the externally
computed electric field, eexternal.

externalBfield (string, optional) Specifies the name of the data structure containing the externally
computed magnetic field, bexternal.

14.3. hyperbolic (1d, 2d, 3d) 251

USimReferenceManual, Release 3.0.1

Parent Updater Data

in (string vector, required)

Vector of Conserved Quantities (nodalArray, 12-components, required) The vector
of conserved quantities, q has 9 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î + 𝑐−2𝑆EM
î

=
(︀
𝜌u + 𝑐−2SEM

)︀
· î: total momentum density in the î direction

2. 𝜌 𝑢ĵ + 𝑐−2𝑆EM
ĵ

=
(︀
𝜌u + 𝑐−2SEM

)︀
· ĵ: total momentum density in the ĵ direction

3. 𝜌 𝑢k̂ + 𝑐−2𝑆EM
k̂

=
(︀
𝜌u + 𝑐−2SEM

)︀
· k̂: total momentum density in the k̂ direction

4. 𝐸 + 𝐸EM = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 𝐸EM: total energy density

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝑒i = e · î = 𝜇
−1/2
0 E · î: electric field normalized by permeability of free-space in the î direction

9. 𝑒ĵ = e · ĵ = 𝜇
−1/2
0 E · ĵ: electric field normalized by permeability of free-space in the ĵ direction

10. 𝑒k̂ = e · k̂ = 𝜇
−1/2
0 E · k̂: electric field normalized by permeability of free-space in the k̂

direction

11. 𝜓: magnetic field correction potential

12. 𝜑: electric field correction potential

Fastest Wave Speed (dynVector, 1-component, required) The fastest wave speed across the
entire simulation domain, 𝑐fast. Can be computed using hyperbolic (1d, 2d, 3d) (see below).

Externally Computed Electric Field (nodalArray, 3-components, optional)
Additional contribution to the electric field, eexternal, which is not evolved by Ampere’s
equation, but does contribution to the induction equation, the Lorentz force and the work done
on the plasma. The data structure containing eexternal is specified by the “externalEField” option
described below.

0. 𝑒external
î

= eexternal · î = 𝜇
−1/2
0 Eexternal · î: “externally” computed electric field normalized

by permeability of free-space in the î direction.

1. 𝑒external
ĵ

= eexternal · ĵ = 𝜇
−1/2
0 Eexternal · ĵ:”externally” computed electric field normalized

by permeability of free-space in the ĵ direction

2. 𝑒external
k̂

= eexternal · k̂ = 𝜇
−1/2
0 Eexternal · k̂: “externally” computed electric field normalized

by permeability of free-space in the k̂ direction

Externally Computed Magnetic Field (nodalArray, 3-components, optional)
Additional contribution to the magnetic field, bexternal, which is not evolved by the induc-
tion equation, but does contribute to Ampere’s equation, the Lorentz force and the work done on
the plasma. The data structure containing bexternal is specified by the “externalBField” option
described below.

252 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

0. 𝑏external
î

= bexternal · î = 𝜇
−1/2
0 Bexternal · î: magnetic field normalized by permeability of

free-space in the î direction

1. 𝑏external
ĵ

= bexternal · ĵ = 𝜇
−1/2
0 Bexternal · ĵ: magnetic field normalized by permeability of

free-space in the ĵ direction

2. 𝑏external
k̂

= bexternal · k̂ = 𝜇
−1/2
0 Bexternal · k̂: magnetic field normalized by permeability of

free-space in the k̂ direction

out (string vector, required) For the gasDynamicMhdDednerEqn, one of four output variables are com-
puted, depending on whether the equation is combined with an updater capable of computing fluxes
(classicMusclUpdater (1d, 2d, 3d)), primitive variables (computePrimitiveState(1d, 2d, 3d)), the time
step associated with the CFL condition (timeStepRestrictionUpdater (1d, 2d, 3d)) or the fastest wave
speed in the grid (hyperbolic (1d, 2d, 3d)).

Vector of Fluxes (nodalArray, 12-components) When combined with an updater that com-
putes ∇ · ℱ (w) (e.g. classicMusclUpdater (1d, 2d, 3d)), the equation system returns:

0. ∇ · ℱ (𝜌): mass flux

1. ∇ · ℱ
(︁
𝜌 𝑢î + 𝑐−2𝑆EM

î

)︁
: î momentum flux

2. ∇ · ℱ
(︁
𝜌 𝑢ĵ + 𝑐−2𝑆EM

ĵ

)︁
: ĵ momentum flux

3. ∇ · ℱ
(︁
𝜌 𝑢k̂ + 𝑐−2𝑆EM

k̂

)︁
: k̂ momentum flux

4. ∇ · ℱ (𝐸): total energy flux

5. ∇ · ℱ
(︀
𝑏i
)︀
: î magnetic field flux

6. ∇ · ℱ
(︁
𝑏ĵ

)︁
: ĵ magnetic field flux

7. ∇ · ℱ
(︀
𝑏k̂
)︀
: k̂ magnetic field flux

8. ∇ · ℱ
(︀
𝑒i
)︀
: î electric field flux

9. ∇ · ℱ
(︁
𝑒ĵ

)︁
: ĵ electric field flux

10. ∇ · ℱ
(︀
𝑒k̂
)︀
: k̂ electric field flux

11. ∇ · ℱ (𝜓): magnetic correction potential flux

12. ∇ · ℱ (𝜑): electric correction potential flux

Vector of Primitive States (nodalArray, 9-components) When combined with an up-
dater that computes w = w(q) (e.g. computePrimitiveState(1d, 2d, 3d)), the equation systen
returns:

0. 𝜌: mass density

1. 𝑢î = u · î: velocity in the î direction

2. 𝑢ĵ = u · ĵ: velocity in the ĵ direction

3. 𝑢k̂ = u · k̂: velocity in the k̂ direction

4. 𝑃 = 𝜌𝜖(𝛾 − 1): ideal gas pressure

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î

direction

14.3. hyperbolic (1d, 2d, 3d) 253

USimReferenceManual, Release 3.0.1

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ

direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

8. 𝑒i = e · î = 𝜇
−1/2
0 E · î: electric field normalized by permeability of free-space in the î direction

9. 𝑒ĵ = e · ĵ = 𝜇
−1/2
0 E · ĵ: electric field normalized by permeability of free-space in the ĵ direction

10. 𝑒k̂ = e · k̂ = 𝜇
−1/2
0 E · k̂: electric field normalized by permeability of free-space in the k̂

direction

11. 𝜓: magnetic field correction potential

12. 𝜑: electric field correction potential

Time Step (dynVector, 1-component) When combined with timeStepRestrictionUpdater (1d, 2d,
3d), the equation system returns the time step consisten with the CFL condition across the entire
simulation domain.

Fastest Wave Speed (dynVector, 1-component) When combined with hyperbolic (1d, 2d, 3d),
the equation system returns the fastest wave speed across the entire simulation domain, 𝑐fast.

Examples

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with classic-
MusclUpdater (1d, 2d, 3d) to compute ∇ · ℱ (w) with an externally supplied magnetic field:

<Updater hyper>
kind=classicMuscl1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output nodal component array
out=[qnew]

input dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

the numerical flux to use
numericalFlux= hlldFlux

CFL number to use
cfl=0.3
Form of variables to limit
variableForm= primitive

Limiter; one per input nodal component array
limiter=[minmod minmod]

list of equations to solve
equations=[mhd]

<Equation mhd>
kind = gasDynamicMaxwellDednerEqn
gasGamma = GAS_GAMMA

254 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

lightSpeedFactor =LIGHT_SPEED_FACTOR
externalBfield = EXTERNAL_FIELD
basementPressure = BASEMENT_PRESSURE
basementDensity = BASEMENT_DENSITY

</Equation>

<Source mhdSrc>
kind = gasDynamicMhdDednerSrc
scalarConductivity = $1.0/OHMIC_RESISTIVITY$

</Source>

<Source mhdClean>
kind = mhdSrc
model = mhdDednerEqn
momentumEnergySource = 1
inputVariables = [q,divB,gradPsi]

</Source>

</Updater>

The following block demonstrates the gasDynamicMaxwellDednerEqn used in combination with com-
putePrimitiveState(1d, 2d, 3d) to compute w:

<Updater computePrimitiveState>
kind = computePrimitiveState$NDIM$d

onGrid = domain
input array
in = [q]

ouput data-structures
out = [w]

<Equation fluid>
kind = gasDynamicMaxwellDednerEqn
gasGamma = GAS_GAMMA
lightSpeedFactor =LIGHT_SPEED_FACTOR
externalBfield = EXTERNAL_FIELD
basementPressure = BASEMENT_PRESSURE
basementDensity = BASEMENT_DENSITY

</Equation>

</Updater>

The following block demonstrates the gasDynamicMhdDednerEqn used in combination with timeStepRe-
strictionUpdater (1d, 2d, 3d) and hyperbolic (1d, 2d, 3d) to compute 𝑐fast with an externally supplied
magnetic field:

<Updater getWaveSpeed>
kind=timeStepRestrictionUpdater1d
onGrid=domain

input nodal component arrays
in=[q backgroundB]

output dynVector containing fastest wave speed
waveSpeeds=[waveSpeed]

list of equations to compute fastest wave speed for

14.3. hyperbolic (1d, 2d, 3d) 255

USimReferenceManual, Release 3.0.1

restrictions=[idealMhd]

courant condition to apply to the timestep
courantCondition=1.0

<TimeStepRestriction idealMhd>
kind = hyperbolic1d
model = gasDynamicMaxwellDednerEqn
gasGamma = GAS_GAMMA
lightSpeedFactor =LIGHT_SPEED_FACTOR
externalBfield = EXTERNAL_FIELD
basementPressure = BASEMENT_PRESSURE
basementDensity = BASEMENT_DENSITY

</TimeStepRestriction>
</Updater>

twoFluidEqn

Two fluid equations written as total mass density, momentum density, total charge density total current
density and ion and electron energy. The two-fluid equations can also be written as two separate sets of
euler equations, however, this form has the advantage that numerical diffusion is applied to the total charge
density so that quasi-neutrality is enforced numerically.

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝜌 𝑢𝑥
𝜌 𝑢𝑦
𝜌 𝑢𝑧
𝜌𝑐
𝑗𝑥
𝑗𝑦
𝑗𝑧
𝑒𝑖
𝑒𝑒

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ∇ · 𝑃 = 0

where 𝑃 is defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌𝑖 𝑢𝑥 𝑖 + 𝜌𝑖 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒

𝜌𝑖 𝑢
2
𝑥 𝑖 + 𝑃𝑖 + 𝜌𝑒 𝑢

2
𝑥 𝑒 + 𝑃𝑒 𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑧 𝑒

𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑥 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑦 𝑖 + 𝑃𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑦 𝑒 + 𝑃𝑒 𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑧 𝑒

𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑥 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑧 𝑖 + 𝑃𝑖 + 𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑧 𝑒 + 𝑃𝑒

𝜌𝑖 𝑢𝑥 𝑖 + 𝜌𝑖 𝑢𝑥 𝑒 𝜌𝑖 𝑢𝑦 𝑖 + 𝜌𝑒 𝑢𝑦 𝑒 𝜌𝑖 𝑢𝑧 𝑖 + 𝜌𝑒 𝑢𝑧 𝑒

𝑟𝑖(𝜌𝑖 𝑢
2
𝑥 𝑖 + 𝑃𝑖) + 𝑟𝑒(𝜌𝑒 𝑢

2
𝑥 𝑒 + 𝑃𝑒) 𝑟𝑖𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑦 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑦 𝑒 𝑟𝑖𝜌𝑖 𝑢𝑥 𝑖 𝑢𝑧 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑥 𝑒 𝑢𝑧 𝑒

𝑟𝑖𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑥 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑥 𝑒 𝑟𝑖(𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑦 𝑖 + 𝑃𝑖) + 𝑟𝑒(𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑦 𝑒 + 𝑃𝑒) 𝑟𝑖𝜌𝑖 𝑢𝑦 𝑖 𝑢𝑧 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑦 𝑒 𝑢𝑧 𝑒

𝑟𝑖𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑥 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑥 𝑒 𝑟𝑖𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑦 𝑖 + 𝑟𝑒𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑦 𝑒 𝑟𝑖(𝜌𝑖 𝑢𝑧 𝑖 𝑢𝑧 𝑖 + 𝑃𝑖) + 𝑟𝑒(𝜌𝑒 𝑢𝑧 𝑒 𝑢𝑧 𝑒 + 𝑃𝑒)
𝑢𝑥 𝑖 (𝑒𝑖 + 𝑃𝑖) 𝑢𝑦 𝑖 (𝑒𝑖 + 𝑃𝑖) 𝑢𝑧 𝑖 (𝑒𝑖 + 𝑃𝑖)
𝑢𝑥 𝑒 (𝑒𝑒 + 𝑃𝑒) 𝑢𝑦 𝑒 (𝑒𝑒 + 𝑃𝑒) 𝑢𝑧 𝑒 (𝑒𝑒 + 𝑃𝑒)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
With 𝑟𝑖 = 𝑞𝑖/𝑚𝑖 and 𝑟𝑒 = 𝑞𝑒/𝑚𝑒 where 𝑞𝑒 is the electron charge, 𝑞𝑖 is the ion charge, 𝑚𝑒 is the electron
mass and 𝑚𝑖 is the ion mass. In addition the variables (𝜌𝛼, 𝑢𝑥𝛼, 𝑢𝑦 𝛼, 𝑢𝑥𝛼, 𝑒𝛼, 𝑃𝛼) are the species mass
density, species x velocity, species y velocity, species z velocity, species total energy density, and species
pressure respectively. In this case 𝛼 represents the species, either 𝑒 for electron or 𝑖 for ion.

Parameters

ionGamma (float) Specific heat ratio for the ions

256 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

electronGamma (float) Specific heat ratio for the electrons. Defaults to 5/3

ionMass (float) ion mass

electronMass (float) electron mass

ionCharge (float) ion charge

electronCharge electron charge

basementPressure (float) The minimum pressure allowed. Defaults to 0.

basementDensity (float) The minimum density allowed for the ions. Defaults to 0. The
electron basement density is determined by multiplying by the mass ratio, therefore
𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 = (𝑚𝑒/𝑚𝑖)𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦

Parent Updater Data

in (string vector, required)

1st Input Variable

0. 𝜌 mass density

1. 𝜌 𝑢𝑥 x momentum density

2. 𝜌 𝑢𝑦 y momentum density

3. 𝜌 𝑢𝑧 z momentum density

4. 𝜌𝑐 total charge density

5. 𝑗𝑥 x current density

6. 𝑗𝑦 y current density

7. 𝑗𝑧 z current density

8. 𝑒𝑖 ion energy density

9. 𝑒𝑒 electron energy density

Example

An example twoFluidEqn equation block is given below:

<Equation twoFluid>
kind = twoFluidEqn
ionGamma = GAS_GAMMA
electronGamma = GAS_GAMMA
ionMass = ION_MASS
electronMass = ELECTRON_MASS
ionCharge = ION_CHARGE
electronCharge = ELECTRON_CHARGE
basementDensity = BASEMENT_DENSITY
basementPressure = BASEMENT_PRESSURE

</Equation>

14.3. hyperbolic (1d, 2d, 3d) 257

USimReferenceManual, Release 3.0.1

userDefinedEqn

Define an arbitrary hyperbolic system. Built in hyperbolic equations should be used when they are avail-
able as they are faster.

Parameters

indVars_inName For each input variable an “indVars” array must be defined. So if in = [E, B] then
indVars_E and indVars_B must be defined. If indVars_E = [”Ex”,”Ey”,”Ez”] then operations are
performed on “Ex”,”Ey” and “Ez” in the expression evaluator.

transform_inName For each variable there must be a vector that tells how the data is transformed
upon rotation. For example, for an electric field E, the transform would be transform_E = [vector]
so that USim knows the input data is a vector. If the input data is density, momentum, energy as
in the euler equations then we would have transform_q = [scalar, vector, scalar] which assumes that
momentum has 3 components. The previous example transforms the first variable as if it were a scalar,
then the next 3 variables as if they were part of a tensor and then the last variable as if it were a scalar.
Available options are scalar, vector and tensor. It is assumed that vector has 3 components even in
1D and 2D simulations. Also it’s assumed that tensor has 6 components in the order Txx, Txy, Tx,
Tyy, Tyz, Tzz and that the remaining components are symmetric so are redundant.

preExprs (string vector) Strings must be put in quotes. The preExprs is used to compute quantities
based on indVars that can later be used in the exprs to evaluate the output. Available commands are
defined by the muParser (http://muparser.sourceforge.net)

flux (string vector) Strings must be put in quotes. The strings are used to evaluate the flux in the x-
direction. The fluxes in other directions are obtained through rotation of the input vector. Available
command are defined by the muParser (http://muparser.sourceforge.net/)

eigenvalues (string vector) Strings must be put in quotes. The strings are evaluated and placed in the
output array and are used to define the set of eigenvalues for the system. The eigenvalues are techni-
cally the eigenvalues in the x-direction and values in other directions are obtained through rotation.
Available command are defined by the muParser (http://muparser.sourceforge.net/)

other (variable definition) In addition, an arbitrary number of constants can be defined that can then
be used in evaluating expression in both preExprs and flux and eigenvalues.

Parent Updater Data

in (string vector) Input 1 to N are input nodalArray on which operations will be performed. Example in
= [E, B]

out (string vector) output nodalArray where the result of the operation is stored

Example

<Updater hyper>
kind = classicMuscl1d
onGrid = domain

in = [q]
out = [qnew]
timeIntegrationScheme = none
numericalFlux = $RIEMANN_SOLVER$
cfl = CFL

258 Chapter 14. Time Step Restriction

http://muparser.sourceforge.net
http://muparser.sourceforge.net/
http://muparser.sourceforge.net/

USimReferenceManual, Release 3.0.1

variableForm = $VARIABLE_FORM$
limiter = [$LIMITER$]

equations = [euler]

<Equation euler>
kind = userDefinedEqn

indVars_q = ["rho","mx","my","mz","en"]
transform_q = [scalar, vector, scalar]

gamma = GAS_GAMMA
preExprs = ["p=(gamma-1.0)*(en-0.5*((mx*mx+my*my+mz*mz)/rho))"]
flux = ["mx","(mx*mx/rho)+p","(mx*my/rho)","(mx*mz/rho)","(mx/rho)*(en+p)"]
eigenvalues = ["sqrt(p*gamma/rho)+(mx/rho)"]

</Equation>

</Updater>

Parameters associated with the Hyperbolic Equations can be added to the time step restriction block.

14.3.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
hyperbolic Time Step Restriction.

in (string vector, required) Input 1 to N are input nodalArrays which will be supplied to the equation. Defined
by the choice of Hyperbolic Equations.

14.3.3 Example

The following block demonstrates hyperbolic used in combination with timeStepRestrictionUpdater (1d, 2d, 3d)
to compute a wave-speed for mhdDednerEqn:

<Updater getWaveSpeed>
kind = timeStepRestrictionUpdater2d
in = [q]
waveSpeeds = [waveSpeed]
onGrid = domain
restrictions = [idealMhd]
courantCondition = 1.0

<TimeStepRestriction idealMhd>
kind = hyperbolic2d
model = mhdDednerEqn
gasGamma = GAMMA
mu0=MU0
includeInTimeStep = False

</TimeStepRestriction>
</Updater>

14.3. hyperbolic (1d, 2d, 3d) 259

USimReferenceManual, Release 3.0.1

14.4 plasmaFrequency (1d, 2d, 3d)

Computes the inverse plasma frequency

14.4.1 Parameters

massDensityIndex (integer, required) Gives the index of the primitive variable that stores mass density.
This is used so that number density can be computed and then plasma frequency calculated.

speciesCharge (float, required) Charge of the species for which we are computing the plasma frequency.

speciesMass (float, required) Mass of the species for which we are computing the plasma frequency.

epsilon0 (float, required) Value of permittivity

14.4.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
plasmaFrequency Time Step Restriction.

in (string vector, required)

Mass Density (nodalArray, at least 1 component, required) The mass density of the plasma. The
component of the data structure that contains the mass density is specified with the parameter mass-
DensityIndex (see below).

14.4.3 Example

The following block demonstrates plasmaFrequency used in combination with timeStepRestrictionUpdater (1d,
2d, 3d) and cyclotronFrequency (1d, 2d, 3d) to compute the time-step restriction in a plasma:

<Updater twofluidTimeStepRestrictions>
kind = timeStepRestrictionUpdater1d
in = [q]
restrictions = [wpe, wce]
onGrid = domain
courantCondition = 1.0

<TimeStepRestriction wpe>
kind = plasmaFrequency1d
speciesCharge = ELECTRON_CHARGE
speciesMass = ELECTRON_MASS
epsilon0 = 1.0
massDensityIndex = 0

</TimeStepRestriction>

<TimeStepRestriction wce>
kind = cyclotronFrequency1d
speciesCharge = ELECTRON_CHARGE
speciesMass = ELECTRON_MASS
magneticFieldIndexes = [23, 24, 25]
massDensityIndex = 0

</TimeStepRestriction>

</Updater>

260 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

14.5 positiveValue (1d, 2d, 3d)

Computes a time step given such that when a source time depenedent source is added to the value, the value
in question does not become negative. An example of this is adding radiation loss to the energy of a fluid. If
the time step is too large the fluid energy can become negative, however a smaller time step will allow the fluid
to radiate energy until radiated energy is negligible and then the time step will rise again. The positiveValue
restriction as defined the following way. 𝑆 is the source term, 𝐸 is the energy, 𝐵𝑣 is the lowest value that we
would like 𝐸 to be, ∆𝑡 is the time step, 𝑐 is a coefficient which is generally used to alter the sign of the source
term and 𝛼 is a reduction factor which scales the time step. The time step is given below

The time step restriction is derived from simple considerations

𝜕𝐸

𝜕𝑡
= 𝑆 (14.-29)

Which suggests that
𝐸𝑛+1 = 𝐸𝑛 + ∆𝑡 𝑆 > 𝐵𝑣 (14.-29)

So if we want to make sure we do not subtract all the energy off in one time step then ∆𝑡 would be chosen as

∆𝑡 < −𝐸
𝑛 −𝐵𝑣

𝑆
(14.-29)

We introduce the factor 𝛼 and 𝑐 to provide more flexibility in determining how the restriction should be applied
and the relative sign of the source S. The restriction is then given by the following relation.

∆𝑡 = −𝛼𝐸 −𝐵𝑣

𝑐 𝑆
(14.-29)

In the case where 𝑐 𝑆 > 0 no restriction is applied to ∆𝑡.

14.5.1 Parameters

alpha (float, required) If alpha is 1.0 then the time step that results will zero out the pressure in one time
step. If alpha=0.25 then it will zero out the pressure in 4 time steps. alpha is similar to a cfl number where
1.0 is the maximum value that should be used.

positiveIndex (integer, required) Tell which component of the value we intend to keep positive should
be used for comparison

sourceIndex (integer, required) Tell which component source vector should be used for comparison

basementValue (float, required) The value for which the positiveValue should not go lower than

coefficient (float, required) The restriction compares the positive value with the source value. If the
source value is going to be added to the positive value then coefficient=1.0. If the source value is going to
be subtracted from the source value then coefficient=-1.0 is correct.

numComponents (integer, optional) Occasionally the user will want to apply the postitive value restriction
to an array of variables such as densities in chemical reactions. numComponents allows you to specify the
number of components that the restriction will be applied to. It’s assumed that the values will range from
positiveIndex to positiveIndex‘+‘numComponents-1 and sourceIndex to sourceIndex‘+‘numComponents-1
and that coefficient and alpha will be constant for all components.

14.5.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
positiveValue Time Step Restriction.

14.5. positiveValue (1d, 2d, 3d) 261

USimReferenceManual, Release 3.0.1

in (string vector, required)

1st variable The first variable is the value we want to keep positive. An example would be energy
or pressure.

2nd variable The second variable is the value that will be added to the first value when multiplied by
∆𝑡. An example of the second value could be energy loss rate due to radiation or mass loss rate due
to chemical reactions.

14.5.3 Example

The following block demonstrates positiveValue used in combination with timeStepRestrictionUpdater (1d, 2d,
3d) to compute a time step that keeps the energy of the fluid (component 4 of input variable q) positive:

<Updater timeStepRestrictionEnerngy>
kind = timeStepRestrictionUpdater2d
in = [q, reactionEnergy]
timeSteps = [diffDT4]
onGrid = domain
restrictions = [positiveSource]
courantCondition = 1.0

<TimeStepRestriction positiveSource>
kind = positiveValue2d
positiveIndex = 4
sourceIndex = 0
alpha = 0.01
coefficient = 1.0
basementValue = BASEMENT_ENERGY
includeInTimeStep = false

</TimeStepRestriction>

</Updater>

14.6 quadratic (1d, 2d, 3d)

Computes the minimum time step for systems that have 2nd derivatives such as the heat equation or Navier
Stokes. The explicit time step for this type of system goes as the square of grid spacing.

14.6.1 Parameters

constant (float, optional) Multiply the input data by this value in computing the time-step restriction.

14.6.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
quadratic Time Step Restriction.

in (string vector, required) Diffusion coefficient (nodalArray, 1 component, required) 𝜅, where
the diffusion operator is ∇ · 𝜅∇𝜑.

262 Chapter 14. Time Step Restriction

USimReferenceManual, Release 3.0.1

14.6.3 Example

The following block demonstrates quadratic used in combination with timeStepRestrictionUpdater (1d, 2d, 3d)
to compute the timestep associated with a thermal conductivity:

<Updater timeStepRestriction2>
kind = timeStepRestrictionUpdater2d
in = [thermalCond]
onGrid = domain
restrictions = [quadratic]
courantCondition = THERMAL_DIFF_TIMESTEP_FACTOR

<TimeStepRestriction quadratic>
kind = quadratic2d

</TimeStepRestriction>
</Updater>

14.7 whistlerWave (1d, 2d, 3d)

Compute the time step restriction determined by the whistler wave and the grid resolution.

14.7.1 Parameters

massIndex (integer, optional) Gives the index of the Vector of Conserved Quanties that stores mass density.
Defaults to 0.

chargeStateIndex (integer, optional) Gives the index of the Vector of Conserved Quanties that stores
mass density. Defaults to 0.

fundamentalCharge (float, required) Proton charge

speciesMass (float, required) Mass of the species for which we are computing the plasma frequency.

mu0 (float, required) Permeability of free space.

bIndex (integer vector, optional) Gives the indices of the Vector of Conserved Quanties that stores the mag-
netic field. Default: bIndex=[5 6 7].

14.7.2 Parent Updater Data

The following data structures should be specified to the timeStepRestrictionUpdater (1d, 2d, 3d) that calls the
whistlerWave Time Step Restriction.

in (string vector, required)

Vector of Conserved Quanties (nodalArray, at least 8 components, required) The vector of
conserved quantities, q has at least 8 entries:

0. 𝜌: mass density

1. 𝜌 𝑢î = 𝜌u · î: momentum density in the î direction

2. 𝜌 𝑢ĵ = 𝜌u · ĵ: momentum density in the ĵ direction

3. 𝜌 𝑢k̂ = 𝜌u · k̂: momentum density in the k̂ direction

4. 𝐸 = 𝑃
𝛾−1 + 1

2𝜌|u|
2 + 1

2 |b|
2: total energy density

14.7. whistlerWave (1d, 2d, 3d) 263

USimReferenceManual, Release 3.0.1

5. 𝑏i = b · î = 𝜇
−1/2
0 B · î: magnetic field normalized by permeability of free-space in the î direction

6. 𝑏ĵ = b · ĵ = 𝜇
−1/2
0 B · ĵ: magnetic field normalized by permeability of free-space in the ĵ direction

7. 𝑏k̂ = b · k̂ = 𝜇
−1/2
0 B · k̂: magnetic field normalized by permeability of free-space in the k̂

direction

Ion Charge State (nodalArray, at least 1 component1, required) The charge state of the ions in
the plasma. If a data structure with more than 1 component is specified, then the component corre-
sponding to the charge state can be supplied with chargeStateIndex.

14.7.3 Example

The following block demonstrates whistlerWave used in combination with timeStepRestrictionUpdater (1d, 2d,
3d) and hyperbolic (1d, 2d, 3d) to compute the fastest wave speed and the timestep restriction for Hall MHD:

<Updater timeStepRestriction>
kind = timeStepRestrictionUpdater2d
in = [q, Zavg]
onGrid = domain
waveSpeeds = [waveSpeed]
restrictions = [idealMhd,whistler]
courantCondition = CFL

<TimeStepRestriction idealMhd>
kind = hyperbolic2d
model = mhdDednerEqn
gasGamma = GAS_GAMMA
mu0=MU0

</TimeStepRestriction>

<TimeStepRestriction whistler>
kind = whistlerWave2d
fundamentalCharge = CHARGE
speciesMass = MI
chargeStateIndex = 0
mu0 = MU0
bIndex = [5 6 7]
massDensityIndex = 0
gasGamma = GAS_GAMMA

</TimeStepRestriction>
</Updater>

264 Chapter 14. Time Step Restriction

CHAPTER

FIFTEEN

MULTI-SPECIES DATA FILES

Multi-species data such as reaction rate constants, specific heats, atomic data etc can be supplied to USim using an
ASCII text file. Each data file can contain the following options:

REACTIONS chemical reactions

CP specific heat at constant pressure

EOF standard energy of formation

MOLECULARWEIGHT molecular weight

MOLECULARDIA molecular diameter

DOF degrees of freedom of a gas molecule

Not all properties need to be included with every file. Data associated with each property is enclosed between lines
labelled ‘<PROPERTY> START’ and ‘<PROPERTY> END’, where <PROPERTY> is replaced with one of the above
list.

15.1 Multi-Species Chemical Reactions

An example multi-species reaction block that demonstrates a range of reaction types for mult-species chemistry is
given below:

REACTIONS START
SPECIES N2 N O2 O NO
2 2 F 1.0E-8 0.0 N2 O2 NO NO
2 2 A 300.0 11000.0 6.43E-18 1.0E+0 3.16E+4 1.58E-8 1.0E+0 1.64E+5 N O2 NO O
2 2 E 300.0 12000.0 4.0E-9 0.0 0.0 2.0 5 0.0 0.0 0.0 0.0 0.0 N2 O NO N
REACTIONS END

This reactions block demonstrates chemical reactions involving 5 species: N2 N O2 O NO, denoted by the second
line in the example: SPECIES N2 N O2 O NO. Note that each specie is delimited by a space. The next three lines
of the example (lines 3 - 5) describe the chemical reactions involving these species, one chemical reaction per line.
Data describing the chemical reaction is space delimited. All chemical reactions supported by USim use the following
pattern on one line to describe the reaction properties

Num_LHS Num_RHS Type Parameters LHS_Species RHS_Species

where

• Num_LHS = Number of species on LHS

• Num_RHS = Number of species on RHS

• Type = Reaction Type

265

USimReferenceManual, Release 3.0.1

• Parameters = Reaction Parameters

• LHS_Species = LHS species list

• RHS_Species = RHS species list

In the example above, each reaction has

Num_LHS = 2
Num_RHS = 2

The third parameter, Type = F,A,E denotes the type of chemical reaction and determines what entries are necessary in
Parameters. The final two entiries on the line list the species on the left-hand side and right-hand sides of the reaction
respectively. The above example demonstrates the three types of chemical reactions that it is possible to include in a
USim simulation, which are:

Fixed rate reactions; Type = F Fixed rate reactions are demonstrated on line 3 of the example. In this case,
we are demonstrating the system:

Reaction: 𝑁2 +𝑂2
 2𝑁𝑂;

Foward Rate Constant: 𝑘𝑓 = 10−8;

Backward Rate Constant: 𝑘𝑏 = 0.0

The data format for fixed rate reactions is as follows (on one line):

Num_LHS Num_RHS Type Forward_A Backward_A LHS_Species RHS_Species

In the example above these are set as:

Num_LHS = 2
Num_RHS = 2
Type = F
Forward_A = 1.0E-8
Backward_A = 0.0
LHS_Species = N2 O2
RHS_Species = NO NO

Arrhenius-type Chemical Reactions; Type = A; Arrhenius-type reactions are demonstrated on line 4 of
the example. In this case, we are demonstrating the system:

Reaction: 𝑁 +𝑂2
 𝑁𝑂 +𝑂;

Forward Rate Constant: 𝑘𝑓 = 𝐴
(︀

𝑇
298

)︀𝑛
𝑒(

−𝐸𝑎
𝑅𝑇);

Backward Rate Constant: 𝑘𝑏 = 𝐴
(︀

𝑇
298

)︀𝑛
𝑒(

−𝐸𝑎
𝑅𝑇)

Arrhenius-type reactions are valid over a temperature range, 𝑇𝑚𝑖𝑛 < 𝑇 < 𝑇𝑚𝑎𝑥 which must be specified. The
data format for Arrhenius-type reactions is as follows (on one line):

Num_LHS Num_RHS Type T_min T_max \
Forward_A Forward_n Forward_Ea \
Backward_A Backward_n Backward_Ez \
LHS_Species RHS_Species

In the example above, these are set as:

Num_LHS = 2
Num_RHS = 2
Type = A
T_min = 300.0
T_max = 11000.0

266 Chapter 15. Multi-Species Data Files

USimReferenceManual, Release 3.0.1

Forward_A = 6.43E-18
Forward_n = 1.0E+0
Forward_Ea = 3.16E+4
Backward_A = 1.58E-8
Backward_n = 1.0E+0
Backward_Ea = 1.64E+5
LHS_Species = N2 O
RHS_Species = NO N

Arrhenius-type Chemical Reactions with Equilibriation; Type = E Arrhenius-type reactions
with equilibriation are demonstrated on line 5 of the example. In this case, we are demonstrating the system:

𝑁2 +𝑂
 𝑁𝑂 +𝑁

Forward Rate Constant 𝑘𝑓 = 𝐴
(︀

𝑇
298

)︀𝑛
𝑒(

−𝐸𝑎
𝑅𝑇)

Equilibrium Rate Constant 𝑘𝑒 = 𝐵𝑒

(︂
𝑚∑︀

𝑖=1
𝑐𝑖(10000

𝑇)
𝑖
)︂

Backward Rate Constant 𝑘𝑏 = 𝑘𝑓/𝑘𝑒

This system of reactions are valid over a temperature range, 𝑇𝑚𝑖𝑛 < 𝑇 < 𝑇𝑚𝑎𝑥 which must be specified. USim
automatically derives the backward rate constant based on the forward and equilibrium rate constants. The data
format for Arrhenius-type reactions with equilibriation is as follows (on one line):

Num_LHS Num_RHS Type T_min T_max \
Forward_A Forward_n Forward_Ea \
Equilib_B Equilib_m Equilib_c1 Equilib_c2 ... Equilib_cm \
LHS_Species RHS_Species

Note that Equilib_m sets the number of entries Equilib_c1 Equilib_cm. In the example above, these are set
as:

Num_LHS = 2
Num_RHS = 2
Type = E
T_min = 300.0
T_max = 12000.0
Forward_A = 4.0E-9
Forward_n = 0.0E+0
Forward_Ea = 0.0E0
Equilib_B = 2.0
Equilib_m = 5
Equilib_c1 = 0.0
Equilib_c2 = 0.0
Equilib_c3 = 0.0
Equilib_c4 = 0.0
Equilib_c5 = 0.0
LHS_Species = N O2
RHS_Species = NO O

15.2 Multi-Species Specific Heat At Constant Pressure

An example multi-species specific heat at constant pressure block is given below:

CP START
SPECIES N2 N O2 O NO
1 100.0 500.0 5 28.98641 1.853978 -9.647459 16.63537 0.000117

15.2. Multi-Species Specific Heat At Constant Pressure 267

USimReferenceManual, Release 3.0.1

1 298.0 6000.0 5 21.13 -0.388 0.04 0.02 -0.025
3 100.0 700.0 5 31.32 -20.23 57.86 -36.50 -0.0073 700.0 2000.0 5 30.0 8.77 -3.988 \

0.788 -0.7415 2000.0 6000.0 5 20.91 10.72 -2.02 0.14 9.2
1 298.0 6000.0 5 21.13 -0.388 0.04 0.02 -0.025
2 298.0 1200.0 5 23.83 12.58 -1.139 -1.497 0.214 1200.0 6000.0 5 35.99 0.95 -0.148 \

0.0099 -3.0
CP END

This block demonstrates specific heat at constant pressure for 5 species: N2 N O2 O NO, denoted by the second line in
the example: SPECIES N2 N O2 O NO. Note that each specie is delimited by a space. The specific heat data of each
of the species is entered in a separate line in the same order as that of the species list. Data for each species should be
entered on a single line, but has been formatted here for ease of viewing. USim species the specific heat at constant
pressure using Shomate polynomials defined in multiple temperature ranges according to:

𝐶𝑝 = 𝑎0 + 𝑎1𝑡+ 𝑎2𝑡
2 + 𝑎3𝑡

3 + 𝑎4

𝑡2 , where 𝑡 = 𝑇/1000.

The polynomials are specified through the data format:

<Number-of-polynomials> {Polynomial1-parameters} {Polynomial2-parameters} \
{PolynomialN-parameters}

where each of the N <Number-of-polynomals> are specified through {PolynomialN-parameters}:

<Temperature-range-lower-limitN> <Temperature-range-upper-limitN> \
<Number-coefficients-in-polynomialN> <polynomialN-coefficients>

In line 3 of the above example, 𝐶𝑝,𝑁2 is specified using a single polynomial in the temperature range [100,500] K
using

<Number-of-polynomials> = 1
<Temperature-range-lower-limit> = 100.0
<Temperature-range-upper-limit> = 500.0
<Number-coefficients-in-polynomial1> = 5
<polynomial1-coefficient1> = 28.98641
<polynomial1-coefficient2> = 1.853978
<polynomial1-coefficient3> = -9.647459
<polynomial1-coefficient4> = 16.63537
<polynomial1-coefficient5> = 0.000117

In line 7 of the above example, 𝐶𝑝,𝑁𝑂 is specified using two polynomials in the temperature ranges [298,1200] and
(1200,6000] K using:

<Number-of-polynomials> = 2
<Temperature-range-lower-limit1> = 298.0
<Temperature-range-upper-limit1> = 1200.0
<Number-coefficients-in-polynomial1> = 5
<polynomial1-coefficient1> = 23.83
<polynomial1-coefficient2> = 12.58
<polynomial1-coefficient3> = -1.139
<polynomial1-coefficient4> = -1.497
<polynomial1-coefficient5> = 0.214
<Temperature-range-lower-limit2> = 1200.0
<Temperature-range-upper-limit2> = 6000.0
<Number-coefficients-in-polynomial2> = 5
<polynomial2-coefficient1> = 35.99
<polynomial2-coefficient2> = 0.95
<polynomial2-coefficient3> = -0.148
<polynomial2-coefficient4> = 0.0099
<polynomial1-coefficient5> = -3.0

268 Chapter 15. Multi-Species Data Files

USimReferenceManual, Release 3.0.1

15.3 Multi-Species Energy of Formation, Molecular Weight, Molecular
Diameter and Degrees of Freedom

Each of the above mentioned properties are constant and hence share the same block format with the corresponding
starting and ending lines. The example below is for molecular weight data. Block header ‘MOLECULARWEIGHT
START’ is followed by list of species ‘SPECIES N2 N O2 O NO’. Each of the species is delimited by space. The
next line has the molecular weights entered in the same order as that of the species list. The block is closed with
‘MOLECULARWEIGHT END’.

MOLECULARWEIGHT START
SPECIES N2 N O2 O NO
28.0 14.0 32.0 16.0 30.0
MOLECULARWEIGHT END

15.3. Multi-Species Energy of Formation, Molecular Weight, Molecular Diameter and Degrees of
Freedom

269

USimReferenceManual, Release 3.0.1

270 Chapter 15. Multi-Species Data Files

INDEX

A
anisotropic diffusion, 58
Arrhenius-type Chemical Reactions, 265
Arrhenius-type Chemical Reactions with Equilibriation,

265

B
Backward, 93
bin, 31
binCells, 82
bodyFitted, 26
Boundary Condition, 207
boundaryEntityGenerator, 79
bremsPowerSrc, 180

C
characteristicCellLength, 79
Chemical Reactions, 265
classicMusclUpdater, 50
coilFieldEqn, 182
collisionFrequency, 188
combiner, 42
computeChargeError, 187
computePrimitiveState, 45
conductivityTensor, 191
copy, 207
Crank-Nicholson, 93
curl, 56
current, 183
curvilinear coordinates, 144, 148
cyclotronFrequency, 215

D
Data Files, 265
DataStruct, 31
DataStructAlias, 33
Degrees of Freedom, 269
diffusion, 58
Dirchlet, 207
divergence, 56
divergence cleaning, 104, 108, 112, 117, 122, 132, 224,

228, 232, 237, 242, 250

dynVector, 32
dynVectorOperator, 43

E
electron energy, 117, 122, 237, 242
Energy of Formation, 269
entityGenerator, 80
Equation, 97
equationUpdater, 45
Euler, 93
eulerBc, 208
eulerEqn, 97, 217
eulerSym, 144
explicit time integration, 71
exprHyperSrc, 153

F
fieldAtPoint, 83
first derivatives, 56
firstOrderMusclUpdater, 48
Fixed-rate chemical reactions, 265
frequency, 216
functionBc, 208

G
gasDynamicMaxwellDednerEqn, 132, 250
gasDynamicMhdDednerEqn, 112, 232
general equation of state, 100, 220
generalBc, 209
generalizedOhmsLaw, 67
gradient, 56
grid, 25

H
hydrodynamics, 97, 217
hyperbolic, 217
hyperbolicCleanSym, 188

I
idealGasComputeVariables, 167
idealGasVariables, 166
implicitMultiUpdater, 72

271

USimReferenceManual, Release 3.0.1

initialize, 39
intCombinedFields, 83
inviscid compressilbe hydrodynamics, 144
iterative solver, 72

J
Jacobian Free Newton Krylov, 72

K
kEpsilonOperator, 65
kOmegaOperator, 63

L
laminar viscosity, 60
laplacian, 58
linearCombiner, 41
lineIntegral, 84
localOdeIntegrator, 76
lorentzForce, 184

M
magnetohydrodynamics, 104, 108, 112, 117, 122, 132,

148, 224, 228, 232, 237, 242, 250
maxCombinedFields, 85
Maxwell’s equations, 127, 129, 247
maxwellBc, 210
maxwellDednerEqn, 129, 247
maxwellEqn, 127
maxwellSym, 150
mhdBc, 210
mhdDednerEosEqn, 108, 228
mhdDednerEqn, 104, 224
mhdSrc, 154
mhdSym, 148
minDistanceToWall, 80
Molecular Diameter, 269
Molecular Weight, 269
momentumEnergyExchange, 192
multispecies, 103, 223
multiSpeciesSingleVelocityEqn, 103, 223
multiSpeciesSym, 151
multiUpdater, 71

N
nanChecker, 89
Navier-Stokes, 60
navierStokesViscousOperator, 60
Neumann, 207
NFluidSrc, 194
nodalArray, 32
ntCart, 25

O
operatorEntityGenerator, 81

ordinary differential equation‘, 76

P
paintEntity, 82
periodicCartBc, 211
plasmadynamics, 138, 256
plasmaFrequency, 260
positiveValue, 261
pressureDensityCorrector, 90
primitive state, 45
propaceosComputeVariables, 171
propaceosVariables, 169

Q
quadratic, 262

R
radiationAbsorption, 181
radiationEmission, 182
reactionTableRhs, 195
real gas, 99, 100, 219, 220
realGasEosEqn, 100, 220
realGasEqn, 99, 219
resistiveOperator, 69
Reynolds-Averaged Navier Stokes, 60
Runge Kutta, 93

S
second derivatives, 58
sesameComputeVariables, 175
sesameVariables, 173
simpleBc, 211
simpleTwoTemperatureMhdDednerEqn, 117, 237
Source, 143
Specific Heat At Constant Pressure, 267
stress, 60
sufaceEvapration, 212
Super Time Step, 93
surface ablation, 88
Surface Diagnostic, 87
surfaceIntegral, 86

T
temperatureAndHeatFlux, 89
temperatureRelaxation, 197
ten moment, 101, 222
tenMomentBc, 212
tenMomentEqn, 101, 222
tenMomentFluidSrc, 158
thermal conduction, 60
thirdOrderMusclUpdater, 54
time integration, 93
Time Step, 215

272 Index

USimReferenceManual, Release 3.0.1

time step, 77
timeStepRestrictionUpdater, 77
transportCoeffSrc, 198
turbulent, 60
two fluid, 101, 222
twoFluidEqn, 138, 256
twoFluidSrc, 160
twoFluidSym, 152
twoTemperatureMhdDednerEqn, 122, 242

U
uniformCombiner, 41
unstructMusclUpdater, 52
unstructured, 28
Updater, 39
UpdateSequence, 37
UpdateStep, 35
userDefinedEqn, 139, 258

V
valueCorrector, 91
vanDerWaalsComputeVariables, 179
vanDerWaalsVariables, 177
vector, 56
vertexJetUpdater, 46
viscosity, 60
viscous, 60

W
wave speed, 77
whistlerWave, 263
wireFieldEqn, 186

Index 273

	Introduction
	Macros
	Mathphys Macro
	Grid Macro
	Euler Macro
	Ideal MHD Macro
	Anisotropic Conductivity Macro

	Grid
	cart (1d, 2d, 3d)
	bodyFitted (1d, 2d, 3d)
	unstructured

	DataStruct
	bin
	dynVector
	nodalArray

	DataStructAlias
	UpdateStep
	UpdateSequence
	Updater
	initialize (1d, 2d, 3d)
	linearCombiner (1d, 2d, 3d)
	uniformCombiner (1d, 2d, 3d)
	combiner (1d, 2d, 3d)
	dynVectorOperator
	equation (1d, 2d, 3d)
	computePrimitiveState(1d, 2d, 3d)
	vertexJetUpdater (1d, 2d, 3d)
	firstOrderMusclUpdater (1d, 2d, 3d)
	classicMusclUpdater (1d, 2d, 3d)
	unstructMusclUpdater (1d, 2d, 3d)
	thirdOrderMusclUpdater (1d, 2d, 3d)
	vector (1d, 2d, 3d)
	diffusion (1d, 2d, 3d)
	navierStokesViscousOperator (1d, 2d, 3d)
	kOmegaOperator (1d, 2d, 3d)
	kEpsilonOperator (1d, 2d, 3d)
	generalizedOhmsLaw (1d, 2d, 3d)
	resitiveOperator (1d, 2d, 3d)
	multiUpdater (1d, 2d, 3d)
	implicitMultiUpdater (1d, 2d, 3d)
	localOdeIntegrator (1d, 2d, 3d)
	timeStepRestrictionUpdater (1d, 2d, 3d)
	boundaryEntityGenerator (1d, 2d, 3d)
	characteristicCellLength (1d, 2d, 3d)
	entityGenerator (1d, 2d, 3d)
	minDistanceToWall (1d, 2d, 3d)
	operatorEntityGenerator (1d, 2d, 3d)
	paintEntity (1d, 2d, 3d)
	binCells (1d, 2d, 3d)
	fieldAtPoint (1d, 2d, 3d)
	intCombinedFields (1d, 2d, 3d)
	lineIntegral (1d, 2d, 3d)
	maxCombinedFields (1d, 2d, 3d)
	surfaceIntegral (1d, 2d, 3d)
	surfaceVariables (1d, 2d, 3d)
	nanChecker (1d, 2d, 3d)
	pressureDensityCorrector (1d, 2d, 3d)
	valueCorrector (1d, 2d, 3d)

	Time Integrator
	Preconditioner
	Hyperbolic Equations
	eulerEqn
	realGasEqn
	realGasEosEqn
	tenMomentEqn
	multiSpeciesSingleVelocityEqn
	mhdDednerEqn
	mhdDednerEosEqn
	gasDynamicMhdDednerEqn
	simpleTwoTemperatureMhdDednerEqn
	twoTemperatureMhdDednerEqn
	maxwellEqn
	maxwellDednerEqn
	gasDynamicMaxwellDednerEqn
	twoFluidEqn
	userDefinedEqn

	Algebraic Equations
	eulerSym
	mhdSym
	maxwellSym
	multiSpeciesSym
	twoFluidSym
	exprHyperSrc
	mhdSrc
	tenMomentFluidSrc
	twoFluidSrc
	idealGasVariables
	idealGasComputeVariables
	propaceosVariables
	propaceosComputeVariables
	sesameVariables
	sesameComputeVariables
	vanDerWaalsVariables
	vanDerWaalsComputeVariables
	bremsPowerSrc
	radiationAbsorption
	radiationEmission
	coilFieldEqn
	current
	lorentzForce
	wireFieldEqn
	computeChargeError
	hyperbolicCleanSym
	collisionFrequency
	conductivityTensor
	momentumEnergyExchange
	NFluidSrc
	reactionTableRhs
	temperatureRelaxation
	transportCoeffSrc

	Boundary Conditions
	copy (1d, 2d, 3d)
	eulerBc (1d, 2d, 3d)
	functionBc (1d, 2d, 3d)
	generalBc (1d, 2d, 3d)
	maxwellBc (1d, 2d, 3d)
	mhdBc (1d, 2d, 3d)
	periodicCartBc (1d, 2d, 3d)
	simpleBc (1d, 2d, 3d)
	sufaceEvaporation (1d, 2d, 3d)
	tenMomentBc (1d, 2d, 3d)

	Time Step Restriction
	cyclotronFrequency (1d, 2d, 3d)
	frequency (1d, 2d, 3d)
	hyperbolic (1d, 2d, 3d)
	plasmaFrequency (1d, 2d, 3d)
	positiveValue (1d, 2d, 3d)
	quadratic (1d, 2d, 3d)
	whistlerWave (1d, 2d, 3d)

	Multi-Species Data Files
	Multi-Species Chemical Reactions
	Multi-Species Specific Heat At Constant Pressure
	Multi-Species Energy of Formation, Molecular Weight, Molecular Diameter and Degrees of Freedom

	Index

